
  

Abstract— The multi-source electromechanical coupling 

renders energy management of plug-in hybrid electric vehicles 

(PHEVs) highly nonlinear and complex. Furthermore, the 

complicated nonlinear management process highly depends on 

knowledge of driving conditions, and hinders the control strategies 

efficiently applied instantaneously, leading to massive challenges 

in energy saving improvement of PHEVs. To address these issues, 

a novel learning based model predictive control (LMPC) strategy 

is developed for a serial-parallel PHEV with the reinforced 

optimal control effect in real time application. Rather than 

employing the velocity-prediction based MPC methods favored in 

the literature, an original reference-tracking based MPC solution 

is proposed with strong instant application capacity. To guarantee 

the optimal control effect, an online learning process is 

implemented in MPC via the Gaussian process (GP) model to 

address the uncertainties during state estimation. The tracking 

reference in LMPC based control problem in PHEV is achieved by 

a microscopic traffic flow analysis (MTFA) method. The 

simulation results validate that the proposed method can 

optimally manage energy flow within vehicle power sources in real 

time, highlighting its anticipated preferable performance. 

Index Terms— Optimal control strategy, leaning based model 

predictive control (LMPC), Gaussian process (GP) model, 

microscopic traffic flow analysis (MTFA), plug-in hybrid electric 

vehicle (PHEV). 

I. INTRODUCTION 

OWADAYS, plug-in hybrid electric vehicle (PHEVs) 

have boosted to be top-ranking solutions in auto industry 

to promote energy consumption economy and mitigate global 

warming concern [1, 2]. The tailored powertrain configurations 

endow PHEVs with extraordinary capacities to leisurely 

balance driving mileage, drivability, and energy reservation [3]. 

PHEV, as a complex system with multiple energy degrees of 

freedom, desperately demands properly designed control 

strategies to optimally manage energy flow within different 

sources for maximizing energy saving potentials. The specific 
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electromechanical coupling characteristics in PHEVs, however, 

embarrass energy management into high nonlinear and 

complex, laying the knotty challenge waiting to be tackled.  

Developing efficient energy management strategies for 

PHEVs to optimize energy saving is generally a rather difficult 

task, that needs to account for different constraints from 

powertrain, driving demand and road conditions. It is intricate 

to achieve the optimal trade-off among real-time performance, 

control effect and environmental adaptability. In past years, a 

variety of efforts have been made to achieve prominent progress 

in control strategy design of PHEVs. Existing energy 

management strategies for PHEVs can be mainly divided into 

the following four categories: rule based control strategies [4, 

5], global optimization based strategies [6, 7], instantaneous 

optimization based strategies [8, 9] and machine learning based 

strategies [10, 11]. For these four types of strategies, despite 

their validated performance under some specific conditions, it 

is still intractable to achieve continuous high-quality 

performance in real-time control, and the potential of PHEVs in 

energy saving cannot be fully unlocked.  

Rule based control strategies, such as threshold methods [4] 

and fuzzy logic based strategies [5], can be easily constructed 

and implemented according to the expert knowledge in 

engineering practice. However, the expert-knowledge based 

control logics cannot govern powertrain operation in optimal 

zones all the time. Additionally, the threshold tuning is rather 

sensitive to driving conditions. Global optimization methods, 

e.g., dynamic programming (DP) [6] and Pontryagin's 

minimum principle (PMP) [7], can achieve optimal energy 

distribution with the known driving conditions. The 

characterized solving processes globally find the optimal 

solutions by ergodic search, incurring burdensome 

computation. On the other hand, the driving knowledge based 

searching manners make them quite difficult to be applied in 

real-time problems directly. The instantaneous optimization 
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strategies, including equivalent consumption minimization 

strategy (ECMS) [8] and model predictive control (MPC) [9], 

are ideal solutions for PHEVs by providing the quasi-optimal 

effect with the reasonable abilities in real-time implementation. 

Despite the rational instantaneous control effect, the inner 

parameters of algorithms and solving mechanisms in these 

methods entail partial pre-knowledge of future driving 

conditions. The accuracy of driving conditions identification 

[8] and prediction [9] in these methods cannot be guaranteed 

with the limited amount of computation, thus discounting the 

instantly optimal implementation. Machine leaning based 

strategies, like Q-learning [10] and Deep Q-learning [11], 

declare to be optimally implemented without knowing the 

driving conditions beforehand. The remarkable validation 

results manifest the massive potential of these methods in 

PHEV control; however, the offline preparation of these 

methods costs much effort, and the real application in 

engineering practice still remains challenging.  

The MPC based methods have exhibited strong capabilities 

in instantaneous applications, and can provide preferable 

control effect that is rather close to global optimization results. 

The built-in state estimation models can mitigate the tight 

dependence on future driving information to a certain extent. 

MPC has been widely accepted in energy management of 

PHEVs [12, 13], and the majority of the adopted MPC based 

strategies can be considered as the velocity-prediction based 

methods, in which the solving algorithms, like DP [12] and 

estimation of distribution algorithm (EDA) [13], can search the 

optimal decision sequences within the receding prediction 

horizon. Intuitively, the effect of these solutions highly depends 

on the accuracy of velocity prediction. Even though some 

methods, such as back propagation neural network (BP-NN) 

[14], Markov chain (MC) [15] and deep neural network (DNN) 

