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EIGENFUNCTION EXPANSIONS OF ULTRADIFFERENTIABLE

FUNCTIONS AND ULTRADISTRIBUTIONS. III. HILBERT

SPACES AND UNIVERSALITY

APARAJITA DASGUPTA AND MICHAEL RUZHANSKY

Abstract. In this paper we analyse the structure of the spaces of smooth type
functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the
research in our papers [4] and [5]. We prove that these spaces are perfect sequence
spaces. As a consequence we describe the tensor structure of sequential mappings
on the spaces of smooth type functions and characterise their adjoint mappings. As
an application we prove the universality of the spaces of smooth type functions on
compact manifolds without boundary.
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1. Introduction

The present paper is a continuation of our papers [4] and [5]. In [5], we analysed
the structure of the spaces of coefficients of eigenfunction expansions of functions
in Komatsu classes on compact manifolds. We also described the tensor structure
of sequential mappings on spaces of Fourier coefficients and characterised their ad-
joint mappings. In particular, these classes include spaces of analytic and Gevrey
functions, as well as spaces of ultradistributions, dual spaces of distributions and
ultradistributions, in both Roumieu and Beurling settings. In another work, [4], we
have characterised Komatsu spaces of ultradifferentiable functions and ultradistri-
butions on compact manifolds in terms of the eigenfunction expansions related to
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positive elliptic operators. Here we note that, using properties of the elliptic opera-
tors and the Plancherel formula one can get such type of characterisation of smooth
functions in terms of their Fourier coefficients. For example, if E is a positive ellip-
tic pseudo-differential operator on a compact manifold X without boundary and λj

denotes its eigenvalues in the ascending order, then smooth functions on X can be
characterised in terms of their Fourier coefficients:

f ∈ C∞(X) ⇔ ∀N ∃CN : |f̂(j, l)| ≤ CNλ
−N
j for all j ≥ 1, 1 ≤ l ≤ dj , (1.1)

where f̂(j, l) =
(
f, elj

)
L2

with elj being the lth eigenfunction corresponding to the

eigenvalue λj (of multiplicity dj). Such characterisations for analytic functions were
obtained by Seeley in [25], with a subsequent extension to Gevrey and, more generally,
to Komatsu classes, in [4]. The results obtained in [5] do not include the cases of
smooth functions on compact manifolds. We will extend the results in [5] to the spaces
of smooth functions. Moreover in this work, we aim at discussing an abstract analysis
of the spaces of smooth type functions generated by basis elements of an arbitrary
Hilbert space. Considering an abstract point of view has an advantage that the results
will cover the analysis of smooth functions on different spaces like compact Lie groups
and manifolds. In particular, we introduce a notion of smooth functions generated
by elements of a Hilbert space H forming a basis. We will show that the appearing
spaces of coefficients with respect to expansions in eigenfunctions of positive self-
adjoint operators are perfect spaces in the sense of the theory of sequence spaces
(see, e.g., Köthe [11]). Consequently, we obtain tensor representations for linear
mappings between spaces of smooth type functions. Such discrete representations
in a given basis are useful in different areas of time-frequency analysis, in partial
differential equations, and in numerical investigations.
Using the obtained representations we establish the universality properties of the

appearing spaces. In [29], L. Waelbroeck proved the so-called universality of the space
of Schwartz distributions E(V ) with compact support on a C∞-manifold V, with the

δ-mapping δ : V → Ê(V ), that is, any vector valued C∞-mapping f : V → E, from

V to a sequence space E, factors through δ : V → Ê(V ) by a unique linear morphism

f̃ : Ê(V ) → E as f = f̃ ◦ δ. The universality of the spaces of Gevrey functions on the
torus has been established in [27]. As an application of our tensor representations,
we prove the universality of the spaces of smooth functions on compact manifolds.
Our analysis is based on the global Fourier analysis on arbitrary Hilbert spaces

using techniques similar to compact manifold which was consistently developed in
[6], with a number of subsequent applications, for example to the spectral properties
of operators [7], or to the wave equations for the Landau Hamiltonian [21]. The
corresponding version of the Fourier analysis is based on expansions with respect to
orthogonal systems of eigenfunctions of a self-adjoint operator. The non self-adjoint
version has been developed in [20], with a subsequent extension in [22].
The paper is organised as follows. In Section 2 we will briefly recall the construc-

tions leading to the global Fourier analysis on arbitrary Hilbert spaces and define the
smooth type function spaces.In Section 3 we very briefly recall the relevant definitions
from the theory of sequence spaces. In Section 4 we present the main results of this
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paper and their proofs. In Section 5 we prove the universality results for the smooth
functions on compact manifold.

2. Fourier Analysis on Hilbert Spaces

Let (H, || · ||H) be a separable Hilbert space and denote by

U := {ejl : ejl ∈ H, 1 ≤ l ≤ dj, dj ∈ N}j∈N

a collection of elements of H . We assume that U is a basis of the space H with the
property

(ejl, emn)H = δjmδln, j,m ∈ N and 1 ≤ l ≤ dj , 1 ≤ n ≤ dm,

where δjm is the Kroneckar delta, equal to 1 for j = m, and to zero otherwise. Also let
us fix a sequence of positive numbers Λ := {λj}j∈N such that 0 < λ1 ≤ λ2 ≤ λ3 ≤ ...,

and the series
∞∑

j=1

djλ
−s0
j < ∞ (2.1)

converges for some s0 > 0. For example, in a compact C∞ manifold X of dimension
n without boundary and with a fixed measure we have

∞∑

j=1

dj(1 + λj)
−q < ∞ if and only if q >

n

ν
,

where 0 < λ1 < λ2 < ... are eigenvalues of a positive elliptic pseudo-differential
operator E of an integer order ν, with Hj ⊂ L2(X) the corresponding eigenspace and

dj := dimHj, H0 := kerE, λ0 := 0, d0 := dimH0.

We associate to the pair {U ,Λ} a linear self-adjoint operator E : H → H such that

Esf =

∞∑

j=1

dj∑

l=1

λs
j(f, ejl)ejl (2.2)

for s ∈ R and those f ∈ H for which the series converges in H. Then E is densely
defined since

Esejl = λs
jejl, 1 ≤ l ≤ dj , j ∈ N,

and U is a basis of H. Also we write Hj = span{ejl}1≤l≤dj , and so dimHj = dj. Then
we have

H =
⊕

j∈N

Hj.

The Fourier transform for f ∈ H is defined as

f̂(j, l) := (f, ejl)H, j ∈ N, 1 ≤ l ≤ dj .

