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CNN-MoE based framework for classification of respiratory
anomalies and lung disease detection
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Abstract— This paper presents and explores a robust deep
learning framework for auscultation analysis. This aims to
classify anomalies in respiratory cycles and detect diseases,
from respiratory sound recordings. The framework begins
with front-end feature extraction that transforms input sound
into a spectrogram representation. Then, a back-end deep
learning network is used to classify the spectrogram features
into categories of respiratory anomaly cycles or diseases.
Experiments, conducted over the ICBHI benchmark dataset
of respiratory sounds, confirm three main contributions
towards respiratory-sound analysis. Firstly, we carry out
an extensive exploration of the effect of spectrogram types,
spectral-time resolution, overlapping/non-overlapping windows,
and data augmentation on final prediction accuracy. This
leads us to propose a novel deep learning system, built
on the proposed framework, which outperforms current
state-of-the-art methods. Finally, we apply a Teacher-Student
scheme to achieve a trade-off between model performance and
model complexity which holds promise for building real-time
applications.

Index Terms—Respiratory disease, lung auscultation,
wheezes, crackles, anomaly detection, data augmentation,
mixture of experts.

I. INTRODUCTION

According to the World Health Organization (WHO) [1],
respiratory illness, which comprises lung cancer, tuberculo-
sis, asthma, chronic obstructive pulmonary disease (COPD),
and lower respiratory tract infection (LRTI), accounts for
a significant percentage of mortality worldwide. Indeed,
records indicate that around 10 million people currently have
tuberculosis (TB), 65 million have COPD, and 334 million
have asthma. Notably, the WHO estimates that about 1.4, 1.6
and 3 million people die respectively from TB, lung cancer
and COPD annually. To deal with respiratory diseases, early
detection is the key factor in enhancing the effectiveness of
intervention, including treatment and limiting spread. During
a respiratory examination, lung auscultation (listening to the
sounds of breathing through a stethoscope) is an important
aspect of respiratory disease diagnosis. By listening to respi-
ratory sounds during lung auscultation, experts can recognise
adventitious sounds (including Crackles and Wheezes) during
the respiratory cycle. These anomalous respiratory sounds
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often occur in those who have pulmonary disorders. If auto-
mated methods can be developed to detect such anomalous
sounds, it will improve the early detection of respiratory
disease and enable screening of a wider population than
manual screening. Research into the automated detection
or analysis of respiratory sounds has some precedents [2],
[3], [4], but has drawn increasing attention in recent years
as robust machine hearing methods have been developed,
leveraging on ever more capable deep learning techniques.

Most existing respiratory sound analysis systems tend to
rely upon frame-based feature representations such as Mel-
Frequency Cepstral Coefficients (MFCC) [5], [6], borrowed
from the Automatic Speech Recognition (ASR) and Speaker
Recognition (SR) fields. However, Grønnesby et al. [7] found
that MFCCs did not represent crackles well. They thus
replaced them with five-dimensional feature vectors, com-
prising four time domain features (variance, range, and sum
of simple moving average (coarse and fine)), and one fre-
quency domain feature (spectrum mean). Meanwhile, Hanna
et al. [8] firstly extracted spectral information from bark-
bands energy, Mel-bands energy, MFCCs, rhythm features
from beat loudness, harmonicity and inharmonicity features,
as well as tonal features such as chords strength and tuning
frequency. Next, they computed statistical features including
standard deviation, variance, minimum, maximum, median,
mean, first derivative, second derivative from those features
in addition to mean and variance of the raw signal. This
extensive list aimed to maximize the chance of achieving a
discriminative feature set. To further explore audio features,
Mendes et al. [9] went further to propose 35 different types
of feature, mainly coming from Music Information Retrieval
research. Inspired by the finding that only some features
contributed to the final result, Datta et al. [10] firstly as-
sessed features such as power spectral density (PSD), STFT
and Wavelet spectrograms, MFCCs, and Linear Frequency
Cepstral Coefficients (LFCCs). Next, they applied a Maximal
Information Coefficient (MIC) [11] to score each feature,
selected only the most influencing, before feeding into a
classifier to improve performance and reduce complexity.
Similarly, Kok et al. [6] applied the Wilcoxon Sum of
Rank test to indicate which features among MFCCs, Discrete
Wavelet Transform (DWT) and a set of time domain features
(namely power, mean, variance, skewness and kurtosis of
audio signal) mainly affected final classification accuracy.
Image processing techniques were then tried by Sengupta
et al. [12], who employed Local Binary Pattern (LBP)
analysis on mel-frequency spectral coefficients (MFSCs) to
capture texture information from the MFSC spectrogram,
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thus obtained an LBP spectrogram. The LBP spectrogram
was converted into a histogram presentation before feeding
it into a back-end classifier which was shown to outperform
the previous MFCC-based methods. In these systems, the
stream of audio feature vectors is classified by a range
of traditional machine learning techniques. These include
Logistic Regression [9], k-Nearest Neighbour (KNN) [7],
[12], Hidden Markov Models [5], [13], [14], Support Vector
Machines [7], [10], [12], [15] and decision trees [6], [7], [8],
[16].

Deep learning techniques have achieved strong and ro-
bust detection performance for general sound classifica-
tion [17], [18]. Feature extraction in state-of-the-art deep
learning based systems typically involves generating two-
dimensional time-frequency spectrograms that are able to
capture both fine grained temporal and spectral information
as well as present a much wider time context than single
frame analysis. While a variety of spectrogram transforma-
tions have been utilised, Mel-based methods such as log-Mel
spectra [19], [20], [21] and stacked MFCC features [19],
[22], [23], [24], [25], [26] are the most popular ones. Some
researchers combined different types of spectrogram, e.g.
short-time Fourier transform (STFT) and Wavelet as pro-
posed by Minami et al. [27] or optimized S-Transformations
in [28]. Although extracting good quality representative
spectrograms is very important for the back-end classifier,
researchers to date have not explored the settings used in
this step deeply – something we aim to contribute in this
paper.

