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Abstract 

The problem of energy-efficient, reliable, accurate and self-organized target tracking in 

Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited physical 

resources and abrupt manoeuvring mobile targets. A biologically inspired, adaptive 

multi-sensor scheme is proposed for collaborative Single Target Tracking (STT) and 

Multi-Target Tracking (MTT). Behavioural data obtained while tracking the targets 

including the targets’ previous locations is recorded as metadata to compute the target 

sampling interval, target importance and local monitoring interval so that tracking 

continuity and energy-efficiency are improved. The subsequent sensor groups that track 

the targets are selected proactively according to the information associated with the 

predicted target location probability such that the overall tracking performance is 

optimized or nearly-optimized. One sensor node from each of the selected groups is 

elected as a main node for management operations so that energy efficiency and load 

balancing are improved. A decision algorithm is proposed to allow the “conflict” nodes 

that are located in the sensing areas of more than one target at the same time to decide 

their preferred target according to the target importance and the distance to the target. A 

tracking recovery mechanism is developed to provide the tracking reliability in the 

event of target loss. 
 

The problem of task mapping and scheduling in WSNs is also considered. A 

Biological Independent Task Allocation (BITA) algorithm and a Biological Task 

Mapping and Scheduling (BTMS) algorithm are developed to execute an application 

using a group of sensor nodes. BITA, BTMS and the functional specialization of the 

sensor groups in target tracking are all inspired from biological behaviours of 

differentiation in zygote formation. 
 

Simulation results show that compared with other well-known schemes, the 

proposed tracking, task mapping and scheduling schemes can provide a significant 

improvement in energy-efficiency and computational time, whilst maintaining 

acceptable accuracy and seamless tracking, even with abrupt manoeuvring targets.  
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Chapter 1  Introduction 

1.1 Chapter Introduction 

This chapter provides a brief introduction about the research topic. The problem 

definition is firstly established. After this the motivation and objectives of the research 

are summarized. Next, the main contributions of this thesis are summarised. The thesis 

structure and the publications are finally presented. 

1.2 The Research Problem Definition  

The problem of energy-efficient collaborative single and multiple target tracking in 

Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited energy 

resources and abruptly manoeuvring targets of different importance. Additionally, the 

problem of task mapping and scheduling in WSNs is also considered.  
 

The biological aspect of this research is to treat the target as a virtual chemical 

emitter and to construct influence contours whose strength decreases with distance from 

the target. The nodes that are influenced the strongest are more likely to be chosen to 

track the target. Furthermore, as with differentiation observed in biological zygotes, the 

sensor group differentiates, with specific nodes specializing to perform the required 

functionalities.  

In following sections, the problems of target tracking, task mapping, and scheduling 

in WSNs are examined in more detail. 

1.2.1 Brief Introduction about WSNs 

Wireless Sensor Networks (WSNs) have become an emerging phenomenon in industry, 

both for civil and military purposes. WSNs provide virtual snapshots of the physical 

world by interpreting the physical events. WSNs consist of tiny electronic nodes 

connected to each other via wireless communication protocols [1]. Each node is 

equipped with embedded processors, sensor devices, storage, and radio transceivers. 

Nevertheless, the sensor nodes typically have limited resources in terms of battery-

supplied energy, processing capability, communication bandwidth, and storage [2][3]. 

WSNs have attractive commercial applications such as healthcare, target tracking, 

monitoring, smart homes, surveillance and intrusion detection [4].  
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1.2.2 Target Tracking in WSNs 

Target tracking in WSNs is a process of estimating the location, trajectory, velocity 

and/or acceleration of a mobile target. It often needs accurate estimation and prediction 

of the target state. Collaborative target tracking uses a multi-sensor scheme to improve 

the tracking accuracy compared with single-sensor tracking [5]. Figure 1 shows the 

Single Target Tracking (STT) scenario in WSNs. The Base Station (BS) or sink is 

responsible for forwarding the desired information from the WSN to the headquarters 

(i.e., main controller) through the Internet, via satellite or other wireless technology. 

The target can be a human being, moving vehicle, animal, tank, enemy or any 

interesting object that needs to be tracked. The target is usually mobile. Target 

dynamics is the mathematical modelling of the target motion. Targets can move in 

unexpected manner and this causes noise in the dynamic model. Target state is the 

location, velocity and/or the acceleration. The trajectory of the target is the path that 

target draws during its travel. Calculating the mobile target state and trajectory in the 

presence of noise in its dynamic characterisation is one of the main challenges for target 

tracking in WSNs.  

 
Figure 1 Single Target Tracking in WSNs 

Each sensor node has a sensor device to sense or detect the presence of the target in the 

Region of Interest (ROI). Detection of the target is always handicapped by the presence 

of noise. Therefore, using the noisy sensor readings to calculate the target state is a 

further challenge. Due to the limited battery-supplied energy of the sensor nodes and the 

difficulty to physically access them, energy-efficient target tracking is a crucial aim. 

Additionally, hundreds or thousands of sensor nodes are deployed in the ROI. Thus, 
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several sensor nodes may detect the target at the same time. Therefore, selecting the 

necessary sensor nodes to track the target is a common problem in target tracking in 

WSNs. To reduce the energy consumption, sensor nodes are scheduled to be in active or 

sleeping modes. However, the target is mobile and requires sensor nodes to be in active 

mode to detect and calculate its state. Therefore, predicting the future state of the target, 

to proactively form the group of necessary sensor nodes to continue the tracking and 

how to allocate duties within the group are pertinent research problems.  
 

The tracking sampling interval or resolution is defined as the time between two 

successive tracking events. If the sampling interval is set too large the tracking 

accuracy, which indicates about the difference between the real and estimated states, is 

degraded and the target may be unmonitored for long periods. Moreover, the target may 

be lost if it travels in an unpredictable manner. On the other hand, decreasing the 

sampling interval leads to increase the energy consumption because the tracking events 

will be increased. Therefore, choosing a suitable sampling interval during the tracking 

process is challenging. Furthermore, the tracking system should support to a mechanism 

to recover the target state in the case of target loss. 
 

Designing tracking schemes for Multi-Target Tracking (MTT) is more complex than 

considering STT. Figure 2 shows a MTT WSN scenario. Targets can travel with 

different movement patterns. Some targets may move in a uniform and predictable 

fashion whilst others manoeuvre in a random manner. Therefore, for MTT tracking 

continuity and tracking accuracy robustness sensor selection, the management of the 

group of targets, the sampling interval calculation for each target, are additional 

challenges that must be addressed.  
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Figure 2 MTT in WSNs 

In MTT, targets can be assigned different importance according to particular criteria. 

Finding a technique to evaluate the target importance is an interesting issue in MTT. As 

shown in Figure 2, if a sensor node detects more than one target, it has to decide which 

target it will serve. We refer to this sensor node as being a “conflict” node. 

1.2.3 Task Mapping and Scheduling in WSNs 

Many WSNs applications such as target tracking and camera-based applications [6] 

require real time execution, sensor node collaboration and computationally intensive 

operations. Since an individual sensor node does not have the enough processing power 

and possibly battery life to execute a complex application and meet the application 

deadline, one solution to execute the complex application using a group of sensor 

nodes. Task mapping assigns resources to tasks and task scheduling determines the 

execution sequence of the tasks, to try to maximize performance objectives. It is well 

known that optimal task mapping is an NP-complete problem [7]. Therefore, heuristic 

techniques are needed to obtain near optimal solutions. In high performance computing 

[8], task mapping and scheduling are deeply explored. However, the design objectives 

for WSNs are different due to the limitations of the resources.  

1.3 The Research Motivation 

As physical limitations of sensor nodes in terms of battery-supplied energy, processing 

performance, communication bandwidth, and storage become main challenges in 
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designing WSNs, this research is explores cooperative target tracking given these 

constraints. Briefly, the following points are the main requirements for this research: 

• Improve the energy-efficiency and network lifetime for target tracking in WSNs 

• Maintain tracking accuracy and reliability 

• Accommodate the random motion of targets 

• Provide support for target importance or priority 

• Reduce the execution time of complex applications in WSNs 

1.4 The Research Objectives 

The main objectives of this research are listed below: 
 

(1) Develop a reliable, accurate, energy-efficient, collaborative and self-organized target 

tracking scheme in WSNs. 

• Design WSN framework for multi-sensor target tracking 

• Develop target tracking scheme in WSNs 

• Develop an adaptive sampling interval mechanism 

• Use adaptive sensors selection 

• Implement adaptive group election 

• Develop a target recovery scheme to recapture lost targets 

• Provide a sensor node density calculation 

• Support both STT and MTT 

• Support the target importance in MTT 

• Optimize or nearly optimize sensor selection in the case of MTT 

• Tackle the problem of conflict nodes in the case of MTT 

(2) Design algorithms for task mapping and scheduling in WSNs to parallelize the 

execution of an application among a group of sensor nodes. 
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• Develop an algorithm to execute an application across a group of sensor nodes. 

The application is assumed to be divided into independent equal-weighted 

subtasks 

• Develop an algorithm to execute an application across a group of sensor nodes. 

The application is assumed to be decomposed into smaller tasks with different 

computation weights and dependencies 

1.5 Novelty & Contributions 

This thesis proposes a novel framework to design biologically inspired self-organized 

communication networks. However, this thesis explores WSNs applications more 

widely and uses target tracking as an example. The thesis makes the following unique 

contributions: 
 

1. This research introduces the formalization of target metadata pertaining to the 

target’s past locations, by which the movement pattern of the target is computed. 

Target metadata is employed to adaptively calculate the tracking sampling interval, 

the targets’ importance in the case of MTT and the number of local search iterations 

for the local search algorithm used in MTT. 

2. This thesis introduces the first formulation associated with the conflict node concept 

in MTT taking into account target importance. Novel strategies for choosing the 

initial solution and neighbourhood structure are proposed in this thesis for the local 

search to solve in real-time the combinational optimization problem of sensor 

selection in MTT. 

3. This research introduces an energy-efficient framework for STT and MTT in WSNs. 

Adaptive sensor selection and “leader node” election algorithms are proposed. A 

mechanism is developed to recover the tracking process in the event of of target 

loss. 

4. Two algorithms are introduced for task mapping and scheduling in WSNs. The first 

algorithm assumes that the application can be divided into independent equally-

weighted subtasks. The other assumes that the application can be decomposed into 

smaller tasks with different computation weights and dependencies. 

5. The principle of differentiation found in biological zygotes is applied to the 

proposed tracking, task mapping and scheduling schemes. Furthermore, this is the 
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first research to treat the target to be served by the WSN as a virtual chemical 

emitter that has different influence strengths on the sensor nodes. 

1.6 Notation Conventions 

In this thesis, matrices and vectors are denoted by bold letters. Variables and functions 

are denoted by italic letters. The transpose of matrix ]A[ ij=A  is denoted by ]A[ ji=′A  

where ijA  is the element at row i  and column j . The inverse of the matrix A  is denoted 

by 1−A . The diagonal matrix of A  is denoted by )(Adiag . The identity matrix is denoted 

by I . The expectation of a random variable x  is denoted by ][xE . 

1.7 Thesis Structure 

This thesis is organized as follows: 
 

Chapter 2 presents the background and literature review of the research. It includes a 

general introduction about sensor network. Then, details about wireless routing and 

Media Access Control (MAC) protocols are discussed. WSNs target tracing techniques, 

frameworks and stages are presented. After that, biologically inspired researches and 

self-organised networks are introduced. State-of-the art in literature concerning 

biological inspired systems, target tracking in WSNs, and task mapping and scheduling 

in WSNs are explored.  

Chapter 3 introduces the proposed Single Target Tracking (STT) scheme in details. 

The target dynamic, sensor detection, measurement and energy consumption models are 

presented. Then, the Extended Kalman Filter (EKF) for STT in WSNs is introduced. 

The framework and the assumptions for the proposed STT scheme are explained.  The 

target metadata representation is illustrated. The sampling interval, and sensor nodes 

selection and election are presented. Recovery mechanism and sensor nodes 

deployment strategies are introduced.  Complete algorithms and protocols for the 

proposed STT scheme are proposed.  

Chapter 4 introduces the Multi-Target Tracking (MTT) in WSNs. Two proposed MTT 

schemes in WSNs are introduces. Firstly, a Multi-Sensor Distributed Multi-Target 

Tracking (MS-DMTT) scheme is proposed based on the assumption that the sensor 

node can only detect and serve a single target at the same time. Secondly, a Multi-

Sensor Adaptive Multi-Target Tracking (MS-AMTT) scheme is introduced based on the 
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assumption that the sensor node can detect and serve more than one target at the same 

time.  

Chapter 5 presents the Task Mapping and Scheduling (TMS) in WSNs. Firstly, a 

Biological Task Mapping and Scheduling (BTMS) algorithm is proposed. In BTMS 

algorithm, the application is assumed to be decomposed into dependent tasks with 

different computation weights. Secondly, Biological Independent Task Allocation 

(BITA) algorithm is introduced.  In BITA algorithm, the application is assumed to be 

decomposed into equal-weighted independent tasks.  

Chapter 6 explains the simulation models used to evaluate the proposed target tracking 

and TMS in WSNs. Event driven simulation is introduced. The main simulator flow 

chart and used random number generator are presented. The data structure and different 

event types with their pseudo code are discussed. Appendix A is included at the end of 

this thesis to explain the simulation events and framework in details.  

Chapter 7 proposes the performance and evaluation of the MS-ASTT, MS-DMTT, 

MS-AMTT, BTMS and BITA schemes that proposed in Chapter 3, 4 and 5. A critical 

assessment and discussion for the simulation results are also provided. Additionally, the 

proposed schemes are compared against well-known schemes. Appendix B is included 

at the end of this thesis to verify the proposed simulation. 

Chapter 8 provides critical discussions for the presented results. It also summarizes this 

thesis, the results and the original contributions of this research. 

Chapter 9 presents the future work in target tracking, task mapping, and scheduling in 

WSNs. 
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Chapter 2  Background and Literature Review 

2.1 Chapter Introduction 

In Chapter 1, the main contributions and motivations of this research are identified. This 

chapter explores the background and state-of-the art related to Wireless Sensor 

Networks (WSNs), biological inspired target tracking, task mapping and scheduling. It 

commences with an introduction to WSNs and their application. Then, Media Access 

Control (MAC) and routing protocols are addressed and target tracking in WSNs is 

examined. After that, biologically inspired self-organising networks are introduced. The 

state-of-the art in literature concerning biological inspired systems, target tracking in 

WSNs, task mapping and scheduling are considered. Finally, the chapter is summarised. 

2.2 Wireless Sensor Networks (WSNs) Overview & Applications 

WSNs are receiving much attention in industry, both for civil and military purposes. 

WSNs provide virtual snapshots of the physical world by interpreting the physical 

events. As shown in Figure 3, WSNs consist of electronic network nodes connected to 

each other via wireless communication protocols [9][10]. WSNs have many advantages 

such as easy random deployment, low-cost and small-size. WSNs contain hundreds or 

thousands of tiny sensor nodes that are scattered in the sensor field which is the area in 

which the sensor nodes are deployed. Deployment of the sensor nodes can be either in 

random fashion such as in disaster situation where for example sensor nodes are 

dropped from an airplane [9] or in planned manner such as deployment of WSNs in 

smart homes or for fire alarm systems. The Base Station (BS) or sink is responsible for 

forwarding the desired information from the WSN to the headquarters (i.e., main 

controller) through the Internet, via satellite or other wireless technology. Most of 

WSNs have fixed sensor nodes and BS. However, mobility of sensor nodes or BS is 

desirable in many applications [11]. The sensor nodes cooperate [12] together to sense, 

compute and transmit the information from harsh physical environments to external BS 

or sink. For example, the sensor nodes cooperate to localise the target shown in Figure 

3. Each sensor node can collect and route the data either to other sensor nodes or back 

to the sink node via the path between them [13][14]. 
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Figure 3 WSN Architecture 

As shown in Figure 4, each sensor node is equipped with an embedded processor and 

storage to process the data, sensor devices to measure ambient conditions related to the 

environment surrounding the node and transform them to electrical signals, and radio 

transceivers to send and receive electromagnetic waves. Nevertheless, the sensor nodes 

have very limited resources in terms of battery-supplied energy, communication 

bandwidth, and computational processing and storage capabilities [2][3]. Therefore, 

sensor nodes are typically cheap devices. 

 
Figure 4 Sensor Node Main Components 

Nowadays, commercial and industrial fields employ WSNs for a wide range of 

applications such as healthcare, machine condition monitoring, environmental 

monitoring including pollution monitoring, surveillance of people or vehicle (e.g. 

access control, crowd flux statistics, congestion analysis, anomaly detection, bio-

chemical material detection such as diffused poison gas, alarming and person-specific 

identification [15]), structural monitoring, navigation and control of moving vehicle, 

wildlife habitat monitoring, tracking the movement of wild animals in wildlife 
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preserves, forest fire, manufacturing job flow, home applications (e.g. smart homes), 

detecting environmental ambient conditions (e.g. temperature, movement, sound, light, 

activity and the presence of certain objects), inventory control, weather monitoring, 

Single Target Tracking (STT), Multi-target Tracking (MTT) and disaster management 

[1][16]. WSNs can also be used in military applications including target field imaging, 

intrusion detection, enemy vehicles, detecting illegal crossings, security and tactical 

surveillance. 

2.3 Energy Consumptions Factors in WSNs 

WSNs are usually deployed in harsh environments such as space, forests and 

battlefields. Therefore, it is difficult to physically access the wireless sensor nodes after 

deployment. In many cases, it is impossible to change or recharge the depleted sensor 

node battery [17]. Therefore, maintaining battery life as long as possible is one of the 

most crucial issues in WSNs because it increases the useful network lifetime [18]. 

Energy is consumed from the battery during sensing, communication and processing. 

Sensor nodes wastes energy due to reasons outlined in [17][19][20], namely: 
 

(1) Collisions: The collision takes place when two sensor nodes within the same 

coverage area transmit packets at the same time (i.e., full collision). Therefore, the two 

packets interfere with each other at the receiving sensor node which cannot distinguish 

between them. However, a collision can also happen if one sensor node transmits 

packets before the current transmitting sensor node finishes its transmission. This is 

called a partial collision. In these collisions, the receiver will discard both packets 

because they will be corrupt. Therefore, both of the transmitting sensor nodes will try to 

retransmit again which increases the energy consumption.  
 

(2) Idle Listening: Basically, each sensor node in WSNs can be in active, idle or sleep 

modes. In active mode, a sensor node consumes energy in transmitting or receiving 

data. In idle mode, the sensor node consumes energy to listen to the channel. In the 

sleep mode, the sensor node sleeps and turns off the radio transceiver. The sensor node 

in the idle state listens to the channel status to initiate transmission or to wait for traffic 

from other sensor nodes. Thus, sensor nodes consume energy in channel listening. 

According to the measurements obtained by Katz and Stemm [21], the idle: receiving: 

transmission power consumption ratios are 1:1.05:1.4 on 915MHz. 
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(3) Over-hearing: The sensor node may receive the packets destined for others which 

is considered another energy wasting factor.  
 

(4) Protocol Overhead: These are the control packets used by different communication 

protocols. For example, contention-based protocols such as Carrier Sense Multiple 

Access/Collision Avoidance (CSMA/CA) use control packets to manage channel access 

and reduce the collisions. In contrast, with collision-free or scheduled protocols such as 

Time Division Multiple Access (TDMA), the control traffic is less.  
 

(5) Over-emitting: Energy is wasted when a sensor node sends packets although the 

receiver is not ready to receive them.  
 

Many methods have been adopted to minimize the consumed energy from WSNs such 

as designing energy efficient MAC protocols [17], routing protocols and power control. 

However, this research tackles this issue by: (1) controlling the sensor node activity by 

scheduling sleep, idle and active modes for the sensor nodes, (2) controlling the 

processing demands and time by executing applications only when necessary, (3) 

parallelizing the execution of an application among a group of sensor nodes, and (4) 

designing energy-efficient protocols and algorithms that use low overhead packets. The 

use of an adaptive sampling interval in STT and MTT, adaptive MTT, and biologically 

task mapping and scheduling, introduced in Chapter 3, 4 and 5, address these issues 

together.  

2.4 WSN MAC Protocols 

Sensor nodes within communication range share the same physical channel or medium. 

Medium Access Control (MAC) protocols have been developed to coordinate the 

channel access and thus to avoid the collisions resulting from two sensor nodes 

accessing the same medium to send packets at the same time. MAC is a sub-layer of 

data link layer of the Open Systems Interconnection (OSI) model. MAC protocols let 

the sensor nodes decide when and how to access the channel. In the literature, this 

mechanism is also called channel allocation or multiple access.  
 

Broadly speaking, MAC protocols are categorised into two classes which are 

collision-free or scheduled and contention-based protocols. Time Division Multiple 

Access (TDMA), Frequency Division Multiple Access (FDMA) and Code Division 

Multiple Access (CDMA) are examples of collision-free MAC protocols. The basic 
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concept of their operation is to avoid collisions and interference by assigning users or 

sensor nodes to separate sub-channels which are separated by time, frequency or 

orthogonal codes [22][23]. On the other hand, sensor nodes in contention-based 

protocols compete for access to the shared medium by using probabilistic coordination. 

