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Diagnosis and treatment of disease demand a sound understanding of the
underlying mechanisms, determining any Achilles’ heel that can be targeted
in effective therapies. Throughout history, this endeavour to decipher the
origin and mechanism of transformation of a normal cell into cancer has
led to various theories—from cancer as a curse to an understanding at the
level of single-cell heterogeneity, meaning even among a single sub-type
of cancer there are myriad molecular challenges to overcome. With increas-
ing insight into cancer genetics and biology, the disease has become ever
more complex to understand. The complexity of cancer as a disease was dis-
tilled into key traits by Hanahan and Weinberg in their seminal ‘Hallmarks
of Cancer’ reviews. This lucid conceptualization of complex cancer biology is
widely accepted and has helped advance cancer therapeutics by targeting
the various hallmarks but, with the advancement in technologies, there is
greater granularity in how we view cancer as a disease, and the additional
understanding over the past decade requires us to revisit the hallmarks
of cancer. Based on extensive study of the cancer research literature, we pro-
pose four novel hallmarks of cancer, namely, the ability of cells to regress
from a specific specialized functional state, epigenetic changes that can
affect gene expression, the role of microorganisms and neuronal signalling,
to be included in the hallmark conceptualization along with evidence of
various means to exploit them therapeutically.
1. A historical perspective on cancer
Ancient Egyptians believed cancer to be a curse, as seen from evidence as old as
3000 BC from the Edwin Smith Papyrus which described breast cancer [1] and
Ebers Papyrus dated 1500 BC which described skin, uterus and other types of
tumours [2]. Hippocrates proposed the idea of an excess of black bile to be the
reason for cancer, the idea was further developed by Greek physician Galen,
revered physician to the Emperor Marcus Aurelius, who suggested black bile
caused incurable types of cancer while yellow bile caused curable variants of
cancer [3]. This was refuted in the sixteenth century by the renowned anatomist
Andreas Vesalius, who disproved the existence of black bile [4]. In the sixteenth
century, Paracelsus identified the first correlation between cancer and the
environment, showing deposits of arsenic salts and sulfur in the blood of
mine workers were associated with cancer. This laid the foundation for later
work by others, namely Percival Pott (chimney sweeps), John Hill (snuff) and
Ludwig Rehn (aniline dyes) ([5]. In 1914, Theodor Boveri was the first to
hypothesize that abnormal segregation of chromosomes to daughter cells can
lead to tumour development in ‘Zur Frage der Entstehung Maligner Tumoren’ [6].

Fast forward to 2000, Douglas Hanahan and Robert Weinberg compiled the
key concepts surrounding cancer into the hallmarks of cancer, discussing the
various mechanisms that underpin tumour development (figure 1).
2. Hallmarks of cancer
The challenges presented by multiple roadblocks, which are in place to prevent
excessive cell proliferation and the development of tumours, leads to the daunting
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Figure 1. Hallmark flower.
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complexity of cancer. Tumour cells do not invent newmechan-
isms, but rather manipulate existing molecular and cellular
pathways to circumvent protective mechanisms which are in
place to prevent the formation of a tumour.

These conceptually distinct capabilities of tumour cells
have a powerful resonance in the field of cancer therapeutics.
Despite our knowledge of specific mutations in tumour
cells generated through global sequencing efforts, such as the
International Cancer Genome Consortium, the reductionist
view would be to just focus on the cancer cell. However, we
are actually dealing with a complex heterotypic tumour micro-
environment where the tumour cells are only the foundation of
cancer as a disease but not its complete manifestation.

We propose four novel hallmarks of cancer, justify their
importance in tumourigenesis and argue the need to incor-
porate them in the mainstream hallmark conceptualization
(figure 2).
3. New hallmark 1: dedifferentiation and
transdifferentiation

In 1957, Conrad Waddington proposed the unidirectional
developmental model, wherein pluripotent stem cells at the
top of the hill progressively lose their pluripotency as they
follow developmental pathways and end up among different
valleys in a terminally differentiated state [7] (figure 3a).
However, the concept of tumour cell plasticity goes against
the Waddington landscape, where dedifferentiation allows
non-cancer stem cells to acquire stem cell-like features.
In 1962, Sir John Gurdon challenged the unidirectional
dogma of development with his ground-breaking study
which showed the formation of a fully functional tadpole
clone even when the nucleus of a frog zygote was replaced
with a nucleus harvested from a terminally differentiated tad-
pole intestinal cell [9]. This proved his hypothesis that the
genome of a mature specialized cell has all the information
required to develop into the different cell types of an organ-
ism. However, Gurdon’s experiment involved physical
removal and transfer of cell nuclei and as such the question
remained whether such a hypothesis could be replicated in
intact cells. Forty years later, this question was answered
with a proof of concept study which defied the Waddington
landscape in intact cells. Introducing just four genes,
the Yamanaka factors: c-MYC, Kruppel-like factor 4 (KLF4),
Sex-determining region Y-box 2 (Sox2) and Octamer-binding
transcription factor 3/4 (Oct-3/4); Takashi and Yamanaka
were able to develop what they termed induced pluripotent
stem cells (iPSCs), which had the ability to differentiate into
any of the cell lineages, endodermal, ectodermal and meso-
dermal [10]. This forms the basis of the hypothesis that
tumour cells, which are champion survivors, will hijack any
mechanism in order to survive; as such, dedifferentiation is
a lucrative hallmark for them to achieve immortality.

Cancer stem cells (CSCs) are a unique subpopulationwhich
possesses the cardinal property of self-renewal. This popu-
lation can underpin tumour heterogeneity and resistance to
cancer therapeutics, leading to relapse. The dedifferentiation
of non-CSCs to CSC gives a survival advantage to cancers.
Turning the clock back in time to a stem cell progenitor state
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is not a mere manifestation of the existing hallmark but a pivo-
tal hallmark in itself and it further confers the ability to switch
lineages, as lineage plasticity enables resistance against thera-
peutics. Let us consider some key examples that reiterate
dedifferentiation as an integral hallmark of cancer.

3.1. Evidence of dedifferentiation in glioblastoma
The interconvertible nature of cancer stem cells and non-cancer
stem cells can be seenwithin glioblastomamultiforme, a highly
lethal sub-type of brain cancer. In 2002, a study reported that
even mature astrocytes and neurons can be the cell of origin
in certain brain tumours. EGFR activation and dual
inactivation of p16INK4a and p19ARF cause astrocytes to
undergo dedifferentiation to amultipotent progenitor state dic-
tating the emergence of the high-grade phenotype of gliomas
[11]. The extent of dedifferentiation of astrocytes is radical
enough to give rise to pluripotent cells which have the ability
to differentiate into glia as well as neurons, as evidenced by
expression of neuronal marker TUJ1 among such tumours
which arise from dedifferentiated astrocytes [11]. Indeed, the
majority of mature differentiated cells in the central nervous
system, given the right permissive microenvironment, can
undergo dedifferentiation to a progenitor state, generating a
neural stem cell that can perpetuate tumour progression as
well as tumour heterogeneity and resistance to treatment [12]
(figure 3b). Tumour plasticity allows for vascular mimicry
via the transdifferentiation of glioblastoma cells into vascular
endothelial cells [13] and even pericytes, which can support
the maintenance of tumour vessel function [14] (figure 3b).

