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 17 

Abstract: This study investigates accurate state of charge estimation algorithms for lithium-ion batteries based on 18 

the long short-term memory recurrent neural network and transfer learning. The long short-term memory network 19 

with the five typical layer topology is firstly constructed to learn the dependency of state of charge on measured 20 

variables. The transfer learning algorithm with fine-tuning strategy is then exploited to regulate the parameters of 21 

fully connected layer and share the knowledge of other layers. By this manner, the information from the source data 22 

can be applied to predict state of charge of other batteries with less training data. Additionally, a rolling learning 23 

method is developed to update the model parameters when the battery capacity is degraded. The precision and 24 

robustness of the proposed framework are comprehensively validated through comparative analysis of 25 

multitudinous sets of hyperparameters and methods. The experimental results manifest that the developed 26 

framework highlights precise estimation capability of state of charge at different aging states and time-varying 27 

temperature conditions. In addition, the proposed algorithm is verified feasible when transferred to different 28 

batteries based on only 30% training data.   29 

Key Words: Lithium-ion battery, long short-term memory network, state of charge, temperature variation, transfer 30 

learning. 31 
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I. INTRODUCTION 32 

As a promising electrical energy storage media, lithium-ion batteries have been extensively assembled in 33 

electric vehicles (EVs) and power grid, due to their wide temperature range, high power density and low memory 34 

effect [1]. To ensure working safety and prolong service life, battery management system (BMS) is usually 35 

indispensable for monitoring and controlling their proper and safe operation [2]. State of charge (SOC), as one 36 

crucial parameter inside of batteries, indicates the percentage of remaining capacity over the nominal value [3]. 37 

Accurate and reliable SOC can not only provide useful information on how much capacity is left in the battery or 38 

how long the battery can be fully charged, but also supply the guidance for avoidance of over charge/discharge [4]. 39 

However, it can not be measured directly by existing external electrical sensors but can be indirectly estimated 40 

based on the measurements. As such, a variety of efforts have been devoted to designing efficient, accurate, and 41 

robust SOC estimation algorithms [5]. To now, these methods can be simply classified into four categories: ampere-42 

hour (Ah) integration method, open circuit voltage (OCV)-based method, data driven-based methods and filter-43 

based methods [6]. 44 

The Ah integration method calculates SOC by integrating the current flowing through batteries with a known 45 

initial SOC value [7]. It is simple and widely implemented in practice [8]. Yet, it is difficult to pledge the estimation 46 

precision, as it is sensitive to current measure noise and initial value of SOC. The OCV-based method leverages the 47 

correlation between OCV and SOC to forecast SOC [9]. Apparently, it can not be employed for real applications as 48 

the OCV can only be acquired by shelving the battery for a sufficiently long time, usually more than two hours [10]. 49 

Additionally, when the battery OCV varies slowly with SOC, especially when the voltage locates in a plateau area, 50 

tiny OCV derivation may lead to large SOC estimation error. By merging the OCV-based method and Ah integration 51 

method, the filter-based methods are proposed and applied to estimate SOC with the support of offline built electric 52 

models [11]. Obviously, the electric model and filter algorithm are two essential elements for SOC estimation. For 53 

the former one, equivalent circuit models (ECMs) [12], complex electrochemical models [13] and machine learning 54 

models (particularly neural networks (NNs)) [14] have been widely investigated to characterize electrical 55 

performances of batteries together with advanced parameter estimation algorithms, such as recursive least square 56 

(RLS) [15] and genetic algorithm (GA) [16]. For the latter item, the most widely used algorithm is Kalman filter 57 
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(KF) and its extended form, referred to as extended KF (EKF), which conducts partial derivatives to linearize the 58 

battery nonlinear voltage variation in terms of SOC [17]. In [18], a feedforward NN (FF-NN) is introduced to depict 59 

the polarization characteristics of batteries, and then the EKF is employed to estimate SOC. In addition to EKF, 60 

other filtering methods, including unscented KF (UKF) [19], cubature KF (CKF) [20], particle filter (PF) [21] and 61 