Therefore, collisions may arise with these protocols. Two common contention-based 

protocols are ALOHA [24] and CSMA [25]. In ALOHA, a sensor node starts 

transmission when needed without any coordination and it reschedules another 

transmission in the event of a collision. There are two main types of ALOHA protocol, 

namely: slotted ALOHA, in which sensor node transmits at the next available slot, and 

pure ALOHA, in which the sensor node transmits a packet as soon as it is generated. On 

the other hand, a CSMA protocol senses the channel before transmitting. If the channel 

is busy, the sensor node delays access and retries later. Several extensions have been 

developed for CSMA to support different environmental conditions. Furthermore, 

CSMA is adopted for IEEE 802.11 [26]. As mentioned in Section 2.2, WSNs differ 

from traditional wireless networks because WSNs have limited battery energy of the 

sensor node and WSNs have to be employed large number of sensor nodes in ad hoc 

fashion. Therefore, MAC protocols have to consider collision avoidance, energy 

efficiency, scalability of the WSN and adaption to network topology changes due to 

sensor node death and movement [19]. CSMA is an important contention-based MAC 

protocol because it is considered the basic approach for contention-based MAC 

protocols for use in WSNs. The main principle of its operation is to listen before 

attempting transmission. In [27], the performance of CSMA is assessed for WSNs. 

Basically, WSNs are multi-hop wireless networks. Two well-known problems in multi-

hop wireless networks are the hidden terminal and exposed terminal problems 

[28][154]. Exposed terminal problem occurs when a node can not send packets because 

one of its neighbours is transmitting. In Figure 5, the hidden terminal problem is 

explained. Assume three sensor nodes, node 1, 2 and 3, form a two-hop wireless 

network, in which node 1 and 2 are neighbours, and node 2 and 3 are neighbours. When 

node 1 sends data to node 2, node 3 will not hear that transmission. Therefore, node 3 

may start sending at the same time in which node 1 is sending to node 2 (i.e., resulting 

in a Full Collision) or during the transmission of node 1 to node 2 (i.e., Partial 

Collision). In both cases, node 2 will received collided or corrupted packets. Because to 

this problem, CSMA/CA [29], where CA refers to Collision Avoidance has been 

developed.  
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Figure 5 Hidden Terminal Problem 

As shown in Figure 6, CSMA/CA uses a short handshake between the source and the 

destination before the actual transmission. The source (i.e., node 2) sends a Request-to-

Send (RTS) packet to the destination (i.e., node 3). The source’s neighbours (i.e., node 

1) hear the RTS packet and they defer their own transmission until the current 

transmission finishes. When the destination receives an RTS, it replies with a Clear-to-

Send (CTS) packet. Like before, the destination’s neighbours (i.e., node 4) hear the CTS 

packet and they defer their own transmission until the current transmission is finished. 

After that, the source starts to send the actual data. However, CSMA/CA does not 

address completely the hidden terminal problem because the collision may happen on 

RTS packets. Since an RTS packet is very short, the collision from RTS will be very 

short as well.  
 

Multiple Access Collision Avoidance (MACA) [30] uses the same concept of 

CSMA/CA but it adds a duration field in RTS and CTS packets to indicate the amount 

of time to transmit the data so that the neighbours of the sender have to wait this amount 

of time before their own transmissions. Further improvements have been carried out 

with the MACA protocol and a new protocol called Multiple Access Collision 

Avoidance with Acknowledgment (MACAW) [31] has been developed. MACAW adds 

an acknowledgement (ACK) packet after each actual data packet transmission. 

Therefore, the handshake between source and destination in MACAW is RTS-CTS-

DATA-ACK. In Figure 6, the destination replies by acknowledging the source for each 

data packet received from the source. IEEE 802.11 [26] has adopted all the features of 

CSMA/CA, MACA and MACAW in its MAC layer. 
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Figure 6 RTS/CTS Handshake 

Sensor-MAC (S-MAC) is a MAC protocol designed especially for WSNs [32][33]. It is 

a contention-based protocol that has been developed to improve the energy efficiency in 

multi-hop WSNs. S-MAC has mechanisms to reduce the energy wastage from the 

consumption factors mentioned in Section 2.3. 
 

In this thesis, CSMA/CA will be used as MAC protocol in the simulation models to 

evaluate the proposed tracking, task mapping and scheduling schemes. Further details 

are introduced in Chapter 7 and Appendix A. 

2.5 WSNs Routing Protocols 

Routing protocols are the algorithms used for the Layer-3 of the OSI model. They 

determine the best path or route between the source and the destination. In Internet 

Protocol (IP) networks [34], routers are usually fixed and provide the routing 

information to fixed clients as well. On the other hand, ad hoc networks and some 

WSNs [35][36] are infrastructure independent in which each sensor node can operate as 

a client and a router. Sensor nodes in ad hoc networks and some WSNs can move 

randomly and the network topology dynamically changes. Therefore, mobility is the 

main design consideration for routing protocols in ad hoc networks and WSNs. Other 

design challenges for routing protocols in ad hoc networks and WSNs include the 

limited wireless bandwidth and sensor node resource constraints. However, routing in 

WSNs is very challenging [13][14] due to their needed requirements. First, it is 

impractical to build global addressing scheme like the IP-based one due to the large 

number of sensor nodes that make the addressing overhead too great. Therefore, in 

WSNs, getting the data is more important than knowing the addresses of which sensor 

nodes sent the data. Second, a sensor node has very limited resources in term of battery 
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and processing power. Therefore, very careful resource management is required to 

design routing protocols for WSNs. Third, WSNs are designed based on the required 

application. For example, a tactical surveillance application design is different from a 

periodic weather monitoring. Fourth, data collected by many sensor nodes in particular 

WSN is based on common phenomena. Therefore, data redundancy can arise. Finally, 

WSNs are location aware because the data collection normally depends on position. 

Global Positioning System (GPS) [37] hardware is not feasible to be equipped in all 

sensor nodes due to sensor node resource constraints. Techniques based on triangulation 

that, for example, allows sensor nodes to determine approximately their positions using 

radio strength, triangulation or multilateration [38] perform quite well under conditions 

where a few sensor nodes know their position using, for example, GPS.  
 

Routing protocols are classified into proactive, reactive and hybrid protocols based 

on how and when the source searches for a route to the destination. In proactive 

protocols, each sensor node has the routes to all destinations regardless of whether or 

not it is needed, while in reactive protocols the routes are computed on demand when 

they are needed. Hybrid protocols are a combination of these two ideas. In addition, 

WSN routing protocols can be classified according to the network structure as flat, 

hierarchical, or location-based [13]. The flat architecture introduces a fully peer-based 

distributed network where each terminal acts as an ordinary sensor node and a gateway 

at the same time. Therefore, all the sensor nodes play the same roles. Data centric 

routing is used in flat protocols instead of using a global identifier to each sensor node. 

The BS sends queries to sensor nodes located in certain regions and waits for the reply 

from the sensor nodes. The data is specified using attribute-based naming that includes 

the data properties. There are many flat routing protocols including Sensor Protocols for 

Information via Negotiation (SPIN) [39] and [40], Directed Diffusion [41], Rumor 

routing [42] and The Minimum Cost Forwarding Algorithm (MCFA) [43]. On the other 

hand, the hierarchal architecture or cluster-based routing classifies the sensor nodes into 

ordinary nodes, cluster head nodes or gateway nodes. The main function of the cluster 

node is to control the other nodes inside the cluster and relay the traffic within the 

cluster. The gateway node connects the clusters together to relay or forward the data 

and control traffic between clusters. The routing information and overhead can be 

reduced in the case of hierarchal architectures; especially in large-scale networks [44]. 

Therefore, lifetime and energy efficiency can be improved. The cluster head is selected 
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as a higher energy sensor node. It processes and sends the data. The other sensor nodes 

in the cluster perform the sensing. Hierarchal routing is typically a two layer routing 

scheme where one layer selects the cluster head and the other is for routing. There are 

many hierarchal routing protocol including Low Energy Adaptive Clustering Hierarchy 

(LEACH) [18], Power-Efficient Gathering in Sensor Information Systems (PEGASIS) 

[45], Threshold-sensitive Energy Efficient sensor Network (TEEN) [46], Adaptive 

Periodic Threshold-sensitive Energy Efficient sensor Network (APTEEN) [47] and 

Small Minimum Energy Communication Network (MECN) [48]. The location-based 

routing protocols employ sensor node position information to build the routing table. 

There are many location-based routing protocol including Geographic Adaptive Fidelity 

(GAF) [49], Geographic and Energy Aware Routing (GEAR) [50] and The Greedy 

Other Adaptive Face Routing (GOAFR) [51]. 
 

However, Destination Sequenced Distance Vector routing (DSDV) [52], which is a 

proactive ad hoc routing protocol, has been implemented in the simulation model. It is 

based on classical Distributed Bellman-Ford (DBF) algorithm. In DBF, each sensor 

node maintains the first sensor node (hop) on the shortest path to every other sensor 

node in the network. Each sensor node maintains routing table for all possible 

destinations and the number of routing hops to reach that destination. A sequence 

numbering system (labelling the routes) is used to differentiate stale routes from the 

new routes. 

2.6 WSNs Target Tracking  

Target tracking is one of the most useful and used applications in both civil and military 

applications. The main purpose of target tracking is to monitor the location of the target 

in two or three-dimensional coordinates [53]. In automated visual or video surveillance, 

target tracking goals are advanced to not only determine the target’s location but also to 

obtain a description of what is happening in the region of interest (ROI) and then to 

perform suitable actions according to the interpretation obtained from the ROI [54]. 

Therefore, the tracking system can detect abnormal behaviour and hostile intent. Two 

popular target tracking infrastructures in WSNs are a camera-based approach which 

relays on image analysis and computer vision [55] and an acoustic-based one [56] 

which uses the strength of acoustic signal received from the target to calculate the target 

range and direction angle. Some systems mix both approaches. Generally as shown in 



 33

Figure 7, every target tracking system includes some or all of the following stages: 

target detection, target classification, nodes selection, group election, target localization, 

target tracking, behaviour and activity analysis, personal identification, and handover 

[15][54][57].  

 

Figure 7 Target Tracking Stages 

2.6.1 Target Detection 

The main objective of detection is to detect the presence of the target in the ROI by 

sensor networks. Therefore, the system has to discriminate between the target absence 

and presence. Loosely speaking, targets emit signals characterized their presence in the 

ROI which can be sensed from sensor nodes [58]. The sensors can be classified based 

on the type of measurement information or modalities they read from the world (i.e., 

target’s signal emissions). Passive sensors detect the target using target’s natural 

energy. Vision-based, magnetic-based, seismic-based, thermal-based and acoustic-based 

sensors are passive sensors [59][60]. More advanced detection techniques combine 

these methods such as using camera and microphone arrays (i.e., audiovisual sensor 

network) detection [61]. For example, vision-based or camera-based sensors work 

similarly like human eyes through using the electromagnetic spectrum to generate the 

image. In vision-based WSNs [15][54][55], target detection is achieved using motion 

and object detection which aims to separate the region corresponding to the moving 
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target from the rest of the image. Motion and object detection requires environmental 

(i.e., background) modelling and motion segmentation. Temporal differencing, 

background substation and optical flow are the most used approaches for motion 

segmentation. In acoustic-based sensor networks as another example, a vehicle 

produces sounds when travelling on a road. On the other hand, active sensors provide 

their own energy to detect the targets and that energy is reflected by the target in the 

ROI. RADAR (RAdio Detection And Ranging), LADAR (LAser Detection And 

Ranging) or LIDAR (Light-Imaging Detection And Ranging), Ultrasonic and SONAR 

(SOund Navigation And Ranging) [59][60] are examples of active sensors. For 

instance, a radar sensor radiates a series of pulses from antennas. When the pulses reach 

the desired target, some of the pulses’ energy will be reflected back toward the radar 

antennas. The reflected energy will be measured and timed. The distance or range to the 

target is calculated from the time required for the pulses to travel to the target and come 

back again to the sensor. All these detection techniques are under the umbrella of 

tokenless detection approaches in which the target does not carry any additional device. 

In a token-based detection approaches, the target carries a token or tag which is a device 

such as laptop, Personal Digital Assistant (PDA), Radio Frequency Identification 

(RFID) tag or wireless device. The token assists in the detection and tracking. The 

target can also be classified by the unique token identifier [62]. 
 

In this thesis, passive sensor devices are used to detect the acoustic signals produced 

from the targets. The target to be tracked is assumed to be an isotropic sound source. 

The emitted acoustic density from the sound source (i.e., the target) is assumed to be 

known. The target acoustic power intensity received by the sensor nodes is modelled as 

decreasing with the distance from the target according to power n  which is the 

attenuation decay factor and is typically between 2 to 5 according to the environment 

and atmospheric conditions [27]. Further details are presented in Chapters 3 and 4. 

2.6.2 Target Classification 

In this thesis, target class, importance or priority is involved. Target class can be 

obtained from target classification [63]. Target classification techniques aim to classify 

the target in terms of its type or importance. For instance, a target could be human, 

animal, moving vehicle or any objects of interest in the scene. Moreover, human objects 

are classified for example based on their historical behaviours or importance. Target 

classification can be regarded as pattern recognition task. Therefore, two main 
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approaches are used for classifications which are shape-based and motion-based 

classifications [15]. Shape information such as points, boxes, silhouettes and blobs are 

used to classify the target using shape-based classification. In motion-based 

classification, a strong clue to classify the object is salient features in its motion. 

Another form of target classification is token or tag tracking [62]. The token carried by 

the target is an electronic device such as RFID tag, PDA, laptop and wireless sensor 

device. All target information is stored and obtained from its tag [64].  

However, in this thesis target importance is adaptively calculated based on the 

historical movement pattern of the target. A target is more important if it moves in 

random fashion with sharp bends. However, the proposed MTT algorithm also supports 

offline assignment of the target importance according to the target class or type. More 

details are provided in Chapters 3 and 4. 

2.6.3 Node Selection  

Due to the high number of the deployed sensor nodes in the ROI, typically several 

sensor nodes can detect the target. However, some of these sensor nodes provide useful 

information that improves the accuracy of the target state estimation. Moreover, some 

of sensor node’s information might be useful but redundant while some might contain a 

lot of measurement errors. In order to prolong the network lifetime and save resources 

in terms of energy, bandwidth and processing, the target tracking task should only use 

the necessary sensor nodes that optimally reduce uncertainly of the target state. In other 

words, nodes selection techniques aim to activate the best necessary sensor nodes at 

each snapshot to perform the target tracking. Additionally, sensors selection requires 

communication between sensor nodes and this consumes energy. Therefore, a balance 

between the accuracy of the tracking and the cost to perform sensors selection is a main 

goal. In summary, sensors selection that belongs to the category of sensor network 

management field [65] is essential for tracking continuity, resource economy and 

tracking accuracy. In Chapter 3 and 4, proposed algorithms and techniques to select the 

best tasking sensor nodes to track the target at each tracking snapshot will be presented. 

2.6.4 Target Localization 

The objective of the localization is to estimate the current location of a moving target in 

the ROI by the sensor network. Mainly, the localization techniques are based on three 

kinds of physical measurement obtained or derived from sensor node readings. The 

following paragraphs present these measurement techniques in the context of acoustic-
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based passive sensors. Firstly, in the Time Delay of Arrival (TDOA) [66][61] 

technique, the detection mechanism relays the estimation of arrival angle for audio 

signal using TDOA or steered beamforming. A TDOA method requires accurate time 

delay measurements. It is suitable for broadband signals. Secondly, Direction of Arrival 

(DOA) [67] requires a costly antenna array in each sensor node and is suitable for 

narrow band signals. It has lower quality compared to the other approaches [68]. TDOA 

and DOA are time delay-based localization approaches. Finally, in the Received Signal 

Strength Indication (RSSI) method, the sensor nodes in ROI use the received or 

measured acoustic energy emitted from the target (i.e., audio source) to locate it [56]. 

Therefore, RSSI is energy-based localization approach. This method is primarily based 

on the fact that the acoustic energy level decays with increasing distance between the 

audio source (i.e., target) and the listener (i.e., sensor node). Therefore, the target 

location can be determined using the acoustic energy readings from different known 

sensor node locations. In [56], it shows RSSI is a suitable choice for WSNs because it 

reduces the computational and communication costs. Furthermore, no accurate time 

synchronization is required between the sensor nodes. Therefore, energy-based 

localization approaches are more robust than time delay-based localization approaches 

which are sensitive to errors in time synchronization and echo effects [69]. Hence, 

target tracking algorithms proposed in this thesis adopt the RSSI technique. The RSSI 

mathematical model used in this research is presented in Chapters 3 and 4. 
 

Triangulation is one method to obtain the target location using the known sensor 

node locations and the distance or range between these sensor nodes and the target [38]. 

In 3D localization, at least four sensor nodes readings are required, while three sensor 

nodes readings are required for 2D localization. In 2D localization shown in Figure 8, 

the set of equations to compute the unknown target location ( )TTT yx ,=ξ  using gn  sensor 

nodes ( ){ }giiS niyx ≤≤= 1,,ξ  is given as [38]: 
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where iR is the measured distance or range between the sensor node i  and the target. By 

subtracting the first row in (2.1) from the rest, a liner system of 1−gn  equations is 

obtained as follows: 

 BAu =  (2.2) 

where, 
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Figure 8 2D Localization 

Equation (2.2) can be solved using least squares method [64][70] as follows: 
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2.6.5 Target Tracking 

The primary goal of target tracking is to estimate the trajectory, velocity and 

acceleration of a mobile target. Therefore, tracking is a series of localization problems. 

In camera-based target tracking [15][54][55], target tracking is achieved from one frame 

to another in the image sequence. Region-based, active contour-based, feature-based 

and model-based tracking are the primary tracking categories in camera-based target 

tracking. In region-based tracking, the motion region is obtained by subtracting the 

background from the image region that varies from frame to another. In active contour-

based tracking, the contour of the target is tracked instead of involved the whole image 

region. Feature-based tracking extracts the target features using recognition and 

matches the features between images to track the target. For example, a target is 

bounded with rectangular box whose centroid is selected as the feature used for target 
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tracking. In model-based tracking, the target tracking is achieved by matching a known 

projected target model to the image data. In acoustic-based WSNs which will adopt in 

this thesis, target tracking aims to determine the target states such as location and 

velocity at every sampling interval which is the time between the two tracking 

snapshots. The localization method described in Section 2.6.4 can be used to track a 

target in acoustic-based WSNs. 

2.6.5.1 Bayesian Networks 

The target-tracking problem is considered a dynamic system. A dynamic system 

[71][72] is defined as the system where its states change over time. A state-space 

approach is used to model the dynamic system to estimate the system states using noisy 

measurements obtained from the system. The system states are encapsulated into a state 

vector that contains all required information to describe the system under investigation. 

For instance, kinematic characteristics including position, velocity and acceleration of 

the target are the information required to describe the tracking problems. The noisy 

measurements (i.e., observations) are related to the system states and encapsulated into 

the measurement vector. Generally, the dimension of the measurement vector is less 

than or equal the dimension of the state vector. Basically, two discrete-time models are 

required to describe the dynamic system in order to obtain the current and predicted 

system states. The first model is called the system model, state transition or evolution 

model in which the evolution of the system states over the time is described. The second 

model is called the measurement model, which is relating the noisy observations of the 

system states. For target tracking, the system model equation that describes the 

evolution of the target state { }NRX ∈∈+ kk xn ,)1(  with respect to the time k  is given by:  

)](),(,1[)1( kkkfk wXX +=+   (2.4) 

In Equation (2.4), f  is the evolution function or system transition function and possibly 

nonlinear and time-varying function that relates the current state )1( +kX  with the 

previous state )(kX . Therefore, Equation (2.4) is considered a first order Markov 

process. wnk Rw ∈)(  is the process noise (or state noise) in the interval between k  and 

1+k  with known distribution which is independent of time. xn  and wn  are the 

dimensions of the state and process noise (or state noise) vectors respectively, N  is the 

natural numbers and R  is the real numbers. The measurement model at time 1+k  that 
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relates the target noisy observations or measurements znk Rz ∈+ )1(  with the target states 

)1( +kX  is given by: 

)]1(),1(,1[)1( +++=+ kkkhk vXz  (2.5) 

where, h  is the measurement function and is possibly a nonlinear and time-varying 

function, vnk Rv ∈+ )1( is the measurement noise whose know distribution is independent 

of both process noise and time, zn  and vn  are dimensions of the measurements and 

measurement noise vectors, respectively. The measurements )1( +kz  are conditionally 

independent. A survey of target measurement models is found in [73]. The dimensions 

xn , vn , zn  and wn  can be different. In fact, filtered estimates of )1( +kX  are calculated 

recursively based on all available measurements or observations up to time 1+k . As 

shown in Figure 9, the models described in Equation (2.4) and (2.5) are described as a 

Hidden Markov Model (HMM) or state space model (SSM) in which the unobserved 

states (i.e., hidden states) are filtered from the measurements. Therefore, it is a recursive 

filter that sequentially updates the previous estimates. 

