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ABSTRACT

Pose-guided human view synthesis uses a target pose to generate the
appearance of a new view of a person. The input view and the tar-
get pose can be processed separately with UNet architectures that
combine the results in a late fusion stage. UNet architectures link
their encoder and decoder with skip connections that preserve the
location of spatial features by injecting input information in the de-
coding process. However, direct skip connections may transfer ir-
relevant information to the decoder. We overcome this limitation
with learnable mask for skip connections that encourage the decoder
to use only relevant information from the encoder. We show that
adding the proposed mask to UNet architectures improves the per-
formance of view synthesis with only a slight increase in inference
time.

Index Terms— View synthesis; UNet; Mask Skip Connection.

1. INTRODUCTION

Pose-guided human image synthesis is the process of generating new
images of a person given a set of 2D keypoints representing the tar-
get pose (Figure 1). Because of asymmetries in human poses, this
problem is particularly challenging. Methods for view synthesis in-
clude Pose Guided Person Generation Network (PG?) [1], View-
Disentangled Generator (VDG) [2], Pose-Normalized GAN (PN-
GAN) [3], Deformable GAN (Def-GAN) [4], and Vari-UNet [5].

Table 1 summarizes recent models for pose-guided image syn-
thesis that use UNet or ResNet architectures [6]. The models may
use reconstruction, £, adversarial £, variational [7] £, and per-
ceptual [8], L,, losses. An in-depth analysis on how to combine
these losses is presented in [9]. Most view-synthesis methods [1,
2,4, 5] use UNet [10], a U-shaped encoder-decoder Convolutional
Neural Network (CNN) with the ability to retain spatial informa-
tion [11]. The encoder is composed of multi-layer convolutional
blocks that map the input view to a lower-dimensional feature map,
which is then upsampled by the decoder with a deconvolution [12].

Architectures for pose-guided human image synthesis use early
or late fusion. Early fusion [1, 3] combines the input view and the
target pose in a feature representation for the encoder. PG? [1] is a
two-stage model that converts the target pose into a heatmap, syn-
thesizes a coarse image in the target pose and then refines it with
adversarial training by optimizing the weights of the network. PN-
GAN [3] learns identity-sensitive and view-invariant features by re-
formulating the problem on a pre-defined set of poses for person
re-identification.

Late fusion [2, 5, 4] keeps the processing of the input view (and
input pose) and the target pose separate at the encoder and com-
bines the results in the decoder. VDG [2] processes input view (and
pose) and the target pose in two separated encoders and then fuses
their results to reconstruct a coarse target view with the decoder,
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Fig. 1: Pose-guided view synthesis. A generator processes the input
view and the target pose to implicitly learn the multi-view mapping
through a full reconstruction loss, L.

which is learnt using a loss function based on Structural Similarity
(SSIM) [13]. Vari-UNet [5] uses a variational inference constraint.
Def-GAN [4] extends the UNet architecture to learn a set of affine
transformations that are applied to the convolutional block of the en-
coder using pre-defined masks.

Masks have been used to filter information in MaskConnect [14]
and Modular-GAN [15]. MaskConnect [14], which allows for flex-
ible residual connections between the previous layers, is preferable
for image recognition than fixed (hand-designed) residual con-
nections such as those in ResNet [6] or ResNeXt [16]. Modular-
GAN [15] defines the mask as convolutional operation in the trans-
former module for face synthesis, a less complex task than person
synthesis.

As pre-defined masks [4] may eliminate important information
for the generation, we aim to learn how to mask only irrelevant in-
formation. To this end, we include in the UNet architecture a mask
module that learns to establish selective skip connections. A selec-
tive skip connection blocks (masks) input features from being ac-
cessed in the decoding stage if they corrupt the target view. The
mask consists of a parameter tensor and an operator that combines
the tensor with the encoder feature map. The proposed module is
end-to-end trainable and can be plugged into existing late fusion ar-
chitectures to allow selective information passing.

