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Abstract: With the development of connected and automated vehicles, eco-driving control is reckoned to generate 

unprecedented potential on energy-saving in electrified powertrain. In this paper, a data-driven based eco-driving 

control strategy with efficient computation capacity is proposed for plug-in hybrid electric vehicles to achieve 

approximate optimal energy economy. An efficient hierarchical optimal control scheme is designed to mitigate the 

massive computational cost during velocity optimization and powertrain control. A data-driven optimal energy 

consumption cost model and an optimal battery current model are respectively constructed via two neural networks 

and served as the critic model and the system model during velocity optimization. Furthermore, the neural network-

based dynamic programming is exploited to optimize the vehicle velocity by merging the data-driven models and 

Bellman optimality principle. The simulation results demonstrate that the proposed method can remarkably improve 

fuel economy by up to 16.7% in complicated driving conditions, compared with conventional sequential 

optimization methods. Furthermore, the data-driven control scheme can drastically improve the computational 

efficiency with slight sacrifice on fuel economy, compared with the optimum benchmark.  
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I. INTRODUCTION 

Vehicle electrification supplies an efficient path to reduce the dependence on fossil fuel energy, and electric 

vehicles (EVs) and hybrid EVs (HEV) dominate the development trend among all feasible solutions [1, 2]. Moreover, 
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plug-in HEVs (PHEVs) are also widely adopted due to the operation mode incorporation of EVs and HEVs, which, 

in turn, complicates the design of control algorithms, including energy allocation scheme among different energy 

sources (usually internal combustion engine (ICE) and lithium-ion battery pack). On this account, the so-called 

energy management strategies (EMSs) are intensively investigated to allocate energy distribution and promote 

energy controlling performance of PHEVs, with the target of fuel economy optimization, battery lifespan extension, 

and driving experience promotion [3-5]. On the other hand, the flourishment of connected and automated 

technologies allows vehicles to easily access surrounding driving conditions, and thus brings in opportunities for 

velocity planning and subsequent energy saving, referred to as eco-driving [6-8]. In view of these optimization 

aspects, the combination of eco-driving optimization and simultaneous proper energy management may provide an 

unprecedented perspective to further improve the fuel economy of PHEVs. In this context, the conventional eco-

driving has been gradually augmented to the extended eco-driving involving speed planning and energy allocation 

optimization. 

The target of traditional eco-driving control problems is to optimize speed profiles of vehicle for fuel economy 

promotion. The initial attempt of eco-driving research concentrates on reference driving speed planning for drivers 

to avoid unnecessary acceleration and deceleration, so as to reduce fuel consumption [9]. While, the development 

of connected and automated technologies broadens the possibility of velocity planning for PHEVs according to the 

perceived surrounding and pre-known future driving conditions [10]. Currently, pulse and glide strategies are 

recognized as a widely accepted eco-driving scheme for intelligent ICE driven vehicle [11, 12], and they usually 

consist of rapid acceleration and coasting deceleration operations for optimizing the working range of ICE. In 

addition, optimization algorithms have been applied to achieve eco-driving, such as dynamic programming (DP) 

[13], pseudo-spectral method [14], and Pontryagin’s Minimal Principle (PMP) [15]. For EVs, an analytical state-

constrained control is implemented for eco-driving control in [16]. In [17], the global optimal eco-driving problem 

of EVs is solved through sequential quadratic programming. Additionally, some researches pay attention to optimize 

the velocity profiles according to the state of traffic lights [18]. In [19], a cooperative eco-driving system is designed 

to reduce the overall fuel consumption of traffic network at signalized intersections, where DP is exploited for 

optimal velocity planning and eco-driving control based on the queue prediction [20]. 

Moreover, hybridization in powertrain of PHEVs raises new challenges to eco-driving control [21]. The 
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powertrain system of PHEVs is more complex, and insufficient consideration of power distribution characteristics 

can affect the designated speed/acceleration to a large extent. Consequently, to reach the optimization of velocity 

profiles, EMS needs to be integrated into eco-driving control. However, the increase of state and control variables 

complicates the optimization design and augments the computation intensity. As such, sequential optimization is 

widely leveraged to solve the simultaneous optimization problem in a step-by-step manner, and decomposes the 

optimization of speed planning and energy management into two subsequent procedures [22, 23]. The mechanism 

of sequential optimization is shown in Fig. 1 (a). In the first step, the velocity profile is optimized to reduce energy 

consumption, and for the vehicle driven by ICE, the fuel consumption is typically defined as the cost function [24]. 

