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Abstract: Prediction of short-term future driving conditions can contribute to energy management of plug-in 

hybrid electric vehicles and subsequent improvement of their fuel economy. In this study, a fused short-term 

forecasting model for driving conditions is established by incorporating the stochastic forecasting and machine 

learning. The Markov chain is applied to calculate the transition probability of historical driving data, by which 

the stochastic prediction is conducted based on the Monte Carlo algorithm. Then, a neural network is 

employed to learn the current driving information and main knowledge after the simplified correlation of 

characteristic parameters, and meanwhile the genetic algorithm is adopted to optimize the initial weight and 

thresholds of networks. Finally, the short-term velocity prediction is achieved by combining them, and the 

overall performance is evaluated by four typical criteria. Simulation results indicate that the proposed fusion 

algorithm outperforms the single Markov model, the radial basis function neural network and the back 

propagation neural network with respect to the prediction precision and the difference distribution between 

expectation and prediction values. In addition, a case study is conducted by applying the built prediction 

algorithm in energy management of a plug-in hybrid electric vehicle, and simulation results highlight that the 

proposed algorithm can supply preferable velocity prediction, thereby facilitating improvement of the 

operating economy of the vehicle.  

Key Words: Driving condition prediction, Markov chain, neural network, principal component analysis, energy 

management. 

I. INTRODUCTION 

Nowadays, plug-in hybrid electric vehicles (PHEVs) represent one main development direction towards 
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transportation electrification. They usually employ two energy sources, such as an internal combustion engine 

(ICE) and an externally chargeable battery pack, to propel the vehicle in pure electric or hybrid mode. It is 

critical to employ a determined control principle, referred to as an energy management strategy (EMS), to 

properly allocate energy distribution of two energy sources. An EMS can not only regulate energy sources to 

satisfy driving power demand, but also improve vehicle’s fuel economy and extend battery lifespan effectively.  

Nowadays, EMSs of PHEVs can be roughly classified into three categories, i.e., rule-based schemes, global 

optimization algorithms, and instantaneous optimization strategies [1, 2]. The prevalent state-of-the-art EMSs 

are systematically summarized and compared in [3]. A rule-based scheme is comprised of a body of 

predetermined rules and can usually achieve energy distribution according to vehicle’s status. A common 

knowledge is that rule-based algorithms cannot fully explore the potential fuel savings. Global optimization 

algorithms, such as dynamic programming (DP) [4] and quadratic programming (QP) [5], can usually find 

optimal solutions over a certain driving range, and yet they are fragile when subjected to time-varying driving 

conditions and are intractable to be implemented in practice. Instead, they are usually regarded as a benchmark 

to quantify and evaluate the performance of other algorithms [6].  

Instantaneous optimization strategies usually conduct energy management by locally optimizing the 

operating cost function, such as fuel consumption minimization, emission deduction, battery lifespan extension, 

both or all. As a typical representative of instantaneous strategies, equivalent consumption minimization 

strategy (ECMS), is widely adopted to minimize fuel consumption by solving the so-called Hamiltonian 

function, which is built based on Pontryagin’s minimum principle (PMP) [7]. To this end, trip information 

should be acquired in advance, and much calculation intensity will inevitably arise. Model predictive control 

(MPC), favored by industry and academia, can iteratively optimize the decision online in a receding horizon to 

coordinate energy management of powertrain components [8]. Till now, MPC algorithms have been widely 

adopted to manage energy distributions in different types of hybrid vehicles, such as fuel cell electric vehicles, 

hybrid electric vehicles (HEVs) and PHEVs.  

In terms of MPC applied in energy management of PHEVs, it is of significant importance to predict driving 

condition timely and precisely and supply the guided reference before implementing the receding horizon 

control [9]. It is, to the authors’ knowledge, equally important to predict road conditions, compared to EMS 

itself design. A precise reliable vehicle speed prediction can pave the solid way and provide useful instructions 

for satisfactory energy management of PHEVs. Currently, a variety of algorithms have been spurred to achieve 
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speed prediction, including Kalman filter [10], exponential method [11], autoregressive moving average 

(ARMA) methods [12], particle filter [13], stochastic forecast [14], and machine learning algorithms [15]. 

Amongst them, Markov chain (MC) based prediction algorithms and neural networks (NNs), belonging to 

stochastic forest and machine learning filed, are most attractive and widely exploited [16]. Actually, future 

driving condition of vehicle can be estimated based on inner correlation between the current step and previous 

one or multi moments. Extensive studies have been conducted for improving the accuracy of MC based 

prediction and control performance of the EMS built upon [17]. In [18], a MC based driving cycle predictor is 

designed to supply the next step demand reference to operating efficiency optimization of ICE. In [19], the 

stochastic DP (SDP) is employed to optimize the downshifting control during regenerative braking for HEV 

based on the predicted braking torque by MC. In [20], a multi-step Markov prediction model is constructed to 

forecast the near-future driving velocity, then the MPC is applied to manage the energy flow in PHEV. In [21], a 

reinforcement learning (RL) based offline EMS is investigated based on the built-in stationary Markov 

transition probability matrix. In [22], the clustering analysis is conducted to find the characteristic parameters of 

transportation information, and the Markov chain model is built to identify the transportation pattern. In [23], a 

stochastic approach is proposed to construct the power management algorithm, in which the power demand is 

modeled as a MC process and estimated based on different driving cycles, then the control scenarios are 

generated in a stochastic MPC framework. The MC algorithm features long-term trend prediction in terms of 

entire driving conditions, since the probability can be globally calculated in the whole driving event. 