[16], have been validated effective in precisely forecasting 

future velocity under certain conditions, improper prediction 

lengths and insufficient model training may deteriorate the 

application effect of the MPC strategies. In fact, MPC has been 

applied in vehicle control via reference-tracking for a long 

while [17, 18]. The step length of reference-tracking based 

MPC strategies can be less than 10 ms [17]. In the reference-

tracking based MPC, the complex control process in short 

horizons (e.g., the same or close to sampling time in 

engineering practice) can be achieved rapidly by efficient 

solvers with the target of simultaneously minimizing certain 

optimization targets and mitigating the difference between 

current state and reference [18]. Consequently, the reference-

tracking based MPC attains more promising capacity in real-

time application than the velocity-prediction based long-term 

MPC. With more accurate reference in shorter receding 

horizon, the reference-tracking based MPC can search optimal 

solutions with higher efficiency [19]. Therefore, it is more 

appropriate to apply the reference-tracking based MPC in 

energy management problems in PHEVs. In current stage, to 

the best of authors’ knowledge, the application of reference-

tracking based MPC has been widely applied in different fields, 

such as advanced vehicle dynamic control [20, 21], and internal 

combustion engine (ICE) advance control [22, 23]. The 

homologous application in PHEV energy management, 

however, is quite rare. 

By referring to the state-of-the-art discussion, an application-

oriented control strategy is proposed for a serial and parallel 

PHEV by employing the learning based MPC (LMPC) 

algorithm and microcosmic traffic flow analysis (MTFA). 

Rather than preferring the prediction-velocity based MPC in 

our former work [24], the reference-tracking based MPC 

manner is selected as the basic scheme. In [24], a synthesized 

velocity prediction method is introduced to facilitate the 

achievement of optimal control results, however the 

computation efficiency and application capability in practical 

environment is discounted. By contrast, the LMPC, with super 

capacity in reference-tracking based adaptive control, is applied 

to accomplish the energy flow management in the vehicle, 

raising efficient optimal solution in real time via minimizing the 

tracking gap and energy consumption. For providing the 

tracking reference for the LMPC based control, MTFA is 

applied to estimate future driving state on the basis of shared 

multi-source information. The simulation results validate the 

feasibility of the proposed LMPC algorithm and the MTFA 

based future driving state estimation technique. Two main 

contributions are added in the literature: 

1) LMPC is applied in energy management within the 

powertrain of PHEV via reference tracking, and the robustness 

of LMPC in remedying uncertainties during state estimation is 

verified by the preferable energy management result.  

2) MTFA is implemented to generate the reference for LMPC 

based strategy. Based on the diverse information shared through 

internet of vehicles (IoVs), MTFA offers accurate and detailed 

description on future driving state influenced by driving 

behaviors and surrounding environment. 

The remainder of this paper is organized as follows. The 

studied PHEV and model construction are described in Section 

II. Section III elaborates the LMPC based strategy for energy 

management of PHEV. Section IV discusses the simulation 

results and comparatively validates the superior performance of 

the proposed control strategy. The main conclusions are drawn 

in Section V. 

II. THE STUDIED 4WD PHEV AND MODEL CONSTRUCTION 

The studied PHEV, as illustrated in Fig. 1, is with a serial 

and parallel configuration. The hybrid powertrain, including 

ICE, generator and motor, is fabricated in the front axle. The 

PHEV can operate in several modes through the cooperative 

operation among ICE, generator and motor. ICE can either 

supply tractive power through driving the generator in serial 

mode, or drive the vehicle directly with the motor in parallel 

mode. The switch between serial and parallel mode is attained 

by controlling the engagement of the clutch between ICE and 

motor. In addition, the battery can be charged or discharged in 

both serial and parallel modes governed by the control strategy. 

The detailed parameters are listed in Table I. 



 
Fig. 1. The schematic of the serial and parallel PHEV configuration. 

TABLE I 

COMPONENT PARAMETERS IN THE STUDIED PHEV 

ICE 

Displacement 2.0 [L] 16V DOHC 

Maximum Power 105[kW] @6200[rpm] 

Maximum Torque 
165[Nm] @2500~6500

[rpm] 

Motor and 

Generator 

Maximum Power 124 [kW] 

Maximum Torque 307 [Nm] 

Lithium-ion 

Battery 

Nominal Capacity 15.7 [kWh] 

Nominal Voltage 300 [V] 

Gear Ratio 

Between ICE and final d
rive (gear 1) 1gi =0.803 

Between motor and final

 drive (gear 2) 2gi =2.45 

Between ICE and genera
tor (gear 3) 3gi =1.934 

a. Vehicle Dynamic Model   

Considering that the study is focused on only the longitudinal 

performance of PHEV, the lateral dynamics of PHEV is 

neglected. The vehicle longitude dynamics can be presented, as:  
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where v  and a  denote the longitudinal velocity and 

acceleration, m  and whR  represent the vehicle mass and wheel 

radius,   and f  denote gradient and rolling resistance factor, 

DC  and A  are the aerodynamic drag factor and frontal area, 

g expresses the gravity acceleration, _req dT  and brkT  

represent the tractive torque from the hybrid powertrains and 

mechanical braking torque. The tractive torque from the 

powertrain can be calculated as:  

 _ _ _req d fuel path ele pathT T T= +   (2) 

where _fuel pathT  and _ele pathT  denote the tractive torque 

provided by the fuel path and electric path. In different 

operation modes, the tractive torque from fuel path and electric 

path can be expressed as: 
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where engT  and emT  respectively denote the engine torque and 

electric motor torque; fdi  is the final drive ratio; _t fd , _ 1t g  

and _ 2t g  denote the mechanical transmission efficiency of 

final gear, gear 1 and gear 2, respectively. The mechanical 

transmission efficiencies of the mentioned three gears are 

respectively set to 0.91, 0.92, and 0.92 in the study. 

b. Engine Model  

In this study, the ICE’s nonlinear performance is 

characterized by an efficiency map acquired from the 

benchmark test. The following equation shows the relationship 

between the engine net efficiency and torque, as: 

