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ABSTRACT: Silks have been widely used as biomaterials due to their biocompatibility, biodegradability, and excellent mechanical properties. In 

the present work, native spider silk was used as organic template for controlled nucleation of hydroxyapatite (HA) nano-coating that can act 

as biomimetic interface. Different bio-inspired neutralization methods and process parameters were evaluated to optimize the silk 

functionalization. The morphology and chemical composition were investigated by scanning electron microscopy, energydispersive X-ray 

spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis and mechanical properties were studied through tensile 

tests. Results showed that the optimized protocol enabled a controlled and homogeneous nucleation of apatite nano-crystals while maintaining 

silk mechanical performances after mineralization. This study reports the optimization of a simple and effective bio-inspired nucleation 

process for precise nucleation of HA onto spider silk templates, suitable to develop high-performance hybrid interfaces for bone tissue 

engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48739. 
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INTRODUCTION 

Silks are fibrous protein polymers spun by some species of Lepidoptera (as butterflies and silkworms) and Arachnida, that is, spiders.1 

These biological polymers have been extensively studied in the past decades because of its biocompatibility, biodegradability, 

nontoxicity, and excellent mechanical properties, such as tensile strength and toughness.2–4 

Silk from silkworms, usually fibroin from Bombix mori, has been employed as suture material for centuries,5 and it is currently the 

main silk type used in biomedical field due to its availability and ease of commercial production.2 Silk-based biomaterials are used for 

tissue engineering (TE) applications in form of scaffolds,6 hydrogels,7 films or fibers,8 as well as nanoparticles in drug delivery 

systems.9,10 Moreover, silk-based devices have been successfully designed and developed for regeneration of different tissues, such as 

bone, tendon, ligament, skin, and nerve.11 Li et al. developed silk fibroin-based scaffolds incorporating nanoparticles of hydroxyapatite 

(HA) and bone morphogenic protein 2 by electrospinning of silk fibers for bone TE.12 Their results revealed an improved bone 

formation and osteogenesis process in vitro. Shi et al. produced knitted meshes of silk functionalized with low crystallinity HA for 

regeneration of the bone/ligament interface, demonstrating cell proliferation and differentiation in vitro and recovery of mechanical 

strength and tissue regeneration in vivo.13 
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Spider silk, particularly draglines spun by major ampullate gland, has become of great interest in bio-engineering in the past decades 

due to the outstanding mechanical properties, higher biocompatibility, and lower immunogenicity compared to silkworm silk.14–16 

Nevertheless, native spider silk use is limited because of low production yields and difficulty in spiders farming.8,17 A feasible solution 

is to produce engineered synthetic genes and recombinant proteins encoding spider silk. Hardy et al.18 developed films made of 

mineralized biodegradable polyesters and recombinant spider silk proteins [eADF4(C16)], capable to enhance bone tissue formation 

in vitro. Although the 

encouraging results from genetic engineering,19,20 a close mimicry of the complex structure and mechanical behavior of spider silk 

remains an ambitious target. 

Chemical, biological, and mechanical properties ensure that silks can be successfully used in bone TE; furthermore, it represents a 

suitable template for HA nucleation through biomineralization processes, enhancing bone formation and osteointegration.21–23 The 

mechanism of bone biomineralization consists of simultaneous nucleation of nanoHA crystals on self-assembling collagen matrix, 

and it has been replicated in vitro successfully.24 Other routes25,26 for the mimesis of this natural process are based on the use of 

proteins, natural or synthetic polymers, or organoapatites,27 as well as organic templates, such as silks,12 while the inorganic phase 

(HA) is usually synthesized from saltmediated reactions, acid–base (neutralization) syntheses, or by using synthetic body fluids.28 Cao 

et al. 29 mineralized spider dragline silks through immersion in a HA precursor solution for up to 10 days, demonstrating the possibility 

of nucleating HA crystals with a preferred orientation. Dmitrovic et al.30 produced spider silk coated with calcite via a salt-mediated 

biomineralization process from calcium chloride and ammonium carbonate. Their data revealed formation of regular rhombic crystals 

along the fibers, with a potential application as bone grafts. 