We next define the following notions:

The spaces of smooth type functions are defined by

H∞
E :=

⋂

s∈R

Hs
E ,

3
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where

Hs
E :=

{
φ ∈ H :

∞∑

j=1

λ2s
j ||φ̂(j)||2

HS
< ∞

}
.

There exists a linear pairing

(f, g)Hs
E
= (Esf, E−sg)H,

for f ∈ Hs
E and g ∈ H−s

E . It is easy to see from this that every continuous linear
functional on Hs

E is of the form f → (f, g)Hs
E
for some g ∈ H−s

E , that is (Hs
E)

′ = H−s
E .

Then we denote the space of distributions as (H∞
E )′ =

⋃
s∈R

H−s
E .

3. Sequence spaces and sequential linear mappings

We briefly recall that a sequence space V is a linear subspace of

CZ = {a = (aj)|aj ∈ C, j ∈ Z}.

The dual V̂ (α-dual in the terminology of G. Köthe [11]) is a sequence space defined
by

V̂ = {a ∈ CZ :
∑

j∈Z

|fj||aj| < ∞ for all f ∈ V }.

A sequence space V is called perfect if
̂̂
V = V . A sequence space is called normal

if f = (fj)j∈N ∈ V implies |f | = (|fj |)j∈N ∈ V. A dual space V̂ is normal so that any
perfect space is normal.

A pairing 〈·, ·〉V on V is a bilinear function on V × V̂ defined by

〈f, g〉V =
∑

j∈Z

fjgj ∈ C,

which converges absolutely by the definition of V̂ .

Definition 3.1. φ : V → C is called a sequential linear functional if there exists
some a ∈ V̂ such that φ(f) = 〈f, a〉V for all f ∈ V. We abuse the notation by also
writing a : V → C for this mapping.

Definition 3.2. A mapping φ : V → W between two sequence spaces is called a
sequential linear mapping if

(1) φ is algebraically linear,

(2) for any g ∈ Ŵ , the composed mapping g ◦ φ : V → C is in V̂ .

4. Tensor representations and the adjointness

In this section we discuss α-duals of the spaces, tensor representations for mappings
between these spaces and their α-duals, and obtain the corresponding adjointness
theorem.
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4.1. Duals and α-duals.

In this section we first prove that the α-dual, Ĥs
E of the space Hs

E, where

Ĥs
E =



v = (vj)j∈N, vj ∈ Cdj ;

∞∑

j=1

dj∑

l=1

|φ̂(j, l)||vjl| < ∞, for all φ ∈ Hs
E



 ,

coincides with the space H−s
E .

Remark 4.1. Here we observe that,

w ∈ Ĥs
E =⇒

∞∑

j=1

λ
−s−s0/2
j ||wj||HS < ∞.

Indeed, let w ∈ Ĥs
E . Define φ̂(j, l) = λ

−(s+s0/2)
j for j ∈ N and 1 ≤ l ≤ dj.

Then ||φ̂(j)||HS = d
1/2
j λ

−s−s0/2
j . It follows from (2.1) and the definition of Hs

E that
φ ∈ Hs

E .

From the definition of the α-dual and using the inequality,

||wj||HS ≤ ||wj||l1,

we can then conclude that,

∞∑

j=1

λ
−s−s0/2
j ||wj||HS ≤

∞∑

j=1

λ
−s−s0/2
j ||wj||l1

=

∞∑

j=1

dj∑

l=1

|φ̂(j, l)||wjl| < ∞. (4.1)

Our first result is the identifiction of the topological dual with the α-dual.

Theorem 4.2. Ĥs
E = H−s

E .

Proof. First we will show H−s
E ⊆ Ĥs

E .

Let u ∈ H−s
E .

Then from the definition we have
∞∑
j=1

λ−2s
j ||û(j)||2

HS
< ∞. We denote for j ∈ N,

ujl = û(j, l) ∈ Cdj , l = 1, 2, ..., dj. Using the Cauchy-Schwartz inequality, for any
φ ∈ Hs

E we get

∞∑

j=1

dj∑

l=1

|φ̂(j, l)||ujl|

≤




∞∑

j=1

dj∑

l=1

λ2s
j |φ̂(j, l)|2




1/2


∞∑

j=1

dj∑

l=1

λ−2s
j |ujl|

2




1/2

< ∞, (by assumption).
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This implies that u ∈ Ĥs
E . We thus obtain H−s

E ⊆ Ĥs
E .

Next we will show that Ĥs
E ⊆ H−s

E .

By duality we know that (Hs
E)

′ = H−s
E . So it will be enough if we can prove Ĥs

E ⊆
(Hs

E)
′.

Let w ∈ Ĥs
E . Then for φ ∈ Hs

E we define

w(φ) =

∞∑

j=1

λ
−s0/2
j φ̂(j) · wj =

∞∑

j=1

λ
−s0/2
j

dj∑

l=1

φ̂(j, l)wjl.

Then using Remark 4.1 we have

|w(φ)| ≤
∞∑

j=1

λ
−s0/2
j ||φ̂(j)||HS||wj||HS

≤ C

∞∑

j=1

λ
−s0/2
j λ−s

j ||wj||HS < ∞,

(4.2)

since φ ∈ Hs
E . So w(φ) is well defined.

We next check that w is continuous. Let φm → φ as m → ∞ in Hs
E . This means,

||φm − φ||Hs
E
→ 0 as m → ∞, which implies λs

j||φ̂m(j)− φ̂(j)||HS → 0 as m → ∞, for
j ∈ N. So we have

||φ̂m(j)− φ̂(j)||HS ≤ Cmλ
−s
j ,

where Cm → 0 as m → ∞. Then

|w(φm − φ)| ≤

∞∑

j=1

λ
−s0/2
j ||φ̂m(j)− φ̂(j)||HS||wj||HS

≤ Cm

∞∑

j=1

λ
−(s+s0/2)
j ||wj||HS → 0,

as m → ∞. Hence w is continuous. This gives w ∈ (Hs
E)

′ = H−s
E . So we have

Ĥs
E ⊆ H−s

E , that implies Ĥs
E = H−s

E . �

From this we can have the following corollary.

Corollary 4.3. v ∈ Ĥs
E ⇐⇒

∞∑
j=1

λ−2s
j ||vj||

2
HS

< ∞ and vj ∈ Cdj , we denote vjl =

v̂jl = (v, ejl)H.

Remark 4.4. From the definition of H∞
E ,

v ∈ H∞
E ⇐⇒

∞∑

j=1

λ2s
j ||vj||

2
HS

< ∞, ∀s ∈ R,

where vj = v̂(j) ∈ Cdj .
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We next define the α-dual of the space Ĥ∞
E ,

Ĥ∞
E =



v = (vj), vj ∈ Cdj :

∞∑

j=1

dj∑

l=1

|vjl||φ̂(j, l)| < ∞, for all φ ∈ H∞
E



 .