3.2. Evidence of dedifferentiation in intestinal tumours
Tumour initiating cells formed via dedifferentiation have also
been reported in intestinal tumours. Enhanced NF-κB signal-
ling leads to activation of β-catenin/TCF transcription via
stabilization of β-catenin, inducing dedifferentiation of non-
stem intestinal epithelial cells to intestinal epithelial cells
with tumour initiating stem-like properties [15]. If Wnt
activity plays a role in dedifferentiation of non-stem intestinal
epithelial cells to tumour initiating cells, then a further inves-
tigation into whether this activity is mediated by the tumour
microenvironment is warranted. In colon cancer, myo-
fibroblasts in the tumour niche orchestrate high Wnt activity
via β-catenin localization through hepatocyte growth factor
secretion, which facilitates the reprogramming of the colon
cancer cells to a stem cell-like progenitor state [16].

3.3. The pliability of cell fate in pancreatic cancer via
dedifferentiation

There is a dynamic equilibrium between stem-like state and
non-stem differentiated state. An activating mutation of the
small GTPase KRAS is identified in about 90% of pancreatic
tumours [17]. In a proof of concept study in pancreatic ductal
adenocarcinoma, KRAS and its downstream target MYC
were shown to rapidly reprogram differentiated mature cells
to a stem cell-like state, poised to become malignant. Gener-
ation of metastatic pancreatic tumour cells with self-renewing
capability is particularly shown to be controlled via MYC,
which functions as a built-in amplifier [18].

Another study has shown that the major mechanism of
initiation of pancreatic ductal adenocarcinoma lies in the syner-
gism between the transcription factor SOX9 and activated
KRAS, leading to the dedifferentiation of pancreatic acinar
cells through a duct-like phenotype and the subsequent
formation of pancreatic intraepithelial neoplasia [19]. Such
genetic mutation induced dedifferentiation explains the differ-
ences in the kinetics of dedifferentiation of cells, at different
states of differentiation in a tumour, which reiterates the need
to target both cancer stem cells, and non-stem cancer cells to
prevent re-initiation of tumourigenesis following therapy.

3.4. Therapy resistance via lineage plasticity through
dedifferentiation

Despite achieving remission inmetastaticmelanomawith adop-
tive cell transfer therapies, there is frequent relapse. Relapsemay
be due to the secretion of the proinflammatory cytokine tumour
necrosis factor (TNF)-α by T cells and macrophages in the
tumour microenvironment, which results in reversible dediffer-
entiation of melanoma cells and thereby a loss of melanocytic
antigens [20]. If dedifferentiation can aid in evasion from T
cell immunotherapy, it raises the possibility of dedifferentiation
as an enabling hallmark for immune evasion.

Dedifferentiation is also linked to resistance to targeted
therapies in melanoma, for example, resistance to BRAF inhi-
bition is conferred by the downregulation of microphthalmia-
associated transcription factor (MITF), which plays a key role
in melanocyte differentiation, and the upregulation of the
receptor tyrosine kinase AXL, platelet-derived growth factor
receptor and EGFR [21]. Dedifferentiation also provides cues
for a potential susceptibility target, for example, the ability
to induce ferroptosis, a form of iron-dependent necrotic cell
death, in dedifferentiated melanoma cells [22]. As such, it
can provide an option to induce a form of synthetic lethality
by the combination of ferroptosis inducing drugs along with
targeted therapies or immunotherapy in melanoma patients.
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Dedifferentiation-based changes have been found amongmel-
anoma patients even within the first week of targeted therapy
treatment [23], suggesting a combination regimenwith ferrop-
tosis inducing drugs could possibly be initiated up-front to
prevent escape via dedifferentiation.

Dedifferentiation has also been implicated in therapeutic
resistance among prostate and breast cancers. A gain and loss
of function study identified that upregulation of the reprogram-
ming transcription factor Sox2 can confer reversible lineage
plasticity by switching prostate cancer cells to a neuroendocrine
phenotype, in the context of concomitant loss of tumour
suppressors p53 and Rb [24]. Earlier studies showed that
multipotent adipose-derived stem cells (ASCs), used in soft
tissue reconstruction following mastectomy, undergo a pheno-
typic alteration via myofibroblastic differentiation, leading
to contraction and enhanced stiffness, ultimately promoting
tumourigenesis [25]. The impact of physical stresses on the
tumour microenvironment leading to tumour progression has
also been shown to involve triggering dedifferentiation. When
a tumour grows, it causes compression of the surrounding
tissue. Physical stress caused by mammary adenocarcinoma
via compression of surrounding adipocytes triggers Wnt/
β-catenin signalling and their subsequent dedifferentiation to
myofibroblasts, which then interact with breast cancer cells
leading to enhanced tumour proliferation [26].

3.5. Reflecting upon the Yamanaka factors’ relationship
to oncogenesis

A definitive proof of the importance of re-programming in
cancer ontogeny is that each of the four Yamanaka factors
capable of playing a role in dedifferentiation has an ascertained
role in oncogenesis amongmultiple cancers.Oct4 is a biomarker
for seminomas [27] and has also been attributed to themainten-
ance of the undifferentiated cell population with proliferative
capacity by blockage of progenitor cell differentiation [28].
Sox2 is a key driver towards a stem cell fate among Ewing’s
sarcoma, breast and brain tumours [29,30]. Aberrant MYC
expression has been strongly linked to several cancers [31] and
KLF4 has been linked to colorectal cancer [32]. Though challen-
ging targets themselves, Yamanaka factors may provide insight
for the development of more targeted therapies.
The loss of APC maintains a progenitor state, following
which oncogenic mutations such as KRAS can be acquired,
driving tumourigenesis [33]. So, does dedifferentiation act
as an enabling hallmark to grant time to acquire additional
mutations to progress in the path towards tumour develop-
ment? Or does dedifferentiation allow for lineage plasticity
for tumour cells to alter their cell fate to a lineage more
resistant to therapeutics?