Current deep learning classifiers acting on spectrograms
for respiratory sound analysis are mainly based on Convolu-
tional Neural Networks (CNN), Recurrent Neural Networks
(RNN), or hybrid architectures. The CNN-based systems
span some diverse architectures such as LeNet6 [23], [22],
VGG5 [20], two parallel VGG16s [27], and ResNet50 [28].
Inspired by the fact that respiratory indicative sounds such
as Crackle and Wheeze present certain sequential character-
istics, RNN-based networks have been developed in order to
capture the sequential information. For example, Perna and
Tagarelli [24] analysed the use of a Long Short-term Memory
(LSTM) network for two tasks of classifying anomalous
respiratory sounds and classifying respiratory diseases. By
using LSTM and Gated Recurrent Unit (GRU) cells in
a RNN-based network, Kochetov et al. [26] proposed a
novel architecture, namely the Noise Masking Recurrent
Neural Network, which aimed to distinguish both noise and
anomalous respiratory sounds. Regarding hybrid architec-
tures proposed in [21], [27], a CNN was firstly used to map a
spectrogram input to a temporal sequence. Then, LSTM [21]
or GRU [27] layers were used to learn sequence structures
before classification takes place via fully-connected layers.

Performance comparison of state-of-the-art respiratory
sound detection methods presented in [24], [27], [28] in-
dicates that deep learning classifiers are robust and effective.
However, some of the deep learning based models have
extremely complicated architectures, hindering their imple-
mentation within mobile or wearable devices for real-time

applications. Clearly, state-of-the-art systems involve ever-
increasing model complexity.

A more serious issue with this research field has been the
difficulty of comparing between techniques due to the lack of
standardised datasets for evaluation. Most publications eval-
uate on proprietary datasets that are unavailable to others [9],
[10], [13], [19], [25].

In this paper, we tackle the main issues of respiratory
sound analysis in the following way;
• We ensure repeatability and ease of comparison by

adopting the 2017 Internal Conference on Biomedical
Health Informatics (ICBHI) [29] dataset for all ex-
periments. The ICBHI dataset is one of the largest
public datasets which includes audio recordings. Using
this resource, we will comprehensively analyse factors
such as different types of spectrogram, overlapping/non-
overlapping windowing, spectrogram patch sizes, and
data augmentation to pinpoint their effects on perfor-
mance.

• From this analysis, we then propose a deep learning
framework to target two related tasks of anomaly sound
classification and respiratory disease detection. We eval-
uate two methods of train/test splitting used in the liter-
ature (namely random 5-fold cross validation and 60/40
splitting as per the ICBHI challenge’s recommendation),
and compare against state-of-the-art systems.

• To aid in the trade-off between performance and com-
plexity, we propose a Student-Teacher scheme. Specifi-
cally, the best deep learning framework, which is used
for the task of respiratory disease detection and requires
a large number of trainable parameters, is referred to
as the Teacher. We extract classification outputs from
the Teacher model and distill these information to
train another network with fewer trainable parameters,
referred to as the Student. Eventually, we successfully
obtain a reduced-size Student network which achieves
similar performance as the Teacher.

II. ICBHI DATASET AND OUR TASKS PROPOSED

A. ICBHI dataset

The 2017 ICBHI dataset [29] provides a large database of
labelled respiratory sounds comprising 920 audio recordings
with a combined duration of 5.5 hours. The recording lengths
are uneven, ranging from from 10 to 90 seconds, and were
recorded with a wide range of sampling frequencies from
4 kHz to 44.1 kHz. In total, the dataset contains recordings
from 128 patients, who are identified as being healthy
or exhibiting one of the following respiratory diseases or
conditions: COPD, Bronchiectasis, Asthma, upper and lower
respiratory tract infection, Pneumonia, Bronchiolitis. These
respiratory condition labels are linked to audio recording
files. Within each audio recording, four different types of res-
piratory cycle are presented – called Crackle, Wheeze, Both
(Crackle & Wheeze), and Normal. These cycles, labelled by
experts, include identified onset and offset times. The cycles
have various recording lengths ranging from 0.2 up to 16.2
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seconds, with the number of cycles being unbalanced (i.e.
1864, 886, 506 and 3642 cycles respectively for Crackle,
Wheeze, Both, and Normal).

B. Main tasks proposed from ICBHI dataset

Given the ICBHI recordings and metadata, this paper
targets over two main tasks.
Task 1, respiratory anomaly classification, is separated into
two sub-tasks. The first aims to classify four different cycles
(Crackle, Wheeze, Both, and Normal). The second is to
classify the four types of cycle into two groups of Normal
and Anomaly sounds (the latter group consisting of Crackle,
Wheeze, and Both). For convenience, we will identify these
as Task 1-1 and Task 1-2, respectively.
Task 2, respiratory disease prediction, also comprises two
sub-tasks. The first aims to classify audio recordings into
three groups of disease conditions: Healthy, Chronic Disease
(i.e. COPD, Bronchiectasis and Asthma) and Non-Chronic
Disease (i.e. upper and lower respiratory tract infection,
Pneumonia, and Bronchiolitis). The second sub-task is for
classification into two groups of Healthy and Unhealthy
(comprising the Chronic and Non-Chronic disease groups
combined). We name theses sub-tasks Tasks 2-1 and Task 2-
2, respectively. While Tasks 1-1 and 1-2 are evaluated over
individual respiratory cycles, Task 2-1 and 2-2 are evaluated
over entire audio recordings.