Also observe that Ĥ∞
E =

⋂̂
s∈R

Hs
E =

⋃
s∈R

Ĥs
E =

⋃
s∈R

H−s
E . From this we can state the

following lemma and the proof will follow from our above observation.

Lemma 4.5. v ∈ Ĥ∞
E ⇐⇒ for some s ∈ R we have

∞∑
j=1

λ−2s
j ||vj||

2
HS

< ∞.

Next we proceed to prove that H∞
E is a perfect space. But before that let us prove

the following lemma.

Lemma 4.6. We have w ∈ [Ĥ∞
E ]∧ if and only if

∞∑
j=1

λ2s
j ||wj||

2
HS

< ∞ for all s ∈ R.

Proof. Let w ∈ [Ĥ∞
E ]∧. Let s ∈ R, we define

vjl = v̂(j, l) = λs
j , 1 ≤ l ≤ dj.

Then ||vj||
2
HS

= djλ
2s
j and so v ∈ H

−s−
s0
2

E because in view of (2.1) we have

∞∑

j=1

λ−2s
j λ−s0

j ||vj||
2
HS

=
∞∑

j=1

djλ
−2s
j λ−s0

j λ2s
j =

∞∑

j=1

djλ
−s0
j < ∞. (4.3)

Then v ∈ Ĥ∞
E =

⋃
s∈R

H−s
E which gives

∞∑
j=1

dj∑
l=1

|wjl||vjl| < ∞. Now we observe first that

∞∑

j=1

λ2s
j ||wj||

2
HS

≤

∞∑

j=1

djλ
2s
j ||wj||

2
HS

=
∞∑

j=1

||vj||
2
HS
||wj||

2
HS
, (4.4)

since dj ≥ 1.

We want to show that
∞∑
j=1

||vj||
2
HS
||wj||

2
HS

< ∞. To prove this we will use the following

identity:
n∑

i=1

a2i

n∑

l=1

b2l =

n∑

i=1

a2i b
2
i +

n∑

i=1

a2i

(
n∑

l=1

b2l − b2i

)
.

From this we get

dj∑

i=1

|wji|
2

dj∑

l=1

|vjl|
2 =

dj∑

i=1

|vji|
2|wji|

2 +

dj∑

i=1

|wji|
2




dj∑

l=1

|vjl|
2 − |vji|

2


 .
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We consider the second term of the above inequality, that is,

dj∑

i=1

|wji|
2




dj∑

l=1

|vjl|
2 − |vji|

2


 ≤

dj∑

i=1

|wji|
2

dj∑

l=1

|vjl|
2 ≤

dj∑

i=1

|wji|
2
(
Cλ2s+s0

j

)
,

since v ∈ H
−s−s0/2
E . Then we get

∞∑

j=1

||vj||
2
HS
||wj||

2
HS

≤

∞∑

j=1

dj∑

i=1

|wji|
2
(
|vji|

2 + Cλ2s+s0
j

)

≤

∞∑

j=1

dj∑

i=1

|wji|
2|uji|

2

≤ C




∞∑

j=1

dj∑

i=1

|wji||uji|




2

, (4.5)

where |uji|
2 = |vji|

2 + Cλ2s+s0
j . Now

∞∑

j=1

λ−2s−2s0
j ||uj||

2
HS

=

∞∑

j=1

λ−2s−2s0
j ||vj||

2
HS
+ C

∞∑

j=1

djλ
−2s−2s0
j λ2s+s0

j

≤ C ′
∞∑

j=1

λ−s0
j + C

∞∑

j=1

djλ
−s0
j < ∞, (4.6)

which implies that u ∈ H−s−s0
E , that is u ∈ Ĥ∞

E . This gives that

∞∑

j=1

dj∑

i=1

|wji||uji| < ∞, (4.7)

as w ∈ [Ĥ∞
E ]∧ and u ∈ Ĥ∞

E . So we have from (4.4), (4.5) and (4.7) that

∞∑

j=1

λ2s
j ||wj||

2
HS

< ∞.

Next we proceed to prove the opposite direction. Let

w ∈ Σ =
{
v = (vj)j∈N, vj ∈ Cdj

}

be such that
∞∑
j=1

λ2s
j ||wj||

2
HS

< ∞ for all s ∈ R. Let v ∈ Ĥ∞
E =

⋃
s∈R

H−s
E . In particular,

we have v ∈ H−s
E for some s ∈ R. We have to show

∞∑

j=1

dj∑

l=1

|wjl||vjl| < ∞.

8
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By the Cauchy-Schwartz inequality we have

∞∑

j=1

dj∑

l=1

|wjl||vjl| =

∞∑

j=1

dj∑

l=1

λs
j |wjl|λ

−s
j |vjl|

≤




∞∑

j=1

dj∑

l=1

λ2s
j |wjl|

2




1/2


∞∑

j=1

dj∑

l=1

λ−2s
j |vjl|

2




1/2

< ∞. (4.8)

It follows that w ∈ [Ĥ∞
E ]∧, completing the proof. �

Now using Remark 4.4 and Lemma 4.6 we can prove that the spaces H∞
E are perfect

spaces.

Theorem 4.7. H∞
E is a perfect space.

Proof. From the definition we always have H∞
E ⊆ [Ĥ∞

E ]∧. We will prove the other

direction. Let w ∈ [Ĥ∞
E ]∧, w = (wj)j∈N and wj ∈ Cdj .

Define

φ =
∞∑

j=1

dj∑

l=1

wjlejl.

The series is convergent and φ ∈ H since

||φ||H =

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

dj∑

l=1

wjlejl

∣∣∣∣∣∣

∣∣∣∣∣∣
H

≤




∞∑

j=1

dj∑

l=1

λs0
j |wjl|

2




1/2


∞∑

j=1

dj∑

l=1

λ−s0
j ||ejl||

2
H




1/2

=




∞∑

j=1

dj∑

l=1

λs0
j |wjl|

2




1/2(
∞∑

j=1

djλ
−s0
j

)1/2

< ∞, (4.9)

since w ∈ [Ĥ∞
E ]∧ and using (2.1) and Lemma 4.6.

Also from the property (ejl, emn)H = δjmδln, for j,m ∈ N and 1 ≤ l ≤ dj, 1 ≤ n ≤

dm, it is obvious that φ̂(j, l) = (φ, ejl)H = wjl. This gives ||φ̂(j)||HS = ||wj||HS. So by
Lemma 4.6,

w ∈ [Ĥ∞
E ]∧ =⇒

∞∑

j=1

λ2s
j ||wj||

2
HS

< ∞, for all s ∈ R

=⇒
∞∑

j=1

λ2s
j ||φ̂(j)||2

HS
< ∞,

and so from Remark 4.4 we have w ∈ H∞
E which implies that [Ĥ∞

E ]∧ ⊆ H∞
E holds. �
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4.2. Adjointness.