In this study, bio-inspired HA neutralization synthesis has been optimized to effectively functionalize native silk draglines from 

Cupiennius salei (Keyserling 1877). As a first step, the effect of reagent concentration, reagents pouring order, and HA maturation 

time was investigated to obtain a controlled nucleation of inorganic phase. The mineralized silks were then evaluated in terms of 

coating morphology, chemical composition, and mechanical properties, and results were compared to untreated and supercontracted 

silks and to HA crystal deposition from a precursor solution. The goal of the present work is to define a simple and reproducible bio-

inspired mineralization protocol to precisely nucleate a HA nano-coating on silk organic templates in order to produce a hybrid 

biomaterial with potential applications in bone TE. 

EXPERIMENTAL 

Materials 

The spiders under study were adult females of Cupiennius salei (Keyserling 1877). They were kept in different glass terrarium and 

fed with a weekly diet of Blaptica dubia or Acheta domestica. All the terrariums were set in the same room with controlled 

environmental parameters. Each terrarium was provided with a small refuge by considering the need of the spider to allow the animal 

to feel protected and live without stress, according to the Italian regulation on animal protection and EU Directive 2010/63/EU for 

animal experiments. 

Phosphoric acid (H3PO4, purity 85 wt %) and calcium hydroxide (Ca[OH]2, purity 95 wt %) were purchased from Sigma Aldrich (St. 

Louis, Missouri, USA). Synthetic HA powder was obtained from Riedel-de Haën (Seelze, Germany). 
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Silk Sampling 

Segments of dragline were collected from the spider Cupiennius salei, which produces it continuously during its walking around the 

terrarium. The dragline is a thread composed by two or three fibers, and it is used by the spiders in order to not fall down from 

surfaces.31 Silk samples were prepared by following the procedure reported by Blackledge et al.32 Briefly, specimens were stuck on a 

plastic holder provided with a window of 1 × 1 cm and fixed with a double-sided tape. 

Mineralization of Spider Silk 

Each plastic holder containing the silk fibers was fixed on the bottom of a well in a 6-multiwell culture plate (Corning Costar, Corning, 

New York, USA) with masking tape. A basic suspension and an acidic solution were prepared by, respectively, dispersing Ca(OH)2 

and H3PO4 in milli-Q water (ASTM Type I ultrapure water, arium comfort; Sartorius GmbH, Göttingen, Germany) and kept under 

magnetic stirring. Reagent solutions with 1, 0.1, and 0.01 M concentration were prepared to perform three different reactions (Figure 

1). For the HA deposition (1), used as control, the acidic and the basic solutions were mixed together under gentle magnetic stirring 

and let to stand for 30 min to initiate the HA crystal nucleation; the precursor solution was then poured into the well containing the 

silk fiber. In the biomineralization synthesis (2), silk fiber was covered with the Ca(OH)2 suspension and the phosphoric solution was 

immediately added dropwise. The reversal biomineralization process (3) was performed by inverting the reagents order compared to 

process (2), thus dropping the basic suspension over the silk, previously immersed in the acidic solution. All the syntheses were 

performed at room temperature, and the reagent volume (5 mL) was calculated to ensure a Ca/P ratio of 1.67, typical of stoichiometric 

HA. The reaction product was kept under low mechanical shaking at 37 C in incubator (M250-RH, MPM Instruments s.r.l., 

Bernareggio, Italy) for different maturation times (1, 3, or 7 days, Figure 1). The mineralized silk was subsequently removed from the 

well and washed with milli-Q water for two consecutive times to eliminate any synthesis debris and dried in stove (FP 53, Binder 

GmbH, Tuttlingen, Germany) at 40 C for 1 h. 