2. MASKED SKIP CONNECTIONS

In this section we present the proposed mask UNet (mUNet) model
and motivate the need for learnable mask skip connections. We also
investigate two strategies to combine the learnt mask with the en-
coder feature map in the skip connection operation, namely a dense



Table 1: Pose-guided view synthesis methods: main design choices
and losses used (L. reconstruction loss; L,: adversarial loss; L,:
variational loss [7]; £,: perceptual loss [8]).

Method Losses Architecture | Fusion
Ly Lo Ly Ly

PN-GAN [3] v v Early

PG? [1] v v

VDG [2] v v

Def-GAN[4] | v v v UNet Late

Vari-UNet [5] v v v

masking, where each pixel is considered separately from its neigh-
bors, and a sparse masking, where the encoder feature map is masked
using a grid of cells (see Figure 2).

Given an input view of a person, z,, the corresponding body
pose in that view, p,, and a target pose, ps, the goal is to design and
train a generator, fg, that produces 2, the appearance of a new view
of the person. The target view, &, shall be as similar as possible
to the ground-truth image, x5, from which the target pose, py, was
extracted.

We decompose the generator in three parts, namely an input en-
coder, Er, a pose encoder, E'p, and a decoder, D. The input en-
coder, Fr, maps x, and p, to a lower dimension feature vector
v = Er(za ® pa). The pose encoder, Ep, processes p, such
that vp = Ep(ps), which will guide the decoder in the synthesis.
Finally, v; and vp are concatenated and fed to the decoder, D, to
produce the target view £, = D(vr @ vp), where @ indicates the
concatenation operation.

Let N be the number of layers of the encoder and the decoder,
and w, h and c be the width, height and the number of channels
(depth) of the feature map fi € R"**“*€ of the encoder at layer
iand fN % € R"***¢ be the corresponding feature map at layer
N —i of the decoder. In the UNet architecture [10] a skip connection
concatenates the feature f% of the encoder with the feature f g ~% of
the decoder, such that:

A =fhe (1)

We add in each layer ¢ of the encoder CNN a learnable mask,
M € RY*"*d where d < ¢. M* is a weight matrix that is applied
to the encoder feature map, fj, through tp: RPX®wXe x RAxwxd _y
RMX®X¢ guch that the skip connection at each layer becomes:

I = (MY @ )

where fé\f ~% is the proposed mUNet model (see Figure 3). The re-
sulting values of the weight matrix M’ after optimisation are those
that minimize the loss of training. The binary mask is obtained by
combining the weight matrix with the input feature map ff;.

We consider two variants of the mUNet model, which has a mask
for each channel of the encoder: the mUNet, model, which has a
mask with only one channel; and the mUNet, model, which uses
one sparse mask (similar to mUNet,) for all the feature channels to
block the pixels used in the encoder.

Let ¢ be a function such that for a given input x and y:

o(z,y) = 1o (coy)>0.5]5 3

where the function 1 returns 1 if its condition holds and O otherwise,
o is the sigmoid function, and ® is the element-wise product.

For skip connections with dense masks, each pixel in the fea-
ture map is independent of its neighbors and therefore the spatial
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Fig. 2: The proposed mask skip connection and its variants: (a)
dense mask (the mUNet, model uses one mask IM" for all the feature
map channels) and (b) sparse mask.

relationship between pixels is learnt from the data. The resulting
masked feature map is:

V([ M') = fi © ¢(f5, M"). 0))

For skip connections with sparse masks, pixels are locally re-
lated using cells that are treated separately, whereas the pixels inside
a cell are all either filtered out or passed on. We divide the encoder
convolutional feature map f§; into L%J Lwiqj cells, with each cell,

gL, having size hy X wy X ¢, and
. . h  w
i i Rhgxngc k o } 5
fi={d e eyl o

where hg (wy) is the height (width) of the grid. We multiply the k-th
value of the mask m‘ € R! 75 L’f’g ! with the cell gy, thus generating
an hy X wgy X ¢ binary matrix, b, defined as:

by = ¢(gk, mj,). (6)

We use the dominant binary value in each cell to mask the infor-
mation through the grid as:

Y(gk, mp,) = Lo|>|s)1 9k, @)

where |O| and |S| are the total number of 1s and Os, respectively, in
by, If the number of 1s inside a cell is greater than the number of Os,
we pass the information of all the pixels of that particular cell.