 
Figure 9 Bayesian Model 

Target estimated states are calculated in a probabilistic distribution form, which called 

belief. Therefore, the state-space approach is suited for recursive Bayesian filtering. 

This means that degree of belief in the state )1( +kX  at different time 1+k  is calculated 

given all measurements }1),({1 +≤=+ kiiZk z  up to time 1+k . Therefore, it is required to 

calculate recursively in time the posterior Probability Density Function (PDF) 

]|)1([ 1++ kZkp X  by assuming that initial PDF (i.e., prior) )0|0()]0([]|)0([ 0 ppZp == XX  

(where 0Z  is the set of no measurement) and the state vector )1( +kX  are known. Thus, 

]|)1([ 1++ kZkp X  at time 1+k  is obtained recursively using two stages known as 

prediction and update. Generally, estimating the state ]|)1([ lZkp +X  is called prediction 

if 1+kl p , update if 1+= kl  and smoothing if 1+kl f .  
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In the prediction stage, the prior PDF ]|)1([ kZkp +X  of the system state at time 1+k  

is calculated (i.e., predicted) without knowing the measurement )1( +kz  and using the 

system model described in Equation (2.4) via Chapman-Kolmogorov equation which is 

give by: 

)(]|)([)](|)1([]|)1([ kdZkpkkpZkp kk XXXXX ∫ +=+  (2.6) 

where, ]|)([ kZkp X  at time k  is available and )](|)1([ kkp XX +  (i.e., transition distribution 

of the first order Markov process) is the probabilistic model of state evolution defined in 

Equation (2.4) given the known statistics of )(kw . )](|)1([ kkp XX +  is referred to as the 

prior distribution. The update stage is achieved at time 1+k  where a measurement 

)1( +kz  is available. Using Bayes’ rule, the prior PDF ]|)1([ kZkp +X  calculated using 

Equation (2.6) is updated to get the posterior PDF ]|)1([ 1++ kZkp X  of the current state 

via the following equation: 

)](|)1([
]|)1([)]1(|)1([]|)1([ 1 kkp

ZkpkkpZkp k
k zz

XXzX
+

+++
=+ +  (2.7) 

where the likelihood function, )]1(|)1([ ++ kkp Xz , (i.e., marginal distribution of Markov 

process) is defined in Equation (2.5) given the known statistics of )1( +kv  and 

)](|)1([ kkp zz +  (i.e., the normalized constant) is defined as: 

kk dxZkpkkpkkp ]|)1([)1(|)1([)](|)1([ +++=+ ∫ XXzzz  (2.8) 

Therefore, the HHM or SSM are described by: 

)](|)1([ kkp XX +  for 0≥k   (2.9) 

)]1(|)1([ ++ kkp Xz  for 0≥k   (2.10) 

The recurrence Equations (2.6) and (2.7) are the optimal and exact Bayesian solution to 

compute the posterior PDF. However, this solution is a conceptual solution and cannot 

be calculated analytically because the integrals in Equations (2.6) and (2.7) are not 

tractable. Kalman Filter (KF) [72][74][75] and Grid-based Filter (GF) [76] approaches 

are optimal and analytically possible and exact under the following assumptions: (1) 

)](),(,1[ kkkf wX+  and )]1(),1(,1[ +++ kkkh vX  are known and linear functions, and (2) )(kw  

and )1( +kv  are drawn from known Gaussian distribution. Therefore, the PDF of 

distribution ]|)1([ lZkp +X  for 1+kl p , 1+= kl  and 1+kl f  are Gaussian at all times. On 
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the other hand, if these assumptions do not hold (i.e., one or both of the models in 

Equation (2.4) and (2.5) are nonlinear or/and one or both of the system and 

measurement noises are non-Gaussian), Extended Kalman Filter (EKF) [72][74][75], 

Approximate Grid-based Filter (AGF) [76] and Particle Filter (PF) [77][78][79] 

approximate the optimal Bayesian solution to get suboptimal solutions. However, EKF 

will be used in this thesis. In the Section 2.6.5.2, EKF will be introduced and in 

Chapters 3 and 4 further mathematical details about EKF are provided. 

2.6.5.2 Extended Kalman Filter (EKF) 

EKF [72][74][75] is based on the linearization of the nonlinearities in the dynamic 

and/or the measurement models. It deals with conditional mean and covariance. In 

Equations (2.4) and (2.5) )(kw  and )1( +kv  are assumed to be adaptive, zero-mean and 

white with )(kQ and )1( +kR covariance matrices respectively such that: 

0)]([ =kE w  & )(])()([ kkkE Qww =′  (2.11) 

0)]1([ =+kE v  & )1(])1()1([ +=′++ kkkE Rvv  (2.12) 

The main purpose of EKF is to calculate the predicted and update states and their 

covariance matrices in both prediction and update stages. In the prediction stage at time 

k , the predicted state, )|1(ˆ kk +X  to time 1+k  is driven from the dynamic model and the 

measurements ( kZ ) up to time k , such that ]|)1([)|1(ˆ
kZkEkk +≈+ XX . The state 

prediction error of )|1(ˆ kk +X  is defined as )|1(ˆ)1()|1(~ kkkkk +−+=+ XXX . Thus, the state 

prediction covariance matrix is }|])|1(~)][|1(~{[)|1( kZkkkkEkk ′++=+ XXP . Similarly, in 

the update stage at time 1+k , the updated state, )1|1(ˆ ++ kkX  of time 1+k  is defined as 

]|)1([)1|1(ˆ
1++≈++ kZkEkk XX . The state updated error of )1|1(ˆ ++ kkX  is defined as 

)1|1(ˆ)1()1|1(~
++−+=++ kkkkk XXX . Thus, the state updated covariance matrix is 

}|])1|1(~)][1|1(~{[)1|1( 1+′++++=++ kZkkkkEkk XXP . The mathematical equations to 

calculate the sates and their covariance matrices are presented in Chapters 3 and 4 for 

single and multi target tracking in WSNs. 

2.6.6 Behaviour Analysis 

After target tracking, understanding target behaviour is the next stage [15][54]. 

Behaviour understanding is to classify the target feature data by matching it to a group 

of labelled reference behaviours. This concept allows the detection of suspicious human 
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behaviour via automated visual surveillance. Video understanding can be performed 

using two main steps, which are lower-level processing and higher-level artificial 

intelligence. Target detection and classification are lower level computer vision 

functions. Behaviour recognition gained from tracking is higher level processing. Many 

methods are used for behaviour understanding and analysis such as HMM, Dynamic 

Time Warping (DTW), Finite-State Machine (FSM), Nondeterministic-Finite-State 

Automaton (NFA), Time-Delay Neural Network (TDNN), Syntactic/Grammatical 

Techniques, Self-organized Neural Network, Agent-Based Techniques and Artificial 

Immune Systems. However, behaviour analysis is beyond the scope of this thesis.  

2.6.7 Person Identification 

Personal identification [15][54] is a special behaviour understanding. The main 

biometric features used in personal identification are face and gait recognition. Face 

detection, face tracking, face feature detection and face recognitions are the main steps 

in face recognition. Model-based, statistical, physical-parameter-based, spatio-temporal 

motion-based and fusion of gait with other biometric are main methods for gait 

recognition. However, personal identification is beyond the scope of this thesis.  

2.6.8 WSNs Target Tracking Architecture 

Target tracking in WSNs can be classified into centralized or distributed approaches 

[68]. In a centralized target tracking system, the sensor nodes detect the target and send 

its signature to the BS or fusion centre. The fusion centre performs the detection and 

tracking algorithms based in the information fetched from the sensor nodes. However, 

since hundreds or thousands of sensor nodes are spread over ROI, a lot of information 

about the target signature sensed from the sensor nodes will be sent to the fusion centre 

at the same time. Therefore, the centralized approach causes the lifetime of WSNs to be 

limited due to the huge communication overhead between the sensor nodes and the 

fusion centre. On the other hand, distributed approach systems [80] are designed so that 

the WNS is divided into regions, cells or clusters via clustering algorithms. One leader, 

cluster head, cell head or manager node for each region is selected. Other sensor nodes 

in the cluster are members. The processing is performed cooperatively between the 

leader and sensor nodes.  
 

There are static clustering and dynamic clustering architectures in WSNs [68]. In 

the static clustering techniques, the clusters are formed at the time of network 
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deployment. Since the clusters attributes, leader and members are static all the time. 

Static clustering improves the energy consumption of the WSNs. However, static 

clustering does not offer fault tolerance. If the cluster head dies due to energy depletion 

for example, the network may not have enough sensor nodes to carry the tracking. 

Additionally, sensor nodes in different clusters cannot share their information and 

collaborate on data processing.  
 

In dynamic clustering architectures, the formation of the cluster is triggered by 

certain events such as detection of a target or prediction of the target next location. An 

election algorithm is performed to elect the leader of the cluster. The group leader has 

the responsibility of management the current group and formation of the next group 

[57][69][81][82]. However, dynamic clustering consumes the energy in forming and 

disbanding the clusters for seamless tracking. 
 

In this thesis, a dynamic distributed architecture is adopted. A group of tasking 

sensor nodes is selected to cooperatively track the target in WSN. One of the group 

sensor nodes is elected to be the leader. More details are presented in Chapters 3 and 4. 

2.7 Biologically Inspired Research & Self-Organized Networks 

Many possible definitions have been proposed for self-management or self-organized 

networks. A self-management system [83] can be described according to eight 

characteristics, which are self-configuration, self-healing, self-optimization, self-

protection, self-awareness, environment-awareness, openness and transparency. 

Generally, a famous idiom that indicates these elements is the self-* property. Self-

configuration means that the communication system has to dynamically configure and 

reconfigure itself based on the dynamic changes of the network or environment. The 

self-healing property allows the communication system to detect the failure and thus 

contain it, replace it with another feature or eliminate it without affecting the system. 

Additionally, the system has to behave proactively in term of prediction of the 

problems. Maximizing the resource management and utilization, and achieving efficient 

load balancing are the main two functions of self-optimization systems. Self-protection 

element has the responsibilities of protection of the systems from the attacks and 

performing all the system security aspects. Self-awareness or self-knowledge allows the 

system to know itself in terms of available resources, applied load etc. Additionally, the 

communication system must be aware of the execution environment to cope with any 
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environmental changes. Openness means that communication system has to operate in 

different environments and conditions. Finally, communication system should operate 

in a transparent fashion with respect to the users. Its complexity has to be hidden.  

Characteristics and behaviours inspired by biological and ecological systems have 

become enthusiastic research methodologies in communication and information 

technologies. For example, advanced self-management phenomena can be found in the 

nature itself [84]. Ants in their colony cooperate to find the shortest path to the food 

source; schools of fish swim in patterns to improve the response time to attacks; human 

autonomic nervous system works cooperatively to identify the things. 
 

As shown in Chapters 3, 4 and 5, the target tracking, and task mapping and 

scheduling schemes proposed in this thesis are under the umbrella of the biologically 

inspired, self-organized communication networks. Further details are explored in these 

chapters. 

2.8 Task Mapping and Scheduling in WSNs  

Task mapping is defined as the mechanism to assign available resources to tasks or 

jobs. Recourses include the processing capability, available storage, remaining energy 

and network bandwidth. Task scheduling is the execution sequence of the tasks or jobs 

so that the performance objectives are optimized. The performance objectives are 

defined according to the underlying system requirements and they can include 

execution time and/or energy consumption.  
 

 

Applications can be divided either into independent or dependent tasks. It is well 

known that optimal task mapping is an NP-complete problem [7], where NP stands for 

Nondeterministic Polynomial-time. The polynomial time refers to the algorithm’s 

running or execution time. An algorithm is a polynomial time if its running time is no 

larger than a polynomial function of its input size. No fast solution of an NP-compete 

problem is known. As the size of the NP-compete problem increases, the time required 

to solve it using a given algorithm increases. Therefore, heuristic techniques or 

approximately algorithms are needed to obtain near-optimal solutions.  
 

In this thesis, two algorithms are developed for task mapping and scheduling in 

WSNs. The first algorithm assumes the application can be divided into independent 
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tasks and the second assumes that there are dependencies between the application tasks. 

Chapter 5 explores these algorithms in depth.  

2.9 State-of-the Art Review 

In this section, a literature review of relevant biological research, target tracking in 

WSNs and task mapping and scheduling in WSNs will be explored and analysed. The 

advantages and limitations of the current approaches to target tracking, and task 

mapping and scheduling in WSNs are considered. The proposed target tracking, task 

mapping and scheduling schemes in WSNs are presented in detail in Chapters 3, 4 and 5 

to address the limitations of the current work. 

2.9.1 Biological Inspired Techniques and Algorithms  

In this thesis, the proposed target tracking, task mapping and scheduling in WSNs 

schemes are inspired from biological principles. However, a number of researchers have 

already considered applying biological and ecological principles within communication 

networks for different purposes. Therefore, this section will only mention the biological 

aspects of their research insofar as they relate to target tracking, task mapping and 

scheduling in WSNs. However, the reader can refer to the given references for further 

background. 
 

 

In [85][86][87], a biological-inspired architecture has been introduced to allow 

network services to adopt and scale with dynamic network conditions. In these papers, 

the network service such as HTTP is designed as biological abstract entities, which can 

perform biological behaviours such as migration, replication, reproduction and death. 

Additionally, the authors in [85][86][87] assume that the service can autonomously die, 

migrate and replicate depending on the locally available information such as their 

neighbours’ resource availability. In [88], the authors have developed novel models 

inspired from molecular biology to achieve autonomic capabilities in communication 

networks. 
 

 

In [89], a biologically inspired system has been implemented to provide autonomous 

adaptation to the environmentally dynamic changes such as network traffic, user 

location and resource availability. The authors in this paper have developed a 

middleware platform that has biological features as well as the application services. In 

[89], the platform can migrate, replicate, reproduce, exchange energy and die 

accordingly to the network conditions.  
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In [90], the authors map the network service that is executed using platforms to ants 

and bees. Ants and bees work continually in their colonies from birth to death. They 

move to other location to find food. In times of crisis, they stop looking for food and 

protect their colonies from intruders. In [90], network service behaves like ants and 

bees. When a network service is created, it registers with the system. After that, it 

begins to perform activities. It stops its work if another high or priority network service 

wants to work. It also can migrate among platforms.  
 

In [91], a combination of Ant Colony Optimization (ACO) and Particle Swarm 

Optimization (PSO) has been developed in one algorithm to be used in distributed 

multi-agent systems to search for multiple targets. In [91], the system is inspired from 

biological swarm intelligence so that the agents interact locally. The agent can detect 

the target within its local sensing range. In [91], agent can behave like ants. The ants 

work cooperatively to determine the shortest path to the source of the food. Each ant 

lays down chemical trails of pheromones. The ants follow the high intensity 

pheromones. This biological behaviour allows the ants to adapt with the environment 

changes. The same principle of ants is applied to the agents in [91]. In [91], the agent 

builds virtual pheromone data structure whenever it detects a target. It broadcasts this 

target information to its neighbours. The agent may move toward the target if it receives 

information about the target and the pheromone intensity is strong enough.  

2.9.2 Target Tracking in WSNs  

In fact, many researchers focus on target tracking in WSNs. As described in Section 2.6, 

several operational steps are involved in tracking system. In this section, the literature 

review about tracking framework, sensor nodes selection, sensor nodes election and 

target tracking techniques are proposed. In Chapters 3 and 4, the proposed tracking 

schemes for STT and MTT are presented.  

2.9.2.1 Target Tracking Framework 

In [16][69][5][92] dynamic clustering architectures are proposed. In [16], there is one 

leader at a time in the vicinity of the target. Based on information-driven approach and 

the cost, the current leader selects the new leader. The current target state is sent to the 

new leader. As shown in Figure 10, during the target movement from the left to the 

right, the leader node hand offs from sensor node to sensor node [16]. In [16], initially, 

the user query arrives in the network from sensor node “Q”. The query is directed to the 
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region of interest. Sensor node “a” is the initial leader. It computes the initial estimate 

of the vehicle state, determines the next best leader (b) and hands off the state 

information to “b”. Sensor node “b” uses its measurement to update the state estimation 

using Bayesian filter, for example. The process is repeated through the next leaders “c”, 

“d”, “e” and “f”. Sensor nodes “d” and “f” send back the state estimation to the 

queering sensor node “Q”. However, the framework in [16] does not consider the 

energy-efficiency of sensor nodes that can be achieved by scheduling the sensor nodes 

to be in active or sleeping modes as necessary. Further to this, all sensor nodes should 

be in active mode to be able to receive the queries sent by the user. Additionally, a 

single target is assumed to be tracked. 

 
Figure 10 Network Framework [16] 

In [69], dynamic clustering for target tracking in WSN is proposed. A sensor node can 

volunteer to be a cluster head (CH) if it receives signal from the target exceeds a 

predefined threshold. Other sensor nodes around the target are invited to become cluster 

members. Cluster members send the target signature to the cluster head and then cluster 

head performs the processing. Two or more sensor nodes can receive a good sound 

signal above the threshold and volunteer as cluster head. As shown [69] in Figure 11, a 

probabilistic leader volunteering is achieved using Voronoi diagram. If the target inside 

the inner dotted circle, the target will be inside the Voronoi cell of CHi . After the CH 

localizes the target, it sends the target state to the sink node. The simulation results in 
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[69] show that the dynamic clustering proposed in [69] reduces the target localization 

error compared to the static clustering approaches. However, like the scheme in [16], 

the scheme in [69] does not consider the sensor node scheduling between the sleeping 

and active modes. Therefore, the framework in [69] is not energy-efficient. 

 
Figure 11 Leader Volunteering using Voronoi Diagram[69] 

In [92] as shown in Figure 12, the elected leader node forces all its neighbours to sense 

the target by broadcasting a message to them. However, hundreds or thousands of 

sensor nodes are deployed in the area of interest. Therefore, communication between 

sensor nodes neighbours to inform them to sense the target is expensive in term of 

energy consumption. 

 
Figure 12 The illustration of Presented Scenario in [92] 

In [5], dynamic clustering for WSNs target tracking is proposed. The framework 

assumes that the sensor nodes are in the sleeping mode and triggers by using ultralow 

power channel to perform the sensing tasks. In [5], when the target entering the ROI, it 
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is initially detected using some low-power sensor nodes such as passive infrared (PIR) 

sensor nodes. As the authors in [5] explain, in Figure 13 the sensor nodes in the current 

cluster send the measurement information to the CH. The CH calculates the target states 

using the information received from the sensor nodes. The CH chooses the next cluster 

nodes and the next CH. Although, MTT is not considered in [5], we believe that the 

framework in [5] is energy-efficient.  

 
Figure 13 WSN Tracking Architecture [5] 

In [93] and [94], a distributed tracking algorithm is presented in a static clustering 

architecture. As shown in Figure 14, each cluster head (CH) knows all information of 

all sensor nodes inside its cluster all the time. Three sensor nodes are assumed to be 

enough to determine the target state (i.e., location and velocity) using triangulation. The 

target current location and predicted next location is calculated. The current CH 

migrates the target states to the next predicted CH. Using the information of the sensor 

nodes inside the CH database, the next CH selects from its cluster three sensor nodes 

that have the smallest distances from the predicted target location under condition that 

the target will be in their sensing range. The CH asks its neighbours for help if it cannot 

find three sensor nodes in its cluster. However, we believe that the scheme presented in 

[93] and [94] is not energy-efficient because the CH is in communication with all sensor 

nodes inside its cluster to ascertain their information at all times. Additionally, the 

target state probability distribution is not considered in the tracking scheme presented in 

[93] and [94]. 
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Figure 14 WSN Tracking Network Architecture [93] 

The static architecture in [68] is shown in Figure 15. The target may enter the area 

across one of the four corners of the sensing area. The specialized photo sensor nodes in 

the corner are active all the time and they can sense any target entering the sensing area. 