In the case of acute promyelocytic leukaemia (APML), trans-
location results in promyelocytic leukaemia protein (PML) and
retinoic acid receptor α (RARα) fusion. The expression of the
PML-RARα fusion gene blocks the terminal differentiation of
granulocytes, resulting in the maintenance of neoplastic cells
in the promyelocytic progenitor stage, but all-trans retinoic
acid has been successful in overcoming the differentiation
block by inducing differentiation of neoplastic cells into gra-
nulocytes [34]. The abrogation of terminal differentiation, as
seen in APML, in order to maintain a progenitor-like state, sup-
ports the hypothesis of dedifferentiation as a logical hallmark.
Even if cancer cells proceed to, or develop from, a state of term-
inal differentiation, they can revert back to their progenitor state
and maintain their stemness via dedifferentiation. The Wad-
dington landscape has been defied by cancer, providing
tumour cells the plasticity to choose their fate by pushing the
ball uphill against the landscape, to maintain cancer stem cells
and underpin the basis of cancer as a lethal disease.
3.6. Therapeutic interventions based on the hallmark of
dedifferentiation

An important aspect of hallmarks of cancer conceptualisation is
to aid in advancing therapeutic strategies, so an understanding
of the nuances of the hallmark of dedifferentiation is
important. There are three therapeutic modalities that can
be targeted towards the tumour cell plasticity conferred
by dedifferentiation:

1. Blocking dedifferentiation via combination therapies.
Target the differentiated cell lineage along with drugs that
block dedifferentiation in order to prevent early resistance
to therapeutics as a result of lineage plasticity conferred
by dedifferentiation.
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2. Target dedifferentiation with differentiation therapy
towards a permanently differentiated state. Initially attemp-
ted in the context of teratoma [35], but a proof of concept
study for this approach was treating APML with all-trans
retinoic acid therapy [34]. Other studies also reported a
differentiation therapeutic approach aimed at the conver-
sion of dedifferentiated tumour cells into epithelial cells
that are more sensitive to chemotherapy [36,37].

3. Gowith the flow and use the tumour plasticity to target the
dedifferentiated cancer stem cells with transcription factors
or small molecules to differentiate them into harmless cell
lineages which lack tumourigenic potency. This final thera-
peutic approach necessitates an in-depth understanding of
the hallmark of dedifferentiation. Recent work proved the
efficacy of this approach by switching malignant breast
cancer cells into harmless post-mitotic adipocytes. Combi-
nation of PPARγ agonist Rosiglitazone, an anti-diabetic
drug, with a MEK inhibitor was used to force the breast
tumour cells towards adipogenesis, resulting in harmless
post-mitotic functional adipocytes [38] (figure 4).

These studies argue strongly that the dedifferentiation of
tumour cells along a developmental pathway towards a pro-
genitor or stem cell-like state among various cancers is a
forgotten hallmark, a discrete acquired capability of cancer
and certainly warrants further investigation for a better under-
standing of this novel trait of cancer cells. Hanahan and
Weinberg’s Hallmarks of Cancer had generic nature as one of
the features of every hallmark, as something that is prevalent
in the majority of cancers despite the heterogenetic nature of
thedisease.Dedifferentiationcertainlyqualifies asagenerichall-
mark distinct from the other hallmarks of cancer. The reported
interplay between transcription regulators Sox2 and Sox9 as
an epigenetic switch between high proliferation and high inva-
siveness [39] leads to our next hallmark of cancer that
influences tumourigenesis—epigenetic dysregulation (figure 5).
4. New hallmark 2: epigenetic
dysregulation

Dedifferentiation to a progenitor state is a rate-limiting step
in melanoma formation but it is underpinned by epigenetic
machinery [40]. Although Yamanaka factors provide the
possibility of reprogramming differentiated somatic cells to a
pluripotent state, the blockage of histone H3 lysine 9 (H3K9)
methylation has been shown to enhance this reprogramming
capability [41,42]. Similarly, in the context of DNAmethylation,
another key epigenetic alteration, the promotion of DNA
demethylation via stimulation of TET (ten-eleven-translocation)
enzymes using vitamin C enhances reprogramming to a pluri-
potent state [43]. Epigenetics can also regulate the process of
winding back the clock to a pluripotent state on the basis of
chromatin state and the expression levels of chromatin-modify-
ing enzymes [44], providing a conceptual link with our first
hallmark of dedifferentiation.

4.1. What is epigenetics?
Among several phenomenal works, Theodor Boveri laid the
foundation of the role of epigenetics in cancer throughhis obser-
vation of abnormal chromatin structures in tumour cells,
described over 90 years ago [45]. The term ‘epigenetics’ was
first coined by Conrad Waddington, defining it as ‘the branch
of biology which studies the causal interactions between genes
and their products which bring the phenotype into being’ [8].
Vogelstein andFeinberg, in an attempt to dissect themechanism
underlying the higher frequency of mutations among tumours,
compared normal tissue with tumour tissue and revealed the
loss of DNAmethylation in a substantial proportion of tumour
tissues, positing that hypomethylation of CpG islands could
lead to oncogene activation in cancer [46] and revealing the
prevalence of global hypomethylation among tumour genomes.

Holliday refined the definition of epigenetics as heritable
changes in the gene expression without alteration in the
DNA sequence, that is altering the phenotypewithout altering
the genotype [47].With epigenetics playing a fundamental role
in the development and progression of various cancers via
modification of gene expression, such as hypermethylation of
tumour suppressor genes in retinoblastoma [48] and epigenetic
silencing of microRNAs [49], it is a pivotal hallmark of cancer.

4.2. Epigenetic fingerprints as the ‘midas touch’ driving
tumourigenesis—the hallmark of hallmarks

As discussed in the features of a hallmark, epigenetic dysregu-
lation is an active functional capability, it is a unique feature
among cancer cells and there are epigenetic fingerprints on
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tumour cells which reflect its chronic nature. Epigenetic dysre-
gulation viewed as a bystander would be a relegation of its
active role in tumourigenesis, as several studies have pointed
out its role in tumour initiation. In 2006, Feinberg proposed
the epigenetic progenitor model of tumourigenesis, wherein
epigenetic dysregulations of the progenitor cell population
give rise to tumours [50] (figure 6).

4.3. Sustained proliferative signalling
Many tumours display a gain of function mutation of isocitrate
dehydrogenase (IDH) [51,52], leading to the generation
of the oncometabolite 2-hydroxyglutarate, which disrupts the
function of hydroxylases such as TET — a key catalyst in the
process of DNA demethylation [53,54]. The result is a
hypermethylated phenotype as seen with the CpG island
methylator phenotype (G-CIMP) in IDH mutant glioma [55].
This alters the binding affinity of the DNA binding protein
CTCF (CCCTC-binding factor) which is very sensitive to
methylation states [56]. CTCF has a critical function as an
insulator, setting the boundaries which limit the interactions
between an enhancer and a gene in the context of topologically
associateddomains (TADs) [56]. This insulation is lost as a result
of the reducedbindingofCTCF, facilitatingaberrant interactions
between promiscuous enhancers and genes as a result of the
altered chromosomal topology caused by epigenetic dysregula-
tion [57]. In this context, Platelet-derived growth factor receptor A
(PDGFRA), apredominant oncogene amonggliomas [58] is acti-
vated as a consequence of the epigenetic dysregulation-led
decrease in CTCF insulation,with a potent promiscuous enhan-
cer driving constitutive PDGFRA expression, driving sustained
proliferation in gliomas [57]. The loss of CTCF insulation may
even be preserved in subsequent cell divisions, compromising
the genomic topology otherwise maintained by this insulation,
leading to further oncogene activation not limited to just
PDGFRA [59].
This mechanism is not limited to gliomas, as CTCF sites
which are adjacent to oncogenes have been reported as
mutational hotspots and are frequently mutated in multiple
tumours, such as endometrial [60], colorectal (CRCs),
oesophageal and liver cancer [59].