Existing state-of-the-art systems that use the ICBHI
dataset follow two different approaches to split the database
into training and testing portions. The first [14], [15], [16],
[27] follows the ICBHI challenge recommendations [29]
to divide the dataset into non-overlapping 60% and 40%
portions for training and test subsets, respectively. Notably,
this avoids a situation in which audio recordings from one
subject are found in both of the subsets. Meanwhile, the
second [6], [8], [20], [23], [24] randomly separates the entire
dataset into training and test subsets, with different ratios.

To evaluate our proposed framework on each task in this
paper, we first separate the ICBHI dataset (6898 respiratory
cycles for Task 1 and 920 entire recordings for Task 2) into
five folds for cross validation. We then introduce a baseline
system upon which we will evaluate the effect of a number
of settings and influencing factors. Due to extensive training
times, this initial exploration evaluates over one fold. Then,
following the initial exploration, we propose two systems;
one for the task of anomaly cycle detection (Tasks 1-1 and
1-2) and a second system for respiratory disease detection
(Tasks 2-1 and 2-2). We evaluate each of those systems
with both the full 5-fold cross validation and 60/40 splitting
as specified in the ICBHI challenge’s recommendation, and
compare against state-of-the-art methods.

C. Evaluation metrics

As state-of-the-art systems which explore the metrics of
Sensitivity (Sen.), Specificity (Spec.), and ICBHI score [24],
[29], our proposed baseline and framework variants are also
assessed using these metrics. To understand these scores,
consider a confusion matrix for Task 1 as presented in Table

TABLE I
CONFUSION MATRIX OF ANOMALY CYCLE CLASSIFICATION.

Crackle Wheeze Both Normal
Crackle Cc Wc Bc Nc

Wheeze Cw Ww Bw Nw

Both Cb Wb Bb Nb

Normal Cn Wn Bn Nn

Total Ct Wt Bt Nt

TABLE II
CONFUSION MATRIX OF RESPIRATORY DISEASE DETECTION.

Chronic Non-chronic Healthy
Chronic Cc NCc Hc

Non-chronic Cnc NCnc Hnc

Healthy Ch NCh Hh

Total Ct NCt Ht

I. In this case, C, W, B, and N denote the numbers of cycles of
Crackle, Wheeze, Both, and Normal, respectively, whereas c,
w, b, and n subscripts indicate the classification results. The
sums Ct, Wt, Bt and Nt are the total numbers of cycles.
Sensitivity is then computed for Task 1-1 (4-class anomaly
classification) as follows:

Sensitivity =
Cc +Ww +Bb

Ct +Wt +Bt
, (1)

and for Task 1-2 (binary anomaly classification) as:

Sensitivity =
Cc+w+b +Wc+w+b +Bc+w+b

Ct +Wt +Bt
, (2)

where Cc+w+b = Cc+Cw+Cb, Wc+w+b = Wc+Ww+Wb,
and Bc+w+b = Bc +Bw +Bb. Then we can define

Specificity =
Nn

Nt
. (3)

Similarly, consider Task 2’s confusion matrix as shown
in Table II. In this case, C, NC and H are the numbers
of recordings of the three classes in Task 2. c, nc and
h subscripts indicate the classification results. As before,
Ct, NCt, and Ht are the total numbers of Chronic, Non-
chronic, and Healthy recordings, respectively. For Task 2-1,
Sensitivity is defined as follows:

Sensitivity =
Cc +NCnc

Ct +NCt
, (4)

and for Task 2-2 it reads:

Sensitivity =
(Cc + Cnc) + (NCc +NCnc)

Ct +NCt
. (5)

We simply then define

Specificity =
Hh

Ht
. (6)

Regarding the ICBHI score, this represents an equal trade-
off between the two metrics and is computed in the same
way for each task – namely averaging the Sensitivity and the
Specificity scores. Furthermore, we also use the other stan-
dard metrics of F1 score (macro) [30] and Kappa score [31]
for evaluation.
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Fig. 1. The high-level architecture and processing pipeline of the proposed
framework.

III. HIGH-LEVEL FRAMEWORK ARCHITECTURE

A. High-level description

The high-level architecture of the proposed system is
described in Fig. 1. The architecture is divided into two
main parts: front-end feature extraction (the upper part) and
back-end deep learning models (the lower part). In general,
respiratory cycles in Task 1 or entire audio recordings in Task
2 are transformed into one or more spectrogram representa-
tions. The spectrograms are then split into equal-sized image
patches. During training, mixup data augmentation [32], [33]
is applied to the patches to generate an expanded set of
training data that is fed into a deep learning classifier.

B. Baseline system

From the high-level architecture shown in Fig. 1, it can be
seen that a variety of factors in front-end feature extraction
could affect the performance of the classifier. These include
the type of spectrograms used, the size of image patches and
their degree of overlap, and the use of data augmentation.
We are thus prompted, in this paper, to investigate the most
influencing factors among those listed above. To limit the
investigation scope to manageable proportions, we constrain
the deep learning architecture assessed and thus propose a
C-DNN baseline like VGG-7 [34], defined below.