Nonetheless, it may not be qualified in short-term prediction due to its global statistical characteristics, and 

integration with other instantaneous prediction algorithms may solve a possible pathway to tackle this 

restriction [24]. 

Machine learning algorithms, in particular NNs, can extract nonlinear laws from the training data and can 

be well-suited for prediction of future driving conditions thereafter. NN can effectively fit random nonlinear 

data and features self-learning capability after proper parameter tuning [25]. It can discover the nonlinear law 

hidden underneath the data and is often employed to extrapolate extension events [26]. NN has been widely 

applied in prediction of traffic and short-term velocities. In [27], a time-lag recurrent NN is introduced for traffic 

prediction with high accuracy. In [28], short-term velocities are predicted based on the back propagation NN 

(BP-NN) with one hidden layer and the radial basis function NN (RBF-NN) which can automatically regulate 

the amount of hidden nodes. The simulation results indicate that high prediction accuracy of the vehicle velocity 
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can improve the overall controlling performance of HEVs. In [29], a NN based trip model is proposed to help 

manage the energy distribution of PHEV, and simulation results validates that the built model can increase the 

prediction accuracy and contribute to the fuel economy improvement. Nonetheless, forecasting performance of 

NN models can be easily influenced by their fixed network structures, learning rates and inputs; and moreover, 

the evaluation metrics and the amount of collected training data can also affect the model precision. As 

discussed in [30], the prediction performance of NN can be discredited when encountered with over-training or 

over-extrapolation. Over-training occurs when the data capacity of NN is too large, while over-extrapolation 

means the benefit of NNs is not be fully explored when required to conduct estimation beyond the range of 

current training data. To sum up, it can be concluded that only a NN or MC model is intractable to predict 

driving conditions in a combined macro- and micro-framework, thereby meeting the requirement of long-term 

driving trend and short-term driving speed prediction under various conditions.  

To compensate the inherent shortcomings of NN and MC, a fusion prediction model incorporating both 

algorithms is herein proposed to supply robust and accurate prediction for vehicle driving conditions. In 

addition, it does not easily fall into local optimum and can adapt to different conditions. To the best of authors’ 

knowledge, it is seldom reported in the existing literature. To be specific, the proposed forecasting model mainly 

includes two parts, i.e., the driving condition prediction module and the nonlinear fusion module. There exist 

two NN controllers (called NN1 and NN2 hereinafter) and one MC predictor in the whole prediction framework. 

In it, NN1 accounts for predicting the driving condition in micro scope, and the key task of MC is to forecast the 

entire driving trend from macro perspective. In particular, the inputs of NN1 are simplified by means of 

principal component analysis (PCA) to avoid over-training. In the nonlinear fusion module, the primary velocity 

prediction and trend prediction are incorporated by applying NN2 to improve the prediction accuracy. In 

addition, the over-training and extrapolation of NN2 can also be avoided by exploiting the trend prediction 

result to refine the primary velocity prediction result. The initial weights and threshold of these two NNs are 

optimized by the genetic algorithm (GA) to prevent from being trapped into local optimum. Numerical 

simulations are performed to validate the effectiveness of the proposed fusion method by comparing with 

traditional prediction methods. In addition, to further validate the performance and highlight the benefit of the 

proposed algorithm, a case study is conducted, where the prediction algorithm is applied to supply the reference 

for predictive energy management of PHEV, and the MPC is applied with the help of the future speed 

information supplied by different speed prediction algorithms including the proposed fusion algorithm. The 
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operating cost is compared to evaluate the predictor’s performance, and the detailed comparison results indicate 

that the proposed algorithm is more effective in supplying future information for predictive EMSs and thus can 

facilitate operating economy improvement of PHEVs. 

The remainder of this article is structured as follows. The methods for short-term driving condition 

prediction are elaborated in Section II, and the evaluation metrics are detailed in Section III. The simulation 

results and discussion are presented in Section IV. The case study is conducted to further validate the predictor’s 

performance in Section V. Finally, the main conclusions are given in Section VI. 

II. SHORT-TERM DRIVING CONDITION PREDICTION MODEL 

A. Markov Chain Based Velocity Prediction 

In this study, the velocity prediction is firstly considered as a Markov model, which describes the 

relationship between the actual and next states of system. Here, 
ijP  denotes the probability of state j  of 

variable X  at time step 1k + , given the current state i  at time k , and the following equation can be yielded, 

as: 

 ( ( 1) | ( ) ) ijP X k j X k i P+ = = =  (1) 

The transition probability function, which provides next step information, is formulated in (2), and 

correspondingly, the multi-step ahead transition probability is presented in (3), as: 

 , 1( ( 1) | ( ( )) (1)ij k kP X k X k P P ++ = =  (2) 

 , 1( ( ) | ( ( )) ( ) n
ij k kP X k n X k P n P ++ = =  (3) 

The transition probability matrix of a stationary MC model can be trained and updated according to the 

observation of previous states. For ease of predicting driving conditions based on MC, the driving conditions 

need to be divided into a finite number of states. In this paper, the velocity trajectory can be determined by the 

current and acceleration, which, at the end of each interval, is attributed to one specific state by approximation. 