The acoustic sensor nodes are only in active mode if there is a target. The sensing area 

is divided into equal regions and one cluster head (i.e., processing node) is located in 

the centre of each region. The cluster heads collect the sensing information from the 

specialized photo and acoustic sensor nodes, process the data and send the target states 

to the base station. The results in [68] show that the static clustering approach reduces 

the energy consumption compared with the dynamic architecture schemes. However, 

there are no techniques in [68] to explain the formation of this static clustering and the 

energy consumption required to form it. Moreover, it is difficult to build static 

architecture in areas that are difficult to be physically accessed such that forests, 

mountains and under water. The scheme in [68] does not include a method by which the 

sensor nodes can be informed to be in active mode at the time of target arrival.  
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Figure 15 Tracking Network Structure [68] 

In [81], a static WSN architecture for target applications is presented. As shown in 

Figure 16, sensor nodes are arranged in triangular form where the sensing range is equal 

to the side length of the triangles. All sensor nodes are in sensing mode all the time. The 

sensor nodes detect the target either using passive sensing such as the received signal 

strength or active sensing by emitting a signal to the target and calculating the time of 

the reflected signals from the target. Each sensor node has to know at least the 

information about the sensor nodes that are two hops away from it. In [81], three sensor 

nodes are assumed to be sufficient to calculate the target location using trilateration 

algorithm. One of these three sensor nodes will be the master and the other two nodes 

are slaves. The master node runs the tracking algorithms and the slave nodes send the 

target range to the master. The sensor nodes tracking the target are changed when the 

target moves through the triangles. For example, when the target enters the area A1 

instead of the slave S2, the slave S6 starts to track the target with the master S0 and 

other slave S1. However, setting the sensor nodes to be in sensing mode all the time 

increases the energy consumption of the sensor nodes and in turn reduces the network 

lifetime. Additionally, energy is consumed during the information gained by each 

sensor node about the sensor nodes that are two hops away from it. Moreover, in [81] 

there is no technique to show how the sensor nodes can be arranged in triangular form. 
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Figure 16 WSN Tracking Framework [81] 

2.9.2.2 Sensor Nodes Selection Algorithms 

In [93] and [94] the nearest three sensor nodes to the target predicted location are 

proactively selected to track the target at next tracking snapshot. However, these sensor 

nodes have to be inside the cluster where the target is located. Therefore, the sensor 

nodes inside other clusters will not be selected even if they are closer to the predicted 

location of the target than the sensor nodes inside the cluster in which the target is 

currently located. In [81], the nearest three sensor nodes to the target are selected to 

track it. These approaches to select the closest sensor nodes to the target are 

computationally efficient. However, they do not take into account the uncertainty in the 

target state calculation and this degrades the accuracy in the prediction and tracking 

[82]. 
 

 

In [92], the number of sensor nodes to track the target is calculated so that the 

tracking accuracy is improved by a predefined improvement value. In [92], detection 

fusion coefficients of all sensor nodes that detect the target are computed based on their 

received target signal power. After that, the sensor nodes that have the highest detection 

fusion coefficients are selected. Nevertheless, this approach is practically difficult and 

costly in term of energy and processing because all sensor nodes within the range of the 

target will perform measurements from which the useful ones are then selected. 
 

In [95], the sensors selection is based on the proximity of the sensor node to the target 

and the co-linearity between the sensor nodes. The co-linearity between a set of sensor 
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nodes increases when the lines connected the sensor nodes are more likely a straight 

line. [95] shows that the tracking error is reduced with decreasing co-linearity between 

the sensor nodes and decreasing the proximity of the sensor node to the target. In [95], 

three sensor nodes are selected to track the target at each tracking event. The selection 

algorithm consists of two steps. Firstly, two sensor nodes are selected from the set of 

the sensor nodes that their distances to the predicted target location is less than or equal 

the sensing range. The selection of the two sensor nodes is based on the angle that the 

target is located between them, and the proximity to the predicted location of the target. 

Secondly, the third sensor node is selected so that it has the minimum co-linearity with 

the selected two sensor nodes in the first step. However, [95] does not consider the 

uncertainty in the target state calculation and this degrades the accuracy in the 

prediction and tracking [82]. Furthermore, as declared in [95], the computational 

complexity in first step of sensors selection is )( 2NO  where N  is the number of sensor 

nodes that can detect the target. Therefore for 20=N , it is required to evaluate 

190!2)!2(! =−NN  combinations to get the first two sensor nodes and another 20=N  

operations to get the third one. Obviously, this is expensive in terms of computing and 

energy consumption especially for large value of N  and considering MTT. 
 

The algorithms for sensor selection based on the most informative sensor nodes is 

set by how much the amount of information the sensor node can bring (i.e., how much 

this sensor node data is useful) or how much uncertainly (i.e., opposite to accuracy) of 

the target state the sensor node can reduce. In [16] and [82] the next sensor node to 

track the target is selected based on maximizing the information utility measure. The 

information utility measure is calculated in [16] and [82] for each sensor node based on 

the Mahalanobis distance between the sensor node and the predicted location of the 

target taking into the account the covariance of the target state. The results in [16] and 

[82] show that sensor selection based on Mahalanobis distance effectively reduces the 

uncertainty in the target state compared with the sensor selection based on the nearest 

neighbour criteria by which the next sensor nodes is the nearest neighbour to the current 

sensor node. However, the tracking algorithm used in [16] and [82] selects only one 

sensor node at each time step. Moreover, it does not show how to select the sensor 

nodes whose measurements are potentially useful. 
 

In [96] the next sensor node is selected so that the expected conditional entropy of 

the posterior target location is minimized. The statistical entropy measures how much 
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the randomness of a given random variable. Nevertheless, this approach is practically 

difficult and costly in term of energy because all sensor nodes within range of the target 

will perform measurements from which the useful ones are then selected. Furthermore, 

only one sensor node at each time step is selected in [96]. 
 

In [97], the sensor nodes selection is based on the mutual information between the 

target state and the measurement to determine how much this measurement is useful. 

The mutual information is the amount of the information obtained from one random 

variable by observing another. However, like [96], this method requires the 

measurements to be available before the sensor nodes selection. 
  

In [98], sensors selection technique based on information utility measurement for 

bearing-only sensor nodes is presented. As shown in Figure 17, ),( iii yxS =  is the sensor 

node location. The covariance ellipsoid is used to represent the covariance matrix. The 

covariance ellipsoid of the target prior position PDF (i.e.,, )|( :11 kk Zp +X ) is shown in 

Figure 17. Its long and short axes are xσ3  and yσ3  respectively. In the bearing sensor 

nodes [98], the sensor nodes along the shorter axis of the ellipsoid reduce the target 

position uncertainty of the prior PDF. The shadowed area is the modified uncertainty of 

target position and it results from the intersection between the sensor node bearing 

errors and the original covariance ellipsoid. This area is approximated to Gaussian 

distribution. The covariance matrix of this new a Gaussian distribution is computed. 

The determinant of the covariance matrix is proportional to the rectangular region 

enclosing the covariance ellipsoid representing the covariance matrix. Therefore, in 

[98], the sensor node is selected so that it minimizes the determinant of the covariance 

matrix of the new Gaussian distribution. However, the selection algorithm used in [98] 

selects only one sensor node for each tracking snapshot. Additionally, the energy cost to 

select the next sensor node is not considered. The rectangular region of the covariance 

ellipsoid will be zero in case of shrinking the smallest principal axis to zero while the 

uncertainty longest principal axis might remain large [82].  
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Figure 17 The uncertainty of the Target Position [98] 

In [5], the probability for the sensor node to detect the target within its detection region 

is introduced. The PDF of the predicted target location is computed. Then, the predicted 

detection probability (PDP) of the sensor node is computed as the integration of the 

probability that the sensor node detects the target and the probability of the target to be 

in the predicted location. At each time step, the sensor nodes with the highest PDP are 

selected to track the target. However, this technique is concerned with the detection 

probability rather than the usefulness of the measurements obtained from the sensor 

nodes. 
 

All the above approaches only consider single target tracking. Most of the research 

into MTT [99][100-102] focuses on the data association problem that is the techniques 

to know which measurements were generated by which targets. Sensor nodes selection 

management in MTT receives less attention [103]. In [103] and [104], a near-optimal 

sensor node subset is found to track multiple targets. Sensor nodes in [103] and [104] 

are assumed to be able to detect more than one target at a time. The objective function 

to select the near-optimal sensor node subset is to maximize the overall tracking 

accuracies of the targets. Off-the-shelf convex optimization and local search techniques 

are employed to obtain a near-optimal solution. However in [103], the targets move in a 

predictable fashion and the optimization problem uses all the sensor nodes to find the 

near-optimal solution. This is computational expensive. Moreover, the system does not 

provide a mechanism to predict the sensor nodes that may detect the target at each time 

step; furthermore there is no mechanism to set the target priorities and the maximum 

allowable iterations for the local search algorithm.  
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The above research in MTT does not consider the concept of conflict nodes 

whereby a sensor node that is not capable of detecting and serving more than one target 

at the same time has to decide to which target it will serve.  

2.9.2.3 Sensor Nodes Election Algorithms 

In [69] and [81], the cluster leader is elected so that it is the nearest sensor node to the 

target. In [92], the leader node is the sensor node that has the minimum statistical 

expectation of the difference between the target and the sensor node location. However, 

the communication is always between the sensor nodes in the cluster and the target. 

Therefore, the election in [69][81][92] does not reduce the communication energy 

consumption between the cluster nodes.  
 

In [82], the leader node is chosen so that it is the closest node to the centroid of the 

cluster. In [5], the cluster leader is elected so that the total energy consumption used for 

all cluster members to transmit their measurements to it is minimized. The election in 

[82] and [5] will improve the communication energy efficiency of the cluster nodes. 

However, all these election techniques do not consider load balancing between the 

cluster nodes in terms of resources availability. Therefore, if the elected leader node has 

a low battery level, it will die quickly leaving gaps in the WSN and in turn reduces the 

network lifetime. 

2.9.2.4 Target Tracking Techniques 

Most of the existing research into STT in WSNs adopts a uniform or fixed sampling 

interval, which is the time between two successive tracking events [93][94][82], 

[96][16][92][95][97][105 - 108]. In case of MTT in WSNs, most of the research focuses 

on the data association problem and uses fixed sampling interval [99][100 - 104]. 

However, the target can be lost if its motion includes abrupt changes and the sampling 

interval is chosen to be a large value. On the other hand, energy consumption is 

increased if the sampling interval is chosen to be a small value. The rest of this section 

explores the STT schemes in WSNs that use an adaptive sampling interval.  
 

In [109], a simple prediction model is used to locate a moving object. The sampling 

interval is changed based on the average historical target speed. However, changes in 

the target direction are not considered in the sampling interval calculation. Additionally, 

the sampling interval for each averaged speed of the target is calculated offline.  
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In [5] and [110], adaptive sampling interval target tracking schemes are proposed 

but they do not consider randomness in the motion of the target, i.e., undergoing “sharp 

bends” in its path. As shown in Chapter 7, the proposed tracking scheme is compared 

against the uniform schemes and the tracking schemes presented in [5] and [110].  
 

In the tracking scheme proposed by Xiao in [110], the sampling interval is 

computed so that the updated tracking accuracy is satisfied. A single sensor node is 

selected to track the target at each tracking event. The sampling interval is chosen in 

[110] to be between minimum and maximum values. Two operational modes are 

proposed in [110] which are Fast Tracking Mode (FTM) and Track Maintenance Mode 

(TMM). FTM mode is used when the current tracking error, that is defined as the 

“trace" of the updated state covariance matrix, is not satisfied or non of the sensor nodes 

that may detect the target at the next tracking snapshot can achieve a satisfactory 

updated tracking error using any allowable sampling interval. In this case, the sampling 

interval is set to its minimum value and the sensor node is selected so that it minimizes 

the next updated tracking error and energy consumption used for communication 

between it and the current sensor node. TMM mode is used when the current tracking 

error is satisfied and at least one sensor node can achieve an update tracking error 

within acceptable limits using a certain sampling interval. In this case, the authors in 

[110] developed a discrete search algorithm to select the sensor node and the sampling 

interval so that the energy consumption used for communication between the next 

potential sensor node and the current sensor node is minimized using a biggest value of 

the sampling interval. The discrete algorithm divides the allowable values of the 

sampling interval into a discrete set of numbers. Then, for each value of the sampling 

interval starting from the biggest value, the energy consumption used for 

communication between the next potential sensor node and the current sensor node is 

calculated. If some sensor nodes satisfy the next updated tracking error for a given 

sampling interval, the sensor node that has the minimum updated tracking error is 

selected and the discrete search algorithm is terminated. However, in [110], one tasking 

sensor node at each time step is selected. Furthermore, choosing the tracking accuracy 

threshold after which the updated tracking error is not satisfied dramatically affects the 

total energy consumption and it is not easy to set it as it depends on the motion pattern 

of the target. Additionally, Xiao’s scheme assumes the sensor nodes that can detect the 
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target at each time step are known without including a method or technique to identify 

them.  
 

In Lin’s approach [5], the sampling interval is calculated based on the predicted 

tracking accuracy. This scheme can guarantee the predicted position accuracy to be less 

than or equal the predefined threshold. Like [110], FTM and TMM operational modes 

are adopted. FTM is used when current updated position uncertainty, which is defined 

as the “trace” of the updated position covariance matrix, cannot be satisfied. In this 

case, the sampling interval is set to its minimum value. On the other hand, TMM is 

operated when both the current updated and predicted position uncertainties are 

satisfactory. In this case, the sampling interval is calculated so that the predicted 

position uncertainty is equal a predefined threshold value. The sensors selection strategy 

in [5] is illustrated in the Section 2.9.2.2. However, it is difficult to decide in [5] the 

value of the threshold because the target can sometimes make unexpectedly abrupt 

changes in motion. Therefore, choosing a large threshold value may cause loss of the 

target. On the other hand, choosing a small threshold value wastes energy if the target 

travels in a uniform manner.  

2.9.3 Task Mapping and Scheduling in WSNs  

Task mapping and scheduling are considered in depth in traditional parallel computing 

environments including high performance computing, heterogeneous computing, grid 

computing and distributed computing systems [8][111 - 120]. However, the design 

objectives of these traditional parallel processing systems are different from those of 

WSNs. For example, in [112] and [114] the goal is to minimize the execution time of 

the applications. However, the execution time of the application in WSNs has to meet 

the application deadline (i.e., time constraint) after which the execution of the 

application will not be useful anymore. Battery energy and wireless communication 

constraints are not considered in traditional parallel processing systems. Thus, task 

mapping and scheduling in traditional parallel processing systems cannot directly apply 

to WSNs. A number of researchers have already considered task mapping and 

scheduling in WSNs. In the following paragraphs the state-of-the art for task mapping 

and scheduling in WSNs are introduced.  
 

 

In [121], a fast online collaborative allocation algorithm (CoRAl) is proposed to 

dynamically reconfigure WSNs according to the sensor node’s activity changes (i.e., 

sleep versus active modes) or new hot spots occurring (e.g. new target is detected). 
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CoRAl allocates the resources to the tasks so that the system utility is maximised. 

However, CoRAl does not consider the battery level as a part of sensor node resources 

and it does not address the energy consumption problem.  
 

In [122], six heuristic task mapping and scheduling techniques, Min-Min, Levelized 

Weight Tuning, Bottoms Up, Genetic Algorithm, Simplified Lagrangian, Lower Bound 

and A* are compared and evaluated in heterogeneous ad hoc grid environment. In 

[122], the application is modelled using the Directed Acyclic Graph (DAG). Min-Min is 

a task mapping and scheduling technique used in traditional parallel computing 

[112][113]. In [122], the fitness value is defined as the weighted sum of the execution 

time and energy consumption required to execute a task in a particular sensor node. In 

Min-Min used in [122], for each task the fitness value is calculated across all sensor 

nodes and thus the sensor node that has minimum fitness value is temporality selected 

and stored with the corresponding task in a pair. Among all node/task pairs, the pair that 

has the minimum fitness value is permanently selected for mapping. After that, the 

energy and time availabilities of the selected sensor node and any other sensor nodes 

that are involved to send/receive any dependencies to/from the selected machine are 

updated. The procedures are repeated until all tasks are mapped. Levelized Weight 

Tuning (LWT) is a task mapping and scheduling technique used in distributed 

heterogeneous environments [114]. In LWT used in [122], a DAG representing the 

application is arranged into levels according to the data precedence constraints. At each 

level, each task is assigned a priority based on the size of its output data items. For each 

task from the low level to the high level and from the high priority to the low priority in 

each level, the LWT is run to map the tasks to the sensor nodes. The Bottoms Up (BU) 

heuristic proposed on [122] combines Min-Min and LWT. However, it starts from the 

highest level to the lowest level. A* is a tree search technique that starts from the root 

node. A* has been found to be a highly effective method for searching a tree or graph 

[122]. Simplified Lagrangian (SL) proposed in [122] is a simple version of Lagrangian 

approaches that have been used for job scheduling in industrial environments [111]. 

Genetic Algorithm (GA) is used to search a large solutions space to find exact or 

approximate optimized solution. The GA used in [122] is a modified version of GA 

used in [123]. With Lower Bound (LB) proposed in [122], the sensor node that has the 

minimum percentage of energy consumption is chosen. The simulation results in [122] 

show that GA gives the best performance. The performance metric using GA is better 
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than Min-Min by 7%. The performance metric in [122] is defined as the summation of 

the percentage of energy consumed by each sensor node to complete the mapped tasks, 

averaged across all sensor nodes. On the other hand, the time required to perform GA is 

high compared to Min-Min. However, unlike the case of WSNs, [122] assumes 

individual channels for each sensor node and each sensor node can transmit and receive 

data at the same time. Moreover, [122] ignores the energy consumption to receive a data 

item and the cost of the initial data item.  
 

 

In [124], a task allocation heuristic algorithm that consists of three operational 

phases has been developed to provide energy-balanced task allocation in a single-hop 

cluster of homogeneous sensor nodes. In the first phase, the tasks are serialized into 

clusters so that the execution time of the application is minimized. In the second phase, 

the task clusters are assigned to the sensor nodes that have minimum normalized energy 

dissipation, which is the sum of energy dissipation of the clusters assigned to the sensor 

node normalized by the sensor node remaining energy. In the third phase, the CPU 

voltage levels of tasks are adjusted with the goal of maximizing the system lifetime 

subject to the application deadline. The process of changing the CPU voltage level is 

known as Dynamic Voltage Scaling (DVS) [125]. The operation of DVS is mainly 

based on the fact that the processing energy consumption is proportional with the cube 

of the CPU voltage [125]. On the other hand, the execution time is reduced with 

decreasing the CPU voltage. However, [124] assumes the energy consumption to 

transmit a data item is the same in the sender and receiver, which is not realistic. 

Additionally, [124] does not employ the broadcast nature of WSNs where sensor nodes 

are equipped with Omni-directional antennas. 
 

 

The authors in [126 - 128] proposed a different algorithm for task mapping and 

scheduling in WSNs. In [126], Energy-Constrained Task Mapping and Scheduling 

(EcoMapS) algorithm is implemented for energy-constrained application in single-hop 

clustered. The objective of EcoMapS is to find a task mapping and scheduling solution 

so that the schedule length is minimised under energy consumption constraint. 

However, EcoMapS does not guarantee the in-time completion of the application before 

the application deadline. In [127], a real-time task mapping and scheduling (RT-MapS) 

algorithm is proposed for collaborative in-network processing in single-hop cluster 

WSN with enabling DVS feature. In [128], Multihop Task Mapping and Scheduling 

(MTMS) solution is presented to map and schedule application tasks in multi-hop 
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cluster WSN. The main goal of RT-MapS and MTMS is to minimize energy 

consumption subject to meeting the application deadline. MTMS and RT-MapS use 

DVS and Min-Min algorithms in its operation. However, MTMS and RT-MapS do not 

allow mapping the task to its immediate predecessors. Additionally, they involve all 

sensor nodes in the task mapping decision-making. Moreover, the Min-Min algorithm 

adopted by them is initially introduced in traditional parallel computing for mapping 

and scheduling independent tasks. Therefore, there are no any dependencies among 

tasks and in turn there is no communication cost between the processors. In Min-Min, 

the fitness value for each task is calculated across all sensor nodes and thus the sensor 

node that has minimum fitness value is temporality selected and stored with the 

corresponding task in a pair. Among all node/task pairs, the pair that has the minimum 

fitness value is selected for mapping. Therefore in Min-Min approach, only the selected 

pair will be permanently mapped and the procedures will be repeated to map other 

tasks. In case of an application that can be divided into tasks with dependencies, the 

first pair is permanently selected based on the other pairs and communication between 

the pairs to exchange the dependencies. If the same procedures are repeated to 

permanently map the next pair, the calculations that are used to map the first pair will 

not valid anymore because the pairs that are produced to permanently map the second 

pair may not be the same as the pairs generated to permanently map the first pair. 
 

Task mapping and scheduling of an application that can be divided into independent 

tasks is introduced in traditional parallel processing system [112][113]. However, it 

receives less attention in WSNs. 

2.10 Chapter Summary 

This chapter introduces the structure, applications, and MAC and routing protocols of 

WSNs. In this thesis, CSMA/CA is selected as the MAC protocol and DSDV as the 

routing protocol and both of them are implemented in the simulator to evaluate the 

proposed tracking, task mapping and scheduling schemes. The structure and 

requirements for target tracking in WSNs are presented. Background material 

concerning relevant biological analogies, task mapping and scheduling in WSNs are 

considered. In the next chapter, the proposed single target tracking scheme is introduced 

in detail. 
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Chapter 3  Single Target Tracking in WSNs 

3.1 Chapter Introduction 

In the previous chapter, background material and a literature review relating to WSNs, 

target tracking, task mapping and scheduling and biological systems are considered. 

This chapter presents the proposed Single Target Tracking (STT) scheme in detail. The 

target dynamic, sensor detection, measurement and energy consumption models are 

presented. Then, the Extended Kalman Filter (EKF) for STT in WSNs is introduced. 