 ( ),
eng eng

eng eng eng

lhv f

T
T

Q m


  =  (4) 

where eng  is the engine efficiency, eng  means the rotating 

speed of engine, lhvQ  represents the fuel lower heating value, 

and fm  expresses the fuel consumption rate. In serial mode, 

eng  is determined by interpolating the brake-special fuel 

consumption (BSFC) line according to specific torques. In 

parallel mode, eng  is calculated by:  
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where wheel  denotes the rotating speed of wheel. 

c. Motor/Generator Model 

The motor and generator in the serial and parallel PHEV are 

all permanent magnet synchronous motors (PMSMs). PMSMs 

can operate either in tractive mode (functioned as motor) or 

generator mode. The dynamic characteristics of PMSMs are 

neglected due to the fast-transient responses and optimal 

control target. Likewise, the static models are also employed to 

describe the power performance of PMSMs, as:  
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where motT  and genT  represent the torque of motor and 

generator; mot  and gen  mean the rotation speed of motor 

and generator; mot  and gen  denote the efficiency in tractive 

mode and generator mode; mot  and gen  describe the static 

map to calculate efficiency of motor and generator, respectively. 

d. Battery Model  

A simple equivalent circuit model is employed to 

characterize the electrical performance of battery. The 



temperature and ageing influence on battery performance is 

neglected for simplicity. The model consists of an open circuit 

voltage source, nonlinearly varying with state of charge (SOC), 

and an internal resistor connecting in series topology. The SOC 

can be calculated according to the simplified model, as: 
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where SOC  is the battery SOC, Voc is the open circuit voltage 

of battery, Rint is the internal resistance of battery, Pbatt is the 

battery power, and Qbatt is the battery capacity. The battery cells 

in the studied PHEV are lithium-iron phosphate battery, with a 

nominal capacity of 52.3 Ampere-hour (Ah). The nominal 

voltage of battery pack is 300 V, with 90 cells connected in 

series topology. On the basis of the detailed powertrain 

modeling, the proposed LMPC based energy management will 

be addressed in the next section. 

III. THE NOVEL CONTROL STRATEGY FOR PHEV 

A. General Optimal Control Problem Formulation  

For attaining the optimal control by MPC through tracking 

reference, the nonlinear control problem can be generally 

defined as: 
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where u , x  and y  are the control vector, state vector and 

control output; y  means the reference for tracking; ch  and 

ph  denote the control and prediction horizon; A  and B  are 

the system matrices; Q  and R  are the weight matrixes.  

B. Learning Based MPC 

The defined MPC based control problem in (8) can only 

achieve the optimal effect by precisely tracking the reference, 

which is supplied by the state prediction function, as: 

 ( 1) ( ( ), ( ))x k f x k u k+ =   (10) 

From this point of view, the state prediction function is 

pivotal to capture system dynamics within prediction horizons 

and influence the control effect significantly. Furthermore, the 

online applications of MPC require that the state prediction 

function can describe future state accurately with less 

computation through simplifying the function, which, however, 

may lead to inferior control effects due to the raised prediction 

error. In addition, the powertrains in PHEVs are complex and 

nonlinear systems that are difficult to identify. As such, simple 

state prediction functions cannot accurately describe the 

comprehensive performance of PHEV powertrain in random 

conditions. Accordingly, the LMPC based control strategy is 

designed in this paper, and the accuracy of state prediction is 

significantly prompted after validation. The LMPC, compared 

with ordinary MPC, holds more ideal performance in complex 

control problems with the enhanced adaptability to complicate 

nonlinear systems [25]. Instead of using the fixed state 

prediction model, Gaussian process (GP) is integrated into the 

prediction model [26], allowing continuous update of the state 

prediction model to improve the estimating accuracy. On this 

account, the reference tracking precision is promoted, and the 

controlling performance is boosted [27]. By referring to the 

state prediction function, the learning process can be 

formulated, as: 

 ( 1) ( ( ), ( )) ( ( ( ) ( )))dx k f x k u k B d z k w k+ = + +   (11) 

where d  is the leaning part of the prediction model that 

estimates the model error trued  between the model and 

measurement, z  is the parameter vector related to the learning 

part, w  is the process noise, and dB  is the weight matrix of the 

learning part. In the learning process in MPC, GP accounting 

for predicting values of leaning part is trained by the difference 

between the measured ( 1)x k +  and predictions by (10). The 

training data ( )t k  can be expressed as [28]: 

( ) ( ( 1) ( ( ), ( ))) ( ( )) ( )d truet k B x k f x k u k d z k w k+= + − = +  (12) 

where dB+  denotes the Morre-Penrose pseud-inverse matrix. 

The training data in (12) is the standard form of a regression 

task. Given the collected data ( )D z , the GP model can 

stochastically estimate the regression results. With the updated 

state estimation by (11), MPC can be executed by some 

optimization methods, such as sequential quadratic 

programming (SQP) [29]. In GP, based on the parameter vector 

1[ , , ] zM nT T
Mz z z


=   and the measurement vector

1[ , , ] dM nT T
Mt t t


=  , the statistical model from the system 

can be expressed, as: 

 ( )j j jt g z w= +   (13) 

where jw  is the Gaussian noise with zero mean and diagonal 

variance, and 
2 2
1= ([ , , ])

dw ndiag   . The measurement is 

normally distributed with: 

 
2

.,[ ] (0, )a
a ZZ at N K +   (14) 

where a
ZZK  is the Gram matrix of the data points with the 

kernel function 
ak . In this study, the selected specific kernel 

function is the squared exponential kernel function [30], as: 
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where z zn nL   is the matrix with positive diagonal length. 