Morphological and Chemical Characterization of Mineralized Spider Silks 

Silk surface morphology was examined by scanning electron microscopy (SEM-FEI, Quanta 200, Thermo Fisher Scientific, Watham, 

Massachusetts, USA) operating at 5 kV. The evaluation of the crystal dimension was performed using an image processing software 

(Fiji, ImageJ).33 The elliptical shape of the crystals has been taken into account by measuring both the major and minor axis 

dimensions, with a minimum number of measurement n = 30 per each image. Three different images for each mineralization process 

have been analyzed for the calculation of the average dimensions. Quantitative chemical microanalysis of the mineral phase was 

performed by energy-dispersive X-ray analysis (EDS-INCA Suite, Oxford Instruments, Abingdon, UK) with an accelerating voltage 

of 8 kV and working distance of 8 mm. All samples were coated with a layer of gold (18 nm of thickness, 60 s, 20 mA) (Sputter 

Coater Q150TES, Quorum Technologies Ltd, Laughton, UK). 

 

Figure 1. Process overview: parameter evaluation, process optimization, and testing for the three mineralization processes. [Color figure can be viewed at 

wileyonlinelibrary.com] 
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Fourier transform infrared spectrometer (FTIR, Nicolet iS5, Thermo Fisher Scientific) equipped with a monolithic diamond for 

attenuated total reflectance detection [iD7 ATR (attenuated total reflection) Thermo Fisher Scientific] was used to collect mid-IR 

spectra (400–4000 cm−1, resolution of 4 cm−1). Spectral analysis (Omnic Spectra Software, Thermo Fisher Scientific) was performed 

on (a) mineralized silks, (b) the residues of HA after biomineralization, (c) the raw spider silk, and (d) a commercial HA powder, used 

as reference material. 

The phase analysis of the synthesized HA was conducted by using an X-ray diffractometer (XRD, D8 Advance, Bruker AXS GmbH, 

Karlsruhe, Germany) equipped with a Lynx-eye positionsensitive detector (Cu Kα radiation, α = 1.5418 Å). XRD spectra were 

recorded at a step size (2θ) of 0.02 from 20 to 80 and a scan speed of 1 s. 

Mechanical Tests 

Tensile tests were carried out on silks produced with the optimized setup parameters using a nanotensile machine (T150 UTM, Agilent 

Technologies, Santa Clara, California, USA) with a cell load of 500 mN, nominal declared sensitivity of 10 nN for the load in the 

dynamic configuration. The displacement speed was 10 μm/s with a frequency load of 20 Hz. Before mounting the samples, the 

number of threads and the diameters of each specimen were measured with an optical microscope in order to compute the area of the 

total cross section involved. Sample holder was mounted between the clamps to keep the silk fibers parallel to the clamps and cut 

before the trials. At least 10 samples were tested for each silk type and the mean values ( SD) of strength (MPa), strain at break 

(mm/mm), toughness (MJ/m3), and Young’s modulus (GPa) were calculated from the stress– strain curves. 

Statistical Methods 

Weibull statistics was performed for each set of data to obtain Weibull parameters, namely, scale and shape parameters, through the 

maximum likelihood method.34 Analyses were carried out using Mathematica as processing software. Once the parameters were 

obtained, their relative probability distributions were plotted. 

RESULTS AND DISCUSSION 

In the present study, two bio-inspired mineralization processes were performed to grow HA nano-crystals on native spider draglines 

and to develop a biomimetic hybrid material suitable for bone tissue regeneration. The process and the experimental parameters were 

optimized to achieve a controlled HA nucleation and a homogeneous coating. Due to the low availability and the reduced dimensions 

of the raw material (few μm in diameter), all steps required a fine control during the dragline manipulation. Reagent concentration 

and HA maturation time were evaluated, since they are known to affect crystal nucleation, size, morphology, orientation, as well as 

chemical composition and coating homogeneity.33–37 

Evaluation of the Effect of Reagent Concentration, HA 

Maturation Time, and Mineralization Process on Silk Coating SEM was used to evaluate the coating homogeneity and the HA crystal 

features, confirming that the HA crystal nucleation depends on the concentration of free ions in the reaction medium and the incubation 

period. A reagent concentration of 1 M suddenly produced macroscopic HA aggregates on the well bottom after mixing the reagents 

and resulted in a nucleation of 



 

 

(0.01 M of reagent concentrations, reversal biomineralization). 

nonconfined micrometric calcium phosphate flakes [Figure 2(a)] due to the rapid consumption of calcium and phosphate ions from 

the reagent solution.38–40 The aggregates resulted to be hard to wash and led to a breaking of specimens at any maturation time. 