The main characteristics and settings of this baseline
architecture are listed in Table III, while the network archi-
tecture is presented in Table IV. During processing, we first
re-sample all audio recordings (which, as aforementioned,
were recorded with various sample rates) to 16 kHz mono.
Since respiratory cycle lengths differ quite widely, we repeat
short cycles to ensure that input features for Task 1 have
a minimum length of 5 seconds or longer. This is of
course unnecessary for Task 2 which uses entire recordings.
Next, each cycle (for Task 1) or recording (for Task 2) is
transformed into a spectrogram with 64 features per analysis
frame. For example, the log-Mel spectrogram is extracted
with a window size of 1024 samples, a hop size of 256
samples, and 2048-point FFT, followed by average pooling
in the frequency direction to yield a spectrogram with 64
frequency bins. Whichever type of spectrogram is used, the
resulting time-frequency output is split into square non-
overlapping patches of size 64×64. Since data augmentation
is one of factors evaluated, we do not apply this technique
to the baseline system.

TABLE III
BASELINE SYSTEM SETTINGS.

Factors Setting
Re-sample 16kHz
Cycle duration (only for Task 1) 5 seconds
Spectrogram log-Mel
Patch splitting non-overlapped
Patch size 64× 64
Data augmentation None
Deep learning model C-DNN based architecture

TABLE IV
BASELINE C-DNN NETWORK ARCHITECTURE

Architecture Layers Output
Input layer (image patch) 64×64

Conv. Block 01 BN - Cv [3×3] @ 64 - ReLU - BN - AP [2×2] - Dr (10%) 32×32×64
Conv. Block 02 BN - Cv [3×3] @ 128 - ReLU - BN - AP [2×2] - Dr (15%) 16×16×128
Conv. Block 03 BN - Cv [3×3] @ 256 - ReLU - BN - Dr (20%) 16×16×256
Conv. Block 04 BN - Cv [3×3] @ 256 - ReLU - BN - AP [2×2] - Dr (20%) 8×8×256
Conv. Block 05 BN - Cv [3×3] @ 512 - ReLU - BN - Dr (25%) 8×8×512
Conv. Block 06 BN - Cv [3×3] @ 512 - ReLU - BN - GAP - Dr (25%) 512
Dense Block FC - Softmax layer C

As can be seen from Table IV, the network architecture
consists of seven blocks – six are convolutional and one
is a dense block. The former blocks comprise batch nor-
malization (BN) layers, convolutional (Cv [kernel size] @
kernel number) layers, rectified linear units (ReLU), average
pooling (AP [kernel size]) and global average pooling (GAP)
layers, and dropout (Dr (dropout percentage)). The dense
block comprises a fully-connected (FC), and a final Softmax
layer for classification. C refers to the number of classes,
which depends on the specific task being evaluated. That is
we train and test two separate C-DNN models with C set to
4 and 3 for Tasks 1 and 2, respectively.

C. Experimental settings for the baseline system

All the systems are implemented using TensorFlow. Net-
work training makes use of the Adam optimizer [35] with
100 training epochs, a mini batch size of 100, and cross-
entropy loss:

LEntropy(θ) = − 1

N

N∑
i=1

yi log ŷi(θ) +
λ

2
||θ||22, (7)

where θ are all trainable parameters, N is batch size, and
constant λ is empirically set to 0.0001. yi and ŷi denote the
ground truth and the network’s output, respectively.

The spectrogram of an entire recording or cycle is sepa-
rated into smaller patches and applied patch-by-patch to the
C-DNN model which then returns the predicted probabilities
over the classes for each patch. The predicted probabilities
of an entire recording or a cycle is computed by averaging
over its patches. Let us consider Pn = (Pn

1 , P
n
2 , . . . , P

n
C) as

the predicted probabilities obtained from the nth out of N
patches. Then, the mean predicted probability of a test sound
instance is denoted as P̄ = (P̄1, P̄2, . . . , P̄C) where

P̄c =
1

N

N∑
n=1

Pn
c for 1 ≤ c ≤ C. (8)

The predicted label ŷ is then determined as

ŷ = argmax
c∈{1,2,...,C}

P̄c. (9)
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Fig. 2. Comparison of baseline performance using different spectrograms.

Fig. 3. Performance comparison between different time resolutions on each
task.

IV. ANALYSIS OF INFLUENCING FACTORS

We conducted experiments using the baseline system to
investigate the impact of various factors on performance.

A. Influence of spectrogram types

From our previous work on natural sound datasets [36],
[37], [38], we have established that the choice of spectro-
gram is one of the most important factors that affects final
classification accuracy. Therefore, we evaluated the effect of
spectrogram types on ICBHI performance for each task. To
this end, we maintained all settings as described in Table III
but used four spectrogram types: log-Mel spectrogram [39],
Gammatone filterbank (Gamma) spectrogram [40], stacked
Mel-Frequency Cepstral Coefficients (MFCC) [39], and rect-
angular Constant Q Transform (CQT) [39] spectrogram. We
evaluated each of the spectrogram types on all four subtasks.

The obtained results in terms of ICBHI Score are shown in
Fig. 2, revealing that MFCC, log-Mel, and Gamma spectro-
grams perform competitively, and are much better than CQT
for all subtasks. Compared to log-Mel, Gamma spectrogram
results in an improvement of 4% for Task 1-1 and 2.7% for
Task 1-2. However log-Mel slightly outperforms its Gamma
counterpart for Task 2 (0.1% and 0.2% in Tasks 2-1 and
2-2, respectively). MFCC, meanwhile, improves on log-Mel
in Task 1-1 (0.8%), but the opposite is seen for all other
subtasks (0.4%, 0.3%, and 0.3% lower in Tasks 1-2, 2-1,
and 2-2).