After that, the framework and the assumptions for the proposed STT scheme are 

explained.  The target metadata representation is illustrated; then, sampling interval 

determination, sensor node selection and election are presented. The recovery 

mechanism and sensor node deployment strategies are then introduced.  After that, 

complete algorithms and protocols for the proposed STT scheme are proposed. Finally, 

a chapter summary is provided 

3.2 Target Dynamic Model 

In this chapter, a STT is considered. The target (T ) state vector at time step k consists 

of the target coordinates (i.e., )(kxT  and )(kyT ) and velocities (i.e., )(kxT&  and )(kyT& ) in 

xy  plane and is written in a vector form as follows: 

[ ]′= )()()()()( kykykxkxk TTTT &&X  (3.1) 

The target location at time step k  and the sensor node ( is ) location can be expressed by 

the following vectors: 

])()([)( ′= kykxk TTTL  (3.2) 

][ ′=
iii sss yxL  (3.3) 

The target (T ) dynamic is modelled using the discrete-time white noise acceleration 

model [72][74][75]. Therefore, the system model described in Equation (2.4) at time 

step k can be written as: 

)()()()1( kkkk wXAX +=+  (3.4) 



 63

where ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
k

k
k

s

s

AZ
ZA

A , ⎥
⎦

⎤
⎢
⎣

⎡ Δ
=

10
)(1

)(
kt

ksA , ⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

Z , kk ttkt −=Δ +1)(  is the 

sampling interval which is the time between two successive tracking snapshots (i.e., at 

time steps k and 1+k ) and is calculated at time step k and )(kw  is the process noise 

which models the target velocity variations (i.e., acceleration) and is assumed to possess 

a zero-mean White Gaussian Distribution with )(kQ  covariance matrix:  
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ktkt
ktktksQ  and q  is scalar that represents the amount of 

randomness in the process noise.  

3.3 Sensor Detection and Measurement Model 

As mentioned in Section 2.6.1, passive sensor devices are used to detect the acoustic 

signals produced form the targets. Therefore, the target is assumed to be an isotropic 

sound source. Recall from Section 2.6.4, The RSSI method is used to model the 

acoustic signals. The acoustic power intensity received by sensor node is  at time step 

1+k  is calculated according to the following model [58][129][130]: 

)1(
)1()1(

+
+

=+
kR

kSkP n
s

s
i

i  (3.6) 

where )1( +kS  is the emitted acoustic density from the sound source (i.e., the target) at 

time step 1+k  which is assumed to be known , )1( +kR
is  is the noisy geometric distance 

between the sensor node is  and the target at time step 1+k and n  is the attenuation 

decay factor which is typically between 2 to 5 according to the environment and 

atmospheric conditions [131]. Therefore, by measuring )1( +kP
is , )1( +kR

is  can be 

calculated using Equation (3.6). Using a group of )1( +kng  tasking sensor nodes denoted 

by },...,,{)1( )1(21 +=+ kng g
ssskS  to track the target T  at time step 1+k  and according to 

Equation (2.5), the measurement model at time step 1+k  is given by: 

)1()]1(,1[)1( ++++=+ kkkk vXhz  (3.7) 
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where )1( +kv  is the measurement noise which is assumed a zero-mean White Gaussian 

Distribution with )1( +kR  covariance matrix, )1( +kz  is the target noisy measurements 

vector which is given by: 
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and )]1(,1[ ++ kk Xh is the measurement function which is calculated as: 
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where ])1([])1([
ii sTsT kk LLLL −+′−+  is the Euclidean distance in matrix-form between 

the target T  and sensor node is  at time step 1+k .  The measurement noise variances of 

the sensor nodes are assumed to be independent. Therefore, the measurement noise 

covariance matrix is defined as ),...,,()1( 222
)1(21 +

=+
kgnsssdiagk σσσR . The process and 

measurement noises are assumed to be independent of time and with respect to each 

other.  

3.4 Energy Consumption Model 

Energy is consumed during sensing, communication and processing activities.  As in 

[132] and [133], the energy the transmitter consumes is from the dissipated energy to 

run the radio electronics and the power amplifier while the receiver consumes energy to 

run the radio electronics.  This is shown in Figure 18.  

 
Figure 18 Radio Consumption Model 

Therefore, the energy consumption to transmit l -bit message over a distance d  is: 
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where od  is the threshold value which is the border between the free space transmission 

(i.e., odd p ) and the multipath fading transmission (i.e., odd ≥ ). 2d  and 4d  are used to 

model the power loss in free space and multipath channels, respectively. elecE  is the 

electronic energy that depends on factors such as coding, modulation and filtering, and 

FSε  and MPε  are the amplifier energy ( ampε ) for free space and multipath channels 

respectively. The energy consumption to receive l -bit message is:  

lElE elecRX .)( =  (3.11) 

For a CPU with clock frequency f , the energy consumption to execute N  clock cycles 

[133][134] is: 
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where ddV  is the supply voltage, TV  is the thermal voltage, the CPU clock speed is 

modelled as a function of the supply voltage through the equation ( )cK −≈ ddV ƒ  and 

KnICc ,,,, 0 are CPU dependent parameters.  

3.5 Extended Kalman Filter for Single Target Tracking 

In the EKF [72][74][75], the predicted target state is given by: 

))|(ˆ)()|1(ˆ kkkkk XAX =+  (3.13) 

with associated predicted covariance matrix given by: 

)()()|()()|1( kkkkkkk QAPAP +′=+  (3.14) 

 The predicted measurement vector is calculated as follows: 

)]|1(ˆ,1[)|1(ˆ kkkkk ++=+ Xhz  (3.15) 

 The Jacobian matrix of h  at )|1(ˆ)1( kkk +=+ XX  is: 
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By performing the partial integrations for Equation (3.9), Equation (3.17) leads to:  
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where )|1(ˆ kkT +L  is the target predicted location and is calculated as: 

])|1(ˆ)|1(ˆ[)|1(ˆ kkykkxkk TTT ++=+L  (3.19) 

and for any variable x : 
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In the update stage where the measurements at time step 1+k  are available, the 

measurement residual which is the difference between the actual and predicted 

measurements can be calculated as follows: 

)|1(ˆ)1()1( kkkk +−+=+ zzr  (3.22) 

with associated residual or innovation covariance matrix: 

)1()|1()1()1()1( +′++++=+ kkkkkk HPHRS  (3.23) 
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The update state estimate is give by: 

)1()1()|1(ˆ)1|1(ˆ ++++=++ kkkkkk rKXX  (3.24) 

with associated updated covariance matrix: 

)1()1()1()|1()1|1( +′++−+=++ kkkkkkk KSKPP   (3.25) 

where the filter gain is defined as: 

)1()1()|1()1( 1 ++′+=+ − kkkkk SHPK  (3.26) 

A detailed derivation of the EKF equations and further explanation about EKF are 

found in [72], [74] and [75]. 

3.6 Multi-Sensor Adaptive Single Target Tracking Framework 

In this chapter, a Multi-Sensor Adaptive Single Target Tracking (MS-ASTT) scheme is 

proposed for STT in WSNs. Like [5], the STT framework introduced in this section is 

energy efficient and similar in some respects to the framework proposed in [5]. 

However, a comparison between the STT scheme in [5] and the proposed MS-ASTT 

scheme is provided in Chapter 7. Figure 19 shows the framework of the proposed MS-

ASTT scheme. The sensor nodes are randomly deployed according to a uniform 

distribution in the sensing area to track the target. Each sensor node knows its location 

using GPS [37] or triangulation [38] where some sensor nodes called anchor or beacon 

nodes determine their positions using GPS and other sensor nodes use triangulation to 

calculate their positions by using the known anchor positions and their distances to 

these anchors. Each sensor node knows the location and battery level of its neighbours. 

Therefore, if any sensor node performs communication or processing activities which 

lead to significantly reduced battery level, it informs its neighbours about the updated 

battery level. The sensor nodes have the capability to measure the target range, for 

example by using an acoustic signal emitted from the target. To improve the energy 

efficiency, three operational modes are assumed for the sensor node which are sensing, 

communication and sleeping. When the target enters the sensing area, the border sensor 

nodes detect it. Therefore, the border sensor nodes are in both sensing and 

communication modes all the time. All other sensor nodes are in sleeping mode. 

Therefore, these sensor nodes have to be triggered to “wakeup” if they are needed for 

communication and/or sensing. Sensor nodes in sleeping mode use a low energy 
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communication channel [134] to receive trigger message from other sensor nodes. The 

BS or sink is responsible for forwarding the desired information from the WSN to the 

headquarters (i.e., main controller) through the Internet, via satellite or other wireless 

technology.  
 

 
Figure 19 MS-ASTT Framework in WSNs 

As shown in Figure 19, at each tracking time step, one member of the group that is 

formed is elected to manage the tracking scheme. This is the Main Node (MN) and the 

other members are called Helper Nodes (HNs). The main goals of the proposed MS-

ASTT scheme are to proactively select the next group, elect one sensor node to be the 

MN, calculate the next sampling interval and perform recovery in the case of target loss 

so that the network lifetime, energy efficiency and tracking accuracy are improved. The 

tracking error is used to indicate the tracking accuracy. Two definitions for tracking 

error are used in this thesis. Firstly, the tracking error can be defined as the difference 

between the real state and the updates or predicted state of the target. Secondly, the 

tracking error is defined based on the uncertainty associated with the updated or 

predicted covariance matrix. The tracking initialization is started when a mobile target 

enters the sensing area. The border sensors sense the target, localize the target using a 

triangulation technique, which is presented in Section 2.6.4, and set the initial error 

covariance. Thus, the border sensors predict the next target state using EKF, select the 
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next group, perform the election of the next MN, initiate the sampling interval to its 

minimum value and trigger the next group to wakeup. The group of sensor nodes track 

the target cooperatively. The algorithms that run in the group of sensor nodes are 

presented in Section 3.13.  

3.7 Target Metadata 

In this thesis, behavioural data obtained while tracking the target including the target’s 

previous locations is recorded as metadata. As shown in Figure 20, At each tracking 

time step k , the target metadata )(kTMD  consists of information about the target’s 

previous movement pattern, predicted state )|1(ˆ kk +X  and its covariance matrix 

)|1( kk +P (i.e., predicted error) and next tracking time ( 1+kt ), which is the current 

time plus the current sampling interval (i.e., )(ktt k Δ+ ). The predicted state and its 

covariance matrix are used to calculate the updated state and its covariance matrix using 

EKF. The next tracking time allows the next tracking group to be made aware of the 

target arrival time in their vicinity.  
 

The location metadata ),( mKkM  that includes the last kK m ≤  target update locations 

is calculated from the target’s previous movement pattern. As shown in Section 3.8, the 

target location metadata is used to calculate the sampling interval at each tracking time 

step. Additionally, as shown in Chapter 4, the target location metadata is employed to 

compute the target importance and the number of allowable iterations for the local 

search in the case of MTT. Therefore, the location metadata is calculated by the sensor 

nodes in distributed manner. In this case, a sensor node requires information about the 

past movement pattern of the target. This could lead to an increase in the size of target 

metadata message. However, message coding and compression can be used to reduce 

the size [155] if necessary.  On the other hand as shown in Section 3.6, since the main 

controller has all the information about the target tracking states, it can be employed to 

calculate the target location metadata in a centralized fashion. In this thesis, the target 

metadata message is assumed to be coded to a small size so that the CSMA/CA can be 

used without the need of using RTS/CTS handshaking. 

Movement 
Pattern 

Predicted 
State  

Predicted 
Error 

Next Tracking 
Time 

Figure 20 Target Metadata 

The location metadata of the target indicates the historical movement pattern of the 

target. It can be calculated from the previous target locations that are computed from the 
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tracking algorithms such as EKF. At time step k , the location metadata of the last mK  

tracking snapshots (i.e., tracking events) are modelled as follows: 

),(
),(),(

mt

mn
m Kkd

KkdKkM =  (3.27) 

where ),( mt Kkd  and ),( mn Kkd  are the total and the net travel of the target during the last 

mK  tracking snapshots, respectively. The net travel of the target, ),( mn Kkd  is the 

distance between the updated target location at time step mKk −  and the current target 

location at time step k . The updated target location is expressed in the following vector 

form: 

])|(ˆ)|(ˆ[)|(ˆ kkykkxkk TTT =L  (3.28) 

Therefore, the net travel of the target, ),( mn Kkd  can be calculated according to: 

)]|(ˆ)|(ˆ[])|(ˆ)|(ˆ[),( mmTTmmTTmn KkKkkkKkKkkkKkd −−−′−−−= LLLL  (3.29) 

The total travel of the target, ),( mt Kkd  is the overall distance between the last mK  

tracking snapshots. The total travel ),( mt Kkd  is calculated according to:  

∑
−

−=

++−′++−=
1

)]1|1(ˆ)|(ˆ[])1|1(ˆ)|(ˆ[),(
k

Kkj
TTTTmt

m

jjjjjjjjKkd LLLL  (3.30) 

As shown in Figure 21 (i), the maximum value of the net travel is equal to the total 

travel where the target is moving in straight line. In this case, the location metadata of 

the target at point “D” is equal to one. This indicates that the target is moving in a 

uniform fashion. On the other hand as shown in Figure 21 (ii), the minimum value of 

the net travel is zero when the target returns to the same point it started from. In this 

case, the location metadata of the target at point “D” is equal to zero which indicates 

that the target is moving in random manner. Otherwise as shown in Figure 21 (iii), the 

location metadata of the target is between one and zero.  Therefore, ),( mKkM  is reduced 

when the target starts to move in bends. The location metadata of the target is thus 

bounded in the interval 1),(0 ≤≤ mKkM .  
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Figure 21 Target Location Metadata 

3.8 Adaptive Sampling Interval Selection Algorithm 

Unlike STT schemes using a uniform sampling interval, which are introduced in 

Chapter 2, the proposed MS-ASTT scheme adaptively calculates the sampling interval 

to improve the energy efficiency and maintain a good accuracy with seamless target 

tracking. The value of the sampling interval is reduced when the target manoeuvres in 

an unpredictable fashion. This improves the tracking accuracy with seamless target 

tracking. Moreover, the prediction of the next target state presented in Section 3.5 is 

more likely to succeed. Conversely, the sampling interval is set to a larger value when 

the target travels in a uniform, predictable manner. This improves the energy efficiency 

of the WSN. One example is shown in Figure 22. Figure 22 (a) illustrates the trajectory 

of a mobile target. The sampling interval is large when the target travels in straight line 

(i.e., a uniform manner) while it should be small during the target manoeuvrings.  In 

Figure 22 (b), the location metadata at time 4t  and 7t  are calculated using three 

previous tracking snapshots. The location metadata at time 7t , )3,7(M is equal to 1 and 

in turn the sampling interval is set to a large value because the target is moving in a 

uniform manner. On the other hand, the location metadata at time 4t , )3,4(M is less 

than 1 and in turn the sampling interval is set to a smaller value because the target is 

moving in an unpredictable manner. 
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Figure 22 Adaptive Sampling Interval 

The sampling interval at time step k , )(ktΔ  is permitted to adaptively change in the 

interval maxmin )( TktT ≤Δ≤ . Therefore, minT is the minimum sampling interval, which 

should be less than the time required for channel access, propagation delay and any 

necessary data processing. maxT  is the maximum sampling interval, which is determined 

according to the amount of the motion randomness and manoeuvring of the target [135]. 

The sampling interval, )(ktΔ  is calculated based on the current location metadata, 

),( mKkM  and the previous sampling interval, )1( −Δ kt . The measured sampling interval, 

)(ktmΔ  is defined to model the impact of the location metadata, ),( mKkM  such that 

maxmin )( TktT m ≤Δ≤ . As shown in Figure 23, )(ktmΔ  is modelled as a liner function of the 

location metadata, )),(()( mm KkMfkt =Δ , according to the following equation: 

minminmax ),()()( TKkMTTkt mm +−=Δ  (3.31) 

),( mKkM

)(ktmΔ

 
Figure 23 Sampling Interval as a Function of Location Metadata 
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Therefore the current sampling interval )(ktΔ  is the weighted sum of the current the 

measured sampling interval, )(ktmΔ  and the previous sampling interval, )1( −Δ kt  as 

follows: 

)()1()1()( ktktkt mΔ−+−Δ=Δ αα  (3.32) 

where, ]10[∈α . Therefore, if the measured sampling interval changes from a low value 

to high one, the sampling interval smoothly increases to reach the high value and vice 

versa. This gives extra confidence that the target completes its previous motion pattern. 

Therefore, the sampling interval increases smoothly when the target changes its 

movement pattern from a manoeuvring pattern to a uniform pattern to avoid the 

unexpected movement of the target during changing its movement pattern.  
 

Higher speed targets require a smaller sampling interval. Therefore, in Figure 23, 

the ratio between maxT and minT is selected according to the speed of the target. If the 

target moves at variable speed, the ratio between maxT and minT should be adaptively 

calculated according to the current target speed. However, within Chapter 7 the 

proposed tracking algorithms are evaluated during periods when the target is travelling 

with constant speed. Nevertheless, the proposed tracking algorithms are evaluated for 

different target speeds. 

3.9 Sensor Nodes Selection Management 

In this section, the sensor nodes selection algorithm is presented. At the beginning, the 

target model is presented. After that, the selection strategy of the sensor nodes is 

introduces. Finally, the adaptive group size of the sensor nodes to track the target is 

presented. 

3.9.1 Target Model 

In this thesis, as shown in Figure 24, the target to be tracked, such as human being or a 

moving vehicle, is treated as a virtual chemical emitter that influences the sensor nodes 

with a varying strength which is determined according to the target importance and the 

target proximity to the sensor nodes. Therefore, the target’s influence on the sensors 

nodes is referred as chemical diffusion strength (G). The chemical diffusion strength of 

the target decreases with distance from the target to the sensor node. More details are 

provided in Section 3.9.2. 
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Figure 24 Chemical Diffusion Strength 

3.9.2 Sensor Nodes Selection Algorithm 

Unlike [16], [82], [96] and [98], the MS-ASTT scheme uses multi-sensors to track the 

target to improve the tracking accuracy and continuity [5]. The sensor nodes selection 

algorithm is primarily based on the information associated with the predicted target 

location PDF. At each tracking time step k , using the predicted target location PDF, the 

sensor nodes that are most influenced by the target are proactively selected to form the 

group, )1( +kSg  that will track the target at the time step 1+k . The group, )1( +kSg  is 

selected from the neighbours ( )(kSn ) of the current main node, )(kMN . The Mahalanobis 

distance ),|1( iskkD + [136], which considers the predicted target location covariance 

)|1( kk +P in its calculations, is obtained between the target predicted location PDF and 

each sensor node )(kSs ni ∈  as follows:  

)]|1(ˆ)[|1(])|1(ˆ[),|1( 1 kkkkkkskkD TsTTsi ii
+−+′+−=+ − LLΣLL  (3.33) 

)|1( kkT +Σ is the predicted target location covariance matrix. If )|1( kk +P is in a form of: 
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then, )|1( kkT +Σ is calculated as:  
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),|1( iskkD +  and the target importance, )1( +kZT  are used to model the target chemical 

diffusion strength, ),|1( iskkG +  as follows: 
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)1( +kZT is used for multi-target tracking to give priority to more important targets. 

Therefore, if the sensor node is located in the sensing areas of more than one target at 

the same time, preference is given to target that has the strongest chemical strength (G) 

as evaluated by the sensor node. This is presented in detail in Chapter 4. In sensor nodes 

selection, preference is given to the sensor nodes that have the strongest chemical 

diffusion strength (G) of the target. Therefore, the selection fitness function by which 

the sensor nodes will be selected is computed as follows: 
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The l th sensor node, )1( +∈ kSg gl  where )1(1 +≤≤ kngl  is selected so that: 
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 is the set of )(kSn  members excluding the ones from 1g  to 1−lg , and 

)1( +kng  is the group size at time step 1+k .  

3.9.3 Adaptive Group Size Algorithm 

Unlike the STT researches proposed in Chapter 2, the size )1( +kn g  of next sensor 

nodes group )1( +kSg  is adaptively changed according to the tracking error at time 1+k  

to enhance the tracking accuracy, at each tracking time step k . However, increasing the 

number of group members leads to increase the energy consumption. Therefore, 

)1( +kn g  is assumed to be bounded between a smallest value of min
gn and a biggest value 

of max
gn  where minmax

gg nn > . The “trace” of the covariance matrix is proportional to the 

circumference of the rectangular region of covariance ellipsoid [82]. Therefore, the 

updated tracking error at time step 1+k  is defined as follows: 

)}1|1({})1(1,{k ++=++ kktarcekS Tg Σψ  (3.39) 

where  )1|1( ++ kkTΣ  is the updated target location covariance matrix which is a part 

from )1|1( ++ kkP  and can be calculated by the same way on which )|1( kkT +Σ is 
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calculated in Equation (3.35).  )1|1( ++ kkP  can be calculated using Equation (3.25) 

without knowledge of the real measurements of )1( +kSg  members. The adaptive group 

size algorithm shown in Figure 25 tries to reduce the tracking error by increasing the 

group size.  