Mineralized silks produced with 0.1 M of reagent concentration were characterized by local HA aggregates with a typical “cauliflower-

like” morphology (dimension of a hundred of nanometers to few micrometers) and grape-like aggregates that determine a 

 

Figure 2. SEM images of spider silks mineralized using different process parameters. Silks mineralized by varying the reagent concentrations: (a) 1 M of 

reagent concentrations (1 day of HA maturation, biomineralization protocol); (b) 0.1 M; and (c) 0.01 M (3 days of HA maturation time, reversal 

biomineralization). Silks mineralized by varying the HA maturation time: (d) 1 day (0.1 M of reagent concentrations, biomineralization), (e) 3 days and (f) 7 

days 



 

 

nonhomogeneous morphology [Figure 2(b)]. A reagent concentration of 0.01 M led to a homogeneous formation of HA nano-crystals 

over the entire fiber length, with crystals length lower than 100 nm [Figure 2(c)]. Analyzing the effect of different 

three mineralization processes. 

incubation time (1, 3, and 7 days), SEM images after 1 day revealed the formation of a discontinuous layer of inorganic phase with 

partially melted crystals and the presence of micrometric aggregates while large parts of the silks remained completely bare [Figure 

2(d)]. Three days resulted to be a sufficient incubation time to obtain a complete and homogeneous apatite layer over the fiber [Figure 

2(e)] while an increase of the incubation time up to 7 days caused the growth of clusters of inorganic phases [Figure 2(f)]. 

Reagent concentrations of 0.1 and 0.01 M and 3 days of samples incubation were thus chosen as suitable variables to have uniform 

mineralization and minimize the formation of large inorganic 

Table I. EDS Results of Ca/P Ratios for Mineralized Spider Silks (Reagent Concentrations of 0.1 and 0.01 M and HA Maturation Time of 3 days) 

 

Concentration 

 0.1 M 0.01 M 

Process Ca/P mean (atomic %) 

HA deposition 1.69  0.12 1.68  0.30 

Biomineralization 1.81  0.16 1.78  0.30 

Reversal biomineralization 1.63  0.23 1.56  0.12 

aggregates. The morphological analysis performed on samples treated for 3 days with a 0.01 M reagent concentration showed that the 

3 treatments produced a uniform inorganic coating composed of partially fused nano-crystals with rod-like shape and homogeneous 

thickness of few hundred micrometers [Figure 3(a,b)]. The calculated crystal average dimension resulted to be 61  13 nm, 46  8 nm, 

 

Figure 3. SEM images of mineralized silk (reversal biomineralization, reagent concentrations of 0.01 M, 3 days of HA maturation) show (a) the nucleation of 

a nanometric uniform coating and (b) its thickness in correspondence with the coating fracture. (c) Crystal average dimension has been calculated for the 



 

 

and 62  18 nm for HA deposition, biomineralization, and reversal biomineralization, respectively, with no statistically significant 

differences among the three methods [Figure 3(c)]. 