4.4. Evading growth suppressors
Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes a potent
tumour suppressor p16INK4a, that binds to cyclin-dependent
kinase 4/6 (CDK4/6), which leads to an allosteric confor-
mational change inhibiting the cyclin D–CDK4/6 complex
formation. As a result of the lack of this complex, retinoblas-
toma protein (Rb) is maintained in a hypophosphorylated
state, promoting the formation of Rb/E2F repressive complex.
This leads to the suppression of growth, as a result of cell cycle
arrest in G1 [61]. Epigenetic silencing of tumour suppressors
such as p16INK4a via promoter hypermethylationmediates eva-
sion of growth suppression, as evident from multiple studies
on epigenetic alterations enumerated below (table 1).

Similarly, the hyperactivity of enhancer of Zeste homologue
2 (EZH2), a catalytic subunit of polycomb repressive complex 2
(PRC2) involved in the trimethylation of histoneH3 lysine 27 to
form H3K27me3, is implicated in the evasion of growth sup-
pression via CDKN2A repression [65–67] reiterating the role
of epigenetic dysregulation in facilitating the hallmarks [62].

4.5. Invasion and metastasis
An integral component of the hallmarkof invasion andmetasta-
sis is a reversible epithelial–mesenchymal transition (EMT),
orchestrated by the interaction between epigenetic modulators
of chromatin configuration and EMT inducing transcrip-
tion factors. Expression of E-cadherin, a key coordinator of
epithelial phenotype, is lost during EMT. Epigenetic repression
of CDH1, which encodes E-cadherin, is mediated by the
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Table 1. Epigenetic instability mediating evasion of growth suppressors.

type of cancer
frequency of promoter
hypermethylation reference

pancreatic

adenocarcinoma

24.6% [62]

oesophageal squamous

cell carcinoma

81.7% [41,42]

melanoma 25.9% [63]

Burkitt’s lymphoma 72.5% [64]
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recruitment of EMT inducing transcription factor Snail to the
CDH1 promoter, leading to a repressive mark H3K27me3 [68].
Further to this, Snail can associatewithMi-2-nucleosome remo-
delling and deacetylase (NuRD) repressive complex, which can
repressCDH1 activity via deacetylation ofCDH1 promoter [69].

4.6. Replicative immortality
Alternative telomere lengthening (ALT) is a telomerase-inde-
pendent homologous recombination-based pathway which
cancer cells use to overcome the Hayflick limit to maintain tel-
omere length [70]. An interplay between epigenetics and
genetic mutations leads to perturbations of histone variant
H3.3 and its specific chaperone proteins α-thalassemia
X-linked mental retardation protein (ATRX) and death
domain associated protein (Daxx) which impairs the incorpor-
ation of the histone variant H3.3 at telomeres, disrupting their
heterochromatic state and facilitating ALT [71].

4.7. Inducing angiogenesis
Epigenetics plays a key role in angiogenesis. Histone deacety-
lases have been shown to downregulate the expression of von
Hippel–Lindau (VHL) and p53, but promote an increase in
hypoxia-inducible factor-1α and vascular endothelial growth
factor (VEGF), therebystimulating angiogenesis by the suppres-
sion of hypoxia-responsive tumour suppressor genes [72,73].
Choriocarcinoma, a highly vascular tumour derived from tro-
phoblasts, displays epigenetic silencing of FLT1 via promoter
hypermethylation. Normal placental trophoblasts express
abundant levels of an anti-angiogenic factor, Soluble Fms-like
tyrosine kinase-1 (sFLT1) from the FLT1 locus. Epigenetic silen-
cingofFLT1blocks expressionof this negative regulator, thereby
facilitating angiogenesis in choriocarcinoma [74].

4.8. Resisting cell death
Glioblastoma multiforme is a very aggressive cancer with a
dismal prognosis. Nevertheless, a promising therapeutic
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strategy is to induce tumour cell death via tumour necrosis
factor-related apoptosis-inducing ligand (TRAIL)-based
therapy that binds to human death receptor 4 (DR4). However,
epigenetic silencing via promoter methylation of DR4 attenu-
ates TRAIL/DR4-mediated apoptosis [75]. Further evidence of
epigenetics mediating resistance to cell death is resistance to
anthracycline therapy in acute myeloid leukaemia (AML), due
to impaired DNA damage response from defective nucleosome
remodelling, as a result of mutation of epigenetic regulator
DNA methyltransferase 3A [76]. CXCL14, a chemokine which
can influence apoptosis, is shown to be a frequent candidate
for epigenetic silencing among lung tumours. Tumour specific
methylation of the CXC-subfamily of chemokines was observed
in 75% of lung adenocarcinomas [77].

4.9. Immune evasion
Epigenetics is fundamental to the normal functioning of
immune cells. Antigen presentation through MHC class I is
pivotal for CD8+ T cells activity. The class I transactivator
NLRC5 is a transcriptional regulator of the MHC class I
genes, but the promoter region ofNLRC5 is frequently methyl-
ated among cancers, resulting in the reduction of MHC class I
gene expression [78].

4.10. Deregulating cellular energetics
In order to adapt to a hostile microenvironment and to satisfy
their high metabolic needs, cancer cells can use glycolysis,
instead of oxidative phosphorylation to metabolize glucose,
even in aerobic conditions. The central activators implicated
in the glycolytic phenotype are the PI3 K/AKT/mTOR path-
way along with MYC and HIF-1 signalling [79].

Tumour suppressors that repress this pathway, namely
PTEN [80], VHL [81,82], LKB1 [83] and prolyl hydroxylases
[84] are epigenetically silenced via promoter hypermethylation,
contributing to deregulation of cellular energetics.

4.11. Genomic instability and mutation
Faithful genome replication and the maintenance of genomic
integrity are underpinned by epigeneticmechanisms. Transpo-
sable elements (TE) are highly repetitive sequences of DNA in
the human genome, and have their own regulatory sequence,
allowing for independent expression and ability to alter the
expression of neighbouring genes. Since TE activity has a
high propensity to disrupt genomic integrity, these are usually
silenced epigenetically, but this regulation is lost in cancer [85].

4.12. Tumour promoting inflammation
DNA demethylation triggers transcription of inflammation-
related genes, including chemokine receptor 4 (CXCR4) and
serum amyloid A (SAA) in advanced clear cell renal cell carci-
noma (ccRCC), contributing to tumour promoting cancer cell-
intrinsic inflammation via epigenetic remodelling [86].