Whereas for PHEV, the fuel consumption cannot be directly calculated according to the driving state (including 

driving speed, acceleration and SOC), due to the existence of two power sources in powertrain. Thus, the net energy 

consumed by the motion of PHEV is usually defined as the objective function [25]. In the second step, the energy 

management is optimized according to the velocity profiles generated in the first step. The energy consumption cost 

of powertrain can be defined as the objective function in the second step. In [26], PMP is exploited to sequentially 

optimize the speed and energy management for HEV with the consideration of road grade. Ref. [27] investigates 

the effect of hierarchical eco-driving control in car-following scenarios based on model predictive control (MPC) 

and DP. In [28], a bi-level eco-driving control strategy based on MPC is proposed for connected and automated 

HEVs, and verified effective in reducing fuel consumption under complex driving conditions, including free driving, 

signal waiting and car-following scenarios. In addition, the energy management solutions in lower level controller 

can also supply the reversed guideline to the upper level controller, contributing to velocity planning [29]. Despite 

the preferable performance of sequential optimization, it is still troublesome to explicitly decouple the interaction 

between velocity planning and energy management of PHEVs, and the velocity trajectory planned previously may 

not be qualified to reach the optimal fuel economy of vehicle powertrain. That is, the EMS may only raise the 

minimum energy consumption under the suboptimal velocity planning; as such, the global optimal fuel economy in 

the whole trip cannot be guaranteed.  

To further improve the overall fuel economy of PHEVs, a slew of efforts have been made on attaining co-

optimization based eco-driving control [30, 31]. The co-optimization scheme, as shown in Fig. 1 (b), is an intuitive 

approach to overcome the insufficient decoupling existing in sequential optimization methods. The main difference 
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between co-optimization and sequential optimization methods lies in optimization procedure and optimization 

performance. Compared with sequential optimization methods, co-optimization methods typically optimize the 

velocity and energy management integrally to realize the efficient coupling between velocity and energy 

management, and the vehicle motion model and powertrain model are inputted for the velocity and energy 

management optimization to minimize the powertrain energy consumption. From this point of view, the velocity 

planning results can also be the solutions to the optimal powertrain energy consumption. Ref. [25] designs a PMP 

based strategy to simultaneously conduct velocity planning and energy allocation for a series HEV. In [32], a co-

optimization based eco-driving control for fuel cell hybrid vehicle is proposed by applying DP and PMP, and a 

remarkable hydrogen economy improvement is attained. However, to the authors’ knowledge, conventional co-

optimization methods are not pragmatic for implementation because of their intensive computational burden, and 

the existence of multiple state and control variables increases the difficulty of solving the problem exponentially. 

Since sequential optimization is difficult to achieve the optimal fuel economy due to the incapacity in decoupling 

velocity planning and energy management, and co-optimization methods are limited by intensive calculation, 

designing a computationally efficient eco-driving method deserves to be investigated to further improve the fuel 

economy of PHEVs while incorporating the advantages of sequential optimization and co-optimization methods. 

 
Fig. 1. The working principle of two optimal eco-driving control schemes. (a) sequential optimization, (b) co-optimization. 

Motivated by the state-of-the-art discussion, this paper proposes an efficient optimal eco-driving approach for 

PHEVs based on a hierarchical data-driven framework, so as to overcome the incomplete decoupling in sequential 

optimization and mitigating the intensive calculation existing in co-optimization methods. The proposed framework 
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can be divided into two layers. In the upper layer, the velocity trajectory is optimized macroscopically. The energy 

consumption cost of the studied powertrain, i.e., the sum of fuel cost and electricity cost, is chosen as the 

optimization target. Then, an optimal energy consumption cost model and an optimal battery current model are 

constructed offline through two neural networks (NNs). Next, the NN based DP algorithm, incorporating the data-

driven models and Bellman’s optimality principle, is proposed to plan the driving speed. By this manner, the 

interaction between velocity and energy allocation is efficiently integrated in velocity optimization. In the lower 

layer, an optimal EMS is applied to find the control policy of the powertrain. Numerical simulations are conducted, 

and the results highlight that the proposed control strategy can properly planning the vehicle velocities, and 

simultaneously promote the energy management with preferable fuel economy. In addition, the simulation results 

reveal that the proposed method leads to high computational efficiency with only slight sacrifice on fuel economy, 

compared with the optimum benchmark.  

The main contributions of this paper can be attributed to the following three aspects: 1) a data-driven based 

eco-driving control method for PHEV with real-time application capacity is systematically addressed to properly 

plan the speed and remarkably reduce the energy consumption; 2) the optimal energy consumption cost model and 

optimal battery current model for PHEV are constructed by two NNs based on the results obtained through DP; 3) 

the NN based DP is proposed, with two NNs considered as the critic model and the system model, to contribute to 

performance improvement in terms of fuel economy and calculation efficiency. 

The remainder of this paper is structured as follows: Section II presents the mathematical modeling of the 

PHEV, and formulates the optimal control problem for eco-driving. Section III illustrates the construction of data-

driven models and the data-driven optimal eco-driving approach. Section IV provides the detailed simulation 

analysis based on the proposed method. Finally, the main conclusions and future work are described in Section V. 

II. MODELING AND PROBLEM DISCUSSION 

To design the eco-driving controller for speed planning and energy management, the vehicle needs to be 

modeled, and the input and output of the controller should be defined. 