EDS, FTIR ATR, and XRD Analyses 

Elemental analyses were used to assess the calcium phosphate phase formation for silks processed with reagent concentrations of 0.1 

and 0.01 M (3 days of HA maturation) via the three processes (Table I). Results showed that the HA deposition leads to formation of 

a stoichiometric HA phase, confirmed by a Ca/P of about 1.67 for both the reagent concentrations tested while the biomineralization 

process induces the formation of a mineral phase with a Ca/P ratio biased toward the calcium (Ca/P higher than 1.67), revealing a 

preferential and faster binding of Ca2+ 

ions by the spider draglines.29,41,42 

Although no significant differences of crystal morphologies and sizes between the biomineralization and the reversal process 

were found (Figure 3), data from EDS analyses revealed that the reversal process entails a reduction of the calcium uptake from the 

silk, leading to a Ca/P ratio typical of nonstoichiometric, biomimetic calcium-deficient HA (with a Ca/P ratio of 1.50–1.67).39,43 

FTIR ATR spectra of both commercial HA powder (control) and HA residues from the biomineralization process [Figure 4 (a), spectra 

a and b] showed peaks at 600 cm−1,typical of PO4
3− bending mode, and peaks at about 960, 1000, and 1090 cm−1, assigned to the PO4

3− 

stretching mode, confirming the highly crystalline HA phase of the synthesis residues. The native spider spectrum [spectrum c in 

Figure 4(a)] revealed the presence of amide III (1230 cm−1), amide II (1500–1560 cm−1), amide I (1620–1690 cm−1), and amide A (at 

 

Figure 4. (a) FTIR spectra of (a) commercial HA powder, (b) HA residue of synthesis, (c) raw material (native spider silk dragline), (d) silks mineralized by 

HA deposition, (e) silks mineralized by biomineralization (neutralization process), and (f) silks mineralized by reversal biomineralization. (b) XRD pattern of 

HA powder nucleated by biomineralization. [Color figure can be viewed at wileyonlinelibrary.com] 
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about 3280 cm−1). The presence of the characteristic apatite peaks in the mineralized silk spectra proved that a successful nucleation 

of HA occurred for all the mineralization processes44–46 [Figure 4(a), spectra d, e and f]. According to the EDS analyses, the 

biomineralization and reversal biomineralization processes led to a broadening of the apatite peaks compared to both HA residues and 

HA deposition spectra, suggesting the role of spider silk as a template for the growth of a biomimetic low-crystalline HA coating. The 

remaining bands are ascribed to spider silk, as shown by the raw material spectrum.47–49 

To confirm the chemical composition of the mineral phase, XRD analysis was performed on the reaction powders obtained from the 

biomineralization process (0.01 M reagent concentration) after 1 day of maturation. The XRD pattern exhibited a scarcely crystalline 

profile of the mineral phase, with broad undulations and few discrete peaks, in good agreement with EDS and FTIR results [Figure 

4(b)]. The diffraction peaks resulted to be typical of a calcium phosphate HA according to the main lattice reflections of the JCPDS-

ICDD file (Card # 09-0432). 

Table II. Measured and Computed Mechanical Properties of Raw Spider Silk, Supercontracted Spider Silk, and Mineralized Spider Silk (0.01 M of Reagent 

Concentrations, 3 days of HA Maturation) 

Process 

Strength 

(MPa) 
Strain at break 

(mm/mm) 

Toughness 

(MJ/m3) 
Young’s modulus 

(GPa) 
Weibull scale parameter 

(MPa) 
Weibull shape 

parameter 

Raw material 580  520 0.27  0.03 110  120 8.5  7.1 620 1.2 

Supercontracted 190  190 0.41  0.25 57  59 2.9  4.6 162 1.4 

HA deposition 160  100 0.32  0.17 38  23 2.5  1.7 156 1.4 

Biomineralization 150  120 0.44  0.27 57  49 4.6  2.7 161 1.4 

Reversal 

biomineralization 
120  90 0.45  0.25 41  39 2.3  1.5 135 1.5 

Mechanical Properties contribute in reducing the strength because of an increase of the 

Uniaxial tensile tests were performed on specimens from all fiber diameter compared to the raw material. groups (silks 

treated by HA deposition, biomineralization, and 

Supercontraction is also responsible for the increase of strain at 

reversal biomineralization), mineralized with a reagent concentra- break and the reduction of Young’s modulus. This is due to the tion 

of 0.01 M and 3 days of HA maturation. Raw material fact that during hydrogen bond annihilation, there is an increase 