The above studies highlight an epigenetic foundation for
each of the established hallmarks of cancer provides compel-
ling evidence of the indispensable nature of epigenetic
dysregulation as a pivotal enabling hallmark of cancer. How-
ever, just as cancer involves more than just tumour cells, so
our bodies are more than simply an assemblage of human
cells. This sobering thought leads us to our third hallmark,
the microbiome.
5. New hallmark 3: altered microbiome
The concept of the human body being a vessel for other
microorganisms is well established—the microbial metagen-
ome in our body outnumbers our genome by at least 100-
fold [87]. Microorganisms first appeared around 3.25 billion
years ago [88] and over the 1.25 billion years of co-existence
with multicellular eukaryotes [89] (figure 7), the interaction
with microbes has shaped evolution, as illustrated by the
microbial control of host homeostasis [90]. It has been esti-
mated that nearly half of the metabolites in plasma are of
microbiotal origin [91], but the human microbiome plays a
duplicitous role. Helicobacter pylori is nearly ubiquitous
among humans, colonizing about 50% of the world popu-
lation, having co-evolved with humans in an association
spanning over 50 000 years [92]. H. pylori colonization has
been shown to decrease the risk of gastroesophageal reflux
disease and its subsequent sequela, oesophageal carcinoma
[93]. It may also confer protection against asthma [94],
demyelinating diseases such as multiple sclerosis [95], tuber-
culosis [96] and inflammatory bowel disease [97]. H. pylori
also has been shown to modulate energy homeostasis via
cooperation with gut microbiota, impacting on circulating
metabolic gut hormones [98].

In contrast with these beneficial roles, as a component of the
gut microbiome it is also linked to 90% of gastric cancers [99].
The carcinogenicity ofH. pylori is associatedwith the expression
of vacuolating cytotoxin gene A (vacA) and cytotoxin-associated
gene A (CagA) [100,101]. CagA positive H. pylori promotes gen-
etic instability via perturbation of the mitotic spindle
checkpoint, causing chromosomal instability [102] and epige-
netic instability. Increased levels of DNA methyltransferases
(DNMTs) [103] lead to hypermethylation of MLH1, a key
DNA mismatch repair gene [104], and have been suggested to
mediate a mutator phenotype in a hit and run fashion, promot-
ing tumourigenesis [101]. Given these data, it is worthwhile to
postulate whether Escherichia coli has a role in cancer, being
among the first bacteria to colonize the gastrointestinal tract
of neonates [105] and advocated to promote gut health in mul-
tiple off the shelf probiotics [106].

Commensal E. coli, within few days following birth, estab-
lish a favourable anaerobic environment in the gut facilitating
colonization of other species including Bifidobacterium, Clostri-
dium and Bacteroides [107]. Certain strains of E. coli harbour a
gene cluster hybrid non-ribosomal peptide synthetase-poly-
ketide synthase ( pks) island which produces genotoxic
colibactin [108]. Colibactin has been described as a bacterial
‘warhead’, forming bulky unstable DNA adducts via alky-
lation [109]. Among epithelial cell lines, pks+ E. coli has
been shown to induce double-stranded DNA breaks [110]
and interstrand cross-links [111].

Whole-genome sequencing studies have described muta-
tional signatures from colorectal crypts of healthy individuals
where, in a subset of crypts, an unknown mutagenic agent
caused co-occurrence of single-base substitution-A (SBS-A)
and insertion/deletion A (ID-A). The two motifs were
described to be from mutagenic insult which occurs in
early childhood [112]. The cause of these two motifs surfaced
while investigating the long-term effect of colibactin using
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single-cell-derived organoids, with pks-mutational signature
strongly matching the two motifs SBS-A and ID-A [113].
Since pks+ E. coli is the mutagenic agent responsible, and
the study was performed on organoids that cannot precisely
mimic inflammation or the immune environment, the infer-
ence is that colibactin can directly initiate tumourigenesis
via mutations [113]. Interestingly, the impact of these data
reaches beyond the gut, suggesting a similar role in head
and neck as well as urogenital cancers [113]. So, perhaps
one should reconsider probiotics containing genotoxic E.coli
and consider screening for pks+ E. coli in the context of
colorectal cancer prevention.

Arguing for amicrobiotal impactmerely on the hallmark of
genomic instability as being sufficient for its contribution to
tumourigenesis is to grossly underestimate the role of the
microbiome. Paget’s seed (cancer cells) and soil (tumourmicro-
environment) hypothesis [114] is highly relevant to the role of
the microbiome in tumourigenesis. The microbiome can
exploit the inflammatory milieu to a pro- or anti-tumour
state, cultivating the soil which is apt for sowing the seeds of
tumourigenesis. This can be clearly substantiated by findings
from a study using the first identified oncovirus [115], where
Rous sarcoma virus does not induce tumours in sterile
embryos despite expression of the v-Src oncogene [116].

In 1990, Fearon & Vogelstein [117] proposed the Vogel-
gram model of multi-step colon cancer pathogenesis. A key
reason for the success of colon screening in CRC prevention
is due to the long latency period from tumour initiation to
overt clinically detectable CRC. Here, we consider this
long latency in the context of the proposed hallmark of
microbiome dysbiosis.
5.1. Microbiome tug-of-war hypothesis
The tug-of-war between microbiome species may underlie
the long latency in CRC. Enterotoxigenic Bacteroides fragilis
(ETBF) promotes the colonization of pks+ E. coli, together
with leading to genetic and epigenetic instability. Following
this, colonization by pro-tumourigenic Fusobacterium nucleatum
further promotes tumourigenesis by aiding in the development
of an immunosuppressive microenvironment and seeding
metastasis, whereas anti-tumourigenic bacteria act to prevent
malignancy. The long latency period, which may ultimately
lead to subsequent accumulation of genetic/epigenetic
mutations and overt malignancy, depends on the balance
between pro/anti-tumourigenic microbes (figure 8).

ETBF secretes a 20 kDa zinc-dependent metalloprotease
toxin, B. fragilis toxin (BFT). BFT degrades E-cadherin, leading
to increased intestinal epithelial cell proliferation and per-
meability of the intestinal barrier [118]. BFT further leads to
activation of β-catenin signalling and induces STAT3 (signal
transducer and activator of transcription 3) activation [119]
and the T helper 17 (TH17) immune response [120]. ETBF
modulates the colonic niche to select for bacteria with a coloni-
zation advantage, inducing upregulation of antimicrobial
peptide lipocalin 2 [121] that causes sequestration of bacterial
siderophores. Siderophores are iron-binding complexes that
are pivotal for bacteria to thrive in iron limiting environments,
hence bacteria which are resilient to lipocalin 2, such as E. coli,
begin to thrive along with ETBF [122]. Therefore, the first hit in
our hypothesis of CRC tumourigenesis is orchestrated by ETBF
followed by the co-colonization of ETBF alongwith pks+ E. coli,
following which Fusobacterium nucleatum comes into play.
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An anaerobic Gram-negative bacterium, Fusobacterium
nucleatum is typically resident in the oropharynx, participat-
ing in dental biofilm formation [123]. Its virulence factor
FadA adhesin binds to the extracellular domain of E-cadherin
and promotes tumourigenesis via β-catenin/Wnt signalling
[124]. F. nucleatum is also immunosuppressive, causing inhi-
bition of T cell responses while allowing for the expansion
of tumour promoting myeloid-derived immune cells [125].
Fap2 protein of F. nucleatum binds directly to the inhibitory
receptor—T cell immunoglobulin and ITIM domain
(TIGIT), and inhibits natural killer (NK) cell activity, leading
to immune evasion [126]. In support of this hypothesis, F.
nucleatum did not initiate tumour formation in vivo [127],
but sustained the pro-tumourigeneic momentum in the
latter part of multi-step CRC tumourigenesis and facilitated
metastasis [128]. Intriguingly, a study based on biopsies
from CRC patients and mouse xenografts revealed that F.
nucleatum can accompany primary colorectal adenocarci-
noma cells to distant metastatic sites, being maintained
among patient-derived xenografts of CRC even through mul-
tiple passages. Moreover, treatment with metronidazole, an
antibiotic to reduce F. nucleatum load, resulted in reduced
tumour growth [128], suggesting that tumour cells are
rewarded for carrying F. nucleatum by its modulation of the
microenvironment at the distant metastatic site in favour of
tumour growth.