H-infinity filter (HIF) [22], are also commonly preferred for SOC prediction. These methods are effective in 62 

eliminating the initial SOC difference and noise interference [23]. However, they are difficult to cope with 63 

temperature variation and capacity degradation, even massive efforts have been made to mitigate these passive 64 

influences.  65 

To overcome this drawback, black box models fully taking advantage of data driven methods are introduced 66 

for SOC estimation. With the development of data storage technologies and the improvement of computing capacity 67 

furnished by graphics-processing units (GPU), data driven-based methods have progressively drawn much attention 68 

from the research and application perspectives [24]. Data driven based methods can reveal the latent SOC 69 

relationship with the measured variables and historical operation information. These methods only need to excavate 70 

the nonlinear relationship between input variable and output data, and do not need to account for interior complex 71 

electro-chemical reactions of batteries [25]. Ref. [26] designs a recurrent NN (RNN) with the gated recurrent units 72 

to predict battery SOC based on the measured temperature, voltage and current. To tackle the aging influence, Ref. 73 

[27] employs the RNN to simultaneously predict SOC and state of health (SOH), and verifies the feasibility of the 74 

developed approach on different types of lithium-ion batteries. Due to the gradient vanishing problem of RNN 75 

during back-propagation training processes, the long-term dependency is difficult to be captured. In this context, 76 

long short-term memory (LSTM), as an evolution of conventional RNN, has been widely applied in state prediction 77 

with the capacity of tackling time-series information [28]. Ref. [29] exploits the LSTM network to estimate SOC 78 

and showcases the ability of encoding dependencies in time without any dependence on battery models. In [30], a 79 

mixed convolutional NN (CNN)-LSTM network is constructed to map the nonlinear dynamic relationship between 80 

SOC and voltage, current and temperature. In [31], an autoencoder NN is proposed for feature extraction, and the 81 

results of the hidden layer in the NN is taken as the inputs of LSTM for SOC estimation. 82 
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Although a large number of data-driven approaches have successfully emerged to estimate SOC, existing 83 

approaches still have some obvious drawbacks. Firstly, the temperature influence on SOC estimation is not 84 

sufficiently taken into consideration. Most of the existing methods are usually validated only at a fixed temperature 85 

or limited temperature range. However, the working environment of battery is execrable, and the ambient 86 

temperature is usually time-varying, therefore the proposed method should be capable of adapting continuous 87 

variation of temperature. Secondly, the cycling operation of batteries leads to capacity degradation, and traditional 88 

methods assume that the capacity is known beforehand; and additionally, joint estimation methods are usually 89 

devised to simultaneously estimate the SOC and capacity/SOH. However, more estimation tasks will no doubt 90 

complicate the estimation algorithm design, and correspondingly increase the computational intensity. Thirdly, 91 

conventional data driven approaches employ statistical models to forecast future behavior, and these models are 92 

trained based on the offline measured data, which entail elaborate experiments with the full consideration of 93 

different operation circumstances. If the previous learning knowledge on one battery can be transferred to new 94 

batteries or even new types of batteries, the interactable computation burden when constructing new battery models 95 

can be significantly mitigated, and therefore the advantages of data driven methods can be further promoted. 96 

Fortunately, transfer learning (TL) can refer to the knowledge from one domain and extend it to another domain 97 

with the same or similar properties. It may contribute to data driven based SOC estimation with less computation 98 

burden and training data preparation [32]. 99 

To overcome the discussed bottlenecks when employing data driven methods to estimate SOC, an effective 100 