Given each output dimension (1, , )da n , the posterior 

distribution in dimension a  at a specific parameter group z  is 

the Gaussian function, of which the means and variance can be 

calculated, as: 
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Now, the GP based regression analysis of the unknown function 

( )g z  can be yielded, as: 

 ( ) ( ( ), ( ))d ad z N z z    (17) 

where 1[ , , ]
d

d d d
n  = , and 1[ , , ]

d

d d d
n =   . 

C. Formulation of Optimal Energy Management in PHEV 

In LMPC based optimal energy management for PHEV, the 

control process to complete the optimal energy distribution is 

illustrated in Fig. 2, where the desired tractive torque _req dT  

ordered from driver is regulated by the torque difference T  

generated from the receding optimization via LMPC. Then, the 

real required tractive torque _req rT , together with the torque 

distribution ratios among engine, motor and generator, is 

assigned to the powertrain to attain the energy distribution. The 

relationship between the desired tractive torque and real tractive 

torque as well as torque difference can be expressed as: 

 _ _req r req dT T T= +   (18) 

According to the control process shown in Fig. 2, the control 

inputs of LMPC include the torque difference T , the power 

distribution raito 1  between engine and motor and the power 

distribution ratio 2  between auxiliary power unit (APU) 

(consisting of ICE and generator) and motor. Here, the power 

distribution ratio 1  and 2  is respectively implemented in 

parallel and serial mode. The instant vehicle velocity and 

battery SOC are the state variables. Note that the studied PHEV 

will switch into charge sustaining stage from depleting stage 

when battery SOC is lower than 0.27.  

 
Fig. 2. Simplified architecture of the control strategy for PHEV. 

The reference-tracking based LMPC in PHEV achieves the 

optimal control via efficient torque regulation and distribution. 

The torque regulation efficiently guides driving intention 

expressed in hybrid powertrain by referring to the estimated 

reference velocity. To avoid confliction with the original 

driving behaviors and driving comfort, the estimated reference 

velocity should be in line with the real driving in future. 

Therefore, the reference velocity estimation needs to be attained 

by the methods that can precisely describe the dynamics of 

future driving. The optimal control in PHEV for optimal energy 

management by reference-tracking based LMPC can be 

formulated as:  
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where 1 , 2  and 3  are the weight ratio, and refv  is the 

reference velocity. battP  can be calculated as: 
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where _e bm  and _e gm  denote the electric transmission 

efficiency between motor and battery as well as generator and 

motor, respectively; and _ 3t g  is the mechanical transmission 

efficiency of gear 3. Moreover, the control should be subject to: 
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where the superscripts min and max denote the minimum and 

maximum value of variables. The internal state prediction 

models in LMPC need to be selected to describe key features of 

PHEV (e.g., vehicle dynamics and electricity consumption), as:  
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where _d dynB  and _d enyB  denote the weight matrix, dynw  and 

enyw  are the process noise, dynz  and enyz  are the parameter 

vector, as: 
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where xv  and xa  denote the velocity and acceleration in 

longitude direction, intR  and battP  represent the battery 

internal resistance and power, respectively. In the paper, the 

Gaussian model is trained based on the data acquired through 

the benchmark test. The data of velocity, acceleration in 

longitudinal direction, battery power, tractive torque, motor 

torque, ICE torque, and battery SOC are collected via 

dynamometer test based on the WLTC driving cycle. The 

battery internal resistance is measured on a battery cycler 

according to the test specifications. In the reference-tracking 

based LMPC for energy management of PHEV, the prediction 

horizon and the control step are set to 1 s and 0.1 s, respectively; 

and the reference velocity is updated every 1 s. The time 

parameters are chosen based on the real control process in on-

board vehicle control units. By contrast, the prediction length 

of the velocity-prediction based MPC is set to 20 s to 50 s [31]. 

To guarantee the real-time application performance, the lengths 

of control step are enlarged to 1 s or longer. However, too larger 

control steps may not be implementable in real-time control. 

Even though the proposed LMPC based control strategy is 

developed based on the described PHEV configuration shown 

in Fig. 1, it can also be implemented to other PHEVs with 

different configurations, and only the powertrain parameters 

shown in Table I, the engine and motor efficiency maps, and 

the transmitting efficiencies in both fuel and electric path need 

to be updated. In addition, the inequality constraints described 

in (21) should also be adjusted accordingly.   

D. Reference Velocity Estimation by MTFA 

The required accurate estimation of reference velocity can be 

fulfilled only by integrally considering the influence from 

driving behaviors and surrounding environment. MTFA excels 

at describing the mentioned connection [32]. Even though 

microscopic traffic analysis has been widely investigated, 

integrating it into vehicle control, especially MPC based control, 

has not been fully investigated. MTFA proposed in this paper 

has considered much impact from environment and particular 

driver behaviors, making it rather suitable for MPC based 

control in PHEV. In this paper, the general expression of MTFA 

can be written as: 
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where   is the sensitivity factor, x denotes the vehicle 

position on the route, m is the vehicle mass, t is the time step, 

and   denotes the time lag. By solving (8), the velocity of 

target vehicle at time t  can be attained, as: 
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where fv  is the drag-free velocity, jam  is the jam density, 

and   is the instant traffic flow density. The drag-free velocity 

can be physical characteristics of routes, which can be acquired 

through IoVs. The instant traffic flow density can be calculated 

as: 
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where 
iv  is the instant speed of certain vehicle on route 

segment, n is the number of vehicles on route segment, and h  

is the average time headway. By substituting (10) into (9), the 

velocity of target vehicle can be written as: 

 ( ) exp( ( ) )f jam rsv t v h t v= −   (27) 

where rsv  denotes the average speed of vehicles on the route 

segment that can be calculated as: 
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Then, equation (27) can be extended by Taylor function [33], 

as: 
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According to (28), jam  and h  are the key parameters 

affecting vehicle velocity in vehicle flow. jam  and h , as a 

matter of fact, can be easily influenced by driving behaviors and 

driving environment, including traffic lights, crossroads, 

nearby buildings, etc. Therefore, the functions to describe the 

specific impact can be formulated as: 
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where tsN , cN , pubN  and fN  are the number of traffic lights, 

crossroads on the route segment and public buildings such as 

schools and hospitals and other buildings, respectively; 1v , 2v , 

3v , 1  and 2  are system parameters; 1  and 2  are weight 

ratios. To obtain accurate values of the system parameters and 

weight ratios shown in (14), particle filters are employed to 

calculate the values based on the shared data from IoVs [34, 35]. 

