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1 Introduction

The competitive equilibrium with equal income of Varian (1974), also simply known as the

competitive division, is a prominent solution concept to division problems for private goods,

which satisfies several desirable theoretical and practical properties. Gale (1960), Eisenberg

(1961), and others show that, under a certain class of utility functions, the competitive

division of goods can be simply obtained by solving a maximization problem of the Nash

product function of the individuals’utilities. This result, which is often called the Gale-

Eisenberg theorem, has been recently extended by Bogomolnaia, Moulin, Sandomirskiy and

Yanovskaya (2017, 2019) to division problems of “mixed manna”, which contain both goods

and bads.1 They show that for a “positive”problem where the amount of the goods dom-

inates the amount of the bads (in the sense that individuals’utility profile when no one

receives anything is Pareto dominated by some feasible utility profiles), there is a unique

competitive division utility profile that maximizes the Nash product of individuals’utilities

over the set of feasible utility profiles. This result provides a striking link between a “physi-

cal”concept and a “welfarist”concept of fair division. For a “negative”problem, where the

utility profile when no one receives anything is not Pareto dominated by any feasible utility

profile, Bogomolnaia et al. (2017) show that any competitive division is a critical point of the

Nash product of individuals’disutilities over the Pareto frontier of feasible utility profiles.

As a consequence, while the link between physical and welfarist concepts is preserved in a

negative division problem, there could be multiple competitive divisions with distinct utility

profiles.

In this paper, we are interested in providing a non-cooperative game foundation for the

competitive division, thus providing a non-cooperative implementation mechanism for this

concept. For a positive problem, the Gale-Eisenberg theorem implies that the competitive

division utility profile is identical to the Nash (1950) bargaining solution, and there is a large

1We refer readers to their papers for many real-life division problems of mixed manna, such as dissolving
partnership, bankruptcy, and cost sharing.
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body of non-cooperative bargaining literature that implements the Nash bargaining solution,

such as Rubinstein (1982) and some others that we will discuss later. However, the same

cannot be said for the competitive divisions of a negative problem. Using the characterization

by Bogomolnaia et al. (2017) of the competitive divisions for negative problems, we introduce

a non-cooperative bargaining model to solve a negative problem. We show that a feasible

utility profile is a competitive utility profile if it is the limit of any convergent sequence of

Markov perfect equilibrium payoffs as bargaining friction vanishes.

The non-cooperative bargaining model that we study in this paper resembles the “al-

ternating offer” bargaining games that require unanimous agreement with an exogenous

probability of breakdown, as in Binmore et al. (1986). There are (potentially) infinitely

many periods, and in each period before a settlement is reached one player makes a proposal

in the set of feasible utility profiles, corresponding to a feasible division of the mixed manna.

There is no free disposal and all the manna must be allocated to the players. If the proposal

is accepted unanimously by the other players, then the problem is solved and the accepted

proposal is implemented. Otherwise, the bargaining game may break down with some ex-

ogenous probability. If the bargaining does not break down, another player will propose in

the following period.

The peculiarity of our model, compared to standard bilateral/multilateral bargaining

models, lies in the outcome in the case of exogenous breakdown after any standing offer is

rejected. Unlike in a positive problem, there are no “disagreement payoffs”that result from

perpetual disagreement, since not allocating the mixed manna is not a feasible option in

a negative problem. After bargaining exogenously breaks down, the proposing player will

take all the mixed manna and each responding player does not receive anything. How to

allocate the mixed manna after breakdown depends on the identity of the proposer who

made the latest rejected proposal. Note that, in a negative problem, receiving all the mixed

manna is the worst possible outcome for any player. Therefore, this player receives maximum

punishment for making a “wrong”offer.
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Even with a convex set of feasible utility profiles, our bargaining mechanism for a negative

problem has multiple subgame perfect equilibrium outcomes in general. We show that as

the probability of breakdown vanishes, the limit of a convergence sequence of Markov perfect

equilibrium payoffvectors is a competitive utility profile, but not vice versa. In this sense, our

bargaining mechanism provides a non-cooperative foundation for some competitive divisions

in negative problems.

This paper mainly contributes to the literature on how to support or implement var-

ious cooperative solutions non-cooperatively. Rubinstein (1982), Binmore et al. (1986)

provide several bilateral bargaining models where the unique subgame perfect equilibrium

converges to the Nash (1950) bargaining solution. Miyagawa (2002) introduces a four-stage

game model that implements a large class of two-person bargaining solutions in subgame

perfect equilibrium. Early studies, such as Chae and Yang (1994), show that multilateral

versions of the alternating-offer or random-proposer bargaining models typically have mul-

tiple subgame perfect equilibrium outcomes. However, there is a unique subgame perfect

equilibrium outcome in the multilateral bargaining model of Krishna and Serrano (1996) and

the multi-agent bilateral bargaining models of Suh and Wen (2006), and they all converge

to the Nash bargaining solution or the competitive division of the corresponding positive

division or bargaining problem due to the Gale-Eisenberg theorem. Britz et al. (2014) study

an action-dependent multilateral bargaining protocol where its stationary subgame perfect

equilibrium outcome also converges to the Nash bargaining solution or the competitive divi-

sion in a positive problem. More recently, Brügemann et al. (2019) examine a Rolodex game

to support the Shapley values of a general cooperative game. The competitive division and

the Nash rationing solution are just two of many solutions for bankruptcy and taxation prob-

lems, see Thomson (2015) on a recent update on this vast literatures. Researchers also seek

how to support other cooperative solutions non-cooperatively, such as Aumann and Maschler