1.  if  min)( gn nkn ≥ do: 

2.      min)1( gg nkn =+ ; 

3.     while  )()1( knkn ng ≤+  do: 

4.          Select  )1( +kSg  using Equation (3.37) and (3.38); 

5.          if  max)1( gg nkn ==+  do: 

6.               Go to Step 13; 

7.         Calculate  })1(1,{k ++ kSgψ  using Equation (3.39); 

8.          if 0})1(1,{k ψψ >++ kS g  AND  1)()1( −≤+ knkn ng  do: 

9.               Increment  )1( +kng ; 

10.    end while; 

11. else do: 

12.    Failure to track the target; 

13. Finish; 

Figure 25 Adaptive Group Size Algorithm 

In the Figure 25, in line 1, )(knn  is the size of the neighbours, )(kSn , of the current main 

node, )(kMN . In line 8, 0ψ  is a predefined tracking error threshold. The tracking 

accuracy is considered good enough if the tracking error is less than a predefined 

tracking error threshold.  To improve the energy consumption, )1( +kng  is initially set to 

min
gn . If the tracking accuracy is not satisfactory,  )1( +kng  is incremented. The 

maximum value of )1( +kng  should not exceed )(knn and max
gn . 

3.10 Sensor Node Election 

In this section, the group is classified into one MN and a number of HN(s). The MN 

typically performs more processing and communication activities. Hence, choosing the 

MN is a crucial issue to maximize the network lifetime and energy saving. Based on 

energy models proposed in Section 3.4, the data transmission energy consumption is 

proportional to the square of the distance between the source and the destination. Node 

centrality is defined to indicate how much the sensor node is in the group centre. 
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Therefore, the energy-efficient communication is maximized by selecting the MN to be 

the sensor node that has largest node centrality because the distances to the other sensor 

nodes are minimized. Node centrality of the sensor node, is  in the group, )1( +kSg  is 

calculated according to the following equation: 
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Unlike the election techniques proposed in Chapter 2 for the related work, load 

balancing among the group of nodes is another important factor to be considered in the 

election algorithm, especially when the remaining energy in the nodes is diverse. This 

means that load balancing is improved by selecting the node that has maximum 

remaining energy as the MN. Therefore, the next MN, )1( +kMN , is elected so that it has 

the largest election fitness function, Ef , which is computed as follows: 
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where 
isE  is the remaining energy of sensor node is  and ]10[∈δ  is a weighting 

parameter used to balance the load with the energy consumption. The energy 

consumption in the network is reduced when δ  is set to 1 (i.e., considering only the 

node centrality in the election algorithm). However, if δ  is set to 1, a scenario where 

the elected MN has the smallest energy remaining could cause the battery to run out and 

bring about death of the MN. Death of nodes creates holes in the network causing 

connectively loss and reduction in the network connectivity lifetime. Therefore, 

considering the load balancing is crucial for improving the network lifetime.   
 

Setting delta to 0 means only the residual energy of the nodes is considered by the 

election algorithm. Although this will delay the onset of node death and increase the 

network connectivity lifetime, by itself it can lead to less desirable election results. If 

the group of nodes involved in the election of the MN has roughly the same residual 

energy, then the centrality of the candidate MN should be given precedence even 

though this node might have marginally less residual energy than its peers. Its superior 

relative location could result in overall energy savings as the communication penalty 

between the MN and the HNs is reduced. Therefore, the weighting parameter (δ ) is 



 78

adaptively chosen according to the variation in the remaining energy between the group 

members as follows:  

 )1(
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where, minE  and minE is the minimum and maximum remaining energy of the group 

nodes, respectively. Therefore, when the variation in the remaining energy between the 

group members is high, δ  will be small and in turn the load balancing factor in 

Equation (3.41) is strongly considered, and vice versa. The MN at time 1+k  is selected 

based on the following equation: 

)]1(,,1[maxarg)1( ++=+ kSskfkMN giEsi  (3.43) 

3.11 Tracking Recovery Mechanism 

One of the main requirements of target tracking applications is reliability such that the 

target is monitored at all times. Tracking can fail due to random and abrupt target 

manoeuvring. In this section a recovery mechanism is developed to provide seamless 

tracking reliability in case of target loss. Figure 26 shows a scenario of losing the target. 

At time step k , the next target location is predicted and the next sensor group is formed. 

However, the target changes its predictable direction sharply. This causes the tracking 

algorithm to lose the track of the target. 

 
Figure 26 Target Lost Scenario 

Generally, the recovery mechanism can be invoked in the following situations: 
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(1) Accuracy Failure: A low value of tracking accuracy indicates that the target may 

be lost in subsequent time steps. Tracking can be recovered in case of insufficient 

tracking accuracy. In this case, a tracking accuracy threshold has to be defined to allow 

the tracking system to decide when the recovery procedure should be invoked. Tracking 

accuracy can be predicted for the next tracking snapshot. Therefore, the tracking can be 

proactively adjusted to avoid losing of the target.  

(2) Prediction Failure: The target sometimes changes its direction unexpectedly so that 

the next predicted group would not be able to detect it. Therefore, the target will be lost 

and a recovery operation has to be performed to recapture it. 

(3) Selection Failure: In some cases, the predicted PDF of the target location is not 

accurate enough and in turn, the target will not be in the sensing region of all the next 

group nodes. Therefore, recovery is required to ensure more sensor nodes are involved 

to track the target. 

(4) Node Failure: Recovery is needed as a result of sensor node failure within the 

tracking group. Node failure can be caused by battery drain, or failure of the software or 

hardware. 
 

In this thesis, recovery is invoked in the case of prediction and selection failures. As 

shown in Figure 27, recovery is performed in levels to reduce the energy consumption.  
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Figure 27 Target Recovery Levels 

At each level, more nodes are involved to capture the lost target. At each tracking time 

step 1+k , the )1( +kMN  activates a timer for recovery (Timer_recovery) which 
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determines when recovery will start if one or more nodes of the group )1( +kSg  does not 

detect the target. If the timer “Timer_recovery” expires and )1( +kMN  does not receive a 

measurement from a particular HN, it will assume that the HN has not detected the 

target. Thus, after triggering )(kMN  to wakeup, the node )1( +kMN  informs the old )(kMN  

about the loss of the target. The node )(kMN  will initiate first-level recovery by 

informing the first-level recovery nodes to wakeup to capture the target. In the first-

level recovery, the recovery nodes ( 1
rS ) are the nodes inside the rectangle: 

seTxT
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Rtkkvkkkkxx

Rtkkvkkkkyy

T

T

+×+≤−

+×+≤−

)|()|(3)|(ˆ

)|()|(3)|(ˆ

σ

σ
 (3.44) 

where, sR  is the sensing range, et  is the time elapsed since the target was last sensed, 

Txσ and 
Tyσ is the standard deviation of updated target x  and y  locations, respectively, 

and )|( kkvT  is the target updated speed which is defined.  

)|()|()|( 22 kkykkxkkv TTT && +=  (3.45) 

In Equation (3.44), based on the normal distribution empirical rule [137], three standard 

deviations from the mean are considered to guarantee the recovery nodes are within of 

the predicted target location with 99.7% certainty. Each recovery node initiates sensing 

to find the target and sends its measurement to the node )(kMN  if it detects the target. 
 

At the time of informing the first-level recovery nodes to wakeup and attempt to 

capture the target, the node )(kMN  activates the next recovery level timer (Timer_levels) 

after which the next level of recovery will be performed if )(kMN  does not receive at 

least three target measurement readings from current recovery nodes. In the second 

level recovery, the recovery nodes ( 2
rS ) are inside the rectangle: 
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excluding the recovery nodes from the first level ( 1
rS ). Therefore, the recover nodes in 

l th level recovery are defined as: 
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where, l
tS  is the set of the nodes inside the rectangle: 
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and j
r

j

j
t SUS

1

1
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=

l
l denotes the nodes inside l

tS  excluding all the recovery nodes in the 

levels from 1 to 1−l . 

3.12 Sensor Nodes Deployment  

In this section, the sensor density to be deployed in a given area is considered. The 

sensor nodes group that tracks the target consists of gn  sensor nodes in each time step. 

Therefore, to increase the likelihood of sensing the target by gn  sensor nodes at all time 

steps, the number of sensor nodes deployed in the sensing area should be calculated 

correctly. Since the sensor nodes are assumed to be uniformly deployed over the 

sensing area ( A ) with sensor nodes density of 2/ msensorsρ , the number of sensor nodes 

in any given area ( 0A ) is a Poisson process [138] with mean ρμ 0A= . This is shown in 

Figure 28. 

 
Figure 28 Node Deployment 

The probability that the target is within the sensing range of gn  sensor nodes is 

calculated as follows: 
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where, 2
0 sRA ρπρμ == . Therefore, the probability that the target is within the sensing 

range of gn  sensor nodes or more is calculated as: 
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For any given probability )Pr( gn , using trial and error the sensor density of ρ  can be 

computed. For example, for 1)Pr( =gn , mR s 50=  and nodesng 3= , the value of 

23 /106.5 msensors−×=ρ  can guarantee the given probability. Thus, for a given sensing 

area of 2300300 mA ×= , the number of sensor nodes required to be uniformly deployed is 

nodesAm 500≈= ρ . 

3.13 Complete Single Target Tacking Algorithms 

Figure 29 shows the algorithm running in the HNs. The group MN proactively sends the 

target metadata to the next group along with the group election results using a group-

triggering message (GTrig) so that the new group has knowledge of the target before it 

arrives in their vicinity. The HNs measure the target ranges and send the data to the MN 

using target range (TRan) messages.  
 

1. while (true) do: 

2.   switch (event) { 

3.   Event 1: Receive GTrig or TRec message 

4.     Turn on the communication channel (i.e., communication mode); 

5.     Turn on the sensing circuits (i.e., sensing mode); 

6.     Set Timer_awake; 

7.   Event 2: Target Detection 

8.     Get the target range measurement; 

9.     Shutdown sensing circuit; 

10.   Send TRang message to the current MN; 

11.   Shutdown the communication channel;   

12. Event 3: Timer_awake timeout    

13.   Shutdown sensing circuit and the communication channel; 

14. } 

15. end while 
Figure 29 Algorithm Running in the Helper Node 

Figure 30 shows the algorithm running in the MN. If the current MN does not receive 

the target range measurement from all HNs after Timer_recovery, a target loss (TLos) 

message is sent from the current node to the previous one to inform it about the loss of 

the target. The previous MN performs the recovery in levels and informs the recovery 
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nodes to capture the target through target recovery message (TRec). The algorithms 

shown in Figure 29 and 30 are self-explanatory and should be easy to follow. 
 

1. while (true) do: 

2.   switch (event) { 

3.   Event 1: Receive GTrig message 

4.     Turn on the communication channel and the sensing circuits; 

5.     Set Timer_recovery; 

6.   Event 2: Target Detection 

7.     Get the target range measurement and shutdown sensing circuit; 

8.   Event 3: (Receive TRang from all HNs) or (at least from three nodes in case of recovery) 

9.     if (Target is recovering) do: 

10.       Localize the target using triangulation and initialize its covariance matrix; 

11.       Set the sampling interval to its minimum value;  

12.   else do: 

13.       Use EKF to get the target updated state and its covariance matrix;  

14.       Calculate the sampling interval; 

15.       Use EKF to calculate the predicted target state and its covariance matrix;  

16.       Update the target location metadata;  

17.       Select the next group from the neighbours and perform the election of the next MN;    

18.       Send GTrig message to the next group; 

19.       Send the current target information to the sink; 

20.  Event 4: Timer_recovery timeout    

21.    if (All target range measurements are not received) do: 

22.       Send Tlost to the previous MN ; 

23.       Shutdown sensing circuit and the communication channel; 

24.  Event 5: Receive Tlost    

25.    Determine the first‐level recovery nodes and send them TRec; 

26.    Set Timer_levels; 

27.  Event 6: Timer_levels timeout    

28.     if (Target is still lost) do: 

29.        Increment the recovery level, determine the recovery nodes and send them TRec; 

30.        Set Timer_levels; 

31.     else do: 

32.        Shutdown sensing circuit and the communication channel; 

33.   } 

34. end while 

Figure 30 Algorithm Running in the Main Node 
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3.14 Biologically Inspired and Self-Organizing Aspects 

Although, other works, which are explored in Chapter 2, have been inspired by 

biological and ecological principles, none of these assume the differentiation or 

specialisation of sensor nodes functionalities that is inspired from the biological zygote 

or human embryonic stem cell. When the zygote or embryo is formed, it comprises a 

collection of similar cells. All the cells of the zygote are equal in terms of behaviours 

and capabilities. Over time, the zygote cells start to specialize with different 

functionalities. The embryo begins with about 150 cells. These cells divide into three 

layers that are internal, middle and outer layers. Each layer develops in an independent 

fashion. The internal layer or the endoderm specializes to form the respiratory and 

digestive system. It also forms the glands such as the pancreas, liver, thymus and 

thyroid. The middle layer or the mesoderm forms the bones and cartilage, muscles, 

excretory system, the circulatory system (i.e., heart and blood vessels), the inner skin 

layer (i.e., dermis), loins and genitalia, and the outer covering of the internal organs. 

The outer layer or ectoderm becomes the brain, nervous system and epidermis (e.g., 

skin, hair, nails). This biological behaviour is called differentiation or specialization 

[139]. 
 

The same principle is applied in the proposed MS-ASTT scheme; the sensor nodes 

start equally and then exhibit some kind of specialisation in order to perform the target 

tracking. The sensor nodes before the selection and election algorithms were all equal. 

The selection algorithm differentiates the jobs of the sensors nodes so that some of them 

will be selected to sense the target and others will remain in sleeping mode. The 

election algorithm classifies the selected group nodes into one MN and possibly 

multiple HN(s). Furthermore, this is the first research to treat the target as a virtual 

chemical emitter. 
 

The proposed MS-ASTT scheme is self-configured and self-organizing. A recovery 

mechanism is designed to solve the problem of the tracking failures. Prediction is 

provided to determine the target’s future location and prepare the tasking nodes before 

the target arrives in their vicinity. Load balancing is adopted in the election of the leader 

of the group of the tasking nodes to track the target. The sensors nodes are at all times 

aware of their remaining resources. The proposed MS-ASTT scheme in this research 

operates automatically without interaction with external administration.  Therefore, the 

complexity is hidden from the users. 
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3.15 Chapter Summary 

In this chapter, a MS-ASTT scheme for reliable target tracking in WSNs is presented. 

The operation of the MS-ASTT scheme can be summarized in four steps. Firstly, the 

sampling interval is computed according to the historical location metadata of the target 

such that the prediction is likely to succeed and the tracking accuracy is maintained. 

Secondly, the next tracking group is proactively selected. An adaptive group size 

configuration mechanism is presented to improve the tracking accuracy. Thirdly, one of 

the group nodes is elected as a MN so that the communication energy efficiency and 

load balancing are improved. Finally, target recovery is supported to improve tracking 

reliability in the case of target loss due to selection or prediction failures.  
 

A node deployment strategy is introduced to guarantee the coverage of the target 

with at least predefined number of sensor nodes. The complete algorithms for the 

proposed MS-ASTT scheme are presented. The proposed MS-ASTT is self-configuring 

and self-organizing, and inspired from the differentiation or specialisation principles 

found in biological zygotes.  
 

This chapter considers only the tracking of a single target. In Chapter 4 multi-target 

tracking (MTT) in WSNs is considered.  
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Chapter 4  Multi Target Tracking in WSNs 

4.1 Chapter Introduction 

Chapter 3 introduces the STT in WSNs. In this chapter, Multi-Target Tracking (MTT) 

in WSNs is presented. The target dynamics, sensor detection and measurement models, 

and EKF proposed in Chapter 3 are used in this chapter with slight modifications to 

make them suitable for MTT. In this chapter, two MTT schemes for WSNs are 

proposed. Firstly, a Multi-Sensor Distributed Multi-Target Tracking (MS-DMTT) 

scheme is proposed based on the assumption that the sensor node can only detect and 

serve a single target at the same time. Secondly, a Multi-Sensor Adaptive Multi-Target 

Tracking (MS-AMTT) scheme is introduced based on the assumption that the sensor 

node can detect and serve more than one target at the same time. After the description 

of both schemes in detail, a chapter summary is provided. 

4.2 Target Dynamic Model 

In this chapter, MTT is considered.  The target ( jT ) state vector at tracking time 

)( kt
jT consists of the target coordinates and velocities in xy  plane and is written as 

follows: 

])()()()([)( ′= kykykxkxk
jjjjj TTTTT &&X  (4.1) 

The target location at time )( kt
jT  and the sensor node ( is ) location can be expressed as: 

])()([)( ′= kykxk
jjj TTTL  (4.2) 

][ ′=
iii sss yxL  (4.3) 

The target ( jT ) dynamics is modelled using the discrete-time white noise acceleration 

model [72][74][75]. Therefore, the system model described in Equation (2.4) at time 

)( kt
jT can be written as: 

)()()()1( kkkk
jjjj TTTT wXAX +=+  (4.4) 
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randomness in the process noise and )()1()( ktktkt
jjj TTT −+=Δ  is the sampling interval, 

which is the time between the two tracking snapshots (i.e., at times )( kt
jT and 

)1( +kt
jT ) and is calculated at time )( kt

jT . 

4.3 Sensor Detection and Measurement Model 

As mentioned in Section 2.6.1, passive sensor devices are used to detect the acoustic 

signals produced from the targets. Therefore, the target jT  is assumed to be an isotropic 

sound source. Recall from Section 2.6.4, the RSSI method is used to model the acoustic 

signal. The acoustic power intensity received by sensor node is  at time )1( +kt
jT  is 

calculated according to the following model [58][129][130]: 
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where )1( +kS
jT  is the emitted acoustic density from the sound source (i.e., the target jT ) 

at time )1( +kt
jT  which is assumed to be known , ],1[ j

n
s TkR

i
+  is the noisy geometric 

distance between the sensor node is  and the target jT  at time )1( +kt
jT and n  is the 

attenuation decay factor which is typically between 2 to 5 according to the environment 

and atmospheric conditions [131]. Therefore, by measuring ],1[ js TkP
i

+ , ],1[ j
n
s TkR

i
+  can 

be calculated using Equation (4.6). Using a group },...,,{)1( )1(21)( )( +=+ knTg jTgj
ssskS  of 

)1()( +kn
jTg  tasking sensor nodes to track the target jT  at time )1( +kt

jT  and according 

to Equation (2.5), the measurement model at time )1( +kt
jT  is given by: 
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)1()]1(,1[)1( ++++=+ kkkk
jjjj TTTT vXhz  (4.7) 

where )1( +k
jTv is the measurement noise which is assumed a zero-mean White Gaussian 

Distribution with )1( +k
jTR  covariance matrix, and the target noisy measurement vector 

and measurement function are given by: 
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The process and measurement noises are independent of time and with respect to each 

other. The measurement noise variances of the sensor nodes are assumed to be 

independent and are assumed to be multiplicative noises [95]. Thus, the measurement 

noise variance associated with target jT  of sensor is  at time )1( +kt
jT  is calculated as: 

],1[],1[2
jsjs TkRTk

ii
+=+ γσ  (4.10) 

where 10 ≤≤ γ . Therefore, the measurement noise covariance matrix is defined as: 
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4.4 Extended Kalman Filter for Multi-Target Tracking 

In the Extended Kalman Filter (EKF) [72][74][75], the predicted target state is given 

by: 

))|(ˆ)()|1(ˆ kkkkk
jjj TTT XAX =+  (4.12) 

with associated predicted covariance matrix given by: 

)()()|()()|1( kkkkkkk
jjjjj TTTTT QAPAP +′=+  (4.13) 

 The predicted measurement vector is calculated as follows: 

)]|1(ˆ,1[)|1(ˆ kkkkk
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and )|1(ˆ kk
jT +L  is the target predicted location and is calculated as: 

])|1(ˆ)|1(ˆ[)|1(ˆ kkykkxkk
jjj TTT ++=+L  (4.17) 

In the update stage where the measurements at time step 1+k  are available, the 

measurement residual which is the difference between the actual and predicted 

measurements can be calculated as follows: 

)|1(ˆ)1()1( kkkk
jjj TTT +−+=+ zzr  (4.18) 

with associated residual or innovation covariance matrix: 

)1()|1()1()1()1( +′++++=+ kkkkkk
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The update state estimate is given by: 

)1()1()|1(ˆ)1|1(ˆ ++++=++ kkkkkk
jjjj TTTT rKXX  (4.20) 

with associated updated covariance matrix: 
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where the filter gain is defined as: 

)1()1()|1()1( 1 ++′+=+ − kkkkk
jjjj TTTT SHPK  (4.22) 



 90

4.5 Multi-Sensor Distributed Multi-Target Tracking (MS-DMTT) 

In this section, a MS-DMTT scheme is proposed based on the assumption that a given 

sensor node can only track and serve a single target at a time. The MS-DMTT scheme 

deals with each target separately. This means that the MS-DMTT scheme is a series of 

STT problems. Therefore, each target has separate tracking time steps that are 

independent of others. However, the problem of conflict nodes, which arises only in 

case of MTT, is considered and formalized at the beginning of this section. Next the 

framework and assumptions associated with the MS-DMTT scheme are explained. The 

sampling interval selection, sensor nodes selection, sensor node election and recovery 

mechanisms and algorithms are presented. Finally, the Distributed Multi-target 

Selection (DMS) algorithm that solves the conflict nodes problem is introduced. 