According to (13) and (14), the reference velocity can be 

accurately estimated for the LMPC based energy management 

strategy. In IoVs, vehicles are equipped with enhanced 

communication techniques that can realize vehicle to vehicle 

(V2V) communication and vehicle to infrastructure (V2I) 

communication [36]. The velocity of each vehicle on the route 

segment can be easily shared among multi-vehicles. Thus, tsN , 

cN , pubN  and fN can be statistically collected by 

infrastructures at road side and effectively disseminated among 

vehicles. Open data source like OpenStreetMap can also 

provide the environment information minutely [37], and we 

referred to the data therein for simulation. 

IV. SIMULATION AND EVALUATION 

To validate the performance of the proposed strategy, a series 

of simulations are performed [38]. In this study, the 

performance of MTFA in reference velocity estimation, the 



capability of LMPC in reference-tracking based optimal energy 

management in PHEV, and the energy-saving mechanism of 

LMPC are comprehensively evaluated through the comparison 

study. Note that the simulation is conducted on a workstation 

with an Intel i7-8700 processor and 16 Gigabytes memory.  

A. Performance Validation of MTFA in Reference Velocity 

Estimation  

The capability of MTFA is of the vital importance for LMPC 

based optimal energy management. The estimation accuracy of 

MTFA is comparatively studied among several methods, 

including participatory sensing data (PSD) based method [9], 

long-short term memory (LSTM) network [39] and support 

vector machine (SVM) [40]. Then, the stability and robustness 

of MTFA is verified among different road conditions. The city 

urban road (CR), highway (HW) and combined road (CW) 

conditions involving both CR and HW are selected for 

validation. The data for training models are derived from the 

collected data in real traffic test. To guarantee fair performance 

comparison and evaluation, all models are trained and evaluated 

by the same data set. Finally, the MPC controllers incorporating 

different velocity estimation methods are leveraged for energy 

management of the studied PHEV shown in Fig. 1, trying to 

evaluate the effect of the chosen velocity estimation methods 

by comparing the fuel economy of PHEV based on different 

controllers. During evaluation, the data for validating the 

MTFA and other baseline methods are extracted from the real 

traffic conditions according to the method described in [41]. 

Fig. 3 illustrates the estimated profiles by different methods 

together with the raw speed data. The estimation length of 

different methods is all set to 1 s. To better present the behaviors 

of different methods, the zoomed-in figures sketching the 

estimated velocities around 800 s to 900 s are also provided. As 

can be found, most of the methods can achieve relatively high 

prediction accuracy, expect the simple PSD based method. The 

enlarged figures can partially facilitate the explanation of 

prediction accuracy discrepancy by different methods. The 

employed methods, include MTFA, LSTM and SVM, can 

capture more details than the simple PSD based method (as 

shown in the zoomed-in figures in Fig. 3). The promising 

abilities of LSTM and SVM in capturing future driving 

behaviors stem from the strong regression after fully 

understanding the inner connection between history data and 

future behaviors. While, the superior capability of MTFA to 

estimate future driving is incurred by the specific designed 

manners with the consideration of more environment influence.  

 
Fig. 3. Comparison in velocity estimation with different methods. 

The numerical comparing results among different velocity 

estimation methods on the specified driving cycle are listed in 

Table II, where RMSE and MAE denote the root mean square 

error and mean absolute error respectively, as: 
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where iy  is the estimation value, ˆiy is the real value from the 

raw data. calT  is the online processing time of CPU. The RMSE 

and MAE in Table II highlight that that LSTM and SVM 

methods perform slightly better than MTFA. However, the 

minor weakness in prediction accuracy cannot prevent MTFA 

from being applied in real time due to much less online 

calculation time, compared with LSTM and SVM. Even though 

the simple PSD based method costs much less time (compared 

with other methods) because of its straightforward calculation 

manner, its prediction accuracy is obviously the worst among 

the chosen methods. The general comparison in Table II 

validates that MTFA is an ideal method to achieve the 

promising prediction accuracy in real time. To further 

investigate its stability and robustness in velocity estimation, 

the MTFA based method is tested to estimate velocities within 

50 groups of data extracted from real traffic under different road 

conditions, as listed in Table III, where RMSEava, MAEava and 

Tcal_ava denote the average RMSE, MAE and CPU processing 

time; RMSEbest, MAEbest and Tcal_best denote the minimum RMSE, 

minimum MAE and shortest CPU processing time, respectively. 



The results in Table III show that the MTFA can estimate the 

vehicle velocity stably, and the average RSME, MAE and CPU 

processing time under different road conditions are quite close. 

The stable performance verifies the rational robustness of the 

MTFA method. The reason can be attributed to that the MTFA 

method can comprehensively consider the impact on future 

driving from different perspectives, and abundant information 

inclusion and carefully designed information integration 

manners all contribute to the performance improvement. 