(1985) and Ashlagi et al.(2012), or how to solve a division problem non-cooperatively, such

as Stiglitz (2019), O’Neil (2009) and García-Jurado et al, (2006).
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The rest of this paper is organized as follows. Section 2 presents the competitive divisions

of bads and the main result of Bogomolnaia et al.(2017). In Section 3, we introduce a

non-cooperative bargaining model with probabilistic breakdown to solve a negative division

problem and establish the existence of a Markov perfect equilibrium in this mechanism. Our

main result is presented in Section 4: a feasible utility profile is a competitive profile if it is

the limit of a convergent sequence of Markov perfect equilibrium payoffs as the probability

of breakdown goes to zero. We demonstrate that a competitive profile may not be the limit

of Markov perfect equilibrium payoffs of our game model. Section 5 offers some concluding

remarks. All proofs are provided in the Appendix.

2 Preliminaries

A set of n ≥ 2 players, denoted by N = {1, . . . , n}, divide m commodities ω ∈ Rm+ among

themselves.2 An allocation, denoted by (z1, . . . , zn), is feasible if z1 + · · · + zn = ω, where

zi ≥ 0 denotes player i’s consumption bundle. For all i ∈ N , player i’s utility function ui(·)

is assumed to be strictly monotonically decreasing, continuous, concave, and homogenous of

degree 1. As we will focus on negative problems, where all the commodities are bads to all

the players, ui(zi) ≤ ui(0) for all i ∈ N and for all zi ∈ Rm+ .

A feasible allocation (z1, . . . , zn) is a competitive division if there exists a negative price

vector p� 0 such that for all i ∈ N ,3

zi ∈ di(p) = arg maxui(yi) subject to yi ∈ B(p) = {y ≥ 0 | p · y ≤ −1} , (1)

zi ∈ arg min p · y subject to y ∈ di(p). (2)

Condition (1) is the usual demand property, while (2) requires that every player i ∈ N

spends as little as possible in her demand set at the competitive division bundle zi. Note

that the budget set B(p) = {y ≥ 0 | p · y ≤ β} here is given in a normalized form with p� 0

2Our model description focuses on a negative problem, where the utility profile when no one receives
anything is not Pareto dominated by any feasible utility profile, such as when all the commodities are bad to
all the players. The dimensionality of the commodity space is not particularly important. We refer readers
to Bogomolnaia et al (2017) for a more complete and detailed description of a general division problem.

3Here p = (p1, . . . , pm)� 0 means that pk < 0 for all k = 1, . . . ,m.
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and β = −1 for a negative problem, and with p � 0 and β = 1 for a positive problem. In

a negative problem where all commodities are bads, every player prefers consuming less to

more and the value of a consumption bundle is a negative number due to p � 0. So every

player maximizes her utility on a budget set that is different from the standard budget set

for goods.

A competitive division satisfies several desirable properties, such as effi ciency and non-

envy, even in the case when all the commodities are bads to all the players. Bogomolnaia et

al.(2017) provide a constructive method to show the existence of competitive division in a

general problem. Their characterization of a competitive division is given in terms of players’

utilities corresponding to a competitive division allocation, called a competitive utility profile

or simply a competitive profile. Accordingly, let

S =
{

(u1(z1), . . . , un(zn)) ∈ Rn− : z1 + · · ·+ zn = ω
}

(3)

denote the set of all feasible utility profiles. Due to the concavity and monotonicity of

players’utility functions and ω > 0, set S is a convex subset of Rn−and u(0) /∈ S. Since all

competitive allocations are Pareto effi cient, we can focus on the set of feasible and Pareto

effi cient utility profiles, denoted by

P (S) = {s ∈ S : s� s′ ⇒ s′ /∈ S}.

Unlike a positive division problem, a negative problem could be multiple competitive allo-

cations for bads, and hence multiple competitive utility profiles. By convention, we often

denote a utility profile as s = (si, s−i) for all i ∈ N .

We now restate the following key characterization of Bogomolnaia et al.(Theorem 1,

2017) for the competitive utility profiles in a negative problem for later reference. Given an

arbitrary smooth function g(·) and a closed convex set C, x ∈ C is called a critical point

of function g(·) in set C if the upper contour set of function g(·) at x has a supporting

hyperplane that also supports set C. Note that any local maximum or a local minimum of
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function g(·) on the boundary of set C must be a critical point of function g(·) in set C, but

not vice versa.

Lemma 1 A feasible allocation z is a competitive allocation if and only if its corresponding

utility profile s = (u1(z1), . . . , un(zn)) ∈ P (S) such that s� u(0) and s is a critical point of

the Nash product function
∏

i∈N |xi − ui(0)| in set S.