SOC estimation framework incorporating the LSTM network and TL is, to the authors’ knowledge, firstly proposed 101 

in this study. The LSTM model with five layers is developed to predict SOC based on the well-prepared data of 102 

source battery. To tackle the variation of temperature and degradation, the TL with fine-tuning strategy is introduced 103 

to modify partial model parameters. Furthermore, a rolling learning method is developed to update the model 104 

parameters especially when the battery capacity is degraded. Compared to conventional filter based methods and 105 

support vector machine (SVM) method, the proposed framework can well adapt to the rapid variation of ambient 106 

temperature and capacity degradation, and meanwhile highlight satisfactory SOC estimation accuracy. In addition, 107 
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the computation burden can be dramatically lessened when conducting new battery SOC estimation, due to the 108 

simplified model training job incurred by TL.  109 

The remainder of this study is structured into four parts: Section II preliminarily introduces the whole 110 

estimation framework and the theoretical basis of LSTM and TL. Section III elaborates the procedure for SOC 111 

prediction. The experimental validation and discussion are given in Section IV. The main conclusions of this study 112 

are presented in Section V. 113 

II. METHODOLOGY 114 

The target of this study is to find hidden variation laws between SOC and measure variables. To attain robust 115 

design, a LSTM model incorporating TL is proposed, as shown in Fig. 1. The LSTM network is established to map 116 

the nonlinear relationship between SOC and current, voltage and temperature. Meanwhile, to improve the 117 

environmental adaptivity and reduce the number of training sets, TL is harnessed to adjust the model parameters of 118 

LSTM. In this section, these two key components of the framework will be introduced in detail. 119 
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Fig. 1. Construction of the proposed framework. 121 

A. Long Short-Term Memory Network 122 

LSTM network belongs to a special class of RNN. For traditional RNNs, there exists only one hyperbolic 123 

tangent layer in the recurrent modules. Nevertheless, the knowledge from foregoing steps generates only neglectable 124 

impression on the current output, as shown in Fig. 2 (a), where darker circles symbolize more sensitive degree. As 125 

an improved model of RNNs, LSTM features the similar sequence or chain configuration, however, the LSTM 126 

module shows a different structure. In contrast to standard RNN, there exist five layers that are related to each other 127 
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in a special topology. Fig. 2 (b) details the main topology of LSTM, which mainly includes three units, i.e., input, 128 

output and forget gates, to remember long-term information; and these gates are merged together to determine which 129 

information will be memorized or forgotten. Usually, the tanh function and sigmoid function are executed to select 130 

the information. 131 
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Fig. 2. Structure of RNN and LSTM: (a) Standard RNN; (b) LSTM. 134 

The priority work of implementing LSTM is to determine what messages are going to be neglected by the 135 

forget gate. It squashes the inputs of kIP  and 1kOP −  into 0 to 1, where kIP  denotes the input of current step, 136 

1kOP −  means the output of step 1k − , the upper value 1 means the value should be retained totally; and on the 137 

contrary, the lower boundary 0 indicates discarding the information completely. The forget gate can be expressed 138 

as [14]: 139 

 1( )k f k f k ff b IP IW OP OW −= + +  (1) 140 

where f , i , O  and c  respectively represent the forget, input, output gates and memory cell, b  indicates the 141 

bias of forget gate, OW  and IW  correspondingly denote the weights for last output and input. Then, what 142 

message should be stockpiled needs to be judged. This step includes two parts: the first part, called “input gate”, 143 

adjudicates which value needs to be updated; and the second part, called “input node”, creates a new candidate 144 

vector, as: 145 

 
1

1

( )

tanh ( )

k i k i k i

k g k g k g

i b IP IW OP OW

g b IP IW OP OW

 −

−

= + +


= + +
 (2) 146 

Correspondingly, the current cell state can be calculated as:  147 

 1k k k k kc c f g i−= +  (3) 148 
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Eventually, the output gate determines what information will be outputted with the help of the updated cell state, 149 

the information of input gate and input node, as: 150 

 
1( )

tanh( )