Before proving the adjointness theorem we first prove the following lemma,

Lemma 4.8. Let v ∈ H∞
E and w ∈ Ĥ∞

E . Then we have
∞∑

j=1

||vj||HS||wj||HS < ∞, (4.10)

where vj = (vjl)1≤l≤dj = v̂(j, l), and j ∈ N, and the same for w. Moreover, suppose

that for all v ∈ H∞
E , (4.10) holds. Then we must have w ∈ Ĥ∞

E . Also, if for all

w ∈ Ĥ∞
E , (4.10) holds, we have v ∈ H∞

E .

Proof. Let us assume first that
∞∑

j=1

||vj||HS||wj||HS < ∞,

for v ∈ H∞
E or w ∈ Ĥ∞

E . We observe that

dj∑

l=1

|vjl||wjl| ≤ ||vj||HS||wj||HS.

And so we have
∞∑

j=1

dj∑

l=1

|vjl||wjl| ≤
∞∑

j=1

||vj||HS||wj||HS < ∞.

Now we prove the other direction. Here we will use the following inequality,

n∑

i=1

|ai|

n∑

l=1

|bl| =

n∑

i=1

|ai||bi|+

n∑

i=1

|ai|

(
n∑

l=1

|bl| − |bi|

)
,

for any ai, bi ∈ R, yielding

||vj||HS||wj||HS ≤

dj∑

i=1

|wji|

dj∑

l=1

|vjl|

=

dj∑

i=1

|vji||wji|+

dj∑

i=1

|wji|




dj∑

l=1

|vjl| − |vji|


 . (4.11)

We consider the second term of the above inequality, that is,

dj∑

i=1

|wji|




dj∑

l=1

|vjl| − |vji|


 ≤

dj∑

i=1

|wji|
(
Cdjλ

−s
j

)
, ∀s ∈ R,

since v ∈ H∞
E and so v ∈ Hs

E, ∀s ∈ R. Then we get

∞∑

j=1

||vj||HS||wj||HS ≤

∞∑

j=1

dj∑

i=1

|wji|
(
|vji|+ Cdjλ

−s
j

)
. (4.12)
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Let |uji| = |vji|+ Cdjλ
−s
j , for i = 1, 2, ..., dj. Then

dj∑

i=1

|uji|
2 =

dj∑

i=1

|vji|
2 +

dj∑

i=1

C2d2jλ
−2s
j +

dj∑

i=1

2Cdjλ
−s
j |vji|

= ||vj||
2
HS
+ C2d3jλ

−2s
j + 2Cd2jλ

−2s
j . (4.13)

Then for any t > 0 we have, using (4.13), that
∞∑

j=1

λ2t
j ||uj||

2
HS

=

∞∑

j=1

λ2t
j ||vj||

2
HS
+ C2

∞∑

j=1

λ2t
j d

3
jλ

−2s
j + 2C

∞∑

j=1

λ2t
j d

2
jλ

−2s
j

≤
∞∑

j=1

λ2t
j ||vj||

2
HS
+ C2

∞∑

j=1

djλ
2t+2s0
j λ−2s

j

+2C

∞∑

j=1

λ2t+2s0
j λ−2s

j . (4.14)

Now since v ∈ H∞
E , in particular we can have 2s = 2t + 3s0, for any t > 0, which

gives, using (2.1)
∞∑

j=1

λ2t
j ||uj||

2
HS

≤
∞∑

j=1

λ2t
j ||vj||

2
HS
+ C2

∞∑

j=1

djλ
−s0
j + 2C

∞∑

j=1

λ−s0
j < ∞.

So u ∈ H∞
E . Then we have for w ∈ Ĥ∞

E ,

∞∑

j=1

||vj||HS||wj||HS ≤

∞∑

j=1

dj∑

i=1

|wji||uji| < ∞,

completing the proof. �

We next prove the adjointness theorem, also recalling Definition 3.1. Let H,G be
two Hilbert spaces and E and F be the operators defined by (2.2) corresponding to
the bases {ej}j∈N, {hk}k∈N, respectively, where dj = dimXj and gk = dimYk, and

Xj = span{ejl}
dj
l=1, Yk = span{hki}

gk
i=1. Also H =

⊕
j∈N

Xj and G =
⊕
k∈N

Yk. We denote

the corresponding spaces to the operators E and F in the Hilbert space H and G
respectively by H∞

E and G∞
F .

Theorem 4.9. A linear mapping f : H∞
E → G∞

F is sequential if and only if f is
represented by an infinite tensor (fkjli), k, j ∈ N, 1 ≤ l ≤ dj and 1 ≤ i ≤ gk such that

for any u ∈ H∞
E and v ∈ Ĝ∞

F we have

∞∑

j=1

dj∑

l=1

|fkjli||û(j, l)| < ∞, for all k ∈ N, i = 1, 2, ..., gk, (4.15)

and
∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

(
∞∑

j=1

fkjû(j)

)

i

∣∣∣∣∣∣
< ∞. (4.16)

11
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Furthermore, the adjoint mapping f̂ : Ĝ∞
F → Ĥ∞

E defined by the formula f̂(v) = v ◦ f

is also sequential, and the transposed matrix (fkj)
t represents f̂ , with f and f̂ related

by 〈f(u), v〉G∞

F
= 〈u, f̂(v)〉H∞

E
.

Let us summarise the ranges for indices in the used notation as well as give more
explanation to (4.16). For f : H∞

E → G∞
F and u ∈ H∞

E we write

Cgk ∋ f(u)k =
∞∑

j=1

fkjû(j) =
∞∑

j=1

dj∑

l=1

fkjlû(j, l), k ∈ N, (4.17)

so that
fkjl ∈ Cgk , fkjli ∈ C, k, j ∈ N, 1 ≤ l ≤ dj, 1 ≤ i ≤ gk, (4.18)

and

C ∋ (f(u)k)i = f(u)ki =

∞∑

j=1

dj∑

l=1

fkjliû(j, l), k ∈ N, 1 ≤ i ≤ gk, (4.19)

where we view fkj as a matrix, fkj ∈ Cgk×dj , and the product of the matrices has
been explained in (4.17).