4.5.1 Problem Formalization 

Figure 31 shows a MTT scenario for WSNs.  Two targets are assumed to be tracked. At 

a particular time the target locations are shown in Figure 31. Each target is 

cooperatively tracked and served using a group of sensor nodes. Unlike the MTT 

schemes proposed in Chapter 2, this thesis considers the problem of conflict node 

selection, which is shown in Figure 31. sR  is the sensing range.  All sensor nodes in 

the conflict area can detect and serve both Target 1 and Target 2.  However, each sensor 

node is assumed to be able to track and serve only one target at a time [140][141]. 

Therefore, each conflict node has to locally decide its preferred target that it will track.  

 
Figure 31 Conflict Nodes in Multi-Target Tracking 

A sensor node can detect a new target whilst serving another target. If a sensor node 

prefers the new target, it will leave the group of the old target. Therefore, the group of 

the old target has to reconfigure itself to collect one more node to replace the departing 

node.  
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4.5.2 MS-DMTT Framework and Assumptions  

Figure 32 shows the framework of the proposed MS-DMTT scheme. The same 

framework as used in the MS-ASTT scheme (presented in Section 3.6) is employed. For 

simplification, measurement origin uncertainty [103] and the false alarms from the 

sensor field are not considered further here. 

 
Figure 32 MS-DMTT Framework in WSNs 

At each time step k , one member of the group that is formed to track the target jT  is 

elected to be the Main Node, )(kMN
jT  and the other members are called Helper Nodes 

)(kHNs
jT . The main goals of the proposed MS-DMTT scheme are to proactively select 

next groups to track the targets, elect one sensor node from each group to be the 
jTMN of 

that group, calculate the next sampling intervals for the targets, reform the group in case 

of the conflict node problem and perform recovery in the case of target loss so that 

tracking continuity is maintained. This is to be done such that the network lifetime, 

energy efficiency and tracking accuracy are improved. The tracking initialization is 

started when mobile targets enter the sensing area. The border sensors sense the targets, 

localize them using triangulation as presented in Section 2.6.4, and set the initial error 

covariance. Thus, the border sensors predict the targets’ next states using EKF, select 

the next groups, perform the election of the next 
jTMN , initialise the sampling intervals 

to their minimum value and trigger the next groups to wakeup. If any node is  receives 

more than one request to track targets, it performs the Distributed Multi-Target 
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Selection (DMS) algorithm to decide its preferred target.  For example, in Figure 32, the 

conflict node receives the strongest target influence from Target 1. Therefore it decides 

to serve Target 1, which is in more important (i.e., higher priority).  

4.5.3 Sampling Interval Selection, Sensors Selection, Sensors Election and 

Recovery Mechanism 

The sampling interval selection, sensor nodes selection, sensor node election and 

recovery mechanism techniques and algorithms used for STT in Chapter 3 are adopted 

with the MS-DMTT scheme. However, these techniques and algorithms are performed 

for each target separately based on the target trajectory, movement patterns, importance 

and sensor nodes locations and resources.   

4.5.4 Distributed Multi-Target Selection (DMS) Algorithm 

In this thesis, the target importance or priority of the target, is considered. Sensor 

measurement noise is less when the sensor is closer to the target [95]. Therefore, the 

target chemical diffusion strength, G  (i.e., influence strength on the sensor node) is 

inversely proportional with distance, D  from the node and is higher for the targets of a 

higher importance.  The chemical diffusion strengths for the targets versus the distance 

from the sensor node are plotted in Figure 33. As shown in Figure 33, Target 1 has a 

higher priority than Target 2. Thus, the chemical diffusion strength of Target 1 is higher 

than the case of Target 2.  

 
Figure 33 Chemical Diffusion Strength 

The conflict node ( cs ) that is located in the sensing areas of the targets set ( ΤS ) at the 

same time decides locally their preferred target by running the DMS algorithm given in 

Figure 34. In the algorithm, )s,( cjTD  in line 1 is the Mahalanobis distance between the 

jT  predicted location PDF and conflict node ( cs ). Both target importance and the 

distance from the target to the sensor node are considered in the calculation of target 
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influence. Therefore, if two targets share the same importance, the conflict node will 

select the closer one. On the other hand, conflict node will select the target with more 

importance if the two targets are the same distance from it. Otherwise, the ratio between 

the target importance and distance is computed for target selection. The algorithm 

shown in Figure 34 should be self-explanatory and easy to follow. 

1. For all  Τ∈ STj , calculate 
)s,(

)1(
),(

cj

T
cj TD

kZ
sTG j

+
=  ; 

2. Select the target ( sT ) with maximum  ),( cj sTG ; 

3. If more targets have the same vale of maximum  ),( cj sTG : 

4. Select the target ( sT ) with maximum  )1( +kZ
jT ; 

5. If  cs  is already a member of group  )( cTgS  for a target ( cT ) and   sc TT ≠ : 

6.if ( cs  is a MN of  )( cTgS ) do: 

7.     Reform the  )( cTgS  by selecting one more node and electing a new MN; 

8.     Handover the MN responsibilities to the new MN; 

9.     Abort  )( cTgS  group; 

10.    else do:     // cs  is HN 

11.   Abort  )( cTgS  group and inform the MN to reform the group  )( cTgS ;      

12. end if of line 5; 

13. Join  the group  )( sTgS of the selected target  sT ;  

Figure 34 The DMS Algorithm 

4.6 Multi-Sensor Adaptive Multi-Target Tracking (MS-AMTT) 

In this section, a MS-AMTT scheme is proposed based on the assumption that the 

sensor node can detect and serve more than one target at the same time. MS-AMTT 

scheme deals with all targets at the same tracking time steps. Therefore, all targets have 

the same tracking time steps. Additionally, sampling interval for all target are the same 

and fixed. At the beginning of this section, the problem of sensor nodes selection is 

formalized as a combinatorial optimization problem. Then, The framework and 

assumptions of MS-AMTT scheme is explained. The main functionalities for the group 

members that track the target are introduced. After that, the target importance 

calculation technique is present. The local search strategy to get near-optimal solution 

for the sensor nodes selection is presented. The computational complexity of the 
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proposed MS-AMTT scheme is then proposed. Finally, the election technique to select 

the MN for each tracking group and the leader node for all groups is introduced. 

4.6.1 Problem Formalization 

At each time step k , the main aim of MS-AMTT is to select the next sensor groups that 

will track the targets at the next time step 1+k . Assume )|1()( kkS
jTd +  is defined as 

the predicted detecting nodes of target jT  with size )|1()( kkn
jTd +  at time step 1+k .  It 

is calculated at time step k  and contains all the predicted sensors that may detect the 

targets at time step 1+k . It considers the sensors inside the circle: 
2])|1(ˆ)][|1(ˆ[ sTT Rkkkk

jj
=′+−+− LXLX  (4.23) 

where sR  is the sensing range of the sensor nodes, )|1(ˆ kk
jT +L  is defined in Equation 

(4.17) and ][ ′= yxX . Assume, )|1( kkSD +  with size of )|1( kknD +  is a set of all the 

predicted detecting nodes of targets and is calculated as:  

)|1()|1(
1

)( kknkkn
M

TdD +=+ ∑
=l

l  (4.24) 

)|1()........|1()|1()|1( )()()( 21
kkSkkSkkSkkS

MTdTdTdD +∪+∪+=+  (4.25) 

 where M is the number of the targets. Define )|1()( kkS
jTg +  with size of 

)|1()( kkn
jTg +  as the predicted sensors group of target jT . It is calculated at time step 

k and contains the predicted group nodes to track the target jT  at time step 1+k . 

Assume )|1()|1( kkSkkS DG +⊂+  with size of )|1( kknG +  is a set of all targets sensor 

groups and is calculated as: 

)|1()|1(
1

)( kknkkn
M

TgG +=+ ∑
=l

l  (4.26) 

)|1()........|1()|1()|1( )()()( 21
kkSkkSkkSkkS

MTgTgTgG +∪+∪+=+  (4.27) 

The closest sensor nodes selection is not always the best solution for target tracking 

because of triangulation and co-linearity in [95]. Therefore, the objective function for 

sensor groups’ selection is to minimize the overall updated errors of all targets. The 
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updated error of a target is defined as the “trace” of its updated covariance matrix. At 

time step k , the objective function is defined as: 

( )
( )( ) })1|1(,0max)(

)1|1({)|1(
1

thTT

M

Tobj

EkktracekZ

kktracekkF

−++

+++=+ ∑
=

ll

l

l

P

P
 (4.28) 

where, )(kZTl  is the importance of target lT  at time step k  and thE  is a predefined 

tracking error threshold. Using Equation (4.21), )1|1( ++ kkTlP  can be calculated at time 

step k  for a sensor group without knowledge of the sensor measurements at time step 

1+k . The optimal sensors groups )|1(* kkSG +  that will track the targets at time 1+k  is 

selected as: 

)|1(minarg)|1(
)|1(

* kkFkkS objkkSG
G

+=+
+

 (4.29) 

subject to: 

MkknG 3)|1( =+  (4.30) 

Mjkkn
jTg ≤≤∀≥+ 11)|1()(  (4.31) 

However, this is NP-hard combinatorial optimization problem [142][143]. The number 

of combinations that need to be calculated to find the optimal solution for this problem 

is:  

))!|1()|1(()!|1(
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)|1( )|1(

)|1( kknkknkkn
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⎞
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⎛
+
+ +

+  (4.32) 

Therefore, it is infeasible to find a solution to this problem in real-time especially for 

bigger vales of )|1( kknD +  and )|1( kknG + . In this chapter, a local search algorithm 

is thus used to find near-optimal solution in real-time. More details are provided in 

Section 4.6.5. 

4.6.2 MS-AMTT Framework and Assumptions 

Figure 35 shows the framework of the proposed MS-AMTT scheme. The same 

framework of MS-DMTT scheme, which is presented in Section 4.5.2, is used in MS-

AMTT scheme.   
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Figure 35  MS-AMTT WSN Framework 

The target metadata strategy proposed in Chapter 3 is used in MS-AMTT scheme. The 

MS-AMTT scheme operates in four steps. Step (1) computes the target importance and 

number of local search iterations based on the location metadata pertaining to the 

target’s past locations, by which the movement pattern is computed, Step (2) selects the 

next groups of sensors to track the targets in order to optimize or nearly optimize the 

tracking performance and continuity. Step (3) elects one sensor from each target group 

to act as the “Main Node” and select others to be “Helper Nodes”. Finally, in Step (4) 

one node is elected to be the “Leader Node” of all the target groups. MS-AMTT scheme 

aims to improve the tracking continuity, energy-efficiency and prediction success. At 

each time step k , the Main Node and Helper Nodes for target jT  are denoted by 

)(kMN
jT  and )(kHNs

jT  respectively. Additionally, the leader node is denoted by )(kLN . 

The tracking initialization is started when each target enters the sensing area. The 

border sensors sense the target, localize it using, for example, triangulation [27], and set 

the initial covariance error. Thus, the border sensors predict the next target state using 

EKF, select the next groups of the targets, perform the election of the next 
jTMN and 

LN , and trigger the next groups and LN  to wakeup.  

4.6.3 The Proposed Algorithms for MS-AMTT scheme 

At each time step k , helper nodes, )(kHN
jT  measure the target ranges and send the data 

to the )(kMN
jT . The )(kMN

jT  calculates the current and predicted target states using 

EKF, and sends them to the )(kLN . The )(kLN  performs the management and other 
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computational duties according to the algorithm shown in Figure 36. Detailed 

description of this algorithm is provided in Sections 4.6.4, 4.6.5 and 4.6.6. 
  

1. Send the current target states to the sink 

2. Compute the targets’ location metadata  ),( mT KkM
j

 

3. Calculate the targets’ importance  )(kZ
jT  using the     

    location metadata  ),( mT KkM
j

 

4. Update the target metadata  )(kTMD
jT  

5. Select the next target groups for time step   

    1+k according the Equation (4.29) 

6. Perform the election of the next  )1( +kMN
jT   

7. Perform the election of the next  )1( +kLN  

8. Trigger the next groups and leader node for time step  1+k  to wakeup 

9. Send  )(kTMD
jT  to the next groups and leader node 

Figure 36 Algorithm Running in the Leader Node 

4.6.4 Adaptive Target Importance 

Unlike the MTT schemes proposed in [103] and [104], the target importance is 

adaptively calculated according to the historical movement pattern of each target in 

order to obtain seamless and accurate tracking. Figure 37 illustrates the trajectory of a 

mobile target, jT . As shown in Figure 37 (a), if the target jT  is in manoeuvring with 

sharp-bends or random movement, its importance )(kZ
jT  will be large. From Equation 

(4.29), the aim is to find a solution where the objective function is minimized in order to 

determine which nodes will be assigned to track the various targets. However, if some 

targets move erratically there is a risk that the overall node mapping solution would 

assign insufficient nodes to track these targets, whilst more sensor nodes are used to 

track predictable targets than are needed. To take this into account the second term of 

the summation in Equation (4.29) is invoked if its tracking error of a particular target 

exceeds a threshold value. This causes the tracking cost of this target to be increased 

and so inflate the overall fitness cost, making this solution less desirable. Conversely, if 

tracking errors remain below this threshold then the additional cost term is not 

introduced when looking for the least cost solution. However, target importance can be 

determined offline based on actual priorities of the targets or if the target movement 

pattern is known in advance. The target movement pattern is modelled using the 
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location metadata. Location metadata for the target jT , ),( mT KkM
j

 proposed in Chapter 3 

is calculated for each target jT .  

 
Figure 37 Adaptive Target Importance 

In Figure 37 (b), the location metadata at time 4t  and 7t  are calculated using three 

previous tracking snapshots. If the location metadata at time 7t , )3,7(
jTM is equal to 1 

in turn the target importance is set to a small value because the target is moving in a 

uniform manner. On the other hand, if the location metadata at time 4t , )3,4(
jTM is less 

than 1 the target importance is set to a large value because the target is moving in a 

unpredictable manner. As shown in Figure 38, the target importance )(kZ
jT  is permitted 

to adaptively change in the interval mT ZkZ
j

≤≤ )(0 . )(kZ
jT  and is assumed to be a linear 

function of the location metadata, )),(()( mTT KkMfkZ
jj

= , according to the following 

equation: 

)),(1()( mjmj KkMZkZ −=  (4.33) 

),( mj KkM

)(kZj

 
Figure 38 Target Importance as a Function of Location Metadata 
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4.6.5 Local Search Algorithm 

A local search algorithm is used to find near-optimal solution in the real-time for the 

combinatorial optimization problem [142][144]. It is possible in polynomial time to find 

a local optimal solution that is the best in the sense that there is nothing better in its 

local neighbourhood. Given a feasible solution, the set of solutions that are close in 

some sense to it is called local neighbourhood [142]. The current solution of the local 

search algorithm starts with an initial solution, which should be chosen carefully as 

described in Section 4.6.5.1. It then evaluates the objective function for the local 

neighbourhood around the current solution. Two possible implementations of local 

search are first improvement (first-fit) and best improvement (best-fit) [142]. In first-fit, 

the current solution is set to the first neighbour that has better objective function. In 

best-fit, the objective function has to be computed for the overall neighbourhood and 

the current solution is set to the neighbour which has the best objective function. The 

local search is terminated if there is no solution in the neighbourhood that has a better 

objective function than the current solution.  

In fact, the choice of the initial solution and local neighbourhood structure is crucial 

because it influences the efficiency and computational time of the local search 

algorithm [145]. In the following sections, a detailed description concerning the initial 

solution, neighbourhood structure and local search heuristic are presented. 

4.6.5.1 Initial Solution Selection 

At each time step k , assume the initial solution for the groups tracking the targets at 

time step 1+k is )|1( kkIs +  with size of )|1( kknG +  nodes. )|1( kkIs +  is divided into 

equal M  subsets (one for each target) such that: 

{ })|1(),....,|1(),|1()|1( )()()( 21
kkIkkIkkIkkI

MTsTsTss +++=+  (4.34) 

Each subset of )|1( kkIs +  consists of three sensor nodes such that: 

{ } MjiiikkI
jjjj TsTsTsTs ,..,2,1)3(),2(),1()|1( )()()()( =∀=+  (4.35) 

Each subset defined in Equation (4.35) is calculated as follows. The biologically 

inspired target model proposed in Chapter 3 is used. For each target jT , the 

Mahalanobis distance ),|1( iT skkD
j

+  [136] which considers the predicted target 

location covariance )|1( kk
jT +P  in its calculations is obtained between the target’s 
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predicted location PDF and each of predicted detecting nodes )|1()( kkSs jdi +∈  as 

follows:  

)]|1(ˆ)[|1(])|1(ˆ[),|1( 1 kkkkkkskkD
jijjij TsTTsiT +−+′+−=+ − LLΣLL  (4.36) 

)|1( kk
jT +Σ  is the predicted target location covariance matrix and is calculate by the 

same method proposed in Chapter 3. The target chemical diffusion strength 

),|1( iT skkG
j

+  is defined as: 

)s,|1(
1),|1(

ikkD
skkG

j
j

T
iT +
=+  (4.37) 

Therefore, the selection fitness function by which the sensor nodes will be selected is 

computed as follows: 
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The ith sensor node, 31)|1()( )()( ≤≤∀+∈ ikkSii
jj TdTs   is selected so that:  
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where )(
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=
+  is the set of )|1()( kkS

jTd +  members excluding 

the ones from )1()( jTsi  to )1()( −ii
jTs  and the ones that already selected for other targets. 

4.6.5.2 Neighbourhood Structure 

At each time step k , assume the current solution for the groups tracking the targets at 

time step 1+k  is )|1( kkCs +  with size of )|1( kknG +  sensor nodes. The remaining 

set )|1( kkSr +  with size )|1( kknr + contains the sensor nodes in )|1( kkSD +  excluding 

the ones in )|1( kkCs + . Therefore, )|1( kkSr + and )|1( kknr +  are calculated as:  

)|1(\)|1()|1( kkCkkSkkS sDr ++=+  (4.40) 

)|1()|1()|1( kknkknkkn GDr +−+=+  (4.41) 
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Each sensor in )|1( kkSr +  replaces one by one the )|1( kknG +  sensors in )|1( kkCs +  

to form )|1( kknG +  neighbours. Therefore, the neighbour sets, )|1( kkNs +  of the 

current solution, )|1( kkCs +  and its size, )|1( kkns +  are calculated as:  

)}|1()|1(){|1()|1( kknkknkknkkn GDGs +−++=+  (4.42) 

)}|1(),.......,|1(),|1({)|1( ))|1(()2()1( kkNkkNkkNkkN kknssss s
+++=+ +  (4.43) 

The neighbours are generated according to the following algorithm shown in Figure 39. 

Therefore, we have a maximum of )|1( kkns +  neighbours for the current solution 

)|1( kkCs + . However, the neighbours will be generated one by one during the search to 

reduce the computational complexity. 

1.   Compute  the  objective  function  for  each  node  )|1( kkSs ri +∈  

when it is used alone to detect all targets. 

2.   Sort the  )|1( kkSr +  nodes  in non‐increasing order based on the 

number of targets detected by sensors in  )|1( kkSr + . 

3.   Sort the  )|1( kkSr +  resulted from Step 2 in non‐decreasing order 

based objective function for sensors in  )|1( kkSr + . 

4.   Set the neighbour numberl  to 1. 

5.   for each sensor  )|1( kkSs ri +∈  do: 

6.   for each sensor  )|1( kkCs sj +∈  do: 

7.   )|1()|1()( kkCkkN ss +=+l ; 

8.   In  )|1()( kkNs +l , replace  js  by  is ; 

9.   if  )|1()( kkNs +l  detect all targets by at least one node do: 

10.      Store  )(lsN  in neighbours structure ( )|1( kkNs + ); 

11.      Increment  l ; 

12.      end inner for; 

13.  end outer for; 

Figure 39 neighbourhood Structure 

4.6.5.3 Complete Local Search Heuristic Algorithm 

A First-fit local search approach is used in this thesis. The complete search algorithm is 

summarized as follows: 
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Step (1) Compute the initial solution )|1( kkIs + , set the current solution  )|1()|1( kkIkkC ss +=+  

and set  0=iter . 

Step  (2)  Calculate  the  objective  function  )|1()( kkFCF objsobj +=   for  )|1( kkCs +   and  set  the 

neighbour number  1=l . 

Step (3) Compute the neighbour )|1()( kkNs +l . 

Step (4) If  iter > maximum allowable iterations ( AI ), go  to Step 7. 