3. VALIDATION

In this section we evaluate different masks for mUNet and compare
the robustness of different architectures with and without the pro-
posed learnable mask.

We use as datasets for the evaluation Market-1501 [17] and the
In-shop Clothes Retrieval Benchmark subset of DeepFashion [18].
As train and test splits we use 263,631 and 12,000 pairs, respec-
tively, for Market-1501 and 101, 268 and 8, 670 pairs, respectively,
for DeepFashion [2]. We apply mUNet, mUNet, and mUNet, on
the VDG [2] and define No-mask as the core VDG model (with-
out masks). The image size for Market-1501 is 128 x 62 and for
DeepFashion is 256 x 256 pixels. To account for this difference
in resolution, we use a mUNet architecture with NV = 5 layers for
Market-1501 and with N = 6 layers for DeepFashion. To quan-
tify the impact of the mask for VDG [2] and Def-GAN [4], we use
the training parameters presented in the original papers. We further
analyze the input pose effect to the generation by removing it from
image branch encoder (the one receiving the input image and input
pose) of the VDG model. We refer to this model as VDG,,;, and we
train it with the same parameters as VDG. Unlike the Stage I, the
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Fig. 3: The proposed mUNet architecture for pose-guided view synthesis.

Stage II in VDG (VDG,,;;) does not use the fully connected layer.
The mUNet of the VDG model is trained for 30k (50k) steps in Stage
I and 14k (30k) steps in Market-1501 (DeepFashion). Note that the
mask for VDG is only applied in Stage I, since the Stage II is for
refinement only. This explains our choice of keeping the same archi-
tecture and hyper-parameters in Stage II. The mUNet of Def-GAN
is trained for 90 epochs in each dataset. For model selection we use
a one-stage generator for all the models. We use mask £, loss along
with adversarial training [2]. All the models are implemented in Ten-
sorFlow [19]. As performance measures, we use SSIM (Structural
Similarity [13]), IS (Inception Score [20]), and their mask versions,
mask-SSIM and mask-IS, which keep only the person of interest be-
fore computing the scores [1] for Market-1501 to remove the (irrel-
evant) impact of the background on the measurement of the quality
of the synthetized person.

Table 2 shows the results of the methods under analysis. The
dense masks mUNet and mUNet, improve over No-mask. mUNet,
performed worse than the original model, No-mask, because its
masking is too strong and suppresses important information from
the encoder. mUNet slightly outperformed mUNet, as having a
mask for each channel of the encoder feature map gives more flexi-
bility in masking between pixels.

To evaluate why the sparse mask method, mUNet,, performs
poorly, Figure 4 shows the average number of non-zero pixels in the
Market-1501 test set. We extract the first convolutional block of the
encoder, which is of shape dim(Convi) = 128 x 64 x 128, for
each channel & € {1,...,128} and we count the number of non-
zero pixels of 128 x 64, i.e., |O¢ .0, |- For No-mask we use the
original skip connections so all the channels have an average pixel
of ~ 8192 pixels. For dense mask methods about half of the pixels
are masked. For the grid mask, 40 ~ 60% pixels in each chan-
nel are masked and no patterns can be noticed in the learned mask
as shown in Figure 5, which displays the learned mask of the first
convolutional block. In each row we randomly select one feature
channel. For the dense masks, the masked pixels are uniformly dis-
tributed across each frame even if we only keep 50% of the pixels in
each channel, whereas for the grid mask, a whole cell that may carry
important spatial information may be masked, thus leading to worse
results.

Table 3 shows the results for Stage I on Market-1501 and Deep-
Fashion to evaluate the influence of the input pose of VDG (we
remove it from the image branch of the VDG model) and also com-
pares with state-of-the-art methods mUNet of the models VDG,
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Fig. 4: Comparison of total number of non-masked pixels on all
the channels of the first convolutional layer using the method under
analysis. Note that the number of pixels for mUNet is similar to that
of mUNet, and therefore the two lines overalp in the plot. KEY -
No-mask: original model; mUNet: masked skip connection model;
mUNet,: mUNet with one mask for all the feature map channels;
mUNet,: grid mask model.