O k O k O

k k

O b IP IW OP OW

OP p O

 −= + +


= 
 (4) 151 

where 
kp  denotes the internal variable of LSTM cells.  152 

B. Transfer Learning 153 

The learning processes for traditional LSTM and LSTM with TL (called LSTM-TL hereinafter) are elucidated 154 

in Fig. 3. As can be seen, conventional LSTM handles each task from different data sources, while TL borrows the 155 

information from a formerly learned source task for training the target task, and can effectively avert “training from 156 

scratch”. In TL, the existing knowledge is called source domain, and the new knowledge to be learned is defined as 157 

target domain. In particular, TL studies how to apply existing models to a novel and different but related field. 158 

Traditional LSTM is not flexible enough when dealing with the tasks of data distribution, dimension and model 159 

output change, while TL does not require the training set and test set to be with the same distribution. Under the 160 

condition of acquiring data distribution, feature dimension and model output variation, the knowledge in source 161 

domain can be exploited to better model the target domain. In addition, in the case of lacking enough calibration 162 

data, TL can make full use of the calibrated data in other related fields to compensate the data shortage. In this study, 163 

it is assumed that the features and data distribution of different lithium-ion batteries are various but correlated. By 164 

this manner, LSTM in combination with TL can be hired to estimate SOC for different batteries, and the detailed 165 

implementation process will be elaborated in the following section. 166 

     167 
                            (a)                                          (b) 168 

Fig. 3. Learning process for different learning methods: (a) Conventional learning process; (b) Transfer learning process. 169 
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III. STATE OF CHARGE ESTIMATION BASED ON IMPROVED LSTM AND TL 170 

The overall framework of the proposed SOC estimation, as detailed in Fig. 4, is roughly divided into two parts: 171 

1) the source and target network training and SOC estimation; and 2) rolling learning [33]. 172 

The LSTM method is manipulated to establish a source LSTM network for SOC estimation of battery A (here 173 

A and B represent different types of batteries) according to the measurement. It is well known that the selection of 174 

battery measurement signals for network inputs is not an easy task; however, current, temperature and voltage are 175 

the directly measured parameters, and they have also been verified critical to aid internal state estimation of batteries 176 

[34]. These three parameters are extracted as the sequence input features of LSTM in this study. It should be noted 177 

that when the internal temperature of battery changes, the measured temperature will also vary, and the activation 178 

characteristics of lithium ions in the battery will change simultaneously, leading to the voltage profile variation. 179 

Therefore, when the voltage and temperature are taken as the input of LSTM, the influence of temperature on SOC 180 

is indirectly considered. Additionally, the structure of LSTM for regression consists of five layers, i.e., input layer, 181 

LSTM layer, dropout layer, fully connected layer and regression output layer.  182 

After obtaining the parameters of LSTM network, the parameters will be transferred to the target LSTM 183 

network which is trained in terms of different types of healthy and aged batteries. In this study, the fully connected 184 

layer would be retrained to learn the diversities between the source battery and target battery, and the parameters of 185 

other layers remain the same. In the retraining process, only 30% data are harnessed for model training, and the rest 186 

70% data will be applied for estimation performance validation.  187 

A common knowledge is that battery aging imposes significant influence on SOC estimation, and it is 188 

intractable to accurately estimate SOC of the aged battery without considering capacity degradation. During training, 189 

the collected operation data are classified into input features and output dataset, by which the model can map the 190 

affine relationships between features and SOC. Inspired by model predictive control (MPC), a rolling learning 191 

method is proposed to update the model parameters of LSTM for tackling the aging influence on SOC. The rolling 192 

learning algorithm consists of three parts: data accumulation, feedback correction and rolling optimization. As 193 

shown in Fig. 4, when the battery management unit works, the battery operation data will be continuously collected. 194 