A. Vehicle Model 

The main target of eco-driving is to optimize the velocity profile. In this paper, the motion vehicle is supposed 
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to be limited by only longitudinal dynamics, and the impact of lateral dynamics is not taken into account. The 

required driving force can be expressed as: 
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where M  is the vehicle mass, f  means the rolling resistance coefficient, g  is the acceleration of gravity,   

expresses the road grade, DC  denotes the air drag coefficient, A  indicates the frontal area of the vehicle, air  is 

the air density, v  is the vehicle speed,   is the correction coefficient of rotating mass, and t  is the transmission 

system efficiency. 

B. Powertrain System Model 

The powertrain of the studied PHEV is with a parallel configuration, of which the structure is shown in Fig. 2. 

As can be found, the vehicle can be propelled individually by either the engine or the integrated starter generator 

(ISG), and the dual clutch transmission (DCT) is coupled with the main reducer and the motor axle to adjust their 

torque and speed ratios. To conduct high-quality speed planning, the powertrain efficiency of powertrain needs to 

be analyzed in detail. 

Main reducer

Differential

VCU

Clutch
Dual clutch 

transmission

ISG

Engine

Power battery
 

Fig. 2. Powertrain system of the PHEV. 

The modeling of the studied PHEV mainly includes three parts: engine, ISG motor and power battery, and 

additionally the accessory power is neglected for simplification in this research. Moreover, the powertrain dynamics 

are usually neglected to simplify the design of eco-driving and energy management algorithms. The fuel 

consumption rate fuelm  (unit: g/kwh) is calculated by interpolating torque eT  and speed en , as:  

 e ( , )fuel e em f T n=   (1) 

where ef  denotes the nonlinear map acquired by the calibration experiment. Thus, the total fuel consumption 



7 

fuelQ  (unit: kg) can be formulated as: 
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where   is the density of gasoline. Similarly, the efficiency model of ISG is acquired by the experimental data, 

and an interpolation model is constructed to describe the relationship among efficiency m , motor torque mT  and 

motor speed mn , as: 

 ( , )m m m mf T n =   (1) 

where mf  denotes the efficiency map of ISG. The battery power bP  can be formulated as: 
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An open circuit voltage source (OCV)- resistance model is adopted to characterize the battery’s electrical 

performance. Based on the Kichoff’s law, the battery current can be calculated, as: 
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where 0SOC  is the initial SOC, bQ  is the battery capacity, bI  is the battery current, E  and R  represent the 

open circuit voltage and the battery internal resistance, which can be acquired by interpolation. The electricity 

consumption eleQ  can be accumulated, as: 
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C. Eco-Driving Control Problem Formulation 

In this study, the target of eco-driving control for PHEV is to minimize the cost of fuel and electricity 

consumption while properly planning the vehicle velocity for the designated driving missions. It is noteworthy that 

in this research, the eco-driving control is optimized in spatial domain, since the speed limit information is typically 

provided by intelligent traffic system (ITS) according to the current driving position. For actual applications, the 
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speed constraints can be constructed in terms of legal limit, road grade and traffic lights [33, 34]. For the studied 

PHEV, the total energy consumption cost of powertrain is defined as the objective function for eco-driving control. 

The control variables and state variables should include the characteristic parameters of vehicle motion and 

powertrain system. On this account, the control variables u  consist of longitude acceleration a  , ICE torque eT , 

and DCT gear ratio DCTi ; and the state variables x  include velocity, travel time as well as SOC. Thus, the optimal 

control problem of eco-driving can be formulated as: 
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where J   denotes the objective function, energycost   represents the powertrain energy consumption cost, fs  

indicates the total driving mileage, s   means the driving distance, fP   and eP   denote  the price of fuel and 

electricity. In addition, the constraints in terms of motion dynamics and powertrain limits should be imposed, as: 
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Distinctly, it is difficult to directly solve the optimal control problem, since the massive control and state variables 
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can lead to curse of dimensionality. In addition, conventional sequential optimization methods failed to account for 

the relationship between velocity and powertrain characteristics. To tackle it, a computationally efficient control 

framework based on data-driven models is proposed to obtain high-performance eco-driving control of the PHEV. 

III. DATA-DRIVEN ECO-DRIVING CONTROL  

Based on the above analysis, direct solving of optimal eco-driving control is difficult to achieve. To solve this 

difficulty, a hierarchy control framework is derived for eco-driving control. To fully consider the relationship 

between velocity and powertrain characteristics in a hierarchical framework, a critical task is to construct a high-

efficiency but accurate objective function to model the powertrain energy consumption during velocity optimization. 

To this end, two NN models, including one critic model and one system model, are established for modeling optimal 

energy consumption cost and optimal current; and a NN based DP algorithm is employed for velocity profile 

optimization. The structure of the proposed approach is shown in Fig. 3. In the offline modules, DP is exploited to 

prepare the optimal solution dataset for training. The online modules are divided into two parts: 1) date-driven 

velocity optimization, and 2) energy management optimization.  

 

Fig. 3. The framework of data-driven based eco-driving control. 