These results suggest that Gamma spectrogram is optimal
for anomaly cycle classification (Task 1) while log-Mel
spectrogram works best for detection of respiratory diseases
(Task 2). We thus adopted these two spectrograms in the
following experiments for those respective tasks.

TABLE V
BASELINE PERFORMANCE LOSS OR GAIN ON EACH SUBTASK WHEN

OVERLAPPING SPECTROGRAM PATCHES ARE USED.

Task 1-1 Task 1-2 Task 2-1 Task 2-2
No overlap 78.6 84.0 74.9 77.2
Overlap 77.8 83.7 76.6 78.6

B. Influence of the overlapping degree

As the spectrogram of an entire cycle or audio recoding
is large in temporal dimension and is of variable length, it
was split into smaller patches of 64 × 64 before feeding
to the back-end deep learning models. In traditional signal
processing systems, overlapping analysis windows are used
to prevent occlusion of important features in the original data
by edge effects. We therefore examined the effect of over-
lapping or non-overlapping patches on ICBHI performance.
Specifically, we contrasted the baseline with non-overlapping
patches (the settings in Table III) to the system with patches
overlapped by 50% (noting that Gamma and log-Mel are
applied on Task 1 and Task 2, respectively). Results shown
in Table V reveal that the results obtained for Task 1 are
better with non-overlapped patches (78.6% and 84.0% in
Task 1-1 and Task 1-2, respectively) while those results
for Task 2 are better with overlapped patches (76.6% and
78.6% in Task 2-1 and Task 2-2, respectively). These results
can be explained by two potential factors: Firstly different
spectrogram types were used in the two tasks, and secondly
Task 1 classifies repeated respiratory cycles whereas Task 2
classifies unrepeated recordings.

C. Influence of time resolution

The baseline network operates on fixed-size patches where
the time span encoded in each patch is defined by its hori-
zontal dimension and sampling rate. Features are presented
sequentially, and therefore the time span also defines the
temporal resolution of features presented to the classifier.
In this section, we explored the effect of different temporal
resolution by adjusting patch widths to 0.6 s, 1.2 s, 1.8 s, 2.4 s,
and 3.0 s. This is achieved by changing the patch size to be
64×32, 64×64, 64×96, 64×128, and 64×160, respectively,
then repeat the experiments for each of them. We note that
all settings were reused from Table III with exception that
Gamma and log-Mel spectrograms were used for Task 1 and
Task 2, respectively. The dimension of the network input
layer is increased or decreased to accommodate the differing
time resolution.

The obtained results are shown in Fig. 3 for the four
subtasks. As can be seen, patch size of 64×64 (i.e. 1.2 s
time resolution) works best for Task 1-1 and second best for
Task 1-2 (scoring 78.6% and 84.0%, respectively). However
a double sized patch of 64×128 (i.e. 2.4 s time resolution) is
clearly the best for Tasks 2-1 and Task 2-2 (achieving 80.6%
and 84.6%, respectively).

D. Influence of data augmentation

Data augmentation (DA) has been shown useful to im-
prove the learning ability of deep learning models in tasks
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TABLE VI
PERFORMANCE WITH AND WITHOUT MIXUP DATA AUGMENTATION.

Task 1-1 Task 1-2 Task 2-1 Task 2-2
Non-mixup 78.6 84.0 74.9 77.2
mixup 79.8 84.7 83.5 85.4

TABLE VII
DEEP LEARNING FRAMEWORKS FOR TASKS 1 AND 2.

Factors Anomaly cycle Respiratory disease
classification detection

Resample 16kHz 16kHz
Cycle duration 5s N/A
Spectrogram Gamma log-Mel
Patch splitting non-overlapped overlapped
Patch size 64× 64 64× 128
Data augmentation Yes Yes

involving natural sound classification [37], [36]. We, there-
fore, applied DA in form of mixup [32], [33] and studied
its effect on respiratory sound classification. Let X1 and
X2 denote two image patches randomly selected from the
original image patches with their corresponding labels y1

and y2. Mixup DA generates new image patches:

Xmp1 = αX1 + (1− α)X2, (10)

Xmp2 = (1− α)X1 + αX2, (11)

ymp1 = αy1 + (1− α)y2, (12)

ymp2 = (1− α)y1 + αy2, (13)

where Xmp1 and Xmp2 are the two new image patches
obtained by mixing X1 and X2 with a mixing coefficient α.
By using two types of uniform or beta distribution to generate
mixing coefficient α, this doubles the data size and hence,
the training time. Note that in Task 1 DA mixes the Normal
class with one of the other classes (since there is already one
mixed class in the dataset, i.e. Crackle & Wheeze), whereas
it randomly mixes samples of all classes in Task 2. After
mixup, the generated patches were shuffled and fed into the
C-DNN baseline. Since the labels ymp1 and ymp2 of the
resulting patches were no longer one-hot encoded, it was,
therefore, necessary to replace the cross-entropy loss by the
Kullback-Leibler (KL) divergence loss:

LKL(θ) =

N∑
n=1

yn log

{
yn

ŷn

}
+
λ

2
||θ||22. (14)

Again, θ denotes the trainable network parameters, λ denotes
the `2-norm regularization coefficient and was set to 0.0001.
N is the batch number, yn and ŷn denote the ground-truth
and the network output, respectively.

Using the settings in Table III with Gamma spectrogram
for Task 1 and log-Mel spectrogram for Task 2, we can
assess the improvement over the baseline in each subtask
due to mixup data augmentation. Results shown in Table VI
indicate that mixup data augmentation substantially improves
the ICBHI score by 8.6% and 8.2% on Tasks 2-1 and 2-
2, respectively. However, modest improvements are seen in
Task 1.
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Fig. 4. The proposed CNN-MoE architecture.