After a period of time, if the amount of accumulation data N  is more than the preset length M . Then, the LSTM 195 
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network will be retrained and calibrated by the TL, and a group of new parameters of LSTM will be exploited to 196 

predict SOC. By means of the rolling-learning mechanism, LSTM enables to take the historical influence into 197 

account, so as to conduct expected estimation by the propose LSTM-TL cooperation framework. Moreover, the 198 

inputs of the proposed method include current, voltage and temperature, and it is not necessary to know the battery 199 

capacity value. By this manner, the difficulty of capacity or SOH estimation can be effectively mitigated. 200 
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Fig. 4. Flowchart of the SOC estimation framework. 202 

The whole operation procedure can be described as follows. Firstly, the historical data are collected and stored 203 

by system and inputted into the feedback corrector. Then, for achieving high-precision optimal control, enhancing 204 

the anti-interference ability of system and improving the control stability, the feedback correction is furnished to 205 

amend the control parameters of LSTM according to the historical data. Given the corrected parameters of LSTM 206 

at the current step, the state value in the subsequent time domain is estimated by the newly updated model 207 

parameters until the next receding horizon is reached. The above steps will be repeated until the termination of 208 

estimation.  209 

In the following section, experimental validations and discussions will be conducted to validate the feasibility 210 

of the proposed framework. 211 
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IV. EXPERIMENTAL VALIDATION AND DISCUSSION 212 

A series of validations are carried out in this paper to verify the proposed estimation framework. Firstly, the 213 

number of units for the source LSTM is determined. Secondly, the estimation results at different ambient 214 

temperatures are presented and compared with traditional algorithms, including SVM and AEKF. Thirdly, the 215 

expansibility of the presented framework is discussed based on different types of batteries. Finally, the adaptability 216 

and robustness of the proposed method are justified at different aged cells. All the simulations presented in this 217 

study are performed on a desktop computer equipped with Intel Xeon E3-1230 (3.30 GHz) processor and 32 GB 218 

memory. To fully evaluate the performance of the presented method, three evaluation criteria are indexed, including 219 

average absolute error (AAE), maximum absolute error (MAE) and root-mean-square error (RMSE), as: 220 

 

1

2

1

1 ˆ

ˆ
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N
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=
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= −






 (5) 221 

where iSOC and ˆ
iSOC  denote the reference value and estimation value at the ith sampling step, respectively; and 222 

samN  means the total sampling number.  223 

A. Parameter Selection 224 

Before training the LSTM network, the model parameters need to be assigned. Actually, it is a challenging 225 

task to find the optimal parameters of LSTM, therefore the parameters need to be preset empirically, and then will 226 

be optimized through iterative optimization to attain better performance. Among all the parameters, the number of 227 

LSTM units influences the accuracy and complexity of the established model mostly. Thus, different numbers of 228 

hidden units are preferred to evaluate the model performance. In this case, the experiment is conducted at 30 ℃, 229 

and the nickel cobalt manganese (NCM) batteries are experimented in the case study of this paper. The fully charged 230 

battery is cycled under urban dynamometer driving schedule (UDDS), until its terminal voltage drops to its cut-off 231 

voltage of 2.75 V. The sampling frequency is set as 1 Hz. 232 

Fig. 5 (a) and (b) demonstrate the SOC prediction results using different unit numbers of LSTM from 20 to 233 

500 with an increase interval of 20. Fig. 5 (c) to (f) portray the performance metrics for different LSTM units. As 234 
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can be found, there does not exist significant correlation between the estimation performance and the number of 235 

units. The best AAE, MAE, RMSE and running time appear in 340, 360, 340 and 20 units. From these results, it is 236 

difficult to choose the optimal unit. To tackle this problem, the entropy weight method is employed to score the 237 

prediction results, due to its strong capability in describing the disorder degree of information system [35]. 238 

Assuming that there exist a  evaluation indexes and d  evaluation objects in the original data, the performance 239 

value is normalized and limited to the range of [0, 1] for minimizing the difference between the data of each 240 

dimension of the evaluation index, as: 241 

 
, ,

, ,

,

( )