A. Dataset Construction 

The dataset construction is divided into two steps: 1) the energy management is optimized by DP based on a 

comprehensive driving cycle, which involves different driving conditions; and 2) the result of global optimization 

is translated to optimal energy consumption cost and optimal current, then the dataset is extracted for model training. 

Step 1: A comprehensive driving cycle, constituted by real-time driving scenarios, is shown in Fig. 4 (a) and 
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designed to contain different driving states of the vehicle. The optimal energy management is solved by DP with 

the objective function of cost minimization of energy consumption, as shown in (10). Our previous research reveals 

that the key variants impacting fuel economy of PHEVs include velocity, acceleration, driving distance and SOC 

[35]. While, the influence of driving distance and SOC can be illustrated by an equivalent distance factor equL , as: 

 
max

/

/

rem all
equ

rem

SOC SOC
L

L L
=   (4) 

where remSOC  and allSOC  denote the remaining SOC and the maximum SOC when the battery is fully charged; 

remL  and maxL  denote the remaining driving distance and all-electric range. When equL  is greater than or equals 

to 1, one inference can be made that electricity is enough to sustain the remain driving range. Hence, the upper limit 

is set as 1, and thus the range of equL  is within [0, 1]; while equ 1L   means that the energy left in the battery 

cannot sustain the remaining trip, and the ICE needs to be engaged in driving the vehicle to destination. Thus, 

velocity, acceleration and equivalent distance factor are defined as the driving state of PHEV. The matrix of 

equivalent distance factor for the preferred driving cycle is calculated according to (15) and shown in Fig. 4 (b). 

The warm color indicates that ICE needs to participate in driving the vehicle. In contrast, the green area means that 

the electric energy is sufficient for the remaining trip. 

Step 2: The DP algorithm is leveraged to obtain the optimal controlling sequence. However, the accumulated 

optimal cost-to-go matrix generated conversely and the optimal control decision matrix are critical in this study. 

The optimal energy consumption cost of each step is obtained by the difference calculation of the accumulated cost 

matrix, and partial optimal energy consumption matrix is presented in Fig. 4 (c). As can be seen, a remarkable 

increase trend is preferred with the decline of SOC at each step, and is in line with the variation of equivalent 

distance factor shown in Fig. 4 (b). The reason is that the ICE has to contribute more energy to vehicle propulsion. 

While, with the same SOC, the energy consumption cost difference between different steps is incurred due to the 

influence of velocity and acceleration. 
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Fig. 4. Data sets for modeling. (a) comprehensive driving cycle, (b) equivalent distance factor matrix, (c) partial optimal energy 

consumptions cost matrix, (d) partial optimal battery current matrix. 

Similarly, the optimal battery current matrix is calculated by (5) and (6) according to the optimal control 

decision matrix, and partial values are plotted in Fig. 4 (d). It can be observed that the optimal current tends to be 

positive when the SOC is high. Instead, the optimal current gradually becomes negative when the SOC is close to 

the lower limit. In this case, the PHEV typically operates in the energy recovery mode or charging mode to avoid 

SOC from dropping below the threshold. Thus, it can be summarized that the optimal current can adjust the SOC 

trajectory according to the driving state. By this manner, the dataset for data-driven modeling can be prepared, 

including the optimal energy consumption cost matrix, optimal battery current matrix, and equivalent distance factor 

matrix. 

B. Data-Driven Modeling 

The target of data-driven modeling is to estimate the energy consumption and state transfer of PHEV by 

incorporating the characteristics of powertrain but without directly employing the detailed powertrain component 
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models. In this study, two data-driven models are constructed, including one optimal energy consumption model 

and one optimal current model. Since the back propagation NN (BPNN) shows satisfactory fitting performance in 

mapping nonlinear data, and can adaptively adjust the weights and thresholds during training [36], two BPNNs with 

three layers are applied to construct the data-driven models. The gradient descent method is employed to search the 

optimal parameters of BPNNs in each iteration. For instance, the correction of weights is formulated by: 
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

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where    denotes the learning rate, eR   means the average root mean square error of training, and iw   is the 

weights for different neurons. The optimal energy consumption cost NN is treated as the critic model to output the 

optimal powertrain energy consumption cost at different driving states. The structure of critic network is shown in 

Fig. 5, where inw  represents the weighting vector between input layer and hidden layer, and outw  is the weighting 

vector between hidden layer and output layer. As can be found, the input vector x  consists of v , a  and equL , 

and the output is the estimated powertrain energy consumption cost ˆ
energycost , as: 

 ˆ ( , , )energy NN C equcost f v a L=   (6) 

where NNCf  denotes the nonlinear map function describing the relationship between driving state and optimal 

energy consumption. The optimal current NN can be considered as a system model to output the optimal current 

according to the driving state. The optimal current will be applied for state transfer of SOC. Similarly, the input 

vector is the same as that of the critic model, which reflects the driving state of PHEVs. The output is the estimated 

optimal battery current ˆ
bI , as: 

 ˆ ( , , )b NNS equI f v a L=   (7) 

where NNSf  represents the nonlinear map function describing the relationship between driving state and optimal 

battery current. As presented before, the optimal energy consumptions cost matrix and the optimal battery current 

matrix are chosen to train the critic model and system model. The number of neurons, learning rates and the 

maximum iterations number are determined according to our experience and optimization iteration. Finally, the 

number of neurons is respectively set to 20 and 15 for the optimal energy consumption model and optimal current 



13 

model after iteration and optimization; the learning rate and maximum iterations number are defined as 0.05 and 

300 for both NNs. In the next step, the optimal eco-driving control will be formulated and solved. 