Remark 4.10. Let us now describe how the tensor (fkjli), k, j ∈ N, 1 ≤ l ≤ dj,
1 ≤ i ≤ gk, is constructed given a sequential mapping f : H∞

E → G∞
F . For every

k ∈ N and 1 ≤ i ≤ gk, define the family vki =
(
vkij
)
j∈N

such that each vkij ∈ Cdj is

defined by

vkij (l) =

{
1, j = k, l = i,

0, otherwise.
(4.20)

Then vki ∈ Ĝ∞
F , and since f is sequential we have vki ◦ f ∈ Ĥ∞

E , and we can write
vki ◦ f =

(
vki ◦ f

)
j∈N

, where (vki ◦ f)j ∈ Cdj . Then for each 1 ≤ l ≤ dj we set

fkjli := (vki ◦ f)j(l), (4.21)

the lth component of the vector (vki ◦ f)j ∈ Cdj . The formula (4.21) will be shown in
the proof of Theorem 4.9. In particular, since for φ ∈ H∞

E we have f(φ) ∈ G∞
F , it

will be a consequence of (4.32) and (4.33) later on that

vki ◦ f(φ) = (f̂(φ))(k, i) =
∞∑

j=1

dj∑

l=1

fkjliφ̂(j, l), (4.22)

so that the tensor (fkjli) is describing the transformation of the Fourier coefficients
of φ into those of f(φ).

To prove Theorem 4.9 we first establish the following lemma.

Lemma 4.11. Let f : H∞
E → G∞

F be a linear mapping represented by an infinite
tensor (fkjli)k,j∈N,1≤l≤dj,1≤i≤gk satisfying (4.15) and (4.16). Then for all u ∈ H∞

E and

v ∈ Ĝ∞
F , we have

lim
n→∞

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

( ∑

1≤j≤n

fkj û(j)

)

i

∣∣∣∣∣∣
=

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

(
∞∑

j=1

fkjû(j)

)

i

∣∣∣∣∣∣
.

12
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Proof of Lemma 4.11. Let u ∈ H∞
E and u ≈ (û(j))j∈N . Define un :=

(
û(n)(j)

)
j∈N

by

setting

û(n)(j) =

{
û(j), j ≤ n,

0, j > n.

Then for any w ∈ Ĥ∞
E , we get 〈u − un, w〉H∞

E
→ 0 as n → ∞. This is true since∑∞

j=1 |û(j) · wj | < ∞ so that

∣∣〈u− un, w〉H∞

E

∣∣ ≤
∑

j≥n

|ûj · wj| → 0

as n → ∞. Now for any u ∈ H∞
E and v ∈ Ĝ∞

F and from (4.15) and (4.16) we have

〈f(u), v〉G∞

F
=

∞∑

k=1

(f(u))k · vk =

∞∑

k=1

(
∞∑

j=1

fkjû(j)

)
· vk

=

∞∑

k=1

∞∑

j=1

dj∑

ℓ=1

gk∑

i=1

fkjℓiû(j, ℓ)(vk)i =

∞∑

j=1

dj∑

ℓ=1

û(j, ℓ)

∞∑

k=1

gk∑

i=1

fkjℓi(vk)i

=

∞∑

j=1

dj∑

ℓ=1

û(j, ℓ)

∞∑

k=1

fkjℓ · vk =

∞∑

j=1

û(j) · (v ◦ f)j = 〈u, v ◦ f〉H∞

E
, (4.23)

where

Cdj ∋ (v ◦ f)j =

{
∞∑

k=1

fkjℓ · vk

}dj

ℓ=1

, j ∈ N,

and

v ◦ f = {(v ◦ f)j}
∞
j=1 .

Now we have the mapping f : H∞
E → G∞

F and v ∈ Ĝ∞
F , so we have v◦f : H∞

E → Σ,

where Σ =
{
v = (vj)j∈N, vj ∈ Cdj

}
. For any u ∈ H∞

E and v ∈ Ĝ∞
F we have

〈f(u), v〉G∞

F
=

∞∑

j=1

dj∑

ℓ=1

∞∑

k=1

gk∑

i=1

fkjℓiû(j, ℓ)(vk)i = 〈u, v ◦ f〉H∞

E
.

Then from (4.15) and (4.16) we have 〈u, (v ◦ f)〉 < ∞, and since H∞
E is perfect, we

have for any u ≈ (û(j))j∈N ∈ H∞
E that the series

∞∑
j=1

|(v ◦ f)j · û(j)| is convergent. So

then v ◦ f ∈ Ĥ∞
E . Then we have

〈f(u)− f(un), v〉G∞

F
= 〈u− un, v ◦ f〉H∞

E
→ 0

as n → ∞. Therefore,

〈f(u), v〉G∞

F
= lim

n→∞
〈f(un), v〉G∞

F
,

13
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for all u ∈ H∞
E and v ∈ Ĝ∞

F . Hence for any u ∈ H∞
E and v ∈ Ĝ∞

F we have

lim
n→∞

∞∑

k=1

vk ·

( ∑

1≤j≤n

fkjû(j)

)
=

∞∑

k=1

vk ·

(
∞∑

j=1

fkjû(j)

)
,

that is,

lim
n→∞

∞∑

k=1

gk∑

i=1

(vk)i

( ∑

1≤j≤n

fkjû(j)

)

i

=

∞∑

k=1

gk∑

i=1

(vk)i

(
∞∑

j=1

fkjû(j)

)

i

.

Now we will use the fact that if u ∈ H∞
E then |u| ∈ H∞

E where |u| =
(
|̂u|j

)
j∈N

,

|̂u|j ∈ Rdj , with

|̂u|j :=




|û(j, 1)|

|û(j, 2)|
...

|û(j, dj)|



,

in view of Theorem 4.7. The same is true for the dual space [G∞
F ]∧ . So then this

argument gives

lim
n→∞

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

( ∑

1≤j≤n

fkj û(j)

)

i

∣∣∣∣∣∣
=

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

(
∞∑

j=1

fkjû(j)

)

i

∣∣∣∣∣∣
.

The proof is complete. �

Remark 4.12. This proof does not require sequentiality and it can be used to improve
the argument in [5, Theorem 4.7].

Proof of Theorem 4.9. Let us assume first that the mapping f : H∞
E → G∞

F can be
represented by f = (fkjli)k,j∈N,1≤l≤dj,1≤i≤gk , an infinite tensor such that

∞∑

j=1

dj∑

l=1

|fkjli||û(j, l)| < ∞, for all k ∈ N, i = 1, 2, . . . , gk, (4.24)

and
∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

(
∞∑

j=1

fkjû(j)

)

i

∣∣∣∣∣∣
< ∞ (4.25)

hold for all u ∈ H∞
E and v ∈ Ĝ∞

F .

Let û1 = (û1(p))p∈N be such that for some j, l where j ∈ N, 1 ≤ l ≤ dj, we have

û1(p, q) =

{
1, p = j, q = l,

0, otherwise.