( ) ( )

p

p

q p

q

p

p

min

m
P

ax mi

IV IV

IV Vn I

−

−
=  (6) 242 

where ,q pIV  means the pth index value of the qth unit, ( )pIn Vmi  and ( )pIx Vma  represent the minimum and 243 

maximum value of the pth index; thus q a  and p d . Then, the entropy of the pth index pEn  can be 244 

formulated, as: 245 

 
, ,

1(log ) log
d

q p q p

pj

pEn d P P−

=

= −   (7) 246 

The entropy weight of each index pw  can be calculated, as: 247 

 

1

1

p

p d

p

pEn
w

d En
=

−
=

−
 (8) 248 

Thus, the score pScore  can be calculated as: 249 

 ,

T

p q p pScore P w=  (9) 250 

The scoring results are displayed in Fig. 5 (g). It can be observed that the LSTM network with 120 units leads 251 

to the highest score 0.92, while the model with 20 units shows the lowest value 0.3. That is, the LSTM model with 252 

120 units can achieve a preferable trade-off between the estimation precision of SOC and the running time. As such, 253 

120 hidden units are selected for LSTM construction and SOC prediction. 254 
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   255 
(a)                                            (b) 256 

   257 
(c)                                            (d) 258 

   259 
(e)                                            (f) 260 

 261 
(g) 262 

Fig. 5. SOC Estimation results using different numbers of hidden units: (a) Comparison of SOC; (b) SOC estimation errors; 263 
(c) AAE; (d) MAE; (e) RMSE; (f) Running time; (g) Scores of different numbers of units. 264 

B. Evaluation Results at Varying Ambient Temperatures 265 

It is well acknowledged that battery capacity and power highly depend on temperature; as such, the qualified 266 

SOC estimation should be capable of well adapting to ambient temperature variation. To validate it, the battery is 267 

experimented with the dynamic current profiles under time-varying temperatures conditions ranging from 15 to 268 
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55 ℃. The temperature is first set to 55 ℃ for one hour and then is reduced by 5 ℃. Next, the battery is maintained 269 

at the temperature for another one hour. Repeat the above process until the end of discharge. During the test, the 270 

federal urban driving schedule (FUDS) current profile is imposed to discharge the battery until 2 Ah capacity is 271 

released, followed by constant current-constant voltage (CC-CV) charge (CC: 0.5C current and CV: 4.2 V). Finally, 272 

the FUDS cycle test is performed again until the voltage drops to 2.75 V. Fig. 6 (a) delineates the current and voltage 273 

responses, and Fig. 6 (b) shows the temperature variation. In addition, to evaluate the performance of the developed 274 

framework based on LSTM and TL, we compare it with the SVM estimation algorithm, which adopts the same data 275 

for modeling training, and with the AEKF estimation based on the first-order ECM. The inputs of the proposed 276 

method and SVM are battery terminal voltage, current and temperature; and for SVM and the proposed method, it 277 

is not necessary to know the initial SOC in advance. While when applying the AEKF for SOC estimation, an initial 278 

SOC is necessary for model input. From this point of view, an initial SOC error is only set in AEKF, which is set 279 

to 60% with initial error of 40%. For fairly examining the convergence performance of the proposed method, the 280 

initial inputs of the proposed method and SVM including current, voltage and temperature are mistakenly set to 2 281 

A, 2.75 V and 25 ℃, respectively, in contrast to the real initial values of -0.01 A, 4.19 V and 49.72 ℃. 282 