 
Fig. 5. Structure of optimal energy consumption cost network. 

C. Data-Driven Velocity Optimization 

As discussed before, the optimal eco-driving control is a nonlinear optimal control problem, and the velocity 

control module seeks optimal decisions that minimize the energy consumption of powertrain. Based on the 

Bellman’s principle, DP can transfer complicated nonlinear optimal control problems into numerous sub-problems 

and raise global optimal solutions. However, standard DP is difficult to directly solve the optimal velocity for 

powertrain in a hierarchy framework, since the explicit powertrain models are difficult to be involved in velocity 

optimization. To tackle it, a NN based DP algorithm is proposed to find the optimal driving speed profiles for eco-

driving. 

The main purpose of NN based DP is to replace the cost function and state transfer function with two NNs 

which are trained offline according to the characteristics data of powertrain. It is essentially a heuristic method, and 

looks similar to adaptive dynamic programming (ADP) [37]. To improve the computational efficiency, most ADP 

methods typically leverage the NN based action model and critic model to avoid directly solving the Bellman 

optimality equation and find approximate optimal control decisions [38]. As shown in Fig. 6, the optimal energy 

consumption cost NN is defined as the critic model to estimate the approximate optimal powertrain energy 

consumption according to the state vector and control vector; and the backward recursive algorithm is employed to 

solve optimal control decisions, so as to mitigate the mapping error of action model by conventional ADP methods 

[39]. Nonetheless, the optimal current NN is chosen as the system model to estimate the optimal current policy 

based on different driving states, thus attaining SOC planning. By this way, the implicit powertrain models are 
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integrated in velocity optimization as a model-free manner, contributing to computation burden reduction. 

 
Fig. 6. Structure of NN based DP. 

The objective function of data-driven velocity optimization in discrete form can be reformulated as: 
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where ( , )k kL x u   is the cost of each step. To further improve the computational efficiency, the travel time is 

eliminated from the state variable with the help of a penalty factor  . Now, the cost function at each step can be 

expressed as: 

 ( , ) ( , ) ( , )k k c k k t k kL x u L x u L x u= +   (9) 
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where cL  represents the energy consumption cost of each stage, and tL  denotes the time cost of each stage. The 

designated arrival time can be guaranteed via adjusting the weight factor [32]. Thus, the objective function can be 

reformulated, as: 
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where ( )NL x  is the terminal cost to fulfill the driving mission, and can be determined according to the terminal 

constraints of velocity and travel duration. Based on the Bellman principle, the optimal control sequence *
ku  can 
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be solved by: 

  * *
1arg min ( , ) ( )k k k ku L x u J x += +  (13) 

where *
1( )kJ x +  represents the optimal accumulated cost in next step. Apparently, the powertrain characteristics 

are integrated into the objective function with the help of the critic model. Hence, the data-driven critic model can 

approximate the powertrain energy consumption, and eliminate the complicated powertrain models and control 

decisions. Finally, the control and state variables of data-driven velocity optimization can be summarized as: 
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Note that (28) is deduced from (6) and (18). The velocity and SOC can illustrate the state variation of system in 

terms of vehicle motion and powertrain system. Similarly, the dynamics of SOC can also be considered according 

to (28) and the data-driven system model. It should be mentioned that the above calculations are realized by the 

data-driven models, rather than by the explicit powertrain model and the complicated powertrain control decision 

policy. By this manner, the simplification of optimal control solving is reached. In addition, the following constraints, 

including terminal constraints, still need to be imposed, as: 
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Furthermore, the designated arrival time, determined by the demand of passengers, can balance the energy 

consumption and travel duration. In the following section, different preset desired duration can be employed for 

simulation validation. To solve the optimal control via NN based DP, the control and state variables are discretized 

in spatial domain. Since the discretization accuracy can generate significant influence on velocity optimization, the 
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discretization steps are determined through iterations, as shown in Table 1. 

Table 1 Parameters discretization of NN based DP 

Parameters Discrete step Unit 

Distance 10 m 

Acceleration 0.1 m/s2 

Velocity  0.1 m/s 

SOC 0.01 - 

D. Energy Management Optimization 

The powertrain energy allocation is optimized according to the result of velocity optimization. Apparently, it 

is a standard optimal control problem which has been widely investigated in previous research [40]. Furthermore, 

since the driving speed profile is preplanned, and can be reckoned as the prior knowledge, the global optimization 

performance is guaranteed. The powertrain energy consumption cost is chosen as the objective, and the control 

variable vector eu   contains engine torque eT   and DCT gear ratio DCTi  . The optimal control problem is 

formulated, as: 

 
e

e
0

( , )

( )

fs energy edcost u x
J ds

v s
=    (19) 

 T
e e DCT[ , ]u T i=   (20) 

 e =x SOC   (21) 

Additionally, the constraints of powertrain system are imposed: 
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  (22) 

Note that the optimal control of energy management is addressed via the typical DP algorithm in spatial domain. 