Here, the acceleration can be calculated by: 

 
( 1) ( )

( )
3.6

v t v t
a t

+ −
=  (4) 

where a  and v  denote acceleration (unit: m/s2) and speed (unit: km/h) of the vehicle, respectively. As such, 

the driving speed profile is discretized to numerous states which can be characterized by the velocity and 

acceleration [31], which are supposed to range from 0 to 130 km/h and -3 to 3 m/s2, respectively. In addition, 



6 

 

the discretization width of velocity and acceleration is set to 1 km/h and 0.05 m/s2, respectively. Then, the 

speed is mapped to a specific position in the grid table via the nearest-neighbor interpolation. By this manner, 

the driving speed is discretized to different states, as shown in Fig. 1, and each dot highlights one state under 

the current driving cycle. For instance, the state with positive acceleration and high velocity indicates that the 

vehicle is accelerating at high speed. In addition, the state transition probability is quantified by the maximum 

likelihood estimation [32], which is widely adopted to estimate the probability. Its main principle is to select 

the highest value as the estimated probability through a number of tests. In this research, the distribution of the 

state transition probability for velocity is discrete, and can be calculated by (2). After calculation, the state 

transition probability distribution is plotted in Fig. 2, where the inputs include the current state and next state, 

and the output is the transition probability transferring from the current state to next state. As can be found, 

larger value means that the current state tends to transfer to the next state with higher probability.  

 

Fig. 1. State division diagram of driving conditions. 

 

Fig. 2. State transition probability. 
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initial state 1i . The thi  row corresponding to the transition probability matrix is extracted according to the 

current driving state i . Now, a random number r , ranging from 0 to 1, is generated by applying the Monte 

Carlo simulation, and if the following inequation is satisfied, i.e., 

 
1

1 1

( )
k k

ij ij

j j

P r P k N
−

= =

     (5) 

then the current state will transfer to state 
thk  in the next moment. As such, the predicted next step speed can 

be expressed as: 

 1p i v pv v L n →= +   (6) 

where 
pv  is the predicted speed, 

iv  is the initial speed, 
vL  denotes the division step of speed, and 

1 pn →
 is 

the number of state intervals in the velocity direction.  

B. NN Based Velocity Prediction 

NN can fully approximate any complex nonlinear mapping and characterizes strong capability of learning 

from and adapting to uncertain, strong robust and fault tolerant systems. Given this, NN has become a luxuriant 

technique to model nonlinear systems [33]. The basic requirements of NN prediction model are with capabilities 

of fast convergence, real-time implementation and generalization [34]. For vehicle velocity prediction, the 

inputs of NNs can be historical velocity sequences, and the outputs are the predicted velocity sequences in a 

receding horizon, as plotted in Fig. 3. Each input/output pattern is composed of a moving window with a fixed 

length, as: 

 1 2 1, , ( , )
p hk k k H NN k H kv v v f v v+ + + − +

  =
 

 (7) 

where hH  denotes the dimension of input velocity sequence, NNf  represents the nonlinear map function of 

the NN based predictor, and pH  expresses the prediction horizon. 

Inputs Hidden

··· 

vk-Hh+1

vk-Hh+2

vk

··· 

Output

vk+1

vk+2

vk+Hp

 

Fig. 3. Neural network prediction model. 
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C. The Fusion Velocity Predictor 

Driving conditions are essentially stochastic time-varying sequences, and their changing rule is irregular 

and nonlinear. It is therefore difficult to formulate it with a determined regression model. Even MC and NN have 

declared to predict the future driving conditions with certain credibility, there still exists a non-negligible 

distance away from high prediction accuracy all the time based only on a single algorithm. A common 

knowledge is that each prediction method has its own pros and cons [28]. The MC stochastic forecasting model 

can predict the general trend of driving conditions, since it operates based on the statistical transition probability 

of the whole driving cycle [31]. Nonetheless, MC fails to predict the short-term prediction precisely due to its 

stochastic characteristics. In contrast, NN can supply the short-term prediction with high precision because of 

its strong nonlinear fitting and feature information excavation capabilities. However, it may easily fall into 

local optimum, and also over-training and extrapolation may emerge [35]. To overcome both shortcomings 

and advance their capabilities in respective long-term and short-term velocity prediction, a fusion prediction 

model is innovatively proposed with the adaptive corporation of MC and NN, thereby attaining high 

prediction accuracy and qualified adaption to different driving conditions. 

The overall framework of the proposed fusion prediction method is shown in Fig. 4, which is mainly 

comprised of two parts: a driving condition prediction module and a nonlinear fusion module. The driving 

condition prediction module contains two basic predictors; including a MC predictor and a NN predictor 

(called NN1 hereinafter). The training data is divided into two sets, namely dataset 1 and dataset 2. The 

dataset 1 accounts for the training of MC and NN1 prediction model, while the dataset 2 is mainly for training 

of the fusion module. In the driving condition prediction module, NN1 takes charge of primary velocity 

prediction. Furthermore, the MC model is applied as a trend predictor to calculate the transition probability and 

statistical characteristics of historical driving conditions. Notably, the inputs of NN1 consist of driving condition 

parameters and adjacent historical velocities. Furthermore, the driving condition parameters considered as the 

inputs of NN1 are simplified by means of PCA to avoid over-training. In the nonlinear fusion module, as the 

primary prediction results and trend prediction results show complex diversity and nonlinearity, they are fused 

by another NN, namely NN2, with strong nonlinear mapping capability. The specific parameters of proposed 

prediction model are shown in Table I. 