(untreated spider silk) and supercontracted silk, obtained by of entropic elasticity, which increases the tangle status of the mol- 

maintaining the samples in wet conditions overnight at room 55,56 ecules. This trend was similar for HA deposition and reversal 

temperature and 100% of saturated humidity, were used as conbiomineralization. In fact, silk shrinking determines the forma- 

trols. The data revealed that mineralization of spider silks leads tion of more elastic fibers 57 while apatite is a ceramic material to a 

reduction of the strength, toughness, and Young’s modulus characterized by a brittle mechanical behavior, with low tough- 

and to an increase of strain at break compared to the raw mate- ness and low resistance to load bearing in comparison with flexirial, a 

behavior that can be mainly attributed to the silk super- 58–60 

ble materials. 

contraction (Table II, Figure 5). 

The analysis of the Weibull statistics shown that the mineraliza- 

The strength of silks, that is, the stress just before thread’s frac- 

tion process leads to a homogenization of the fracture behavior [- 

ture, resulted in a reduction from 580  520 MPa of the fibers 

Figure 5(b)] that could be correlated to the recovery of 

untreated silk to less than 200 MPa for supercontracted and min- 56,61–63 

 after the mineralization process. Shape parameters between 

eralized silks, with similar values for the three mineralization pro- 

1.4 and 1.5 were obtained for all the supercontracted and miner- 

cesses. The interaction with water is responsible for silk alized samples, with a narrower probability distribution comsupercontraction, 

a phenomenon that affects the morphological, 

physical, and mechanical properties of spider silk,50–52 with a pared to the raw material, so the fracture behavior is expected to be more 

deterministic. The reduction of the Weibull scale param- 

reduction of strength caused probably by the annihilation and eter indicates a decrease in strength according to the analysis of 

reorganization of silk hydrogen bonds in contact with water mol-53,54 the stress–strain curves. Namely, the mineralization process 

ecules. The presence of an inorganic coating could also 



 

 

reduces the scale parameter from 620 (native silk) to 156, 161, 

 

Figure 5. (a) Stress–strain curves and (b) Weibull probability distribution of the raw material, supercontracted silk, and mineralized spider silks. [Color figure 

can be viewed at wileyonlinelibrary.com] 

and 135 MPa for the HA deposition, biomineralization, and reversal biomineralization, respectively. 

Although the supercontraction affects notably the mechanical behavior of native silk, mineralized silks still present performances 

comparable to many natural and artificial fibers with remarkable mechanical properties.64 Furthermore, the hybrid composite shows 

mechanical properties comparable to that of natural bone in terms of strength and elastic modulus 65 and superior to many natural and 

synthetic biomaterials used in bone 

TE.66,67 

CONCLUSION 

This study demonstrated that native spider silk can be coated with a nanostructured mineral layer by tuning neutralization process 

parameters to get a reproducible and effective surface functionalization. Two different bio-inspired neutralization processes were 

performed, and the mineralized silks were compared to raw material, supercontracted silks, and samples produced by simple HA 

deposition. Morphological analyses revealed that the use of 0.01 M of reagent concentration and 3 days of apatite maturation led to a 

homogeneous and thin coating of HA nano-crystals. FTIR and XRD spectra confirmed the nucleation of a lowcrystalline HA phase 

onto spider silk, and data from EDS demonstrated that the reversal biomineralization conveyed the nucleation of biomimetic, poorly 

crystalline, and nonstoichiometric HA. Mechanical results revealed that silk supercontraction is mainly responsible for a reduction in 

elasticity, strength, and toughness of mineralized silks, nevertheless ensuring outstanding mechanical properties, comparable to those 

of human bone. 

In summary, the fine tuning of biomineralization parameters led to the controlled nucleation of biomimetic HA onto native spider silk 

while maintaining good mechanical performances, making this hybrid biomaterial interesting for bone TE applications. Biological in 

vitro tests and the design of scaffolds that incorporate biomineralized spider silk for enhancing mechanical properties while providing 

a biomimetic interface will be pursued in future studies. 
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