Based on the Bellman’s principle, DP can transform complicated nonlinear optimal control problem into numerous 

sub-problems and raise global optimal solutions. More details about DP for EMS optimization can be found in our 

previous research [35]. In the next step, simulation analysis and discussions are performed to evaluate the 

performance of the proposed optimization framework. 
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IV. SIMULATION ANALYSIS 

In this study, the discussed three eco-driving control strategies, including 1) sequential optimization scheme 

(simplified as S-opt), 2) co-optimization scheme (called C-opt) and 3) data-driven optimal eco-driving (referred to 

as D-opt hereinafter), are implemented for controlling performance comparison. Two cases studies are conducted 

to examine the control capability of the proposed eco-driving approach. The vehicle’s basic parameters, from a 

product PHEV developed by Changan Automobile Ltd., are shown in Table 2. Note that the price of fuel is set as 

CNY 7.8 per liter, and the price of electricity is set as CNY 0.52 per kWh. Note that in this research, we not consider 

much about characteristic variation of the powertrain under different temperatures. As the maximum battery power 

and the ICE fuel rate are calculated by interpolation in this study, the proposed method will be still feasible in 

vehicle velocity planning and energy economy planning when the related calibration data under different 

temperatures are prepared. In addition, it is necessary to mention that the proposed algorithm can also be suitable 

for multi-objective optimization, such as energy economy promotion, battery life extension and greenhouse gas 

emission reduction, when the mentioned targets are included in the cost function. 

Table 2 The basic parameters of objective PHEV 

Characteristic Value 

Mass (kg) 1350 

Frontal area (m2) 2.82 

Air drag coefficient 0.3146 

Tire rolling radius (m) 0.308 

Rolling resistance coefficient 0.0135 

ISG peak power (kw) 40 

Engine peak power (kw) 80 

Battery capacity (Ah) 40 

DCT gear ratio 3.917/2.429/1.436/1.021/0.848/0.667 

In addition, the speed limits are presumed to obtain in advance via ITS and emerging vehicle-to-everything 

(V2X) communications. The adopted S-opt and C-opt are detailed in [32], and here we only refer to them for 

simplicity. For C-opt, the powertrain energy consumption cost is set as the objective function, and the optimal 

control problem can be formulated as： 

 
c

c
0

( , )
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fs energy cdcost u x
J ds

v s
=    (23) 

 c [ , , ]T
e DCTu a T i=   (24) 
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  c , ,
T

x v t SOC=   (25) 

where cJ  represents the objective function, cu  is the control vector, cx  is the state vector. While, for S-opt, the 

optimization settings of EMS optimization remain the same as that of the proposed D-opt, as shown in (30) to (33); 

and the motion energy consumption is defined as the objective function for velocity optimization, as: 

 ( )1 s s
0

( , )
fs

S vJ F u x v ds=    (26) 

 s ( )u a s=   (27) 

  s ,
T

x v t=   (28) 

For comparison, both S-opt and C-opt are solved by the DP algorithm. Apparently, compared with D-opt and S-opt, 

C-opt is exposed to huge computational burden due to the massive control and state variables. 

A. Case Study for Basic Driving Cycle 

To examine the essential characteristics of different methods, a basic driving mission is constructed and 

requires the vehicle to drive for 1 km within 70 s. The initial and terminate speed is set to zero, and a constant high-

speed limit of 30 m/s is chosen during the trip. As the driving mileage of the constructed basic driving cycle is quite 

short for PHEVs, the initial SOC is set to 0.31, thereby enabling the engine to participate in propelling the vehicle. 

The basic driving cycle can showcase the designed velocity profiles and the powertrain operating state by different 

control strategies, with a larger feasible range of speed planning. Additionally, such a simulation can also provide a 

reference for identifying the rules during velocity planning, since arbitrary driving cycles can be regarded as the 

combinations of numerous basic driving cycles [41]. 

The velocity optimization result is shown in Fig. 7 (a). Apparently, the velocity profile by D-opt highlights the 

similar trend as that by C-opt, and a moderate acceleration is observed at the beginning, followed by gradual 

deceleration. While, the speed profile obtained by D-opt exhibits higher acceleration and velocity between 100 m 

and 400 m. By contrast, the speed profile solved by S-opt exhibits a significantly different trend, compared with the 

other two methods. The speed shows drastic acceleration and deceleration in the beginning and ending of the trip, 

and the cruise driving occupies a large proportion of travel. It is interpretable that immoderate acceleration by S-

opt is rendered to consume more energy when the knowledge of powertrain efficiency is inaccessible. 
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Fig. 7. Simulation results of basic driving cycle. (a) optimal velocity profiles, (b) engine torque, (c) SOC trajectories, (d) engine 

operating points. 