14
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Then u1 ∈ H∞
E so fu1 = f(u1) ∈ G∞

F and

(fu1)k =

∞∑

p=1

fkpû1(p)

=
∞∑

p=1

dp∑

q=1

fkpqû1(p, q)

=

dj∑

q=1

fkjqû1(j, q)

= fkjl ∈ Cgk . (4.26)

We now first show that

(̂fu)(k) =
∞∑

j=1

dj∑

l=1

fkjlû(j, l),

where fkjli ∈ C for each k, j ∈ N, 1 ≤ l ≤ dj and 1 ≤ i ≤ gk. The way in which f has
been defined we have

(fu)k =

∞∑

j=1

dj∑

l=1

fkjlû(j, l), fkjl ∈ Cgk .

Also since u ∈ H∞
E , from our assumption we have fu ∈ G∞

F and fu ≈
(
(̂fu)(j)

)
j∈N

,

so that (fu)k ≈ (̂fu)(k).

We can then write (̂fu)(k) =
∞∑
j=1

dj∑
l=1

fkjlû(j, l). Since we know that v ∈ [G∞
F ]∧ and

fu ∈ G∞
F , we have

∞∑

k=1

gk∑

i=1

|(vk)i||((̂fu)(k))i| =
∞∑

k=1

gk∑

i=1

|(vk)i||
∞∑

j=1

dj∑

l=1

fkjliû(j, l)| < ∞.

In particular using the definition of u1 and (4.26) we get

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣
∞∑

p=1

dp∑

q=1

fkpqiû1(p, q)

∣∣∣∣∣ =
∞∑

k=1

gk∑

i=1

|(vk)i||fkjli| < ∞, (4.27)

for any j ∈ N and 1 ≤ l ≤ dj.

Now for any u ∈ H∞
E consider

J =

∞∑

j=1

dj∑

l=1

|

∞∑

k=1

gk∑

i=1

(vk)ifkjli||û(j, l)|.

Then we consider the series

In :=
∑

1≤j≤n

dj∑

l=1

|
∞∑

k=1

gk∑

i=1

(vk)ifkjli||û(j, l)|,
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so that we have

In =
∑

1≤j≤n

dj∑

l=1

|

∞∑

k=1

gk∑

i=1

(vk)ifkjli||û(j, l)|

=
∑

1≤j≤n

dj∑

l=1

|

∞∑

k=1

gk∑

i=1

(vk)ifkjliû(j, l)|.

Let ǫ = (ǫi)1≤i≤dk , k ∈ N, be such that ǫi ∈ C and |ǫi| ≤ C, for all i and such that

|

∞∑

k=1

gk∑

i=1

(vk)ifkjliû(j, l)| =

∞∑

k=1

gk∑

i=1

(vk)ifkjliû(j, l)ǫi.

Then

In =
∑

1≤j≤n

dj∑

l=1

∞∑

k=1

gk∑

i=1

(vk)ifkjliû(j, l)ǫi

≤ C

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣
∑

1≤j≤n

dj∑

l=1

fkjli)û(j, l)ǫi

∣∣∣∣∣∣
. (4.28)

It follows from Lemma 4.11 that

lim
n→∞

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣
∑

1≤j≤n

dj∑

l=1

fkjliû(j, l)ǫi

∣∣∣∣∣∣
=

∞∑

k=1

gk∑

i=1

|(vk)i|

∣∣∣∣∣∣

∞∑

j=1

dj∑

l=1

fkjliû(j, l)ǫi

∣∣∣∣∣∣
< ∞.

Then

J =

∞∑

j=1

dj∑

l=1

|

∞∑

k=1

gk∑

i=1

(vk)ifkjli||û(j, l)| < ∞. (4.29)

So we proved that if (fkjli) satisfies

•
∞∑
j=1

dj∑
l=1

|fkjli||û(j, l)| < ∞,

•
∞∑
k=1

gk∑
i=1

|(vk)i|

∣∣∣∣∣

(
∞∑
j=1

fkjû(j)

)

i

∣∣∣∣∣ < ∞,

then for any u ∈ H∞
E and v ∈ [G∞

F ]∧ we have from (4.27) and (4.29), respectively,
that

(i)
∞∑
k=1

gk∑
i=1

|(vk)i||fkjli| < ∞,

(ii)
∞∑
j=1

dj∑
l=1

|
∞∑
k=1

gk∑
i=1

(vk)ifkjli)||û(j, l)| < ∞.

Now recall that for f : H∞
E → G∞

F we have

(f(u))k =

∞∑

j=1

dj∑

l=1

fkjlû(j, l),
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for any u ∈ H∞
E , then for any v ∈ [G∞

F ]∧, the composed mapping v ◦ f : H∞
E → C is

given by

(v ◦ f)(u) =

∞∑

k=1

vk · (f(u))k =

∞∑

k=1

gk∑

i=1

(vk)i




∞∑

j=1

dj∑

l=1

fkjliû(j, l)




=
∞∑

j=1

dj∑

l=1

(
∞∑

k=1

gk∑

i=1

(vk)ifkjli

)
û(j, l). (4.30)

So by (ii) we get that

|(v ◦ f)(u)| ≤
∞∑

j=1

dj∑

l=1

|
∞∑

k=1

gk∑

i=1

(vk)ifkjli||û(j, l)| < ∞.

So f̂(v) = (f̂(v)jl)j∈N,1≤l≤dj , with f̂(v)jl =
∞∑
k=1

gk∑
i=1

(vk)ifkjli ∈ Ĥ∞
E (from the definition

of Ĥ∞
E ), that is f is sequential. And then 〈f(u), v〉G∞

F
= 〈u, f̂(v)〉H∞

E
is also true.

Now to prove the converse part we assume that f : H∞
E → G∞

F is sequential. We
have to show that f can be represented as f ≈ (fkjli)k,j∈N,1≤l≤dj,1≤i≤gk and satisfies
(4.15) and (4.16).
Define for k, i where k ∈ N and 1 ≤ i ≤ gk, the sequence uki =

(
uki
j

)
j∈N

such that

uki
j ∈ Cdj and uki

j (l) = ûki(j, l), given by

uki
j (l) = ûki(j, l) =

{
1, j = k, l = i,

0, otherwise.

Then uki ∈ [G∞
F ]∧ . Now since f is sequential we have uki ◦ f ∈ Ĥ∞

E and uki ◦

f =
((

uki ◦ f
)
j

)
j∈N

, where (uki ◦ f)j ∈ Cdj . We denote uki ◦ f =
(
fki
j

)
j∈N

, where

fki
j = (uki ◦ f)j. Then (fki

j )j∈N ∈ Ĥ∞
E and fki

j ∈ Cdj .