In this study, we selected the back propagation neural network (BPNN) for NN1 and NN2 and a first-order 

multi-scale single step MC as the trend predictor [31]. The determination of main parameters and structures are 
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elaborated as follows. 
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Fig. 4. The working principle of the proposed fusion prediction method. 

Table I Specific parameters 

Project Nomenclature 

NN1 , NN2   Primary predictor and combination 

MC  Markov chain predictor 

PC1, PC2 , …, PC5  Principal component 

t-11V , t-12V , …, t-1nV  Adjacent historical velocity input to NN1 

t-21V , t-22V , …, t-2nV  Adjacent historical velocity input to MC 

t+11V , t+12V ,   , t+1mV  Output of NN1 and input of the combiner NN2 

t+21V , t+22V ,   , t+2mV  Output of MC and input of the combiner NN2 

t+31V , t+32V ,   , t+3mV  Output of the combiner 

n , m  Number of inputs or outputs 

1) Extraction of Characteristic Parameters Based on PCA 

In the prediction process of driving condition, if several adjacent velocities are considered as the only 

input of NN1, they cannot truly reflect the characteristics of certain driving conditions, thus resulting in low 

prediction accuracy [36]. In contrast, if too many parameters are extracted, the computational intensity cannot 

be tolerated. After trial and error, 12 characteristic parameters, as listed in Table II, are selected to predict the 

driving conditions with preferable prediction and acceptable calculation intensity. However, it is still imperative 

to reduce the dimension of the selected characteristic parameters, and the PCA algorithm is employed.  

Table II Driving condition parameters 

Driving condition parameter Denotation Driving condition parameter Denotation 

Average speed 
mv  % of time in idle speed 

idlp  

Driving average speed 
mdv  Maximum acceleration 

maxa  

Variance of acceleration 
vara  Minimum acceleration 

mina  

% of acceleration time 
accp  % of time in speed interval 0–15 km/h 

0-15r  

% of deceleration time 
decp  % of time in speed interval 15–30 km/h 

15 30r −  

% of time in certain speed 
conp  % of time in speed interval 50–70 km/h 

50 70r −  

The PCA can reduce dimensions of large amounts of data, and transform the original data into new 
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independent components while keeping the main characteristics of original data [37]. It is usually expressed as a 

linear combination of original variables. Two essential principles when applying the PCA should be obeyed, 

including that the number of new principal components should not be more than the number of original 

variables, and the principal components are independent of each other. If p  characteristic parameters, denoted 

as 
1 2( , , , ) 'px x x x= , are introduced to evaluate a driving condition, then we can attain: 

 

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

'

'

'

p p

p p

p p p pp p p

y a x a x a x

y a x a x a x

y a x a x a x

= + + + =


= + + + =


 = + + + =

a x

a x

a x

 (8) 

where 
1 2 pa ,a , ,a  denote the unit vector, and y  means the principal component. The contribution rate is the 

proportion of variance of the 
thi  principal component 

iy  over the total variance. The contribution rate of the 

principal component reflects the ability of expressing main information of the original variable. The sum of the 

top m  ( )m p  contribution rates is called the cumulative contribution rate of the first m  principal 

components [37]. The principal component is expressed as. 

 
'

1 1 2 2 , 1,2, ,j j j j pj py t x t x t x j p= = + + + =t x  (9) 

where ijt  is the load coefficient of the thj  principal component jy  on the original variable ix , and ijt
 

reflects the importance of ix  on jy . 

2) Short-Term Driving Condition Prediction  

The general idea of the fusion prediction algorithm is described as follows. In the driving condition 

prediction module, the application of NN1 and MC are almost similar to those of a single prediction model. 

However, in the nonlinear fusion module, the prediction results of NN1 and MC are complex, random and 

nonlinear, and there does not exist distinct relationship between them. Thus, reliable and intelligent fusion 

methods are strongly encouraged to incorporate both models dynamically according to the actual driving 

conditions. As a typical intelligent algorithm, NN enables mapping nonlinear data with high precision and can 

adjust weights and thresholds according to the training data, thus it should be feasible to apply the NN based 

fusion method to fit the relationship between primary values and the trend values. As such, NN2 is applied to 

incorporate the prediction results of NN1 and MC for providing the final predicted velocity. The inputs of 

NN2 include two variables, i.e., the predicted velocities by NN1 and by MC; and the output of NN2 is the 
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final predictive velocity. Note that the parameters of NN2, such as the number of layers, can impose 

significant influence on computational efficiency and prediction accuracy. According to our previous 

experiences, one hidden layer in NN2 can meet the accuracy of nonlinear velocity prediction, as is the case 

with most application scenarios [38]. Thus, both NN1 and NN2 have the same structure and contain three 

layers, including a hidden layer, an input layer and an output layer. With respect to the number of neurons and 

the training iterations, we determine them according to our experience and experiment iteration. The number 

of neurons is respectively set to 30 and 15 for NN1 and NN2 after iteration and correction; the maximum 

number of training iterations is defined as 200 for both NNs in this research. The specific process of the fusion 

prediction, as shown in Fig. 5, is mainly divided into five steps: 