The estimation results of these methods are depicted in Fig. 6 (c) and (d) and tabulated in Table I. As can be 283 

found, the SOC by the proposed method can follow the reference value during the whole discharge and charge 284 

processes, with the overall error of less than 4%, while it is difficult for AEKF to compensate the influence of 285 

temperature on SOC estimation, enabling the error to increase gradually with temperature variation. Nonetheless, 286 

the estimation error of these three methods is significantly reduced in the CC-CV charging stage, and the estimation 287 

curve becomes smoother. As listed in Table I, the AAE obtained by these three methods is 3.27%, 0.94% and 0.53%, 288 

respectively; and the MAE by the proposed method is 3.80%. For AEKF and SVM, the MAE is 5.8% and 16.10%, 289 

obviously higher than that of the developed algorithm. The RMSE of AEKF and SVM algorithm is five and two 290 

times than that of the proposed framework. Additionally, the duration to reach the reference SOC value for AEKF, 291 

SVM and the proposed method is respectively 216 s, 2 s and 30 s. Although the convergence time of SVM is less 292 

than that of the proposed method, the estimation results by the SVM fluctuate obviously in the low SOC stage. 293 

Hence, it can be concluded that the proposed method outperforms the other two algorithms in both convergence 294 
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performance and stability, and the proposed framework is more suitable for SOC estimation and leads to higher 295 

estimation accuracy. 296 

   297 
(a)                                            (b) 298 

     299 
(c)                                            (d) 300 

Fig. 6. SOC evolution curves at varying ambient temperatures and different methods: (a) Current and voltage response 301 
curves; (b) Ambient temperature change curve; (c) SOC evolution curves; (d) Estimation errors. 302 

Table I. Comparison of SOC Estimation for Different Methods 303 

Method 
Convergence 

time (s) 
AAE (%) MAE (%) RMSE (%) 

AEKF 216 3.27 5.80 3.90 

SVM 2 0.94 16.1 1.38 

Proposed 18 0.53 3.80 0.69 

C. Evaluation Results at Different Batteries 304 

To validate the transfer ability of the proposed framework, the well-trained network is extended to implement 305 

in another type of lithium-ion batteries, i.e., lithium cobalt oxide (LCO) battery, of which the data comes from the 306 

Center for Advanced Life Cycle Engineering [36]. The battery is discharged at 25 ℃ with US06 cycle, and the 307 

specific implementation process can be found in [36]. The experimental results are sketched in Fig. 7, where “LSTM” 308 

indicates the estimation results by single LSTM method using 70% training data, and “Proposed” represents the 309 

prediction results by LSTM combining TL using 30% training data. It can be seen that the LSTM and the presented 310 

framework feature similar prediction performance. The MAE of these methods are all lower than 5%. The running 311 

time of each method per step is also calculated. Concretely, the running time per step of the LSTM and the proposed 312 

method is 0.023 s and 0.0077 s, respectively. Obviously, the proposed framework is more efficient than that of 313 
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single LSTM method without error increase. Moreover, compared with the training data amount for the single 314 

LSTM method, the training data size for the proposed framework can be reduced by 40%, while the prediction 315 

performance is not deteriorated. As such, it can be concluded that the proposed algorithm can be transplanted from 316 

NCM batteries to LCO batteries with easy extendibility. The only task that needs to be conducted is to adjust the 317 

parameters of one middle layer. By this manner, the accuracy and feasibility of the proposed framework is verified 318 

when applying in different types of batteries. 319 

   320 
(a)                                            (b) 321 

Fig. 7. SOC evolution curves at different batteries: (a) SOC evolution curves; (b) Estimation errors. 322 

D. Evaluation Results at Aging Batteries 323 

According to the proposed rolling learning method, the battery cells cycled at different aging states are tested 324 

to verify the adaptivity of the proposed SOC estimation framework. Here, three different aged cells, whose SOH is 325 

respectively 96.3%, 89.5% and 87.3%, are cycled with the FUDS and UDDS current at 25 ℃. The SOC prediction 326 

and statistic results are demonstrated in Fig. 8 and Table II, respectively.  327 