Table 2: Influence of different masks on Market-1501. KEY -
mUNet: masked skip connection model; mUNet,: mUNet with one
mask for all the feature map channels; mUNet,: grid mask model.

Method [ SSIM IS mask-SSIM  mask-IS
No-mask 222 3.294 763 3.140
mUnet .226 3.473 .769 3.294
mUNet, 227 3.412 769 3.199
mUNetg 217 3.046 .760 3.183

VDG, and Def-GAN. The use of the mask improves most scores
and VDG,,;,, improves over IS. Images produced by the mask ver-
sion of the models seem more realistic and have fewer artifacts. The
mask UNet of Def-GAN gets a drop in 4 out of 6 of the scores used.
The model uses deformable convolution to transform the encoder
feature map using affine transformations and when applying our
mask we might have discarded some of these transformed feature
information that would instead be useful.

Figure 6 shows that the masked version, mUNet, produces in
general better quality images and the mask version of both VDG and
VDG, (mUNet column) produces sharper body limbs. Figure 7
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Fig. 5: Sample mask learned on the first convolution layer. First
column: input view. Second column: target (ground-truth) image.
First row: 120" feature map; second row: 20" feature map. White
correspond to the masked pixels for mUNet models. KEY — mUnet:
masked skip connection model; mUNet,: mUNet with one mask for
all the feature map channels; mUNet,: grid mask model.
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Fig. 6: Comparison of three models with their masked skip connec-
tion version on Market-1501 and DeepFashion. KEY — GT: ground-
truth image; model: original model; mUNet: masked skip connec-

tion version of the VDG (VDG,,,) model.

shows instead two examples of challenging cases where mUNet for
VDG and VDG,,;, produces more artifacts or missing body parts than
the original architecture. For VDG, mUNet was unable to synthesize
the face from side to frontal view and for VDG,,,,, mUNet generated
shorts instead of the long black pants in the input view.

To conclude, including the mask module only moderately affect
the execution of the overall architecture as the average running time
of 1000 test samples is 33.6, 34.2, 34.4 and 189.8 ms for No-mask,
mUNet,, mUNet and mUNet,, respectively. The grid mask is con-
siderably slower than other solutions because of its loops inside each
feature. mUNet is slightly slower than mUNet,, but both running
times are very similar to those of No-mask.

Table 3: Performance on Market-1501 and DeepFashion of the
Stage I of VDG with and without the input pose along with the mask
version (first four rows) and with and without mUNet (last six rows).
KEY — mSSIM: mask-SSIM; mIS: mask-IS.

Market-1501 DeepFashion
Method SSIM IS mSSIM ~ mIS SSIM IS
VDG [2] 274 3.407 .799 2.733 .691 2.773
+ mUNet 268  2.673 .803 2.743 .691  2.878
VDGnyp [2] 263 2.560 797 2.705 686  2.887
+ mUNet 268 2.573 .801 2.753 .689  2.897
PG? [1] 252 4.015 771 3.555 .641  3.187
PDIG [21] .099  3.483 .614 3.491 .614  3.228
VDG [2] 238 4.007 775 3.354 708 3.003
+ mUNet 244 4.257 N 3.452 707 3.075
VDGnyp [2] 264 3.470 773 3.220 710 2.938
+ mUNet 254  4.093 779 3.541 706 2.997
Def-GAN [4] 290 2.990 798 3.544 .665  3.420
+ mUNet 274 2.765 .805 3.347 .617  3.879

model mUNet

Input GT

Fig. 7: Examples of challenging view synthesis cases for VDG (first
row) and VDG, (second row). KEY — Input: input view; GT:
ground-truth image; model: original model; mUNet: masked skip
connection version of the model.

4. CONCLUSION

We proposed a module that learns to keep only the relevant infor-
mation of a convolutional feature map in a generator network. The
masked encoder feature map is passed to the corresponding layer of
the decoder and both feature are combined via skip connections. As
future work, we will incorporate priors in the learnable mask mod-
ule.
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