Step1：Build transition probability matrix

MC
Transition 

Probability

PCA
Principal 

component

Probability 

matrix

probability 

matrix

Final 

prediction

Step2：Principal component analysis

Step4：NN2 training

Step5：Final prediction

NN2

NN1

NN2NN2 

training

NN1

Step3：NN1 training

NN1NN1 training

Dataset1

Dataset1

Dataset1

Dataset2

Test driving 

cycle

Principal 

component

 

Fig. 5. Schematic diagram of the proposed method. 

a) Train the MC model based on the dataset 1 and calculate the transition probability matrix; 

b) Extract the characteristic parameters repeatedly from the dataset 1 according to the deterministic 

receding time window and apply the PCA to calculate the principal components for NN1; 

c) Train NN1 according to the principal components and the historical adjacent vehicle speed to attain the 

primary prediction model;  

d) Use dataset 2 to test NN1 and MC models to obtain the primary prediction output data. Notably, the 

output of NN1 and MC model are utilized as the input of NN2, which is trained to obtain the final fusion 
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model. 

e) The validation data are set as the input to the proposed fusion prediction model, and the output from the 

combined algorithm is considered as the result. 

3) Optimization of the Proposed Fusion Prediction Model Based on GA  

As discussed before, the selection of initial weights and thresholds of NN is random and lacks a 

reasonable argument. This may lead to over-fitting and discredit the prediction accuracy, thus deteriorating the 

application performance of NN in the fusion model. However, the relationship between NN parameters and 

prediction accuracy cannot be directly formulated, and direct optimization methods are difficult to tackle this 

optimization problem. GA is an optimization method to find the optimal solution by simulating the natural 

evolution process, and can search the optimal solution adaptively without the specific formulation and models. 

In [39], GA has been successfully employed to effectively optimize the parameters of NNs. On this account, GA 

is continuously exploited in this study to optimize the initial weight and threshold of NN1 and NN2 to further 

improve the prediction accuracy. After repetitive adjustment, the population size, crossover rate and mutation 

rate of GA are set to 100, 0.7 and 0.02, respectively.  

D. Evaluation Metrics 

 Numerous statistics criteria have been proposed and employed to evaluate the prediction performance, 

however, only a single variant is incomplete to characterize the performance comprehensively. In our study, 

four well-known variables, including average root mean square error (RMSE) [28], skewness [40], kurtosis [40] 

and computation time, are calculated to evaluate the prediction effect. Amongst these evaluation metrics, the 

RMSE is used to evaluate the overall accuracy of velocity prediction, the skewness and kurtosis can illustrate 

the overall trend of the prediction deviation, and the computation time is used to evaluate the real-time 

performance of the prediction algorithm. The average RMSE eR  (m/s) can be expressed as: 

 2

1

2
e

1

ˆ( | ) ( | ) ( ), =1 2 1,2,

( ) ( ( | )) /

= ( ) /

P

p

P

i

N

k

e k i k v k i k v k i i H k N

R k e k i k H

R R k N

=

=




+ = + − + =



= +










， ，

，  (10) 

where e and R denote the error and RMSE that depend on the prediction horizon 
PH , N is the total number of 

expected values; ( )v k i+  is the expected speed at time k i+ ; and ˆ( | )v k i k+  is the prediction speed at time 
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k . The skewness evaluation can be formulated as: 
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where ˆ ( )e i  and ˆ ( )e i  denote the mean error and error standard deviation, respectively. Skewness is related 

to three central moments of distribution. A common knowledge is that the skewness status defines the degree of 

skewness and bias of distribution, and reflects the symmetric distribution characteristics of the error. If the 

skewness value is greater than zero, the error distribution is positively biased (right deviation); or else, if the 

skewness is less than zero, the error has a negative bias (left deviation); and moreover, if the skewness equals 

zero, the distribution is symmetric. In addition, the kurtosis can be calculated, as: 

 
1

4 2ˆ( | ) ( )( 1) 3 ( 1)ˆ ( )
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The kurtosis is related to the fourth-order central moment of distribution. The kurtosis coefficient is used to 

measure the data out-migration degree. The greater the kurtosis, the values in the sequence will be more extreme. 

The error distribution reflects the shape information. If the kurtosis is positive, the pattern has a sharp peak and 

a long tail, compared with the Gaussian distribution. By contrast, if the kurtosis is negative, the pattern has a flat 

peak and a short tail. In addition, the calculation time of single speed point is also utilized to evaluate the real 

time performance of the prediction algorithm. 

III. SIMULATION AND ANALYSIS 

In this section, traditional single prediction methods are also employed, and their prediction performance 

is comprehensively compared with that of the proposed fusion algorithm. First, the training and data 

validation is conducted, followed by the performance discussion in terms of different prediction algorithms 

and different prediction length. Note that all the simulations and the designed NN based fusion predictor are 

constructed in MATLAB/Simulink. 