Lemma 1 implies that any local maximum or local minimum of the Nash product function∏
i∈N |xi − ui(0)| over the set of Pareto effi cient utility profiles P (S) must be a competitive

utility profile. However, a later example demonstrates that a competitive utility profile

may be neither a local maximum nor a local minimum of the Nash product function on

P (S). At any local maximum or local minimum of the Nash product function on P (S), the

corresponding contour set of the Nash product function
∏

i∈N |xi − ui(0)| is tangent to P (S)

either from above or from below locally around the competitive utility profile, but these two

sets cannot cross each other. Lemma 1 inspires the non-cooperative bargaining model that

we will study next to solve a negative division problem non-cooperatively, where the limit

of any convergent sequence of Markov perfect equilibrium payoffs is a competitive utility

profile.

3 A Non-Cooperative Bargaining Model to Divide Bads

In this section, we introduce and study a non-cooperative bargaining game where the players

take turns to propose how to divide the bads ω among themselves; or, equivalently, to achieve

a feasible utility profile in S. There are potentially infinitely many periods, denoted by

t = 1, 2, . . .. In period t = 1, player 1 proposes a feasible allocation with utility profile,

denoted by s1 ∈ S. Then all the other n−1 players simultaneously decide whether to accept

or reject player 1’s proposal s1 ∈ S. If player 1’s proposal s1 is accepted unanimously, then

player 1’s proposal s1 will be implemented immediately. Otherwise, the game will either

continue, with probability ρ ∈ (0, 1), to period 2 where player 2 will propose, or end with

probability 1 − ρ, in which case player 1 will receive all the bads ω and every other player
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will receive 0. In period t = kn + i for some non-negative integer k and i ∈ N , player i

proposes a feasible allocation with utility profile si ∈ S, and the other n− 1 players N\{i}

simultaneously decide whether to accept player i’s proposal si. Again, if player i’s proposal

si ∈ S is accepted unanimously by all the other n − 1 players, then si will be implemented

immediately in period t. Otherwise, i.e., after player i’s proposal is rejected by some of the

other players, there are two possible continuations similar to those after period 1. With

probability ρ ∈ (0, 1), the game will continue to the following period t + 1 where player

i + 1 (or player 1 if i = n) will make a new proposal st+1 ∈ S, and with probability 1 − ρ

the game will be terminated exogenously. In the latter case, every responding player j 6= i

will receive nothing with payoff uj(0), while the proposing player i will receive all the bads

ω with payoff ui(ω) < 0. In other words, in this game the proposing player bears all the

responsibility if he makes a “wrong” proposal that is rejected. Considering that ui(ω) is

player i’s worst “possible”payoff when player i takes all the bads ω, we can focus on the

utility profile s ∈ S such that si ∈ [ui(ω), ui(0)] for all i ∈ N . Note that any utility profile

after the game is terminated exogenously is always feasible and effi cient because only one

player will receive all the bads ω. More specifically, after player i’s proposal is rejected and

the game is terminated, the utility profile is

(u1(0), . . . , ui(ω), . . . , un(0)) ∈ P (S).

The model described so far is a well-defined non-cooperative game of complete informa-

tion. Histories and strategies are defined in the usual fashion. For example, a history at the

beginning of a period consists of all past rejected proposals, the identities of those who re-

jected those proposals, etc. The identity of the proposing player in a period is deterministic;

it does not depend on the history, but what proposal the proposing player makes and how

the other responding players respond to a proposal could all depend on the entire history

prior to the current period. After any finite history where no settlement has been reached

and the game has not been terminated exogenously, a strategy profile specifies the proposing

player’proposal and the responding players’responses to all the possible proposals. Players’
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payoffs in such a dynamic game are assumed to be their expected payoffs, because of the

possibility of probabilistic termination. For example, from an outcome with no agreement

in the first period and an agreement s∗ ∈ S in the second period if the bargaining is not

terminated in the first period, player 1’s expected payoff is given by (1− ρ)u1(ω) + ρs∗1 and

every other player j 6= 1 has an expected payoff of (1− ρ)uj(0) + ρs∗j . There is no time

discount between periods, but having a time discount will not change our analysis and result

much. Completely specifying all players’expected payoffs from an arbitrary outcome can be

not only extremely involved but also unnecessary for our main analysis.

As in most non-cooperative multilateral bargaining models with either convex or non-

convex sets of possible agreements, our bargaining game also has multiple subgame perfect

equilibria in general. As we have learned from the non-cooperative bargaining literature,

subgame perfect equilibria in these models can be involved with complicated strategies,

including possible delays in reaching an agreement/settlement.4 Given our main objective

in this paper, we will focus on a simple class of Markov strategy profiles where all players’

behavioral strategies in any period depend on the identity of the current proposing player

only. Viewing this game as an implementation mechanism, this can be considered as a

design feature. Accordingly, a Markov strategy profile can be described by n proposals

{s1, . . . , sn} ⊂ S, where player i will always propose si ∈ S whenever player i is the proposing

player, and accept any player j’s proposal if and only if his utility in player j’s proposal is

not less than sji for all j 6= i. Consequently, player i’s proposal si will be accepted by all

the other players N\ {i}. Note that these n equilibrium proposals depend on the value of

ρ ∈ (0, 1). A subgame perfect equilibrium is a Markov perfect equilibrium (MPE) if the

equilibrium strategy profile is a Markov strategy profile as defined.