Then for any φ ≈
(
φ̂(j)

)
j∈N

∈ H∞
E we have

∞∑

j=1

dj∑

l=1

|fki
jl ||φ̂(j, l)| < ∞. (4.31)

For φ ∈ H∞
E we can write f(φ) ∈ G∞

F . We can also write

f(φ) =
(
f̂(φ)(p)

)
p∈N

.
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So

uki ◦ f(φ) =

∞∑

j=1

uki
j (̂f(φ))j

=

∞∑

j=1

dj∑

l=1

uki
jl (̂f(φ))(j, l)

= (f̂(φ))(k, i) (from the definition of uki). (4.32)

We have uki ◦ f = (fki) ∈ Ĥ∞
E , so

(uki ◦ f)(φ) =
∞∑

j=1

fki
j φ̂(j)

=
∞∑

j=1

dj∑

l=1

fki
jl φ̂(j, l). (4.33)

From (4.32) and (4.33) we have (f̂(φ))(k, i) =
∞∑
j=1

dj∑
l=1

fki
jl φ̂(j, l).

Hence (f(φ))ki =
∞∑
j=1

dj∑
l=1

fki
jl φ̂(j, l), k ∈ N, and 1 ≤ i ≤ gk, that is f is represented by

the tensor
{
(fki

jl )
}
k,j∈N,1≤i≤gk,1≤l≤dj

.

If we denote fki
jl by fki

jl = fkjli, we can say that f is represented by the tensor

(fkjli)k,j∈N,1≤l≤dj,1≤i≤gk . Also let v ∈ Ĝ∞
F . Since f(φ) ∈ G∞

F for φ ∈ H∞
E , then from

the definition of Ĝ∞
F we have

∞∑

k=1

gk∑

i=1

|(vk)i|

∞∑

j=1

dj∑

l=1

fkjliφ̂(j, l)| < ∞.

This completes the proof of Theorem 4.9. �

5. Applications to universality

In this section we give an application of the developed analysis to the universality
problem. We start with the spaces of smooth functions, and then make some remarks
how the same arguments can be extended to the Komatsu classes setting from [4].

First we recall the notations:

Let H,G be two Hilbert spaces and let E and F be the operators corresponding
to the bases {ej}j∈N, {hk}k∈N, as in (2.2), where dj = dimXj and gk = dimYk, and

Xj = span{ejl}
dj
l=1, Yk = span{hki}

gk
i=1. Also H =

⊕
j∈N

Xj and G =
⊕
k∈N

Yk.

We denote the spaces of smooth type functions corresponding to the operators E and
F in the Hilbert space H and G, respectively, by H∞

E and G∞
F .
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The main application of Theorem 4.9 will be in the setting when X, Y are compact
manifold without boundary, where H = L2(X) and H∞

E = C∞(X), and G = L2(Y ),
G∞

F = C∞(Y ).
Using Theorem 4.9 we prove the universality of the spaces of the smooth type

functions, C∞(X), where we can write

f ∈ C∞(X) ⇐⇒ ∀N∃CN : |f̂(j, k)| ≤ CN(1 + λj)
−N for all j, k.

Further details of such spaces can be found in [6]. In particular, if E is an elliptic
pseudo-differential operator of positive order, then this is just the usual space of
smooth functions on X .

Definition 5.1. Let E be a self-adjoint, positive operator. A mapping f : X → W

from the compact manifold X to a sequence space W , is said to be a H∞
E -mapping if

for any u ∈ Ŵ , the composed mapping u ◦ f : X → C belongs to H∞
E .

Next we prove the universality of the spaces of smooth type functions.

Theorem 5.2. Let X be a compact manifold.

(i) The delta mapping δ : X → Ĥ∞
E defined by

δ(x) = δx,

and

δx(φ) = 〈δx, φ〉H∞

E
=

∞∑

j=1

dj∑

l=1

φ̂(j, l)(δx)jl = φ(x), for all φ ∈ H∞
E , x ∈ X,

is a H∞
E -mapping.

(ii) If g̃ : Ĥ∞
E → G∞

F is a sequential linear mapping, then the composed mapping
g̃ ◦ δ : X → G∞

F is a H∞
E -mapping.

(iii) For any H∞
E -mapping f : X → G∞

F , there exists a unique sequential linear

mapping f̂ : Ĥ∞
E → G∞

F such that f = f̂ ◦ δ.

Proof. (i) Recall that Ĥ∞
E =

⋃
s∈R

H−s
E = [H∞

E ]′.

Let v ∈ [Ĥ∞
E ]∧ = H∞

E . We define the composed mapping

v ◦ δx = 〈δx, v〉H∞

E
=

∞∑

j=1

dj∑

l=1

vjl(δx)jl = v(x) (by definition of δ).

This is well-defined since v ∈ H∞
E and δx ∈ [H∞

E ]′ = Ĥ∞
E . Also since v ∈ H∞

E , we see
that v ◦ δ ∈ H∞

E and that implies δ is a H∞
E -mapping.

(ii) Let u ∈ Ĝ∞
F = [G∞

F ]′.
From the definition of H∞

E -mapping we have to show that u ◦ g̃ ◦ δ ∈ H∞
E .

Now by given condition g̃ : [H∞
E ]′ → G∞

F , so we have u ◦ g̃ ∈ [H∞
E ]′′ .

Here we claim that [H∞
E ]′′ = H∞

E .
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Note that H∞
E ⊆ [H∞

E ]′′ .
Recall that, [H∞

E ]′ =
⋃
s∈R

H−s
E and so for any s ∈ R,

H−s
E ⊆ [H∞

E ]′ ⇒ [H∞
E ]′′ ⊆ [H−s

E ]′ ⇒ [H∞
E ]′′ ⊆ Hs

E.

Since the above is true for any s ∈ R, we have [H∞
E ]′′ ⊆

⋂
s∈R

Hs
E = H∞

E and this gives

[H∞
E ]′′ = H∞

E .

Then u◦g̃ ∈ H∞
E . Using same argument as in the proof of (i) and from the definition

of the mapping δ we have u ◦ g̃ ◦ δx = u ◦ g̃(x) and u ◦ g̃ ◦ δ belongs to H∞
E .

So from Definition 5.1, g̃ ◦ δ is a H∞
E -mapping.

(iii) Existence of f̂ : Ĥ∞
E → G∞

F .

By hypothesis, f : X → G∞
F is a H∞

E -mapping so that for any v ∈ Ĝ∞
F , v◦f ∈ H∞

E .