Meanwhile, there is a subset of anti-carcinogenic bacteria
including Faecalibacterium, Roseburia and Slackia spp. which
generate catabolites such as short-chain fatty acids (SCFAs),
for example, butyrate [129] and the antioxidant equol [130].
Butyrate downregulates proinflammatory gene expression
and suppresses tumour growth via inhibition of histone
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deacetylases [131]. The outcome of the tug-of-war depends
on epigenetic factors such as diet which will give the final
upper hand aiding in colonization by either pro- or anti-car-
cinogenic bacteria.

The majority of pancreatic ductal adenocarcinoma (PDAC)
patients have a dismal prognosis, but a small subset of patients
survive longer than 5 years [132]. Intriguingly, long-term survi-
vors have higher tumour microbial diversity with distinct
tumourmicrobial signatures compared to short-term survivors
[133]. The tumour microbial diversity was shown to exert an
immune-activating effect via improved immune cell infiltration
to the tumour milieu. Furthermore, colonization of pancreatic
tumours by gut microbiota was identified, with 25% of
PDAC microbial composition matching that of the gut. Pre-
clinical data from the same study showed that faecal
microbial transplant (FMT), from patients who were long-
term survivors, into tumour-bearing mice led to immunoacti-
vation in the murine tumour microenvironment and a
significant reduction in tumour growth, reiterating the role of
tumour microbiome in disease progression and outcome, as
well as the potential of FMT in treating PDAC [133].

5.2. The microbiome is more than bacteria
We need to consider more than simply bacteria and viruses.
Fungal infiltration from the gut to the pancreas was shown
to occur via the sphincter of Oddi (figure 9a), which serves
as a direct link between the pancreatic duct and the gut. Taxo-
nomic diversity analysis identified the dominance of the genus
Malassezia in PDAC tissues compared to that of the gut, in
mouse models. Comparison of sequencing data of PDAC
patient faecal samples to that of paired tumour tissue corrobo-
rated these findings. Antifungal ablation with amphotericin B
mitigated pancreatic dysplasia in mouse models and was
shown to work synergistically with gemcitabine in reducing
tumour burden [135]. Through repopulation experiments,
Malassezia globosa was identified as being responsible for
PDAC disease progression, via fungal-mediated activation of
the mannose-binding lectin (MBL)–C3 cascade (figure 9b).
MBL is a protein of the innate immune system which serves
as an opsonin. Upon binding to the sugar motifs on the
fungal wall, it triggers the complement cascade, in particular
C3, a pivotal component downstream of MBL [135]. Based
on the inference from the study, we can speculate that diagnos-
tic assay using the taxonomic composition of stool samples
may be appropriate for early detection of PDAC, and that anti-
fungal therapy may be efficacious.

More than 85% of human papillomaviruses (HPV) are
cleared spontaneously [136], so why can the remaining 15%
mediate progression to cervical neoplasia? The answer lies
with the vaginal microbiome, dysbiosis of which plays an
important role even in HPV-related cervical cancers [137].
Lactobacillus species are dominant in the vaginal niche and
are characteristic of vaginal health [138]. They maintain the
vaginal microenvironment in an acidic state (pH < 4.5) via
the production of lactic acid [138] and protect against invad-
ing pathogens such as herpes simplex virus [139], human
immunodeficiency virus [140], Neisseria gonorrhoeae [141]
and even E. coli [142]. The depletion of Lactobacillus species
has been linked to an increased risk of acquisition of HPV
infection and its reduced clearance [137], and reduction
in Lactobacillus dominance and increased vaginal micro-
biome diversity correlated strongly with cervical neoplasia
severity [137,143].

The microbiome also plays an important role in deciding
the outcome of both conventional chemotherapies and
immunotherapeutic interventions. It can alter the bioavail-
ability of drugs [144], and DNA damage induced by
platinum-based regimens is severely attenuated in the
absence of commensal microbiota [145]. Oral administration
of Bifidobacterium in mice controlled melanoma growth on a
par with checkpoint blockade using programmed cell death
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ligand 1 (PD-L1) specific antibody and co-administration
resulted in near eradication of tumour growth [146]. Further-
more, the efficacy of blocking CTLA-4, a major negative
regulator of T cell activation, depends on Bacteroides species
and tumours in axenic or antibiotic-treated mice do not
respond to CTLA-4 blockade [147]. The microbiome also
has a role in immunosurveillance, as seen with the hygiene
hypothesis which links an increase in the incidence of some
cancers to decrease in exposure to certain microbes [148,149].

In conclusion, the microbiome exerts both beneficial and
nefarious effects over the human body. We argue that it has a
role in each of the triumvirate of immunoediting [150],
namely elimination, equilibrium and escape during tumouri-
genesis and as such is a pivotal enabling hallmark of cancer.
Antibiotic mediated alteration of gut microbiota has been
shown to alter the cerebral tumour microenvironment, thus
affecting glioma progression [151], which bring us to our final
enabling hallmark of cancer—nerves/neuronal signalling.
6. New hallmark 4: altered neuronal
signalling

Vesalius, in his book De corporis humani fabrica libri septem,
described the tandem nature of blood vessels and nerves
[4,198] (figure 10), innervation and blood supply being indis-
pensable for growth and survival. Since angiogenesis has an
established role, it is enticing to delve further into the role of
nerves in cancer, a topic that is often overlooked. Perhaps the
reason might be the difficulty involved in observing nerves
during routine histology of tumour specimens, but nerves are
one of the most significant aspects of tumour progression.
Metastasis involving the central nervous system/peripheral
nervous system results in manifold increased morbidity/
mortality.