V. ENHANCED DEEP LEARNING FRAMEWORK

From the analysis of influencing factors presented above,
we propose two systems. One for Task 1 anomaly cycle
classification, and the other for Task 2 respiratory disease
detection; both summarised in Table VII. In this section
we propose to enhance the performance of the C-DNN
architecture by incorporating a mixture-of-experts (MoE)
technique into the DNN part of the network, leading to the
CNN-MoE architecture.

A. CNN-MoE network architecture

According to the C-DNN architecture entailed in Table IV,
the first six convolutional blocks are used to map the image
patch input to condensed and discriminative embeddings,
often referred to as high-level features. The features are then
classified by a dense block comprising a fully-connected
layer and Softmax. On the basis that the embedding may
contain more information than a single fully-connected layer
can unlock, we replace the dense block with a mixture-of-
experts (MoE) block as shown in Fig. 4. The MoE block
architecture [41] has multiple experts connected to a gate
network. The gate network is in charge of deciding which ex-
pert is applied to which input region. In our context, the 512-
dimensional embedding from the final global average pooling
layer (GAP) is presented simultaneously to all experts. The
output from all experts are then gated and the combined
output is presented to Softmax for classification. In our
system, each expert comprises a fully-connected layer and
a ReLU activation function. Each expert input dimension, as
we have noted, is 512, and the output dimension from each
is the number of classes C. The gate network is implemented
by a Softmax Gate – an additional fully-connected layer with
Softmax activation function and the gating dimension equals
to the number of experts. Let e1, e2, . . . , eK ∈ RC denote
the output vectors from the K experts, and g1, g2, . . . , gK
denote the outputs of the gate network where gk ∈ R and∑
gk = 1. The predicted output is then given by

ŷ = softmax

{
K∑

k=1

gkek

}
. (15)

The proposed systems, as defined in Table VII, are trained
with KL-divergence loss [42] (due to the use of mixup data
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TABLE VIII
PERFORMANCE COMPARISON BETWEEN THE C-DNN BASELINE AND

THE PROPOSED CNN-MOE FRAMEWORKS (C-DNN SCORES/
CNN-MOE SCORES) OVER 5-FOLD CROSS VALIDATION (THE UPPER

PART) AND ICBHI CHALLENGE’S DATA SPLIT (THE LOWER PART)

Tasks Spec. Sen. ICBHI score F1 score Kappa score
1-1 85.6/86.6 70.4/71.3 77.4/78.5 72.2/72.6 66.8/66.8
1-2 85.6/86.6 81.9/82.6 84.1/84.4 84.8/85.0 69.0/70.0
2-1 75.3/86.7 91.1/94.5 84.7/90.5 72.6/77.2 65.8/73.0
2-2 75.3/86.7 96.0/97.9 86.2/92.0 76.8/82.4 61.6/65.0
1-1 60.0/72.4 25.3/21.5 43.3/47.0 31.0/32.0 8.2/11.2
1-2 60.0/72.4 45.1/37.5 53.3/54.1 53.0/55.0 5.2/10.3
2-1 64.7/71.0 92.3/98.1 78.5/84.0 64.0/74.0 62.7/77.0
2-2 64.7/71.0 93.5/98.2 78.7/84.1 81.0/84.0 61.3/67.1

augmentation) and use the same experimental settings as the
previous experiments with the C-DNN baseline.

B. Performance comparison

Comparing the C-DNN baseline to the proposed CNN-
MoE: We evaluated the efficacy of the applied MoE tech-
nique (experimentally using K=10 experts) compared to the
C-DNN baseline and report the performance of both in Table
VIII (Of note, both the systems followed the settings in Table
VII, with the back-end classifier being either C-DNN or
CNN-MoE there are thus eight systems in total, two C-
DNNs and two CNN-MoEs for each kind of data split).

The results in Table VIII clearly indicate that the CNN-
MoE systems outperforms the C-DNN baseline. Although
we see only marginal gains over the C-DNN baseline in
Task 1, CNN-MoE results in improvement with a margin
as large as 6% absolute in terms of ICBHI score with both
the data splits, 5-fold cross validation and ICBHI challenge’s
data split, in Task 2. Notably, the large gap in Task 1
performance between 5-fold cross validation (the upper part
of Table VIII) and ICBHI data split (the lower part of
Table VIII) reveals that the performance of the tasks strongly
depends on the subjects. To confirm that CNN-MoE shows
similar performance to the C-DNN baseline in Task 1-1 but
outperforms it in Task 2-1, we further conducted a paired
t-test over 5-fold cross validation with the null hypothesis
“the performance does not differ between C-DNN and CNN-
MoE”). Let consider d = {d1, d2, . . . , d5} as a set of 5
differences of the ICBHI scores obtained by CNN-MoE and
C-DNN over 5 folds evaluated. The t-score was computed
as d̄/

√
0.2σ2, where d̄ and σ2 denote the sample mean and

sample variance of d, respectively. t-scores of 1.26 and 10.66
are obtained for Task 1-1 and Task 2-1 with p-values of 0.13
and 0.0002, respectively. Thus we can confirm the similar
performance in Task 1-1 and significant improvement of
CNN-MoE over the C-DNN baseline in Task 2-1.