We now derive the necessary and suffi cient conditions for a Markov strategy profile

{s1, . . . , sn} ⊂ S to be a subgame perfect equilibrium and establish the existence of a MPE.

4Without time discount, delay in reaching an agreement does not lead to any waste in allocating the
estate. However, delay is still Pareto ineffi cient due to players’risk aversion.
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For exposition purposes, denote fi(·) : ×j 6=i [uj(ω), uj(0)]→ [ui(ω), ui(0)] for all i ∈ N as

fi(s−i) = max si subject to

(si, s−i) ∈ {s ∈ ×j∈N [uj(ω), uj(0)] : s ≤ s′ for some s′ ∈ S} .

When the other players receive s−i, player i could obtain at most fi(s−i). Observe that

fi(s−i) = ui(0) when sj ≤ uj(zj) for j 6= i and
∑

j 6=i zj ≥ ω, and utility profile (fi(s−i), s−i)

is Pareto effi cient, i.e., (fi(s−i), s−i) ∈ P (S), when sj = uj(zj) for j 6= i and
∑

j 6=i zj ≤ ω.

Because S is closed and convex, every fi(·) is well-defined, weakly monotonically decreasing,

concave, and continuous for all s−i ∈ ×j 6=i [uj(ω), uj(0)].

The following proposition provides the necessary and suffi cient conditions for a MPE:

Proposition 1 The Markov strategy profile with proposals {s1, . . . , sn} ⊂ S constitutes a

subgame perfect equilibrium, i.e., a MPE, if and only if for all i and j ∈ N ,

sii = fi(s
i
−i) and sij = (1− ρ〈j−i〉)uj(0) + ρ〈j−i〉sjj, (4)

where 〈j − i〉 =

 j − i, if j − i ≥ 0,

n+ j − i, otherwise.
(5)

Note that 〈j − i〉 defined by (5) is the number of periods that player j will propose after

player i’s proposal is rejected. The second equation in (4), sij = (1− ρ〈j−i〉)uj(0) + ρ〈j−i〉sjj,

gives player j ’s expected continuation payoff if player j rejects player i’s proposal. Also

note that, as an important implication of the fi(·) function, equation (4) implies that either

si ∈ P (S) or sii = ui(0). In such a MPE, the proposing player i will propose utility profile si

such that every other player j receives his expected continuation payoff and player i claims

the remainder sii = fi(s
i
−i), as stated in (4). In the proof of Proposition 1, we will show

that in any period where player i proposes, player i will indeed propose si and every player

j ∈ N\{i} will accept any player i’s proposal if and only if player j’s utility in player i’s

proposal is not less than sij.

Our next proposition establishes the existence of a solution (a fixed point) to equation

system (4), and hence the existence of a MPE in our non-cooperative bargaining game. In
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addition, Proposition 2 shows that in any MPE, every player i ∈ N must receive a payoff

that is between ui(ω) and ui(0) for all ρ ∈ (0, 1).

Proposition 2 Equation system (4) admits at least one solution. Moreover, at any solution

{s1, . . . , sn} to (4), we have ui(ω) < sii < ui(0) and si ∈ P (S) for all i ∈ N and for all

ρ ∈ (0, 1).

Although Proposition 2 establishes the existence of a MPE as a fixed point to (4), the

uniqueness of a MPE is not guaranteed. As matter of a fact, there could be multiple MPE

outcomes as our later examples demonstrate.

4 Competitive Utility Profiles as Limits of MPE Payoffs

In this section, we show that the limit of any convergent sequence of MPE payoffs in our non-

cooperative game is a competitive utility profile as the probability of exogenous breakdown

goes to zero. For expositional simplicity and without loss of generality, we can normalize a

problem so that ui(0) = 0 for all i ∈ N . For a normalized problem, Lemma 1 states that

s ∈ P (S) is a competitive profile if and only if s � 0 and s is a critical point of the Nash

product function
∏

i∈N |xi| in set S. Therefore, the most relevant part of the utility profiles

to our analysis is P (S) ∩ Rn−.

Recall that a Markov strategy profile can be represented by the n players’MPE proposals

{s1, . . . , sn}. Proposition 1 asserts that these n proposals form a MPE if and only if

(
s1, . . . , sn

)
=


s1

1 ρn−1s1
1 · · · ρs1

1

ρs2
2 s2

2 ρ2s2
2

...
. . .

...

ρn−1snn ρn−2snn · · · snn

 . (6)

Because of (6), we can simply describe a MPE strategy profile by n players’“demands”

{s1
1, . . . , s

n
n} in a MPE, because these demands uniquely determine all the other utilities in

the n equilibrium proposals.
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Our next proposition asserts that as the probability of continuation goes to one, the limit

of any convergent sequence of MPE payoffs is a competitive utility profile in the correspond-

ing division problem.

Proposition 3 Suppose that MPE payoff vector s1 ∈ P (S), as player 1 proposes at the

beginning of the game, converges to s∗ ∈ P (S) as ρ → 1. Then s∗ is a competitive utility

profile.