In 1840, surgeons attempted to transect the trigeminal
nerve, which runs along the face, and the accompanying
blood vessels, in order to cure tumour of the lips. It provided
symptomatic control but failed to cure the patients and even-
tually mandated complete resection of the tumour [152].
However, with recent advances in the understanding of the
function of the nervous system, its role in tumour initiation
and progression can be better elucidated, to derive therapeutic
benefits. The density of nerve fibres in tumour tissue correlates
with the aggressiveness of the disease amongmultiple cancers,
including breast [153], lung [154], colorectal [155] and prostate
cancers [156]. Based on these observations, onemight advocate
neuronal transection to control tumour progression. However,
in a PDACmousemodel, sub-diaphragmatic vagotomy, target-
ing the vagus nerve—a mixed nerve with both sensory and
parasympathetic components, resulted in enhanced tumour
growth and reduction in survival [157]. Contrastingly, transec-
tion of the same nerve in gastric cancer models resulted in
suppression of tumourigenesis [158]. Instead of the radical
approach of transection, an alternative approach is to use
chemical denervation, as performed in specific targeting of
the sensory nerves in ductal carcinoma, and the use of capsai-
cin inhibited pancreatic ductal adenocarcinoma (PDAC)
progression [159]. Another approach is via injection of botuli-
num toxin A (Botox), a neurotoxin, into the gastric wall. This
inhibited progression to overt adenocarcinoma among preneo-
plastic models and inhibited disease progression in advanced
gastric cancer models [158].
6.1. β-blockers for inhibiting tumour progression
Sympathetic nerves are implicated in blood vessel patterning
during early development [160]. Sympathetic nerves release
noradrenaline, the circulating levels of which increase during
chronic stress [161]. β-adrenergic receptors mediate most of
the effects of noradrenaline. Chronic stress has long been attrib-
uted as a risk factor for cancer [162]. Reproduction of the effect
of chronic stress in transgenic mouse models of breast cancer
via long-term administration of isoprenaline, a non-selective
β-adrenergic agonist, resulted in increased lymph node
metastasis, while inhibition of adrenergic signalling with pro-
pranolol, a non-selective β-blocker, resulted in inhibition of
metastasis to the lymph node [163]. Reiterating the role of
β-adrenergic receptors, a similar effect was also observed in
pancreatic cancer models of chronic stress, with a reduction of
tumour volume following administration of propranolol [164].

The pro-tumourigenic effects exerted by sympathetic
nerves in response to stress are mediated by β-adrenergic
receptors. This was demonstrated elegantly in work showing
that an adrenergic nerve-derived signal-mediated activation
of an angiogenic switch in a transgenic mouse model of
prostate cancer [165].

Sympathetic nerves in prostate tumours release noradrena-
line which, via the β2-adrenergic receptor on endothelial cells,
triggers an angiogenic switch by inducing a change in
endothelial cell metabolism from oxidative phosphorylation
towards aerobic glycolysis, driving angiogenesis and fuelling
tumour progression. Blockade of β-adrenergic receptor signal-
ling reverts endothelial cell metabolism from aerobic glycolysis
towards oxidative phosphorylation through cytochromeC oxi-
dase assembly factor 6 (Coa6) activity, thereby inhibiting
angiogenesis and curtailing tumour progression [165].
6.2. Perineural invasion in pancreatic ductal
adenocarcinoma

Perineural invasion is linked to worse prognosis in PDAC
[166], with PDAC cells recruiting nerves via nerve growth
factor (NGF) [167]. In murine PDAC models, chronic stress-
dependent sympathetic nerve signalling triggers tumour
growth via a feedforward loop, wherein adrenergic signalling
stimulatesNGF,which promotes further innervation of tumour
cells via axogenesis, resulting in increased noradrenaline
accumulation in the tumour microenvironment, inducing



nerve growth
factor

overexpression 
accelerated

PDAC
progression

increased
axonogenesis

elevated levels
of circulating

catecholamines 

stress

Figure 11. Chronic stress-dependent sympathetic nerve signalling triggering tumour growth via a feedforward loop.

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200358

13
β2-adrenergic receptor-dependent PDAC progression [168]
(figure 11).

Blockade of the β2-adrenergic receptor, or the NGF receptor
tropomyosin-receptor kinase A (TRKA), disrupts this feedfor-
ward loop and inhibits tumour progression [167,168]. Clinical
studies have reported improved survival amongPDACpatients
with the use of β-blocker [169]. This provides a window of
opportunity to treat patientswith pancreatic intraepithelial neo-
plasias (PanINs) with a non-selective β-blocker regimen to
potentially prevent progression to overt PDAC, although the
challenge of early detection remains. This might be facilitated
using a diagnostic assay based on the taxonomic composition
of stool samples, as discussed earlier.

While β-adrenergic signalling is pro-tumourigenic in the
aforementioned solid cancers, there is the caveat of an oppo-
site effect adding to the complexity of targeting the hallmark
of nerves/neuronal signalling. Noradrenaline-mediated sym-
pathetic nerve signalling has been linked to the maintenance
of the steady-state condition of haematopoietic stem cells
(HSCs) in the bone marrow niche in a circadian manner
[170]. Attrition of the β-adrenergic signalling leads to an
increased propensity of myeloproliferative neoplasms
[171,172], therefore the implementation of β-blocker targeting
sympathetic signalling in malignancy is context-dependent.
6.3. Putting the cart before the horse: whether nerves
migrate towards tumours or the tumour cells
migrate towards nerves?

Schwann cells, the glial cells responsible for myelinating per-
ipheral nerves, are key to neural homeostasis, participating in
Wallerian degeneration, neural repair and regeneration [173].
In an ex vivo model using rat sciatic nerve, Schwann cells dis-
played a high affinity towards pancreatic and colon tumour
cells, but not normal cells, migrating towards tumour cells,
thereby outlining a pathway for tumour driven neurogenesis
[174]. Nerve growth factor (NGF), and its receptors TRKA
and p75NTR are critical regulators of gland innervation and
neurite outgrowth. They are also implicated in neural track-
ing [175], the ability of tumour cells to migrate along axons.
Pro-NGF, the precursor of NGF, serves as a reservoir for
NGF [176]. Immunohistochemical studies in prostate cancer
suggested that pro-NGF production by tumour cells might
drive axonogenesis [177]. Thus, there is an element of recipro-
cal interaction between nerves and tumour cells driving
tumourigenesis; Schwann cells migrate towards tumour cells
while prostate tumour cells in turn recruit nerves via pro-NGF.

6.4. Synaptic interaction between brain tumour cells
and neurons

Clues to the interaction between tumourcells and neurons come
from the study of synapses between neurons and oligodendro-
cyte precursor cells, demonstrating a neuron to non-neuron
synapse [178], as well as the finding that glutamate secretion
confers a growth advantage to glioma cells [179]. These prelimi-
nary studies were bolstered by the identification of functional
synapses between neurons and glioma cells, with transcrip-
tomic analysis further confirming that the glioma cells express
GluA2, a subunit of the ionotropic glutamate receptor,
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid recep-
tor (AMPAR). Treatment with an AMPAR antagonist inhibited
gliomaprogression, suggestinggliomacells can co-optglutama-
tergic signalling to facilitate invasion and tumour progression
[180,181] (figure 12). Based on both of these studies, one can
speculate whether anti-epileptic drugs that act presynaptically,
such as levetiracetam [182], might inhibit glioma progression.
An alternative approach could be a non-competitive AMPAR
antagonist such as perampanel, which has good penetration
to the brain, for use in glioma treatment [183]. Key to note is
that the AMPARs mentioned in both the studies [180,181]
are calcium permeable, which means the target of the drug
candidate must be calcium permeable AMPAR

Metastasis to the brain presents a checkmate scenario to
clinicians but a breakthrough finding, deciphering the inter-
action between neurons and metastatic cells [184], can now
pave way for new therapeutic approaches.