A sequential linear mapping f̃ : Ĝ∞
F → H∞

E can be defined by f̃(v) = v ◦ f, and
v(f(x)) = 〈f(x), v〉G∞

F
.

Hence by Theorem 4.9 there is an adjoint mapping, we denote it by f̂ , where f̂ :

Ĥ∞
E → [Ĝ∞

F ]∧ is a sequential mapping. By the definition of the adjoint mapping f̂

we have

〈u, f̃(v)〉H∞

E
= 〈f̂ ◦ u, v〉G∞

F
, u ∈ [H∞

E ]∧,

where 〈·, ·〉 is the bilinear function on H∞
E × Ĥ∞

E defined in Section 3. The above can
be written as

〈u, v ◦ f〉H∞

E
= 〈f̂ ◦ u, v〉G∞

F
, u ∈ Ĥ∞

E .

For u = δx, this gives

〈f̂ ◦ δx, v〉G∞

F
= 〈δx, v ◦ f〉H∞

E
= (v ◦ f)(x) = v(f(x)) = 〈f(x), v〉G∞

F
,

for any v ∈ Ĝ∞
F . This proves f = f̂ ◦ δ.

Uniqueness of f̂ : Ĥ∞
E → G∞

F .

Suppose f̂ ◦ δ = f = 0. We have to show that f̂ = 0 on Ĥ∞
E . Since f̂ is sequential,

there exists g : Ĝ∞
F → H∞

E such that

〈f̂ ◦ u, v〉G∞

F
= 〈u, g ◦ v〉H∞

E
.

Take u = δx ∈ Ĥ∞
E , then

〈f̂ ◦ δx, v〉G∞

F
= 〈δx, g ◦ v〉H∞

E
= g(v(x)) = 0

for any v ∈ Ĝ∞
F , that is, g = 0 on Ĝ∞

F . From 〈f̂ ◦ u, v〉G∞

F
= 0 for any v ∈ Ĝ∞

F , we get

f̂ ◦ u = 0 for any u ∈ Ĥ∞
E , that is f̂ = 0 on Ĥ∞

E . �

20



Eigenfunction expansions of ultradifferentiable functions and ultradistributions. III

5.1. Extension to Komatsu classes.

Here we briefly outline how the analysis above can be extended to the setting of
Komatsu classes from [4, 5].

Remark 5.3. In another work ([5]) we studied the Komatsu classes of ultra-differen-
tiable functions Γ{Mk}(X) on a compact manifold X, where M{k} be a sequence of
positive numbers such that

(1) M0 = 1,
(2) Mk+1 ≤ AHkMk, k = 0, 1, 2, ...,
(3) M2k ≤ AHk min

0≤q≤k
MqMk−q, k = 0, 1, 2, ..., for some A,H > 0.

In [5] we have characterised the dual spaces of these Komatsu classes and have shown
that these spaces are perfect spaces, i.e, these spaces coincide with their second dual
spaces. Furthermore, in [5, Theorem 4.7] we proved the following theorem for Ko-
matsu classes of functions on a compact manifold X:

Theorem 5.4 (Adjointness Theorem). Let {Mk}and {Nk} satisfy conditions (M.0)−
(M.3). A linear mapping f : Γ{Mk}(X) → Γ{Nk}(X) is sequential if and only if f is
represented by an infinite tensor (fkjli), k, j ∈ N0, 1 ≤ l ≤ dj and 1 ≤ l ≤ dk such

that for any u ∈ Γ{Mk}(X) and v ∈ ̂Γ{Nk}(X) we have

∞∑

j=0

dj∑

l=1

|fkjli| |û(j, l)| < ∞, for all k ∈ N0, i = 1, 2, ..., dk,

and
∞∑

k=0

dk∑

i=1

|(vk)i|

∣∣∣∣∣∣

(
∞∑

j=0

fkjû(j)

)

i

∣∣∣∣∣∣
< ∞.

Furthermore, the adjoint mapping f̂ : ̂Γ{Nk}(X) → ̂Γ{Mk}(X) defined by the formula

f̂(v) = v ◦ f is sequential, and the transposed matrix (fkj)
t represents f̂ , with f and

f̂ related by 〈f(u), v〉 = 〈u, f̂(v)〉.

The above theorem described the tensor structure of sequential mappings on spaces
of Fourier coefficients and characterised their adjoint mappings. Now in particular the
considered classes include spaces of analytic and Gevrey functions (which are perfect
spaces too), as well as spaces of ultradistributions, yielding tensor representations for
linear mappings between these spaces on compact manifolds. Now using [5, Theorem
4.7] and the same techniques used in this paper to prove the universality of smooth
functions in Theorem 5.2, on compact manifolds in Section 5, one also obtains the
universality of the Gevrey classes of ultradifferentiable functions on compact groups
(from [3]) and Komatsu classes of functions in compact manifolds. As the proof would
be a repetition of those arguments, we omit it here.
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[18] C. Roumieu. Ultra-distributions définies sur Rn et sur certaines classes de variétés

différentiables. J. Anal. Math., 10:153–192, 1962/1963.
[19] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York-Düsseldorf-

Johannesburg, second edition, 1974. McGraw-Hill Series in Higher Mathematics.
[20] M. Ruzhansky and N. Tokmagambetov. Nonharmonic analysis of boundary value problems.

Int. Math. Res. Not. IMRN, 12:3548–3615, 2016.
[21] M. Ruzhansky and N. Tokmagambetov. Very weak solutions of wave equation for Landau

Hamiltonian with irregular electromagnetic field. Lett. Math. Phys., 107(4):591–618, 2017.
[22] M. Ruzhansky and N. Tokmagambetov. Nonharmonic analysis of boundary value problems

without WZ condition. Math. Model. Nat. Phenom., 12(1):115–140, 2017.
[23] M. Ruzhansky and N. Tokmagambetov, Convolution, Fourier analysis, and distributions gen-

erated by Riesz bases. Monatsh. Math., 187:147–170, 2018.
[24] R. T. Seeley. Integro-differential operators on vector bundles. Trans. Amer. Math. Soc.,

117:167–204, 1965.
[25] R. T. Seeley. Eigenfunction expansions of analytic functions. Proc. Amer. Math. Soc., 21:734–

738, 1969.
[26] Y. Taguchi. Fourier coefficients of periodic functions of Gevrey classes and ultradistributions.

Yokohama Math. J., 35:51–60, 1987.

22



Eigenfunction expansions of ultradifferentiable functions and ultradistributions. III

[27] Y. Taguchi. The universality of the spaces of ultradistributions Cs(T)∧, C(s)(T)∧ (0 < s ≤

∞), C0(T)∧ and Exp(C×)∧. Tokyo J. Math., 10(2):391–401, 1987.
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