Fig. 8 (a) to (c) show the corresponding current and voltage profiles. As can be seen, cells 1 and 3 are with the 328 

same discharge cycles, and both are circularly discharged with the hybrid FUDS and UDDS cycle. While cell 2 is 329 

firstly discharged by the FUDS, followed by the CC-CV charge. Then, it is discharged under the repetitive UDDS 330 

experiment. For cells 1 and 3, the current in the first discharge cycle is larger than that in the second cycle. By 331 

contrast, the current of cell 2 in the first discharge stage is smaller than that in the second stage. The data of the first 332 

cycle are chosen as the training dataset, and the data of the second cycle are considered as the test dataset. By this 333 

manner, the dynamic current profiles can well verify the generalization ability of the proposed method. 334 

Fig. 8 (d) and (e) depict the SOC variation and error, respectively. Fig. 8 (d) highlights that the proposed 335 

method can precisely predict SOC, even when the battery is aged with different states. Moreover, although the aging 336 
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level and discharge current of these three batteries are different, their SOC error appears more consistently. During 337 

the intermediate stage of the discharging process (e.g., 30% to 60%), the estimation error slightly increases, owing 338 

to the discounted network model accuracy incurred by the plateau characteristic of voltage responses. Even so, they 339 

can all converge to a satisfied level. All the MAE of the proposed method for three cells can be maintained within 340 

3%, as described in Fig. 8 (d). Table II lists the AAE, MAE and RMSE of the SOC prediction results based on the 341 

proposed framework. The corresponding AAE and RMSE values of the proposed method for different aging states 342 

are also similar, and these boundary can be maintained within 0.3% and 0.6%, respectively. To sum up, the designed 343 

LSTM-TL, together with the rolling learning method, can not only be employed to authentically forecast the SOC, 344 

but also furnish higher robustness when the battery capacity is degraded. 345 

   346 
(a)                                            (b) 347 

 348 
(c)                                            (d) 349 

 350 
(e) 351 

Fig. 8. Evaluation results at aging batteries: (a) Training and testing datasets for aging cell 1; (b) Current and voltage 352 
profiles for cell 2; (c) Current and voltage profiles for cell 3; (d) SOC evolution curves; (e) Estimation errors. 353 

 354 
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Table II. Comparison of SOC Estimation for Aging Batteries 355 

SOH AAE (%) MAE (%) RMSE (%) 

96.3% 0.26 2.98 0.45 

89.5% 0.24 3.3 0.55 

87.3% 0.18 3.08 0.43 

 356 

V. CONCLUSIONS 357 

Data driven estimation methods have been authenticated to be effective in state of charge estimation. However, 358 

they are impeded by vast demand of training data. To cope with this restriction, this study combines the long short-359 

term memory network with transfer learning and rolling learning algorithms to conduct state of charge prediction. 360 

Given the five layer topology, the long short-term memory network is constructed to catch the nonlinear 361 

characteristics of state of charge based on current, voltage and temperature without any pre-processing. The 362 

developed long short-term memory transfer learning framework allows the long short-term memory network to 363 

fully account for the environmental temperature influence. By applying the transfer learning with fine-tuning 364 

strategy, the well-trained long short-term memory network based on the source battery can be transferred to the 365 

target battery based on only 30% data, observably improving the practicability and efficiency in state of charge 366 

prediction. The model training speed by the transfer learning is much faster than that of the re-training process. 367 

Moreover, a rolling learning method is proposed to improve the algorithm robustness when the battery is degraded. 368 

The experimental validation reveals that the proposed framework can conduct precise state of charge estimation 369 

with the error of less than 4%. The comparative experimental validations justify the framework’s feasibility, 370 

robustness and adaptivity in state of charge estimation. 371 

In the future, more sets of history data will be integrated into the long short-term memory model, especially 372 

under time-varying working conditions. How to improve the self-learning ability of long short-term memory for 373 

better state estimation of lithium-ion batteries is also our research direction. 374 
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