Moreover, the reason why the performance of the MTFA 

method in CR is better than that in HW is that the amount of 

shared data in CR is more than that in HW, and certainly more 

data lead to better prediction precision. 
TABLE II 

Numerical Comparison in Prediction Accuracy 
Method RMSE MAE Tcal (s) 

Simple PSD 1.081 0.733 0.011 

MTFA 0.711 0.235 0.018 

LSTM 0.702 0.269 0.112 

SVM 0.692 0.223 0.107 

TABLE III 
Comparison of the MTFA Based Velocity Estimation 

Type avaRMSE
 avaMAE

 _cal avaT
 

bestRMSE
 bestMAE

 _ mincalT
 

CR 0.731 0.249 0.021 s 0.705 0.228 0.016 s 

HW 0.793 0.262 0.026 s 0.787 0.259 0.021 s 

Com 0.766 0.254 0.023 s 0.707 0.227 0.014 s 

The comparison results in Table IV validate the performance 

of different velocity estimation methods in another perspective. 

The reference-tracking based MPC controllers employed in the 

studied PHEV all utilize the same solving algorithm (SQP), and 

the difference lies in only the integrated velocity estimation 

methods. By this manner, the capabilities of velocity estimation 

methods can be further assessed. The results in Table IV reveal 

that the fuel economy becomes better after the MPC controller 

integrates more accurate velocity estimation. The EFC in Table 

IV denotes the equivalent fuel consumption that includes the 

converted fuel consumption from electric energy. Considering 

the trade-off between the controlling effect and capability in 

real-time application, MTFA is most suitable for the MPC 

based strategy. Specifically, the difference in optimality 

between MPC with MTFA and MPC with SVM is only 0.1% 

when employing DP as the benchmark; however, the Tcal of 

MTFA is much less than that of SVM, highlighting its 

comprehensive feasibility in velocity prediction.  
TABLE IV 

Impact on Fuel Economy by Different Estimation Methods 
Method EFC (L/100km) Optimality (%) 

MPC-Simple PSD 2.664 95.07% 

MPC-MTFA 2.634 96.17% 

MPC-LSTM 2.633 96.21% 

MPC-SVM 2.631 96.27% 

DP 2.533 100 

B. Reference-Tracking Based Optimal Control in PHEV 

The raised LMPC can bring better performance in theory 

because of its better capability in inner state prediction after 

integrating the GP model. To more clearly demonstrate the 

remarkable performance of LMPC, a number of comparisons 

are conducted. In this part, MPC denotes the ordinary MPC 

application without the learning based state prediction function, 

and the solving manner is described minutely in [42]. Table V 

lists the fuel consumption by the ordinary MPC and LMPC with 

different velocity estimation methods. The MPC with SVM 10, 

SVM 20 and SVM 30 represents the velocity-prediction based 

ordinary MPC controller, in which the length of velocity 

prediction is 10 s, 20 s and 30 s, respectively. Similarly, the 

LMPC with SVM 10, SVM 20 and SVM 30 expresses the 

velocity-prediction based LMPC controller, and the prediction 

length is the same as above. In addition, the MPC with MTFA 

and the LMPC with MTFA present the reference-tracking based 

ordinary MPC and LMPC controllers with MTFA as the 

velocity prediction algorithm, where the prediction length is set 

to 1 s. Note that the control step of all the mentioned methods 

is 0.1 s.  

The numerical results listed in Table V underpin the 

conclusion that the LMPC controller outperforms the ordinary 

MPC controller. The equivalent fuel consumption by the LMPC 

controller is less than that based on the ordinary MPC controller. 

The accurate inner state prediction with GP models in LMPC 

supplies more chances to find optimal solutions and contributes 

to better fuel economy. Table V also lists the difference 

between the velocity-prediction based controller and reference-

tracking based controller. By referring to all ordinary MPC and 

LMPC controllers with different solving mechanisms, the 

reference-tracking based controller can lead to obvious 

superiority in real-time implementation. In the controllers with 

the reference-tracking based solving mechanism, the consumed 

calculation time in each step plus the time of reference 

estimation is shorter than the pre-given control step length, 

verifying its feasibility in instant application. For the velocity-

prediction based controller, however, only the CPU processing 

time in each step is much longer than the pre-defined control 

step length, thereby avoiding from instant real-time application. 

To apply the velocity-prediction based controllers in real time, 

the control steps should be preset with longer interval (such as 

1 s), which cannot satisfy the demand of engineering practice. 

Notably, the EFC by reference-tracking based controller is 

slightly more than that by the velocity-prediction based 

controllers. The reason of incurring minor difference is that the 

velocity-prediction based strategies consider impact of future 

driving on fuel economy within longer horizons, which is closer 

to the global optimal solutions. However, the maximum 

difference in EFCs is only 0.024L/100km, which can be 

neglected in instantaneous application. 

To better demonstrate the difference in solving process 

between the ordinary MPC and LMPC, Table VI compares the 

solving performance of the ordinary MPC and LMPC. Both the 

ordinary MPC and LMPC execute the solution searching based 

on the reference-tracking principle, and exploit the proposed 

MTFA to estimate the reference. In Table VI, 
2
0S denotes the 

average variance relating with state-constraint violations, and 

e  means the difference between the predicted state after one 

step prediction and real state. The results show that the ordinary 

MPC without correction in inner state prediction leads to more 

constraint violation than that by LMPC, which is mainly caused 

by the discretization error inherited from the inflexible state 



model. Smaller index e  indicates that the GP model boosts 

the state prediction in LMPC. Thus, one can conclude that the 

GP model improves the accuracy of state prediction, thereby 

prompting the overall performance obviously.  
TABLE V 

Comparison of Fuel Economy by Ordinary MPC and LMPC with Different V

elocity Estimation Methods 

 
Method 

EFC 

(L/100km) 

Optimality 

(%) 
Tcal (s) Tcal_step (s) 