The prediction of short-term velocity within a limited horizon is essentially a nonlinear and nonstationary 

stochastic process. An instinctive consideration about the construction of training dataset is that they should 

involve different driving conditions, such as highway, urban and urban (congested) roads, so as to strengthen 
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the predictor’s adaption to different scenarios. In this research, a variety of standard driving cycles 

characterizing different road conditions are combined with random sequence to form the datasets 1 and 2, of 

which the speed profile is shown in Fig. 6. The dataset 1 is composed of NYCC, New York Bus, 

ECE_EUDC_LOW, HWFET, INDIA_HWY_SAMPLE, US06_HWY, NEDC, INDIA_URBAN_SAMPLE 

and UNIF01 cycles; and the dataset 2 consists of MANHATTAN, LA92, SC03, WVUCITY, REP05 and 

Nuremberg R36 cycles. As can be found from Fig. 6, both datasets include the highway, urban and urban 

congested conditions. In addition, the UDDS cycle is chosen as the validation data. 
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Fig. 6. Training data. (a) Training dataset 1; (b) Training dataset 2. 

A. Result Analysis of the Training Based on the Proposed Method 

Based on the collected data, the characteristic parameters such as the average speed can be calculated 

within a fixed time window. However, if the time window is too narrow, the historical data may not highlight 

the driving cycle comprehensively and lead to increased complexity of NNs, thus affecting the prediction 

performance; and in contrast, if the time window is too wide, the computational burden may be too heavy for 

real-time application. After repetitive comparison and validation, the time window is set to 175 s and the update 
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step is set to 1 s, through trading-off the prediction accuracy and actual demand of energy management control 

of PHEVs.  

To determine the input of NN1, the historical velocity in the time window is deployed to calculate the 

characteristic parameters by PCA. For instance, the Pareto diagram of the first time window for dataset 1 is 

shown in Fig. 7. The solid line denotes the cumulative contribution rate and the gray bar indicates the 

contribution rate of a single principal component. The detailed contribution rate of the PCA is listed in Table III. 

As presented in Table III and Fig. 7, the first five principal components derived from the PCA occupy more than 

96.81% of the variance of the original driving condition vectors. Thus, 12 characteristics parameters can be 

converted into five vectors, thereby reducing the dimension of data. The load coefficients of first five principal 

components are given in Table IV. As can be seen from the principal component PC1 in Table IV, the coefficient 

of "average speed" is relatively large. Therefore, this principal component is greatly affected by "average speed". 

Similarly, the load coefficients of other characteristic parameters can also be reasonably illustrated. Based on 

Table IV, equation (9) can be leveraged to compress the original driving condition parameters into a reduced 

size vector. In addition, the velocity data of adjacent driving conditions are rather continuous and supply 

guidelines for future speed prediction. As such, the periodical update of the first 5 s historic adjacent speed and 

the first five principal components are considered as the input of NN1. The input horizon n  in Table I is 

specified as 5, and the prediction horizon m  is set to 10. Similarly, the input and prediction horizon of several 

common prediction models are also set to n  and m , respectively. 
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Fig. 7. Pareto diagram of PCA. 
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Table III Detailed results of PCA 

Eigenvalues Contribution rate (%) Cumulative contribution rate (%) 

1.8536e+03 64.8815 64.8815 

450.6235 15.7733 80.6548 

202.7959 7.0985 87.7533 

147.5119 5.1634 92.9167 

111.2259 3.8933 96.8099 

56.8498 1.9899 98.7998 

25.3748 0.8882 99.6880 

7.6074 0.2663 99.9543 

1.1043 0.0387 99.9930 

0.1156 0.0387 99.9930 

0.0698 0.0024 99.9995 

0.0151 5.2943e−04 100.0000 

3.2640e−31 1.1425e−32 100.0000 

6.7906e−35 2.3769e−36 100.0000 

Table IV Load coefficients expression 

Variable PC1 PC2 PC3 PC4 PC5 

mv  0.3835 0.0394 −0.0951 −0.0245 −0.2589 

mdv  0.3507 0.0047 −0.0843 −0.1300 −0.2729 

vara  −0.1718 −0.1377 −0.1765 −0.3685 −0.2501 

accp  −0.0395 0.2294 −0.3183 0.1677 −0.2615 

decp  −0.0707 0.0999 −0.4273 0.0105 −0.1683 

conp  0.4514 0.1466 0.5124 0.2135 0.1949 

idlp  −0.3416 −0.4761 0.2347 −0.3915 0.1949 

maxa  −0.0041 −0.0023 −0.0146 −0.0054 −0.0076 

mina  0.0041 6.7906e−04 0.0159 0.0012 0.0106 

0-15r  −0.2950 −0.1267 −0.2861 0.6449 0.3533 

15 30r −  −0.1602 0.7334 −0.1040 −0.4015 0.4552 

50 70r −  0.5106 −0.3389 −0.5080 −0.2059 0.5227 

Subsequently, the proposed fusion prediction model is optimized based on GA introduced before. The 

fitness value curves of NN1 and NN2 are shown in Fig. 8. In the optimization process, the fitness value 

gradually converges to the average fitness. The horizontal and vertical coordinates mean the number of 

generation and fitness value, respectively. 
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Fig. 8. Fitness curve of optimization. (a) Fitness of NN1; (b) Fitness of NN2. 
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B. Performance Analysis of Velocity Prediction 

To verify the prediction performance of the proposed fusion algorithm, a combined simulation is performed 

and traditional prediction algorithms are also applied, including the MC, BP-NN and RBF-NN. The RBF-NN is 

a forward NN with three layers, which can approximate arbitrary nonlinear functions with high precision; 

therefore, it is widely used in time series analysis, pattern recognition, nonlinear control and image processing. 