The simulation results with respect to the powertrain are illustrated in Figs. 7 (b) to (d). As can be observed 

from Fig. 7 (b), the engine tends to operate during the acceleration through the control of C-opt and D-opt, and 

maintains off in the remaining range of coasting. By contrast, the engine by S-opt is on during most of the trip. On 

the other hand, as shown in Fig. 7 (c), an obvious increase in SOC emerges during coasting based on the D-opt and 

C-opt approach, indicating that electric energy recovery is conducted. While, the SOC trajectory generated by S-

opt is decreasing during the cruise stage. As shown in Fig. 7 (d), most of the operating points by S-opt are located 

in low efficiency region between 20 Nm to 40 Nm due to the long duration of cruise. Apparently, the unreasonable 

velocity planning results in adverse impact on engine operation. While, the powertrain shows the similar operating 

state through the regulation of D-opt and C-opt. By contrast, S-opt enables the engine’s engagement for longer 

driving time and lower operating efficiency. What is more, the inefficient engine operation state also deteriorates 

fuel economy when S-opt is applied. The fuel economy of three approaches is summarized in Table 3. As can be 
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seen, D-opt reduces the energy consumption cost by 22.1%, compared with S-opt. Additionally, D-opt leads to close 

energy consumption cost, compared with C-opt, which is treated as an optimal benchmark in this study. The fuel 

consumption by S-opt is distinctly higher than other two methods due to the improper engine engagement, leading 

to longer operating time and lower operating efficiency. To conclude, D-opt can generate similar control policy with 

C-opt in terms of velocity planning and powertrain control, and a remarkable improvement of fuel economy is 

achieved by D-opt, compared with conventional S-opt. 

Table 3 Simulation results of fuel economy for basic driving cycle 

Method 
Energy consumption 

cost (CNY) 

Reduction 

(%) 

Fuel consumption 

cost (CNY) 

Electricity consumption 

cost (CNY) 

C-opt 0.238 24.0 0.202 0.036 

D-opt 0.244 22.1 0.203 0.041 

S-opt 0.313 - 0.276 0.037 

B. Case Study for Complicated Driving Conditions 

To further verify the performance of the proposed method, a more complicated driving scenario is constructed 

for simulation. First, a standard driving cycle UDDS is converted to imitate the varying speed limit in real traffic 

environment, and as introduced in [42], the speed profile is magnified and shrunk to generate upper and lower speed 

limits. We assume that all the potential influences of different driving conditions, including legal limit, traffic lights 

and inter-vehicle distance, are involved in the speed limit. Even when the driving conditions are subjected to 

variations due to external influences such as traffic and weather, the proposed algorithm can still be applied only if 

the speed limits involve all the changes. The desired arrival time is set to 1266 s, and the initial SOC is set to 0.4. 

The results of velocity profiles by the three methods are shown in Fig. 8 (a). During the segment of 2 km and 4 km, 

all the three approaches optimize the velocity profiles that are close to the lower limit, indicating that based on the 

pre-set arrival time, all three eco-driving control strategies can plan the driving speed reasonably, without 

unnecessary acceleration and energy consumption. One common knowledge is that in the premise of meeting the 

requirement of desired travel duration, higher driving speeds typically consume more energy for driving. The 

driving speed profiles obtained by D-opt and C-opt involve deceleration in coasting during the whole trip, especially 

for the segment of 9 km to 12 km. By contrast, the velocity planned by S-opt highlights more aggressive acceleration 

and deceleration. Furthermore, the driving speed solved by S-opt shows a larger proportion in cruise stage, 

compared with the other two methods. 



21 

 

 

 
Fig. 8. Simulation results of complicated driving cycle. (a) velocity profiles for variable speed limit, (b) SOC trajectories, (c) 

engine operating points, (d) engine operating time, (e) fuel consumption cost. 

The powertrain operation results are shown in Fig. 8 (b) and (c). As can be found in Fig. 8 (b), the SOC 

trajectories of three control strategies decrease almost linearly in spatial domain, and are in line with the global 

optimal SOC trajectory. Nonetheless, the distribution of engine operating points shows slight difference when 
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different control strategies are employed, as shown in Fig. 8 (c). It can be mainly attributed to two reasons: 1) narrow 

velocity planning range that makes the final solutions approximate due to the speed constraints, and 2) the same 

optimization algorithm for powertrain control that enables the engine with similar operating state. The simulation 

results are further discussed in Fig. 8 (d) and (e). As can be found in Fig. 8 (d), the engine operation duration (157 

s) by S-opt is considerably longer than that by other two eco-driving approaches. Thus, it can be concluded that the 

increase of fuel consumption by S-opt is mainly attributed to the longer operating duration, since only slight 

difference of engine efficiency can be observed. Fig. 8 (e) compares the fuel consumption of different control 

strategies, and the fuel consumption cost by C-opt, D-opt and S-opt is CNY 0.2, 0.21 and 0.34, respectively. 