6.5. Parasitic tripartite synapse
Triple-negative breast cancer (TNBC) carries a poor prognosis as
it lacks the expression of targetable hormone receptors and
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human epidermal growth factor receptor 2, coupled with a pro-
pensity to metastasize to the brain [185]. N-Methyl-D-aspartate
receptor (NMDAR), a type of glutamate receptor, plays a key
role in the synaptic plasticity of the central nervous system, but
has also been implicated in ovarian and pancreatic tumour pro-
gression [186]. Transcriptomic data identified higher expression
of NMDAR among basal sub-types of breast cancers such as
(TNBC), in particular the NMDAR GluN2B subunit, which
contains phosphorylation sites critical for NMDAR signalling.
An autocrine source of glutamate-mediated NMDAR signalling
in the breast to brain metastasis (B2BM) microenvironment was
excluded, with B2BM cells found to express neuroligin-2 [184],
the expression of which by non-neuronal cells has been shown
to induce presynaptic differentiation and trigger de novo
formation of pseudo-synapses [187,188].

Microscopic analysis of mouse B2BM models revealed a
pseudo-tripartite synapse phenomenon. Finger-like projec-
tions emanated from the B2BM cells towards excitatory
synapses, forming a fake tripartite synapse [184]. In normal
neurophysiology, glutamate released from presynaptic neur-
ons is endocytosed by postsynaptic neurons that express
the glutamate receptor NMDAR, as well as by astrocytes
which are located adjacent to the synaptic cleft [189]. This tri-
partite phenomenon is mimicked by the B2BM cells, which
take the position of the astrocyte next to the synaptic cleft
and use the glutamate from the presynaptic neuron to pro-
mote further metastasis and colonization in the brain
(figure 13).

Modulation of GluN2B expression demonstrated that
NMDAR signalling was not necessary for the initial seeding
of breast tumour cells to the brain but, rather, was critical for
the proliferation of B2BM cells [184]. Thus, B2BM cells effec-
tively tune the neural niche to their advantage without
disrupting the existing synaptic infrastructure. Tumour cell–
astrocyte gap junctions can also be co-opted to promote brain
metastasis via 2030-cyclic GMP-AMP (cGAMP)-mediated
signalling. This can potentially be disrupted by the gap
junction modulator meclofenamate, which has oral bioavail-
ability and can pass through the blood–brain barrier [190].
Similarly, based on the inference that B2BM cells co-opt
NMDAR signalling for metastatic progression in the brain
[184], one could exploit the parasitic tripartite synapse for
therapeutic and diagnostics purposes. One approach might
be to repurpose memantine, an NMDAR antagonist used for
treating Alzheimer’s disease, to curtail the progression of
B2BM in TNBCpatients. Furthermore, radiolabelled glutamine
can potentially be used for imaging triple-negative breast
cancer brain metastasis [191].
6.6. Nerves and the tumour microenvironment
Nerves can also play a role in immune evasion during tumour-
igenesis by orchestrating an immune-suppressive tumour
microenvironment. β2-adrenergic receptor signalling by
adrenergic nerves can inhibit lymphocyte egress, effectively
reducing the recruitment of antigen primed T cells [192].
Manipulation of autonomic nerves using a novel viral-vector
based neuro-engineering technique revealed accelerated
breast cancer progression with sympathetic nerve stimulation
in tumours, while local sympathetic denervation curtailed
tumour growth and reduced the expression of immune
checkpoint molecules, such as programmed death-1 (PD-1)
and PD-L1, as well as FOXP3, that mediates immunosuppres-
sion [193]. Such a strategy of the localized intervention
targeting neural input, using genetic neuro-engineering tech-
niques, may hold promise to stimulate the immune system
while offsetting the deleterious side-effects of the systemic
use of checkpoint inhibitors.

Nerves and neuronal signalling are an indispensable part
of tumourigenesis, playing an active role in modulating the
tumour microenvironment. They are involved in the recruit-
ment of blood vessels to the tumour, control constriction/
relaxation of blood vessels, alter the expression of immune
checkpoint molecules and provide cues for proliferation to
tumour cells, yet the nervous system has been largely disre-
garded in cancer therapeutics. Nerves and neuronal
signalling are an enabling hallmark of cancer that provides
tumours with a means of interacting with its microenviron-
ment to facilitate metastatic progression. Future treatment
regimens must work around the neural circuit to offer
better control over tumour progression.
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7. Conclusion
The understanding of cancer from a curse, to that of a hetero-
geneous group of diseases that lack the fundamental ability
to respond to principal signals regulating proliferation,
differentiation, and cell death is a phenomenal leap of under-
standing. From multiple resections without anaesthesia in
ancient times, to targeted cancer therapeutics is certainly a
remarkable feat of achievement. The Hallmarks of Cancer
[194] marked the Millenium era for cancer researchers,
laying the framework for honing our understanding of
cancer as a disease. We present four novel hallmarks, the
traits of which are the language which cancer cells use to
interact with the microenvironment to facilitate proliferation
and survival. We consider two additional core hallmarks:
dedifferentiation/transdifferentiation and epigenetic dysre-
gulation, alongside two enabling hallmarks: altered
microbiome and altered neuronal signalling.

Seminal studies, we have discussed, overturned the uni-
directional landscape of differentiation [9,10], yet the hallmark
of dedifferentiation has long been ignored in the field of cancer
therapeutics. The lineage plasticity conferred by the proposed
hallmark of dedifferentiation, hijacked by tumour cells, can
also be used for targeting tumour cells at their most vulnerable
state to potentially transdifferentiate them to lineages which
lack metastatic potential.

Two of the hallmarks proposed to confer a vantage point
for therapeutic manipulation due to their reversible nature:
epigenetic dysregulation and the microbiome. Epigenetic
dysregulation provides numerous opportunities to intervene
in cancer progression and development. For example, dietary
factors can influence serum methionine levels, which in turn
can affect histone methylation [195]. Microbiome dysbiosis
can be manipulated by enhancing our ability to identify
anti-carcinogenic (friend) and pro-carcinogenic (foe) among
the microbiome. Microbiome composition must be integrated
and used as a tool to enhance the outcome of therapeutics.

Finally, the hallmark of altered neuronal signalling con-
sists of multiple clues to halt metastasis. The two factors
which cancer cells use to design their microenvironment to
their advantage are microbiome and nerves. Tumour cells
use nerves to establish blood vessels and garner proliferative
cues. Cancer can be associated with excruciating pain, a key
being that cancer cells recruit numerous nerves, a trait that
can be intercepted for pain management. Two modalities
for managing the hallmark of altered neuronal signalling
are either to include resection of nerves in surgical protocols
for tumour management (significantly more challenging
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than resecting lymph nodes), or to target the nerve growth
factor/localized intervention of neuronal signalling within
the tumour microenvironment. Future studies may look
into possibilities of targeting artemin which has an estab-
lished role in the migration of sympathetic precursors
[196,197].

Considering cancer as the conductor of a malign
symphony and the hallmarks as the musicians, we need to
tune our hearing to appreciate every key nuance of the
piece. By identifying new performers, we can adapt our
interventions, re-educating the orchestra and re-establishing
the rhythm of life.
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