MPC 

SVM 10 2.620 99.66 16622.10 0.330 

SVM 20 2.617 99.77 19745.04 0.392 

SVM 30 2.611 100 24983.52 0.496 

MTFA 2.634 99.13 3072.57 0.061 

LMP

C 

SVM 10 2.589 99.67 16873.95 0.335 

SVM 20 2.587 99.75 19996.89 0.397 

SVM 30 2.581 100 25336.11 0.503 

MTFA 2.603 99.16 3223.68 0.064 

TABLE VI 

Solving Performance Comparison between MPC and LMPC 

Method  2
0S  e  

MPC-MTFA 5.15 1.14 

LMPC-MTFA 1.06 0.08 

C. Energy-Saving Mechanism of LMPC based Strategy 

The results comparison in Table V validates the promising 

performance of LMPC, compared with the ordinary MPC. To 

further reveal the mechanism of the proposed LMPC based 

strategy in energy saving, the comparison study between the 

LMPC based method and a number of baseline control methods 

is performed, and the adopted baseline control strategies 

include the CD-CS scheme, ECMS, and DP, which can be 

described as follows.  

1) The CD-CS scheme [4]. The CD-CS controller is a simple 

rule based strategy, in which the operation mode switches from 

CD to CS stage when battery SOC is less than 0.25. In the CD 

stage, the battery supplies all the driving power except when the 

required tractive power is larger than an upper threshold; while 

in the CS stage, the ICE and battery work together to drive the 

vehicle.  

2) ECMS [8]. In the ECMS based controller, the ICE and 

battery power combination that can contribute to the minimum 

instant equivalent fuel consumption is chosen as the current 

control policy. The equivalent factor in ECMS is tuned for 

given driving conditions by the specially designed optimization 

algorithm [43]. 

3) DP [6]. DP, as a well-known global optimization strategy, is 

chosen as the benchmark methods in most cases. In DP based 

controller, the control step and the numbers of state and control 

grid are respectively set to 0.1, 700 and 300 in this study. 

Note that LMPC in following figures and tables denotes the 

raised LMPC based control strategy with the incorporation of 

MTFA, of which the main function is to provide reference 

velocity trajectories. The investigation in this part is addressed 

on a driving cycle extracted from real traffic data shown in [41]. 

Table VII lists the comparison on energy consumption by 

different methods. Apparently, the LMPC based strategy leads 

to less fuel consumption with the similar behaviors as DP. As 

can be found, the optimality of the LMPC based strategy can 

reach 96.21% of that by DP. The ECMS performs slightly 

worse than the LMPC based strategy, attaining 93.16% of that 

by DP. The CD-CS method, obviously, raises the worst 

performance among the applied methods, only reaching 80.23% 

that by DP. As shown in Fig. 4, the proposed LMPC based 

strategy behaves quite similarly with DP, and leads to close fuel 

consumption and battery power variation. Both DP and LMPC 

tend to coordinately distribute the power of ICE and battery, 

avoiding the operation of powertrain components in 

unfavorable area. The ECMS, partially incorporating 

environment information by tuning the equivalent factor [8], 

achieves better performance than the simple CD-CS method. 

The battery SOC by the simple rule based strategy drops fastest 

at the beginning of trip, and enables ICE to operate frequently 

after the vehicle untimely switches into the CS stage. By 

contrast, the LMPC based control strategy and DP can govern 

electric energy rationally consumed during the entire trip, and 

hinder frequent ICE operation engagement. The gap in energy 

consumption by different methods owns to the disperse 

integration level of environmental information. Given the full 

knowledge of driving cycle, DP can search the optimal solution 

to minimize the overall energy consumption. The LMPC, 

equipped with the prediction capabilities for future driving 

conditions in specified horizons, can attain quasi-optimal 

solutions and exhaustively reduce the energy consumption 

within the prediction trip. However, larger lengths of 

optimization horizons contribute to better control performance 

but with the price of computation intensity increase. The ECMS 

behaves worse than DP and LMPC, due to the limited ability in 

incorporating the time-varying influence incurred by driving 

environment in each step. The CD-CS scheme, even calibrated 

by expert knowledge and engineering practice, presents poor 

adaption to driving conditions and results in clumsy control 

effect.  

 
Fig. 4. Fuel consumption and battery SOC trajectories by different methods. 

Fig. 5 present the powertrain operation modes by different 

methods on the given driving cycle. The proportions of 

operation time of each mode by DP and the LMPC based 

strategy are quite consistent. In contrast, the ECMS and CD-CS 

control strategy all switches into the CS stage before the trip 

ends, opposing to energy saving. The difference between DP 

and the novel LMPC in mode operation lies in that the LMPC 

algorithm prefers sporadic parallel mode, especially in sudden 

acceleration scenarios, due to the short prediction on future 

driving and the corresponding improper solving manner. To 

further compare the difference between the LMPC strategy and 

DP, the powertrain component performance by the two control 



strategies are illustrated in Fig. 6. The powers of ICE, motor 

and generator by two methods are quite close, except some 

noticeable difference in acceleration stage, e.g. from 1401 s to 

1681 s. DP, with the full knowledge of driving cycle, selects the 

serial assist mode to reach the minimum energy consumption in 

the whole trip. In contrast, LMPC is forced to run optimal 

solution searching within the narrow prediction horizon, 

enabling the direct ICE drive mode to avoid fast SOC decrease. 
TABLE VII 

Energy Consumption by Different Methods 

Method 

Fuel 

Consumpti

on (g) 

Electricity (k

Wh) 

EFC (L/10

0km) 

Optim

ality 

(%) 

CD-CS 717.41 5.88 3.09 80.23 

ECMS 583.92 5.45 2.66 93.16 

LMPC 552.93 4.66 2.57 96.21 

DP 517.21 4.09 2.48 100 

 
Fig. 5. Comparison of powertrain operation modes by different methods. EV-

CD and EV-CS respectively denotes pure electric mode in CD and CS stage; 

SH-CD and SH-CS expresses serial mode in CD and CS stage; PH-CD means 
the parallel mode in CD stage. 