Apparently, S-opt generates extra fuel consumption during the segment of 5 km to 7 km, thanks to the improper 

velocity planning. Table 4 compares the simulation results, and we can summarize that the notable reduction in 

energy consumption cost (12.5%) is raised by D-opt, compared with conventional S-opt; and the fuel economy by 

D-opt is highly close to that by C-opt. However, S-opt shows the highest computational efficiency among the three 

methods, with the calculation time of 13.2 s. While, D-opt dramatically reduces the calculation time from 1487 s to 

72.3 s, with a decrease of 95.1%, highlighting that D-opt can perform better in terms of computational efficiency 

and fuel economy. By contrast, S-opt obtains a minimum motion energy consumption of 0.653 kWh. The reason of 

causing the minimum motion energy consumption lies in that the motion energy consumption is defined as the 

objective function for velocity optimization, as analyzed in Section I and (37). Besides, the acceleration simulation 

results show that all three approaches have similar moderate average acceleration, which is located in the vicinity 

of 0.6 m/s2. While, S-opt leads to a much higher average deceleration, compared with other two methods, thus 

imposing adverse effect on driving comfort. To sum up, compared with the optimum benchmark, D-opt can achieve 

the satisfied eco-driving result and the drastically improved calculation efficiency, reaching the anticipated control 

target. 

Table 4 Simulation results of the complicated driving cycle 

Method 

Powertrain energy 

consumption cost 

(CNY) 

Reduction 

(%) 

Motion energy 

consumption 

(kWh) 

Calculation time 

(s) 

Average 

acceleration 

(m/s2) 

Average 

deceleration 

(m/s2) 

C-opt 0.83 13.5 0.754 1487.2 0.60 -0.53 

D-opt 0.84 12.5 0.723 72.3 0.61 -0.48 

S-opt 0.96 - 0.653 13.2 0.53 -1.22 

To further validate the performance of D-opt, the simulations are conducted with different arrival time for more 
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in-depth discussion. The results are summarized in Table 5. It can be observed that D-opt improves the fuel economy 

significantly (averagely 13.5 %) under different arrival times. Additionally, the improvement shows an ascending 

tendency with the increase of desired arrival time. One main attribution can be speculated that longer desired arrival 

time can provide larger feasible region for velocity planning, and in this circumstance, D-opt can optimize the 

driving speed profile more reasonably. By contrast, shorter desired arrival time promotes the driving speed close to 

upper limit for meeting the demand of arrival time. To sum up, the proposed data-driven control scheme can lead 

to simultaneous speed planning and proper energy management with satisfactory performance and high efficiency.  

Table 5 Simulation results for different desired arrival time 

Desired 

arrival time 

(s) 

D-opt S-opt 

Fuel 

consumption 

cost (CNY) 

Electricity 

consumption 

cost (CNY) 

Energy 

consumption 

cost (CNY) 

Reduction 

(%) 

Fuel 

consumption 

cost (CNY) 

Electricity 

consumption 

cost (CNY) 

Energy 

consumption 

cost (CNY) 

1005 0.99 0.63 1.62 11.0 1.19 0.63 1.82 

1126 0.49 0.63 1.12 13.9 0.67 0.63 1.30 

1266 0.21 0.63 0.84 12.5 0.34 0.62 0.96 

1405 0.05 0.60 0.65 16.7 0.16 0.62 0.78 

V. CONCLUSIONS 

This paper investigates a data-driven optimal eco-driving control strategy for PHEV with preferable 

performance and computational efficiency in terms of speed planning and energy management. The proposed 

algorithm can efficiently optimize the driving speed profile by incorporating the vehicle motion and powertrain 

system characteristics with the help of the built data-driven critic model and action model. A high-efficiency control 

framework is constructed, and two high-fidelity NN based data-driven algorithms are introduced as critic and system 

models for velocity optimization, mitigating the requirement of explicit complicated powertrain model. Then, the 

optimal eco-driving control problem is efficiently solved by NN based DP in spatial domain. The simulation results 

validate that the proposed approach can generate similar velocity profiles with the co-optimization scheme, and yet 

remarkably reduce the computational load by 95.1%. In addition, the energy consumption cost merely increases by 

1.8%, compared with that by the co-optimization algorithm. As an extension, the proposed method can be applied 

to connected and automated vehicles with different powertrain systems, and can certainly contribute to energy-

saving and control efficiency improvement. 

The future research will be focused on further investigating eco-driving control strategies considering different 
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driving conditions and adaptively generating speed limits according to different potential disturbances, such as 

traffic lights and leading vehicles. To further make it close to actual applications, Pareto efficiency analysis will be 

leveraged for multi-objective optimization during eco-driving, so as to achieve a reasonable tradeoff between fuel 

economy, battery aging and driving comfort. Moreover, incorporating the influence of environment temperature 

into the modeling of powertrain system is another research direction in the future. Furthermore, advanced machine 

learning technologies, such as deep reinforcement learning, will be explored in eco-driving control to design more 

intelligent control schemes. 
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