The results, as shown in Fig. 9, depict the tentacle driving trend of the actual speed and predicted speed, where 

the black line is the actual speed and the red line is the short-term predictive speed. Fig. 9 (a) to (d) illustrates the 

velocity prediction simulation results of the MC algorithm, BP-NN, RBF-NN and the proposed algorithm, 

respectively. Fig. 10 shows the RMSE of the built prediction model. According to the simulation result in Table 

V, the average value of RMSE is 1.3801, proving the proposed method can predict the speed with preferable 

precision. Figs. 11 and 12 depict the error distribution by the BP-NN and the proposed model when the 

prediction horizon ranges from 1 s to 10 s. It can be concluded that the error distribution is symmetric; that, the 

skewness of two prediction models is close to 0. The results also show that the error distribution of the 

prediction method proposed in this study is more uniform and the distribution range is narrower. Table V lists 

the evaluation results in terms of different prediction models. It can be observed that the prediction performance 

of NNs is better than that of MC prediction models, and eR  of the optimized fusion model is the least. Owing to 

the stochastic property of the MC prediction model, it is possible that a low velocity may be transferred to a high 

value, and vice versa, thus leading to constraint violation of acceleration. In contrast, the constraint violation of 

NN is better than that of the MC model, whereas the performance of proposed model is a combination of the two 

prediction models, which can outperform each other. 
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Fig. 9. Simulation of speed prediction. (a) MC Prediction; (b) BP Prediction; (c) RBP Prediction; (d) Fusion Prediction 
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Fig. 10. RMSE of proposed fusion prediction 

 

Fig. 11. Error distribution histogram of BP-NN. 

 

Fig. 12. Error distribution histogram of fusion prediction. 

In addition, the results listed in Table V show that the kurtosis of the fusion algorithm is smaller than that 

of MC, and the error distribution of the proposed method is more symmetrical and shows a narrower variation 

range, compared with other prediction models, proving its advance and feasibility. The calculation time is more 

than that of the single forecasting model, as the fusion prediction model is more complex than the single 
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prediction model. Note that, all the predictions include off-line training and online prediction. As can be seen in 

Table V, the online prediction time of proposed fusion prediction is 4.418 ms, which can still fully satisfy the 

real-time application requirement. Table VI lists the improvement of eR , and we can find that the prediction 

accuracy of the proposed fusion prediction model increases by 45.32%, 39.13%, 40.56%, and 9.75%, compared 

with those of the first-order MC, BP-NN, RBF-NN and the fusion prediction without optimization. These 

results indicate that a significant improvement can be achieved when the GA optimization algorithm is 

employed for parameters optimization of the prediction model. 

Table V Comparison of prediction results 

Prediction model Re Skewness Kurtosis Tcal(ms) 

1st multi-scale single step MC 2.5240 7.2458 −0.4798 2.2888 

BP-NN 2.2674 4.1166 0.1872 0.1366 

RBF-NN 2.3217 4.1104 0.2131 0.7174 

Fusion prediction without 

optimization 
1.5292 3.7676 0.2025 4.3954 

Optimized fusion prediction  1.3801 3.2428 0.3602 4.4181 

Table VI Comparison of prediction accuracy 

Object 
Fusion prediction without 

optimization 

1st multi-scale single 

step MC 
BP-NN RBF-NN 

Improvement 9.75% 45.32% 39.13% 40.56% 

IV. CASE STUDY IN ENERGY MANAGEMENT OF PHEVS 

In this work, to verify the performance of velocity prediction, a case study is conducted by apply the 

prediction algorithm to energy management of a parallel PHEV, of which the main powertrain topology is 

shown in Fig. 13. As can be seen, there exists a clutch between the engine and the motor. A dual clutch 

transmission (DCT) is deployed between the motor and final differential reducer. The main parameters of the 

vehicle are specified in Table VII.  
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Fig. 13. Plug-in hybrid electric system model. 
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Table VII Basic parameters of the power train components  

Items Parameters Values 

ISG motor 

Rated power (kW) 40 

Peak power (kW) 50 

Rated speed (r·min-1) 2500 

Peak speed (r·min-1) 6000 

Peak efficiency (%) 92 

Engine 

Peak power (kW) 

Peak speed (r·min-1) 

Maximum torque (N·m) 

80 

6000 

140 

Lithium-ion 

battery 

Capacity (A·h) 

Rated voltage (V) 

Cell voltage (V) 