 
Fig. 6. Comparison of component performance by different methods. 

Figs. 7 to 9 illustrate the powertrain performance by DP and 

LMPC based strategy in a sudden acceleration and deceleration 

segment. As shown in Fig. 7, DP and the LMPC algorithm 

result in almost the same fuel consumption rate except in the 

initial and middle acceleration stages. Although ICE is started 

more frequently by DP than by novel LMPC, DP enables more 

efficient operation of ICE than the novel LMPC algorithm, due 

to the benefit from pre-knowledge of the whole driving cycle. 

The LMPC strategy, limited by the finite predicted horizon, can 

only perform local optimal control within a short range, and 

fails to discover the minimum energy consumption in the whole 

trip. The difference in operation modes, as shown in Figs. 8 and 

9, supports the same conclusion. To be specific, DP prefers the 

serial assist mode, while the LMPC method urges to switch to 

the ICE direct drive mode. However, the LMPC strategy 

foresees upcoming continuous acceleration, thus prejudging 

that the high load driving condition is more suitable for ICE 

operation and battery SOC sustaining. Instead, DP, endowed 

with longer view of future deceleration, integrally exploits the 

serial assist mode, controlling the ICE to operate in higher 

efficiency region, and makes full use of regenerative braking 

energy to replenish electricity consumed in assist mode, as 

observed in Figs. 5 and 8. Note that the regenerative braking 

mode during deceleration is marked as the EV mode in both CD 

and CS stage for simplicity. To sum up, the proposed LMPC 

strategy can lead to preferable energy management in PHEV 

based on the strong local optimization and the receding horizon 

prediction capability. 

 
Fig. 7. The zoomed-in fuel consumption rate in sudden acceleration and 

deceleration conditions. 

 
Fig. 8. The zoomed-in operation modes by DP and LMPC strategy in sudden a

cceleration and deceleration conditions. 

 
Fig. 9. The zoomed-in component performance by DP and LMPC based strate

gy in sudden acceleration and deceleration conditions 

D. Validation in Other PHEVs with Different Configurations 

Even though the proposed LMPC strategy is developed for a 

serial-parallel PHEV, the feasibility of transplanting the raised 

method to other PHEVs with different configurations is also 

investigated in this study. The energy consumption by the 

LMPC with the MTFA based reference velocity estimation in 



different PHEVs is listed in Table VIII. In the comparison study, 

the selected serial PHEV, parallel PHEV, and 4WD PHEV are 

simulated and controlled by the designed algorithm. The 

detailed description on the configurations and component 

parameters can be found in our previous research [44-46]. In 

Table VIII, average EFC denotes the average equivalent fuel 

consumption of simulation on NEDC, UDDS, US06, HWFER, 

and JC 08 driving cycles. The average EFCs by the proposed 

LMPC based strategy is compared with those by the CD-CS 

scheme and DP. As can be found, the LMPC strategy presents 

stable performance in different PHEVs, showcasing its superior 

application capability and robustness. The maximum optimality 

resulted by the strategy reaches 95.79% of that by DP, and leads 

to significant promotion in all PHEVs, compared with the 

simple CD-CS algorithm. 
TABLE VIII 

Energy Consumption by Different Strategies  

in PHEVs with Different Configurations 

Vehicle Type Control Strategy 
Average EFC 

(L/100km) 

Optimality 

 (%)  

Serial PHEV 

CD-CS 18.02 81.63 

LMPC-MTFA 15.38 95.52 

DP 14.71 - 

Parallel PHEV 

CD-CS 3.54 82.29 

LMPC-MTFA 3.04 95.73 

DP 2.91 - 

Serial-Parallel P

HEV 

CD-CS 3.07 82.13 

LMPC-MTFA 2.63 95.79 

DP 2.52 - 

4WD PHEV 

CD-CS 4.51 87.42 

LMPC-MTFA 4.13 95.65 

DP 3.95 - 

Through the comparison from different perspectives, the 

raised reference-tracking based LMPC controller shows 

obvious advantages in energy management of PHEV, and leads 

to preferable control effect with fast real-time implementation 

capacity. The specific reference-tracking manner fastens the 

computation speed, and moreover the leaning based state 

predictor and multi-source fused reference estimator improve 

the control effect significantly.  

V.  CONCLUSION 

In this paper, a novel learning based control strategy is 

presented for PHEVs. The reference-tracking based MPC with 

leaning ability is preferred in the control strategy, possessing 

qualified capacity in real-time application. To promote the 

control effect, the Gaussian process model is integrated into the 

inner state predictor of MPC to mitigate the adverse effect on 

state prediction. The reference velocity in the leaning based 

MPC strategy is estimated by MTFA. The particular velocity 

estimation method can reasonably analyze the behaviors of 

future driving without much cost in calculation. The simulation 

evaluation demonstrates that the proposed leaning based control 

strategy is well-suited for the application in engineering 

practice with near-optimal effect. Compared with the rule based 

control strategy, the raised method can improve the fuel 

economy by as high as 15.98%, and can achieve 96.21% fuel 

economy of that by DP. The algorithm is also validated 

effective in different types of PHEVs, manifesting its 

application capability and robustness. 

As the future driving status tends to be easily affected by 

multiple factors from driving behaviors and environment, more 

effort will be devoted to velocity prediction in our future work. 

In addition, intelligent methods will be explored to incorporate 

more information from multi-sources for prediction precision 

promotion of future driving velocity.  
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