Comparing to state-of-the-art systems: We next con-
trasted the proposed framework to state-of-the-art systems.
For each task, we evaluate every system twice – once with the
ICBHI challenge train/test split, and once with the random
split (as described in Section II-B). Considering the first data
splitting method, Table IX shows the performance obtained
by the proposed framework and state-of-the-art published

TABLE IX
COMPARISON AGAINST STATE-OF-THE-ART SYSTEMS WITH ICBHI

CHALLENGE SPLITTING (HIGHEST SCORES IN BOLD).

Task Method Spec. Sen. Score
1-1, 4-category DT [16] 0.75 0.12 0.43
1-1, 4-category HMM [14] 0.38 0.41 0.39
1-1, 4-category SVM [15] 0.78 0.20 0.47
1-1, 4-category CNN-RNN [27] 0.81 0.28 0.54
1-1, 4-category Our system 0.68 0.26 0.47

TABLE X
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEM AND

STATE-OF-THE-ART SYSTEMS FOLLOWING THE RANDOM DATA SPLIT

(HIGHEST SCORES ARE HIGHLIGHTED IN BOLD).

Task Method train/test Spec. Sen. Score
1-1, 4-category Boosted DT [8] 60/40 0.78 0.21 0.49
1-1, 4-category CNN [23] 80/20 0.77 0.45 0.61
1-1, 4-category CNN-RNN [21] 5 folds 0.84 0.49 0.66
1-1, 4-category LSTM [24] 80/20 0.85 0.62 0.74
1-1, 4-category Our system 5 folds 0.90 0.68 0.79
1-2, 2-category Boosted DT [8] 60/40 0.78 0.33 0.56
1-2, 2-category LSTM [24] 80/20 - - 0.81
1-2, 2-category CNN [20] 75/25 - - 0.82
1-2, 2-category Our system 5 folds 0.90 0.78 0.84
2-1, 3-category CNN [23] 80/20 0.76 0.89 0.83
2-1, 3-category LSTM [24] 80/20 0.82 0.98 0.90
2-1, 3-category Our system 5 folds 0.86 0.95 0.91
2-2, 2-category Boosted DT [8] 60/40 0.85 0.85 0.85
2-2, 2-category CNN [23] 80/20 0.78 0.97 0.88
2-2, 2-category RUSBoost DT [6] 50/50 0.93 0.86 0.90
2-2, 2-category LSTM [24] 80/20 0.82 0.99 0.91
2-2, 2-category Our system 5 folds 0.86 0.98 0.92

systems (where available). We note that the proposed frame-
work lies second in Task 1-1 evaluation. Our results for other
subtasks were listed in Table VIII. Only Task 2-2 is found in
the literature (for the ICBHI data split) [21], achieving 72%,
which is surpassed by 84% obtained by our system.

Table X compares the performance obtained by our sys-
tem with previously published results that used the random
train/test splitting method. For Tasks 1-1 and 1-2, the pro-
posed framework clearly outperforms other systems quite
consistently. Meanwhile, for Task 2-1 and 2-2, the proposed
method also outperforms other systems in terms of overall
ICBHI score, but not necessarily simultaneously for both
subcomponents, specificity or sensitivity.

C. Discussion

Comparing Tables IX and X, it is notable that those
systems following the ICBHI data split (i.e. recordings from
the same patient are never found in both train/test subsets)
exhibit considerably lower performance than those following
random splitting. This indicates that the ICBHI dataset
presents a high dependence on patient characteristics, which
likely make respiratory cycle classification challenging in
practice.

However, all the results obtained by the proposed frame-
work for Tasks 2-1 and 2-2 (with both splitting methods)
exceed 84%. These results for recording-based classification
of lung disease – which is highly related to the overall aim
of lung disease detection – provide a strong indicator of the
robustness of the proposed framework. As does the fact that
the same proposed framework is capable of performing well
for all subtasks.
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Fig. 5. Architecture of the Student-Teacher scheme.

TABLE XI
THE STUDENT NETWORK ARCHITECTURE.

Architecture Layers Output
Input layer (image patch) 64×128

Conv. Block 07 Cv [3×3] @ 128 - ReLU - AP [4×4] 16×32×128
Conv. Block 08 Cv [3×3] @ 512 - ReLU - GAP 512
Dense Block FC - Softmax layer 3

VI. STUDENT-TEACHER SCHEME FOR RESPIRATORY
DISEASE DETECTION

A. The proposed student-teacher arrangement

Recent works on sound scene and sound event detec-
tion reported the effectiveness of Teacher-Student learning
schemes [43], [44]. Among other advantages, these schemes
offer a trade-off between model size and performance. Since
the complexity of our best model based on the proposed MoE
framework may be a barrier to future real-time implemen-
tation, we explore whether a student-teacher scheme can be
used to train a network with much lower complexity (Task
2). The proposed solution, as shown in Fig. 5, comprises
two networks, namely the Teacher and the Student. The
teacher network re-uses the high-performance CNN-MoE
architecture introduced in Section V-A. On the other hand,
the student network features a compact architecture, compris-
ing two convolutional blocks (identified Conv. Block 07 and
Conv. Block 08 in the figure) and a dense block as shown in
Table XI (note that the student network does not apply batch
normalisation, dropout, or mixup data augmentation).

Training the Teacher-Student network is separated into two
phases. First, the Teacher is trained as usual. Afterwards, the
Teacher’s embedding is distilled to the Student’s embedding
to assist in the Student’s learning process. We will also em-
pirically investigate the influence of this knowledge distilla-
tion on the student network’s performance. With the presence
of this knowledge distillation, training the student network,
therefore, aims to minimize two losses: (1) the Euclidean
distance between the teacher and student embedding, and (2)

the standard cross-entropy loss on the student’s classification
output. The combined loss function is therefore,

L(θ) = LEntropy(θ) + γLEuclidean(θ), (16)

Here, the hyperparameter γ is empirically set to 0.5 to
balance the two constituent losses. θ represents the trainable
parameters of the student network. Other hyper-parameters
and settings are inherited from Section III-C.