38.5 

288 

1.2 

DCT 

Gear ratio i1/ i2 /i3  

i4/ i5/ i6 

2.8122/1.9274/1.0310 

0.8102/0.6088/0.5293 

Final drive ratio 5.24 

To validate the speed predictor’s performance, MPC is employed to regulate the control output in a 

receding horizon according to the predicted speed, and DP is regarded as a benchmark to evaluate the 

performance of the MPC based strategy. In addition, DP is also applied in this study to solve the local optimal 

control in the procedure of receding horizon optimization of MPC. By this manner, the improvement generated 

by prediction method can be quantified and compared. Since the PHEV can be charged from power grid and 

propelled by ICE, the total cost consumption, considered as the objective function in this study, is calculated by 

adding the electricity cost and the fuel cost, as:  

 ( ) ( ( ) ( ))
k hp

k f f ele elet k
J t j Q t j Q t

+

=
= +  (13) 

where ( )kJ t  is the total cost during step k  to step k hp+ ; fj  represents the fuel price per liter, and equals 

CNY 7.8 in this study; elej  means the unit price of electricity per kWh, which is set to CNY 0.52; ( )fQ t  and 

( )eleQ t  denote the total fuel consumption and electricity consumption. Considering ( )SOC k  as the state 

variable kx  and the motor torque ( )mT k  as the control input ku , the state transition function can be 

formulated, as: 

 ( 1) ( )
3600

I t
SOC k SOC k

Q


+ = +  (14) 

Then, DP can be applied to solve the recursive function, as: 

  
, ,

* *
, , , , , 1, , , ,( ) min ( , ) ( ( , ))

k j m

k j k j k k j k j m k j k j k j m
u

J x L x u J g x u+= +  (15) 

where ,k jx  is the thj  state value at step k , , ,k j mu  indicates the thm  decision variable of the thj  state , g  

denote the state transition function, and , , ,( , )k k j k j mL x u  expresses the instantaneous function value. 



21 

 

To investigate influences brought by different prediction algorithms, a two-layer based EMS is built 

including the prediction layer and strategy layer, as shown in Fig. 14. In the prediction layer, the vehicle speed is 

predicted based on different algorithms. To evaluate and compare the prediction performance, the Markov 

model, BP-NN model, RBF-NN model and the proposed fusion model are respectively implemented to forecast 

the future driving speed profile, which is sent to the control layer in each step. In the decision layer, firstly, the 

reference SOC trajectory is determined according to the historical transportation information. In this study, a 

linear SOC reference curve is generated with respect to the driving distance for simplicity. In the receding 

horizon of MPC application, we employ the DP to solve the cost function, thereby finding the optimal control 

variable. Finally, the energy cost by different prediction algorithms is compared and discussed. 
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Fig. 14. Energy consumption analysis strategy 
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To verify the fuel economy improvement incurred by different velocity prediction algorithms, the UDDS 



22 

 

cycle is simulated. The corresponding SOC curves based on different prediction algorithms are shown in Fig. 15. 

As can be summarized, all the curves can converge to the low threshold when the trip ends, thereby manifesting 

the feasibility of MPC algorithm. Besides the curve regulated by the DP, all the other remaining curves remain 

almost the same. The engine operating points are plotted in Fig. 16. It can be easily found that there exists 

obvious difference in the working points between the two methods. The DP enables the engine to operate in 

more concentrate region, compared with the MPC algorithm. Definitely, DP can achieve the minimum cost, i.e., 

CNY 1.7, because of its global offline optimization capability. Table VIII lists the total cost in terms of different 

velocity prediction methods. Note that the fuel economy optimality is calculated through dividing the global DP 

result by the current cost based on the MPC algorithm with the specific speed predictor. Among all the MPC 

methods, the fusion velocity prediction algorithm leads to the best results: 91.18%, which highlights that the 

proposed prediction algorithm also has a significant effect on improvement of PHEV operation economy, thus 

proving the contribution of more precise speed prediction by the proposed fusion algorithm. 
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Fig. 16. Simulation results of operation points of engine 

Table VIII Energy consumption under different forecasting models 

Prediction models MC BP RBF Fusion 

Energy cost (CNY) 1.99 1.89 1.88 1.85 

Fuel economy optimality (%) 82.94 88.82 89.41 91.18 

V. CONCLUSION 

In this study, a novel prediction method of short-term driving condition is developed, which capitalizes 

the advantages of both Markov chain and artificial neural network. The proposed prediction model includes 

two main parts: a driving condition prediction module and a nonlinear fusion module. In the driving condition 

prediction module, one neural network and Markov chain are applied for primary velocity prediction. To avoid 

over-training of neural network, the principal component analysis is conducted to simplify the dimension of 

inputs. In the nonlinear fusion module, the primary prediction results are fused by another neural network to 
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output the final prediction. The simulation results highlight that the prediction accuracy of the proposed fusion 

model with the parameters optimized by genetic algorithm respectively increases by 45.32%, 39.13%, 40.56%, 

and 9.75%, compared with those by the traditional Markov chain model, back propagation neural network, 

radial basis function neural network, and the fusion prediction model without optimization. In addition, a case 

study applied in energy management of plug-in hybrid electric vehicles verifies that the proposed prediction 

method can contribute more to the improvement of vehicle’s operation economy, compared with other 

conventional velocity prediction algorithms.  

Our next step work will be focused on applying the proposed fusion prediction method to further improve 

the fuel economy of hybrid electric vehicles. The actual hardware-in-the-loop and real vehicle validation will 

also be conducted in the future. 
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