Similar to the proof that the unique subgame perfect equilibrium in the alternating-offer

bargaining game of Rubinstein (1982) converges to the Nash bargaining solution, the proof of

Proposition 3 relies on the fact that all the equilibrium proposals of the same MPE have the

same Nash product. As ρ→ 1, all these MPE proposals have the same limit, which must be

a local maximum or local minimum, and hence a critical point, of the Nash product function

over set P (S). By Lemma 1, the limit of these MPE proposals must be a competitive utility

profile.

Recall Lemma 1 and the properties of a critical point, a feasible profile s∗ is a competitive

utility profile if it is a local solution to

max /min
∏
j∈N
|sj| subject to s ∈ P (S).

This implies that P (S) intersects that the contour set
{
s ∈ Rn− :

∏
j∈N |sj| = α

}
when α is

suffi ciently close to
∏

j∈N |s∗j | from below for a local maximum or from above for a local

minimum. Next, we will use these properties to show that any local maximum or local

minimum of the Nash product function on P (S) can be the limit of MPE payoffs when there

are two players. Let Bε(s) = {s′ : ‖s− s′‖ < ε} denote the ε-open ball centered at s.

Proposition 4 Consider a competitive profile s∗ of a 2-player division problem with feasible

utility profiles S. If there exist ε̄ > 0 such that

s∗1s
∗
2 ≥ (or ≤) s1s2 for all s ∈ Bε̄(s

∗) ∩ P (S), (7)

then, for all ε < ε̄, there is a MPE with payoff in Bε(s
∗) ∩ P (S) for some ρ ∈ (0, 1).

12



The proof of Proposition 4 is constructive by utilizing Lemma 1. Such a competitive

utility profile, either a local maximum or a local maximum of the Nash profile function, can

be approximated by a MPE payoff vector in the sense that a smaller ε > 0 requires a higher

probability of continuation ρ ∈ (0, 1).

To illustrate Propositions 3 and 4, we reconsider an example with two bads of Bogomol-

naia et al.(2017, page 1856). The set of feasible utility profiles is the convex hull of

(−4, 0), (−1,−1), (−3,−2), and (0,−3).

In this example, there are three competitive utility profiles, local minimum
(
−2,−2

3

)
, local

maximum (−1,−1), and local minimum
(
−3

4
,−3

2

)
, as shown in the following Figure 1:

4 3 2 1 0

3

2

1

0

Fig. 1. Feasible utility profiles and three competitive profiles.

When ρ is suffi ciently close to 1, there are three MPE outcomes in our non-cooperative

bargaining game due to Proposition 1. One MPE is determined by two players’demands

s1
1 = − 4

ρ+1
and s2

2 = − 4
3ρ+3

. The corresponding MPE payoff
(
− 4
ρ+1

,− 4ρ
3ρ+3

)
(when player

1 proposes) converges to the competitive profile
(
−2,−2

3

)
as ρ → 1. Players’ demands

in the second MPE are s1
1 = − 9ρ−4

6ρ2−1
and s2

2 = − 8ρ−3
6ρ2−1

. The corresponding MPE payoff(
− 9ρ−4

6ρ2−1
,−8ρ2−3ρ

6ρ2−1

)
converges to the competitive utility profile (−1,−1) as ρ → 1. Lastly,

players’demands in the third MPE are s1
1 = − 3

2ρ+2
and s2

2 = − 3
ρ+1
, and the corresponding

MPE payoff
(
− 3

2ρ+2
,− 3ρ

ρ+1

)
converges to the competitive utility profile

(
−3

4
,−3

2

)
as ρ→ 1.

13



Notice that second MPE always exists for all ρ ∈ (0, 1), while the first and third MPEs exist

only when ρ is suffi ciently close to 1.

This example demonstrates two interesting facts: First, when a problem has multiple

competitive utility profiles, our bargaining model will have multiple MPE outcomes when ρ

is suffi ciently close to 1. Second, as the probability of continuation ρ goes to one, the limit of

any convergent sequence of MPE outcomes of the bargaining model is a competitive utility

profile of the underlying problem.

On the other hand, however, a competitive utility profile may not be approximated by

any MPE outcome. To conclude this section, we present such an example.5 There are two

players {1, 2} and two commodities {a, b} with one unit each. Two players’utility functions

are given by, respectively,

u1(a1, b1) = −2a1 − 2b1 and u2(a2, b2) = −7

3
a2 −

2

3
b2.

Consequently, the set of feasible utility profile S is the convex hull of

(−4, 0), (−2,−7

3
),

(
−2,−2

3

)
, and (0,−3),

as illustrated in Figure 2.

4 3 2 1 0

3

2

1

0

Fig. 2. Two competitive profiles but a unique limit of MPE utility profile.

5We would like to thank a referee for helping us to perfect this example.
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One can verify that there are two competitive allocations 9
14

0

5
14

1

 and

 1 0

0 1


with competitive prices

(
−14

9
,−4

9

)
and (−1,−1), respectively. The corresponding competi-

tive utility profiles are
(
−9

7
,−3

2

)
as marked by a point and

(
−2,−2

3

)
as marked by a box in

Figure 2. Note that competitive profile
(
−9

7
,−3

2

)
is a local minimum of the Nash product

function on the Pareto frontier, but competitive profile
(
−2,−2

3

)
is neither a local maximum

nor a local minimum of the Nash product function on the Pareto frontier of set S.