B. Experimental results using the Teacher-Student scheme

The experimental results obtained by the student network
in comparison with the teacher network are shown in Ta-
ble XII. On the one hand, it can be seen that without
knowledge distilled from the teacher network, the small-
footprint student network obtains a substantially low speci-
ficity score, although it maintains a very good sensitivity.
This observation is consistent with the overall ICBHI score
and can be explained by the simplicity of the network
which results in low learning capacity. On the other hand,
distilling knowledge from the teacher significantly boosts
the student performance, yielding specificity, sensitivity, and
ICBHI scores that are very competitive to those of the teacher
network – even though the student network is much smaller
and simpler.

Details of the model footprint are shown in Table XIII.
We can see that the Teacher uses six convolutional layers,
eleven fully-connected layers and twelve BN layers that
together contribute to a large model size with 4.5 × 106

trainable parameters. Meanwhile, the Student only uses two
convolutional layers and one fully-connected layer, requiring
only 0.6×106 parameters, approximately one-seventh of the
Teacher’s. The model footprints also scale in terms of com-
putational cost of multiply-accumulate (MAC) operations
during inference. While an inference process on the Teacher
costs 44,886 kMAC operations, the Student only costs 9,513
kMACs (the MAC operation computation for a deep learning
network is presented in [45]). The inference process for a 20
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TABLE XII
CLASSIFICATION PERFORMANCE COMPARISON BETWEEN TEACHER AND STUDENT WITH AND WITHOUT KNOWLEDGE DISTILLING.

Five-fold random split ICBHI split
Task Spec. Sen. ICBHI Score Spec. Sen. ICBHI Score

Teacher 0.86 0.95 0.91 0.71 0.98 0.84
2-1, 3-category Student w/o knowledge distill 0.43 0.94 0.68 0.41 0.97 0.69

Student w/ knowledge distill 0.86 0.90 0.88 0.71 0.98 0.84
Teacher 0.86 0.98 0.92 0.71 0.98 0.84

2-2, 2-category Student w/o knowledge distill 0.43 0.99 0.71 0.41 0.99 0.70
Student w/ knowledge distill 0.86 0.96 0.91 0.71 0.98 0.84

TABLE XIII
MODEL FOOTPRINT COMPARISON BETWEEN TEACHER AND STUDENT

Features Teacher Student
Trainable Convolutional Layers 6 2
Trainable Fully-connected Layers 11 1
Batch normalization 12 0
Number of trainable parameters 4.5× 106 0.6× 106

Number of MAC operations 44,886 K 9,513 K

second long recording in Task 1-1, conducted by a Tesla
P100 GPU, takes 0.5 s; nearly ten times longer than the
0.045 s required for the Student’s inference process.

VII. CONCLUSION

This paper has presented a robust deep learning framework
for the analysis of respiratory anomalies and detection of
lung diseases from lung auscultation recordings. Extensive
experiments were conducted with different architectures and
experimental settings using the ICBHI dataset, and two
defined tasks related to that. The proposed system was evalu-
ated against existing state-of-the-art methods, outperforming
them for most of the challenge tasks. Furthermore, to facili-
tate implementation in real-time systems, a Teacher-Student
learning scheme was explored to significantly reduce model
complexity while still achieving very high accuracy. The final
experimental results validate the application of deep learning
for the timely diagnosis of respiratory diseases, bringing
this research area one step closer to clinical applications. In
future, we aim to explore model compression with pruning
and quantisation to further try and reduce complexity, before
implementing the simplified detector in an embedded device.
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[14] N. Jakovljević and T. Lončar-Turukalo, “Hidden markov model based
respiratory sound classification,” in Precision Medicine Powered by
pHealth and Connected Health, 2018, pp. 39–43.

[15] G. Serbes, S. Ulukaya, and Y. Kahya, “An automated lung sound
preprocessing and classification system based onspectral analysis
methods,” in Precision Medicine Powered by pHealth and Connected
Health, 2018, pp. 45–49.

[16] B. M. Rocha et al., “An open access database for the evaluation of res-
piratory sound classification algorithms,” Physiological measurement,
vol. 40, no. 3, p. 035001, 2019.

[17] H. Zhang, I. McLoughlin, and Y. Song, “Robust sound event recog-
nition using convolutional neural networks,” in Proc. ICASSP, 2015,
pp. 559–563.

[18] I. McLoughlin, Y. Song, L. D. Pham, H. Phan, P. Ramaswamy, and
L. Yue, “Early detection of continuous and partial audio events using
CNN,” in Proc. INTERSPEECH, 2018, pp. 3314–3318.

[19] L. Shi, K. Du, C. Zhang, H. Ma, and W. Yan, “Lung sound recognition
algorithm based on vggish-bigru,” IEEE Access, vol. 7, pp. 139 438–
139 449, 2019.

[20] R. Liu, S. Cai, K. Zhang, and N. Hu, “Detection of adventitious
respiratory sounds based on convolutional neural network,” in Proc.
ICIIBMS, 2019, pp. 298–303.

[21] J. Acharya and A. Basu, “Deep neural network for respiratory sound
classification in wearable devices enabled by patient specific model
tuning,” IEEE transactions on biomedical circuits and systems, vol. 14,
no. 3, pp. 535–544, 2020.
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