The bargaining model based on this negative problem has a unique MPE for all ρ ∈ (0, 1)

based the necessary and suffi cient conditions of Proposition 1. Depending on the value of

ρ ∈ (0, 1), the equilibrium proposals may be on the two linear segments of the Pareto

frontier of S when ρ is less than 2
7
, or on the same linear segment when ρ is greater 2

7
.

More specifically, for ρ ∈ (0, 2
7
], the two players’demands in this unique MPE are −18ρ−8

7ρ2−2

and −28ρ−18
21ρ2−6

, respectively. For ρ ∈ (2
7
, 1), however, the two players’equilibrium demands

are − 18
7ρ+7

and − 3
ρ+1
, respectively. As ρ → 1, this unique MPE utility profile converges

to the competitive profile
(
−9

7
,−3

2

)
. This MPE profile skips the competitive utility profile(

−2,−2
3

)
as ρ passes 2

7
. Again, this example demonstrates that the converse statement of

Proposition 3 is not true.

5 Concluding Remarks

Classical literature (Gale, 1960; Eisenberg, 1961) has shown a striking correspondence be-

tween a “physical”solution concept to division problems for goods, the competitive division,

and a welfarist solution concept, the maximization of the Nash product in utility space.

Bogomolnaia et al. (2017, 2019) have recently extended the analysis to the case of “bads”

(mixed manna). While in such a case, the link between physical and welfarist concept is re-

tained, it is somewhat more complicated due to the presence of multiplicities. This case poses
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special challenges for the non-cooperative foundation, or implementation, of the competitive

divisions when all commodities are bads, which is the focus of this paper.

We proposed a model that resembles the classical alternating-offer bilateral bargaining

game with exogenous probability of breakdown. In this context, however, the outcome

“perpetual disagreement” is not a feasible outcome: the bads must be allocated. One key

novelty we introduced is that a player who makes a proposal that leads to breakdown will

have to internalize all costs for the failure to reach an agreement. More specifically, the

proposer will be assigned all the bads in the case his proposal is not accepted unanimously

by the other players. Therefore, every player needs to balance the risk of a large punishment

for not satisfying everybody and the desire for a higher share when making a proposal. This

game implements some competitive divisions in the sense that, with a vanishing breakdown

probability, all (Markov perfect) equilibrium payoffs approximate competitive profiles.

It is worthwhile to notice that we proved Proposition 4 by construction for the case of

n = 2 only. Our constructive approach is not applicable to generalize Proposition 4 to the

problems with more than two players. With more than two players, even for a competitive

utility profile that locally maximizes or minimizes the Nash product on the Pareto frontier

of feasible profiles, there are infinite effi cient profiles in any neighborhood of the competitive

profile that have the same Nash product.

Appendix

Proof of Proposition 1. In the bargaining game where the players rotate in making

proposals, 〈j − i〉 defined by (5) is the number of periods that player j will propose after

player i’s proposal is rejected. According to (4) and the strategy profile, sij is player j’s

expected continuation payoffif player i’s proposal si is rejected in the current period. Observe

that after any of player i’s proposal (not necessarily player i’s equilibrium proposal si) is
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rejected, player j’s expected continuation payoff is equal to

(1− ρ)uj(0) + ρsi+1
j = (1− ρ)uj(0) + ρ

[
(1− ρ)uj(0) + ρsi+2

j

]
= · · · = (1− ρ〈j−i〉)uj(0) + ρ〈j−i〉sjj,

because if the bargaining is ever terminated before player j proposes, which will happen with

probability 1−ρ〈j−i〉, player j will always receive uj(0). With probability ρ〈j−i〉, player j will

proposal sj that will be accepted by the other players 〈j − i〉 periods later. Therefore, it is

sequentially rational for player j to accept any of player i’s proposal if and only if player j’s

payoff in the proposal is not less than sij = (1− ρ〈j−i〉)uj(0) + ρ〈j−i〉sjj as stated in (4).

Now we show that whenever player i proposes, player i will propose si ∈ P (S) as defined

in (4) rather than demand more than sii for himself in his proposal. Suppose that player i

deviates from this Markov strategy profile by demanding more than sii. Because s
i ∈ P (S),

player i will has to offer less to some of the other players than those in si, and such a proposal

will be rejected by these players. According to the bargaining model, after player i’s proposal

is rejected, his expected continuation payoff will be

(1− ρ)ui(ω) + ρsi+1
i (A.1)

because with probability 1− ρ, the game will be terminated after which player i will receive

ui(ω), and with probability ρ, player i + 1 will propose in the following period from which

player i will receive si+1
i . On the other hand, if player i proposes si as prescribed by the

Markov strategy profile, player i will receive

sii = fi(s
i
−i) = fi

(
(1− ρ)u−i(0) + ρsi+1

−i
)
≥ (1− ρ)fi (u−i(0)) + ρfi

(
si+1
−i
)
, (A.2)

due to the concavity of fi(·). Notice that fi (u−i(0)) = ui(ω) and

si+1 = (si+1
i , si+1

−i ) ∈ P (S) =⇒ si+1
i ≤ fi

(
si+1
−i
)
.

(A.1) and (A.2) together imply that it is sequentially rational for player i to propose exactly

si, as given in (4), to the other players when player i proposes. We can then conclude that

(4) provides both the necessary and suffi cient conditions for a MPE. �
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Proof of Proposition 2. For all i ∈ N , first observe that continuous function fi(·) maps

from ×j 6=i [uj(ω), uj(0)] into [ui(ω), ui(0)]. We can rewrite condition (4) as

sii = fi

({
(1− ρ〈j−i〉)uj(0) + ρ〈j−i〉sjj

}
j 6=i

)
for all i ∈ N. (A.3)

Notice that sii does not appear on the right hand side of (A.3). Rewrite all these n functions

as F (·) : ×i∈N [ui(ω), ui(0)]→ ×i∈N [ui(ω), ui(0)], where

F
(
s1

1, . . . , s
n
n

)
≡


f1

({
(1− ρ〈j−1〉)uj(0) + ρ〈j−1〉sjj

}
j 6=1

)
f2

({
(1− ρ〈j−2〉)uj(0) + ρ〈j−2〉sjj

}
j 6=2

)
...

fn

({
(1− ρ〈j−n〉)uj(0) + ρ〈j−n〉sjj

}
j 6=n

)


is a continuous function that maps from convex and compact set ×i∈N [ui(ω), ui(0)] ⊂ Rn

into itself. By the Brower’s fixed point theorem, F (·) has, at least, a fixed point

(
ŝ1

1, . . . , ŝ
n
n

)T
= F

(
ŝ1

1, . . . , ŝ
n
n

)
∈ ×i∈N [ui(ω), ui(0)] ,

where (ŝ1
1, . . . , ŝ

n
n)
T denotes the transpose vector of (ŝ1

1, . . . , ŝ
n
n) in order to match function

F (·). Proposition 1 then implies that there is a MPE where player i will always propose ŝi,

where

ŝii = fi
(
(1− ρ〈1−i〉)u1(0) + ρ〈1−i〉ŝ1

1 . . . , ŝ
i
i, . . . (1− ρ〈n−1〉)un(0) + ρ〈n−i〉ŝnn

)
,

ŝji = (1− ρ〈j−i〉)uj(0) + ρ〈j−i〉ŝjj for j 6= i,

and player j will always accept player i’s proposal if and only if player j’s payoff in the

proposal is not less than ŝij = (1−ρ〈1−i〉)uj(0)+ρ〈j−i〉ŝjj. Note that any fixed point (s1
1, . . . , s

n
n)

of F (·) is not a feasible utility profile but it provides n feasible equilibrium proposals in the

same MPE by (4) and (5).

For the second part of this proposition, we prove by contradiction that ui(ω) < sii < ui(0)

for all i ∈ N . Note that u(0) = (u1(0), . . . , un(0)) /∈ S implies that point u(0) can never be
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a solution to (4). Without loss of generality, suppose that ŝ1
1 = u1(0) and ŝ2

2 < u2(0). Then

ŝj1 = u1(0) for all j ∈ N by (4). Notice that

ŝ1 = (u1(0), (1− ρ)u2(0) + ρŝ2
2, . . . , (1− ρn−1)un(0) + ρn−1ŝnn)

≥ (u1(0), ŝ2
2, . . . , (1− ρn−2)un(0) + ρn−2ŝnn) = ŝ2.

The last inequality implies that if player 2 proposes ŝ1 ∈ S instead of ŝ2 ∈ S, player 2’s

proposal ŝ1 ∈ S will be accepted by all other players and player 2 will receive (1−ρ)u2(0)+ρŝ2
2.

Because ŝ2
2 < u2(0), we have that for all ρ ∈ (0, 1),

(1− ρ)u2(0) + ρŝ2
2 > ŝ2

2,

which contradicts to the fact that {ŝ1, . . . , ŝn} is a set of MPE proposals. To conclude, we

must have that for all i ∈ N and for all ρ ∈ (0, 1), ŝii < ui(0) which implies that ŝi ∈ P (S),

and hence ŝii > ui(ω) due to ŝi ∈ P (S) and ŝij < ui(0). �

Proof of Proposition 3. For ρ ∈ (0, 1), let {s1, . . . , sn} be a set of MPE proposals that

support the MPE payoff s1 ∈ P (S), where player 1’s proposal s1 will be accepted in period

1. First note that these n MPE proposals are linearly independent because the determinant

of (6) is∣∣∣∣∣∣∣∣∣∣∣∣

s1
1 ρn−1s1

1 · · · ρs1
1

ρs2
2 s2

2 ρ2s2
2

...
. . .

...

ρn−1snn ρn−2snn · · · snn

∣∣∣∣∣∣∣∣∣∣∣∣

=

n∏
i=1

sii ·

∣∣∣∣∣∣∣∣∣∣∣∣

1 ρn−1 · · · ρ

ρ 1 ρ2

...
. . .

...

ρn−1 ρn−2 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
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= (1− ρn)n−1
n∏
i=1

sii ·

∣∣∣∣∣∣∣∣∣∣∣∣

1− ρn 0 · · · 0

ρ 1 0
...

. . .
...

ρn−1 ρn−2 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
(multiply the last row by ρk and

subtract it from the k-th row)

= (1− ρn)n
n∏
i=1

sii 6= 0,

due to the second part of Proposition 2, i.e., sii < 0 for all i ∈ N . Because {s1, . . . , sn} are

linearly independent, they span a unique hyperplane in Rn. For a given ρ ∈ (0, 1), denote

the normalized norm vector of this unique hyperplane by w(ρ) ∈ ∆n. Since the unit simplex

∆n is compact, without loss of generality, assume that w(ρ) → w∗ ∈ ∆n as ρ → 1. By (6),

we have that for all i ∈ N , si → s∗ as ρ → 1. Because si ∈ P (S), we have s∗ ∈ P (S) and

the hyperplane w∗ · s = w∗ · s∗ supports set S at s∗. One the other hand, note that these n

MPE proposals have the same Nash product: For all i ∈ N , we have
n∏
j=1

∣∣sij∣∣ = ρ1+2+···+(n−1)
∣∣s1

1 · · · snn
∣∣ .

Hence, hyperplane w∗ ·s = w∗ ·s∗ also supports contour set
{
s ∈ Rn− :

∏n
j=1 |sj| =

∏n
j=1

∣∣s∗j ∣∣}
at s∗, from which we can conclude that s∗ is a competitive profile due to Lemma 1.

Observe that given ρ ∈ (0, 1), these n MPE proposals are uniquely determined by the n

diagonal elements of the n × n matrix of (6). Accordingly, we can denote a MPE strategy

profile by the n players’utility “demands”in their equilibrium proposals for simplicity. �

Proof of Proposition 4. Suppose that a competitive utility profile s∗ ∈ P (S) maximizes

the Nash product |s1s2| within Bε̄(s
∗) ∩ S as stated in (7). Then for all ε < ε̄, s∗ must

also maximize the Nash product |s1s2| within Bε(s
∗)∩ P (S). In what follows, we show that

Bε(s
∗) ∩ P (S) must contain, at least, two distinct Pareto effi cient utility profiles that have

the same Nash product; say {s1, s2} ⊂ Bε(s
∗) ∩ P (S) such that s1

1s
1
2 = s2

1s
2
2.

For the existence of s1 and s2, we need to consider two cases. First, if s∗ is not a unique

local maximum point to the Nash product, then we can choose two different maximum points
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as s1 and s2 (in fact, one of them can be s∗) of the Nash product in Bε(s
∗) ∩ P (S). Hence,

s1 and s2 must have the same Nash product. Second, if s∗ is the unique local maximum

point, then we must have s1 and s2 such that s1
1 < s∗1 < s2

1 and s
1
1s

1
2 = s2

1s
2
2 < s∗1s

∗
2. More

specifically, first arbitrarily choose ŝ1 and ŝ2 from Bε(s
∗) ∩ P (S) such that ŝ1

1 < s∗1 < ŝ2
1,

we know s∗1s
∗
2 > max {ŝ1

1ŝ
1
2, ŝ

2
1ŝ

2
2} because s∗ is the unique local maximum point of the Nash

product by (7). With loss of generality, suppose ŝ1
1ŝ

1
2 > ŝ2

1ŝ
2
2. Note that s1f2(s1) is a

continuous function of s1 ∈ [s∗1, ŝ
2
1] and

s∗1s
∗
2 = s∗1f2(s∗1) > ŝ1

1ŝ
1
2 > ŝ2

1ŝ
2
2 = ŝ2

1f2(ŝ2
1),

by the Intermediate Value Theorem, there exists s2
1 ∈ (s∗1, ŝ

2
1) such that s2

1f2(s2
1) = ŝ1

1ŝ
1
2. Now

choose s1 = ŝ1 and s2 = (s2
1, f2(s2

1)) ∈ Bε(s
∗) ∩ P (S). Then, s1 and s2 have the same Nash

product by construction.

To complete this proof, we show that the so-selected feasible and effi cient profiles s1 and

s2 ∈ Bε(s
∗) ∩ P (S) form a set of MPE proposals in our game for some ρ ∈ (0, 1). Because

s1
1 < s2

1 < 0, define ρ = s2
1/s

1
1 ∈ (0, 1), and hence we have s2

1 = ρs1
1. Recall that s

1 and s2

have the same Nash product,

s1
1s

1
2 = s2

1s
2
2 = ρs1

1s
2
2 ⇒ s1

2 = ρs2
2.

Proposition 1, or equivalently (6), implies that s1 and s2 form a set of MPE proposals in our

game with ρ = s2
1/s

1
1. Note that as ε is closer to 0, s

2
1 and s

1
1 are closer to each other, and so

ρ is closer to 1. By construction, both s1 and s2 are in Bε(s
∗) ∩ P (S) for ε ∈ (0, ε̄).

The proof for the case when s∗ is a local minimum point of (7) is similar and hence is

omitted here. �
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