Step (5) Calculate the objective function  )|1()( )( kkFNF objsobj +=l of  )|1()( kkNs +l . 

Step (6) If  )( )(lsobj NF  <  )( sobj CF ,  1+= iteriter , set  )(lss NC =  and  go to Step (2). 

    Else  

• 1+= ll . 

• if  )|1( kkns +>l go to Step 7. 

• else go to Step 3.    

Step (7) Return  )|1( kkCs +  as the result of the local search and finish. 

4.6.5.4 Computational Complexity 

In the neighbourhood structure discussed in Section 4.6.5.2, one sensor node is changed 

from the current solution to get the new neighbours. Therefore, the complexity for the 

neighbourhood structure is bounded by )}|1()|1({ kknkknO DG ++ . In the local search 

algorithm described is Section 4.6.5.3, the worst case is to search the entire 

neighbourhood structure. Therefore, the complexity is bounded 

by )}|1()|1({ kknkknO DG ++ . However, the maximum allowable iterations ( AI ) can 

dramatically control the computational time of the local search algorithm. Unlike the 

MTT scheme proposed in [103] and [104], the MS-AMTT scheme controls the number 

of iterations to reduce the computational time and energy consumption whilst normally 

maintaining seamless tracking. The computational time increases with increasing AI . 

However, using a small AI  can degrade the tracking performance and lose targets 

especially if the targets move in a random fashion. In this thesis, the maximum 

allowable iterations ( AI ) is adaptively calculated according to the historical location 

metadata of the targets. Generally speaking AI  is set to a small value if the targets move 

in uniform manner because the targets can be successfully predicted using EKF and 

vice versa.  The maximum allowable iterations ( AI ) is permitted to adaptively change in 
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the interval maxmin III A ≤≤ . As shown in Figure 40, at each time step k , the maximum 

allowable iterations ( AI ) is calculated based in the following equations: 

{ }),(),...,,(),,(min
21min mTmTmT KkMKkMKkMM

M
=  (4.44) 

minmaxminmax )()( MIIIkIA −+=  (4.45) 

where maxI  and minI  are the maximum and minimum of AI  respectively. 

minM

)(kI A

maxI

minI

 
Figure 40 Maximum Allowable Iteration as a Function of Minimum Location Metadata 

The computational complexity of the location metadata calculation is )( mMKO . 

However, the target’s importance and maximum allowable iterations are calculated 

once for the current solution and its neighbours at each time step.  

4.6.6 Main and Leader Node Election 

The group is classified into one MN and a number of HN(s). One more node is selected 

to be the LN of the groups. The MN and LN typically perform more processing and 

communication activities. Hence, choosing the MN and LN is a crucial issue to improve 

the energy saving and network lifetime. The election mechanism proposed in Chapter 3 

is used to elect the MN and LN. At time step k , the group main node, )|1( kkMN
jT +  at 

the next time step 1+k  of the target jT  is elected from the selected group of nodes for 

the target, )|1()( kkS
jTg + . The leader node, )|1( kkLN + of the target groups is elected 

from the sensor nodes inside the area that is surrounded by group MNs. The election 

algorithm details are provided in Chapter 3. 

4.7 Biologically Inspired and Self-Organized Aspects  

Like the MS-ASTT scheme, the principle of biological differentiation is applied in the 

MS-DMTT and MS-AMTT schemes; the sensor nodes start equally and then exhibit 
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some kind of specialisation in order to perform target tracking. The sensor nodes before 

the selection and election algorithms are all equal. The selection algorithm differentiates 

the jobs of the sensors nodes so that some of them will be selected to sense the target 

and others will remain in their sleeping mode. The election algorithm classifies the 

selected group of nodes into one MN, HN(s) and an LN. Furthermore, this is the first 

research to treat the target as a virtual chemical emitter. 

The proposed MS-DMTT and MS-AMTT schemes are self-configured and self-

organizing without the need for external administration. Therefore, their complexity is 

hidden from the users. Furthermore, a recovery mechanism is designed to solve the 

problem of tracking failures. Prediction is provided to anticipate the target future 

location and prepare the tasking nodes before the target arrives in their vicinity. Load 

balancing is adopted in the election of the leader of the group of tasking nodes to track 

the target. The sensor nodes are all the time aware of their remaining resources.   

4.8 Chapter Summary 

In this paper, MS-DMTT and MS-AMTT schemes are presented for multi target 

tracking for WSNs. The MS-DMTT scheme is developed based on the assumption that 

the sensor node can only detect and serve one target at the same time. On the other 

hand, the MS-AMTT scheme is developed based on the assumption that the sensor node 

can detect and serve more than one target at the same time.  

In MS-DMTT scheme, at each tracking step, the sampling interval is computed such 

that the prediction is likely to succeed and the tracking is continuous. The next tracking 

groups for the targets are then proactively selected and one of the group members is 

elected as a group MN such that the energy efficiency of the communication and 

network lifetime are improved. Finally, conflict nodes locally decide the preferred 

target based on target importance and their distance from the target.  

In the MS-AMTT scheme, at each tracking step, a target’s importance and 

maximum allowable iterations are computed.  Then, the next tracking groups are 

proactively selected such that the tracking continuity and accuracy are improved. After 

this, one of the group members is elected as the MN and another node from the area 

surrounding the MNs is elected to be the LN so that the communication energy 

efficiency and network lifetime are improved.  
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In the Chapter 5 task mapping and scheduling in WSNs is proposed to improve the 

network lifetime and the execution time of applications that may be running across a 

group of sensor nodes. 
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Chapter 5  Task Mapping and Scheduling in WSNs 

5.1 Chapter Introduction 

Chapter 3 and 4 introduce single and multi target tracking in WSNs, respectively. In this 

chapter, Task Mapping and Scheduling (TMS) in WSNs are presented. Firstly, a 

Biological Task Mapping and Scheduling (BTMS) algorithm is proposed. In the BTMS 

algorithm, the application is assumed to be decomposed into dependent tasks with 

different computation weights. Secondly, the Biological Independent Task Allocation 

(BITA) algorithm is introduced.  In BITA, the application is assumed to be decomposed 

into equal-weighted independent tasks. Finally, a chapter summary is provided. 

5.2 Biological Task Mapping and Scheduling (BTMS) Algorithm 

BTMS is a TMS algorithm in which an application is executed by a group of sensor 

nodes in parallel. Tracking algorithms are one of the attractive applications that can 

employ BTMS especially as these algorithms are computational intensive and require 

real time execution [6]. At the beginning of this section, a model for a general high-

level application is considered. After that the problem of TMS in WSNs is formulated. 

Then, the BTMS algorithm is presented. To increase the network lifetime, decision-

making rules are then introduced. 

5.2.1 Application Model 

The application is assumed to be decomposed into dependent tasks with different 

computation weights. A DAG is adopted to provide a general model for the application 

[120][124][146]. The DAG ),( EVA=  consists of a set of vertices V  representing the ( n ) 

tasks, { }nivV i ,...,2,1: == , and a set of edges E  representing the ( e) communication 

dependencies, { }eiE k ,...,2,1: == ξ . The edge Ek ∈ξ  between Vvv ji ∈&  is denoted as ije , 

where jv  is called the immediate successor of iv  and iv  is called the immediate 

predecessor of jv . Therefore, the task cannot be executed until it receives all the results 

from its immediate predecessors. This dependency between tasks execution is called the 

communication dependencies constraint. As shown in Figure 41, a task without 

immediate predecessors is an entry-task or a source-task while a task without immediate 

successors is an exit-task or a sink-task. In WSNs, the entry-tasks are used for sensing 

or gathering the raw data to detect physical phenomena. Therefore, task placement 
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constraints can be defined as only one source task can be assigned to the sensor node. In 

Figure 41, 1v  and 2v  are source-tasks, 8v  is the sink-task, 3v  and 4v  are the immediate 

predecessors of 6v , and 7v  is the immediate successor of 5v  and 4v . The task 3v  cannot 

be executed until it receives the communication edges (i.e., dependencies) 13e  and  23e  

from tasks 1v  and 2v  respectively.  The latency constraint of the application means that 

the application should be executed before the application deadline, P . 

 
Figure 41 An Example DAG  

5.2.2 Problem Formulation 

Assume, { }misS inet ,...,2,1, ==  are the set of sensor nodes for a homogenous WSN so that 

fppp
msss ==== ...

21  where isp  is the processor speed of sensor node is  and f  is the 

value of the processor speed for all sensor nodes.  During the network operation, 

assume a sensor node Ts  makes a request to its neighbouring sensor nodes to ask them 

to share in the execution of an application. Assume the set of neighbours that decide to 

participate the sensor node Ts  in the execution of the application are 

{ }nin nisS ,....,2,1, == . Therefore, the overall set of sensor nodes that can share to execute 

the application in parallel are { } { }Tnmim sSnisS ∪=== ,...,2,1:  where 1+= nm nn . Define 

,...}2,1:{ =Ζ= Ζ
gg SS  as a set of the subsets, mg SS ⊂Ζ  where },...,2,1:{ ΖΖ == gig nisS  and 

mg nn ≤Ζ . Unlike the CoRAl algorithm [121] which does not consider the energy 

consumption, the main goal of the BTMS algorithm is to find the set of the sensor 

nodes, opt
gS  so that the energy efficiency of executing an application is optimized or 

nearly optimized without violating the latency constraint of the application. Therefore, 

unlike the EcoMapS algorithm [126], the BTMS algorithm can guarantee the execution 
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of the application before the application’s deadline. The main objective of BTMS is to 

find g
opt
g SS ⊂  where },...,2,1:{ opt

gi
opt
g nisS ==  and m

opt
g nn ≤  so that the total energy 

consumption using opt
gS  , )( opt

gSenergy  is minimized subject to meet the application’s 

deadline. Mathematically, this optimization problem can be formulated as: 

)(minarg Z
gS

opt
g SenergyS Z

g
=  (5.1) 

∑∑ +=
Z
g

Z
g S

comp
S

comm
Z
g EESenergy )(  (5.2) 

Subject to: 

PCET ≤  (5.3) 

where CET  is the Collaborative Execution Time of the application, and commE  and 

compE  are the total energy consumption of the data communication and computation 

required to execute the application using opt
gS sensor nodes, respectively . In the WSN 

target-tracking schemes proposed in Chapter 3 and 4, Ts  can be the MN and the set nS  

consists of the HN(s).  In fact, the task mapping and scheduling problem is an NP-

complete problem [7]. Therefore, the BTMS algorithm, which is greedy heuristic 

algorithm, is proposed to obtain near-optimal solution.  

5.2.3 BTMS Algorithm 

In the DAG ),( EVA= , each task Vvi∈  can be modelled as a tuple of the form: {
ivN , 

ivt , 

ivE }. 
ivN  is the number of its computational cycles and 

ivt  is its execution time where: 

ƒ
ii vv Nt =  (5.4) 

ivE  is the computational energy consumption to execute it.  Each edge Ek ∈ξ  (i.e., 

denoted as ije ) between tasks iv  and jv  can be modelled as a tuple of the form: {
ijeb , 

ijet , 
ijeE }. 

ijeb is the data size of the dependency generated from task iv  and needed to 

execute task jv . ijet  is the time required to transmit the 
ijeb bits from the sensor node on 

which iv  is mapped to the sensor node on which jv  is mapped. 
ijeE  is the 

communication energy consumption required to transmit and receive 
ijeb bits. If iv  and 
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jv  are mapped in the same sensor node, ijet  and 
ijeE  are set to zero. Otherwise, ijet is the 

transmission and propagation times needed to transmit and receive the 
ijeb bits such that: 

cdBbt
ijijij eee +=   (5.5) 

where c  is the speed of light, B  is  transmission speed and 
ijed is the distance between 

sensor nodes where the iv  and jv  are mapped. 
ivE  and 

ijeE  are calculated using the 

energy consumption models proposed in Chapter 3. Therefore, unlike the TMS 

techniques proposed in [122] and [124], BTMS considers the energy consumption for 

every communication and processing activity. Moreover, the BTMS algorithm 

differentiates between energy costs at the sender and receiver according to the energy 

consumption models proposed in Chapter 3. Each sensor node neti Ss ∈  is a tuple of the 

form: {
isNID , 

isE , 
isx , 

isy , thE } where  
isNID  is the sensor identification, 

isE  is the 

remaining energy of the sensor node,  (
isx ,

isy ) is the 2D location of the sensor node 

and thE  is the threshold energy after which the sensor node cannot participate any 

processing activity. Figure 42 shows the BTMS algorithm. 
 

In line (1), the level-based DAG is built so that the lowest level contains the entry-

tasks and the highest level contains the exit-tasks. The immediate predecessors of the 

tasks in each level are only located at the lower levels [122]. Figure 43 shows the DAG 

before and after converts it to level-based DAG. 
 

Unlike, the RT-MapS [127] and MTMS [128] algorithms, in line 2 in each level, the 

tasks are arranged in non-increasing order so that the large tasks in each level are 

mapped first.  This arrangement leads to less CET because the large tasks will be 

executed in parallel with small tasks rather than executing small tasks and then waiting 

until large tasks finish execution. 
  

Figure 44 explains the motivation for this arrangement using a simple scenario. 

Assume a particular level in the DAG contains four tasks 1, 2, 3 and 4. Assume three 

sensor nodes share execution of the application. In Figure 44 the height of the rectangle 

that contains the task number indicates the task size. In Figure 44 (a), the tasks are 

mapped in order while in Figure 44 (b), the tasks are arranges in non-increasing order 

before mapping. In Figure 44 (b), task 1, 2 and 3 are executing during execution of task 

4. Therefore, the CET with tasks arranged in non-increasing order leads to a smaller 

CET than without any such arrangement. 
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 1.  Convert the DAG into level‐based DAG; 
2.  Sort the task in each level in decreasing order; 

3.  Select  [ ]10∈λ ; 

4.  for each task  Vvi ∈ from the lowest level do:  

5.     for each node  mj Ss ∈  do: 

6.    Calculate  ),( ijT vsE ; 

7.    Calculate  ),( ijf vst ; 

8.    Calculate  ),( ij vsf ; 

9.     End of inner for loop; 

10.   Map and schedule the task  iv  to the node  js  that has minimum ),( ij vsf ; 

11.   Update the nodes energy remaining;  

12.   Do not assign any more tasks to the nodes that has energy less than  thE ;    

13. end of outer for loop; 

14. Calculate the execution time (CET );  

15. if ( PCET > ) do: 

16.     Ignore the current task allocation, 

17.     Choose different  λ ; 

18.     Go to step 4; 

19. end if; 

20. Finish; 

Figure 42 BTMS Algorithm 

 

 
Figure 43 Level-Based DAG 
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Figure 44 Arrangement the Tasks in Non-increasing Order 

In line (6), ),( ijT vsE  is the total energy required to execute the task iv  on the sensor 

node js  and is calculated as: 

( )∑
∈∀

++=
)(

),(
i

kii
vpredk

sevijT EEvsE ε  (5.6) 

where, sε  is the average energy consumption required to manage the communication 

(i.e., including the collision cost and the channel access management) and )( ivpred  is 

the set of all immediate predecessors indices of iv . In line (7), ),( ijf vst  is the time 

required to execute the task iv  on the sensor node js  and is calculated as: 

ivijsijf tvstvst += ),(),(  (5.7) 

where, ),( ijs vst  is the start execution time of the task iv  on the sensor node js . It is 

calculated as follow: 

( )
⎩
⎨
⎧

⎭
⎬
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vpredk
jijs kiki

i

ttsavavst τ
)(

max),(max),(  (5.8) 

where, )( jsava is the availability of the sensor node js  (i.e., the time at which the 

sensor node can execute the next task), sτ  is the average time required to manage the 

communication (i.e., including the collision cost and the channel access management) 

and kift  is the completion time of the immediate predecessor ( k ). In line (8), the fitness 

function ),( ij vsf  of executing the task iv  on the sensor node js  is calculated as:  
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vsf ijTijf
ij λλ  (5.9) 
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where, maxE  is the maximum energy level of the sensor nodes and [ ]10∈λ  is a design 

parameter which controls the weight of minimizing the total energy consumption and 

the application execution time, CET .  

5.2.4 Decision-Making Algorithm 

Unlike the related work of TMS in WSNs proposed in Chapter 2, decision-making rules 

are defined in each sensor node to increase the network lifetime and connectivity. The 

decision-making rules shown in Figure 45 allow the sensor node to decide whether it 

can participate in the processing activities or not. Dead sensor nodes give rise to holes 

in the network.  Therefore, the sensor node can participate in the processing activities if 

the energy level of a sensor node is above a threshold value and the sensor node has 

enough neighbours to relay the data in the network (i.e., it is identified as 

NotOnlyRelayNode). On the other hand, the sensor node will prefer to remain a relay 

node to forward the data to other sensor nodes if it is located in scarce area or if its 

remaining energy is under a threshold value. Therefore, the network connectivity and 

lifetime is improved. 

1. if ( ( ths EE
i
> ) && (NotOnlyRelayNode) ) do: 

2.     Participate the processing activities; 

3. end if; 

4. else do:  

5.     Do not participate the activity; 

6. end else; 

Figure 45 The Decision Making Rules 

5.2.5 Computational Complexity Analysis 

Recalling Section 5.2.1 and 5.2.2, assume there are mn  sensor nodes and the DAG has 

n computational tasks. In BTMS algorithm presented in Figure 42, the loop in line 4 is 

executed in )(nO  time and the loop in line 5 is executed in )( mnO . Thus, the 

computational complexity of BTMS algorithm is )( mnnO . Min-Min technique is the 

core of the MTMS algorithm [128]. As discussed in Chapter 2, Min-Min technique 

involves all tasks with all nodes to map a particular task. Thus, its computational 

complexity [128] is )( 2
mnnO . Therefore, BTMS is less complex than MTMS because 

BTMS does not involve all tasks to map a particular task. 
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5.2.6 Biological Inspired Aspects in BTMS Algorithm 

Unlike the related work on TMS in WSNs proposed in Chapter 2, BTMS is biological 

inspired algorithm. The same biological principles presented in Chapter 3 are applied in 

the proposed BTMS. The network nodes start equally in a default state and then exhibit 

some kind of differentiation to execute an application. As shown in Section 5.2.3 and 

5.3.4, the application tasks are mapped to the sensor nodes according to their resource 

availability and locations where according to Equation (3.10), the energy consumption 

for the communication is related to the distance between sensor nodes. Therefore, each 

node will be specialized to execute different tasks. 

5.3 A Biological Independent Task Allocation (BITA) Algorithm 

In this section, the BITA algorithm is presented. In BITA, the application is assumed to 

be decomposed into equal-weighted independent tasks. The equal-weighted of the tasks 

means that all tasks require the same number of CPU clocks to be executed. A 

collection of independent tasks is called a meta-task [111][112]. BITA can be used to 

allocate these equal-weighted independent tasks among a group of sensor nodes 

according to their available resources and locations. The BITA algorithm is the first task 

allocation technique used in WSNs to map independent tasks of equal-weighted among 

a group of sensor nodes. 
 

Assume an application can be decomposed into ( N ) independent equal-weighted 

tasks.  Like BTMS, during the network operation, assume a sensor node Ts  makes a 

request to its neighbouring sensor nodes to ask them to share in the execution of an 

application. Assume the set of the neighbours that decide to participate the sensor node 

Ts  in the execution of the application are { }nin nisS ,....,2,1, == . Therefore, the overall set 

of sensor nodes that can share to execute the application in parallel are 

{ } { }Tnmim sSnisS ∪=== ,...,2,1:  where 1+= nm nn . The tasks are assumed to be submitted 

for execution from Ts  to the { }nin nisS ,....,2,1, ==  nodes. Similarly, the results of task 

execution are submitted back to Ts . Obviously, the tasks mapped to Ts  do not required 

submission.   
 

Unlike the CoRAl algorithm [121], BITA explicitly considers the sensor node 

energy resource. Based on energy models proposed in Chapter 3, the data transmission 

energy consumption is proportional to the square of the distance between the source and 

the destination. Therefore, the nearer the sensor node ( mi Ss ∈ ) to the sensor node ( Ts ), 
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the less communication power is required to submit the tasks to is  and get the results 

from it in return, the more tasks can be located to is . Furthermore, in order to prolong 

the network lifetime, the node resource availability is considered. The more resource 

that is available at sensor node mi Ss ∈ , the more tasks that can be allocated to it. 
 

In this thesis, the sensor node is treated as a virtual chemical emitter that influences 

other sensor nodes with a varying strength, which is determined according to the sensor 

node proximity to other sensor nodes. Therefore, the sensor’s influence on other sensors 

nodes is characterised by chemical diffusion strength (G). The chemical diffusion 

strength of a sensor node decreases with distance. Mathematically, the chemical 

diffusion strength (G) of sensor node is  on another sensor node js  is calculated as 

follows: 

⎪
⎩

⎪
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where, ][ ′=
iii sss yxX  and ][ ′=

jjj sss yxX  are the 2D locations of sensor nodes is  and js  

respectively,  ijssss d
jiji
=′−− ]][[ XXXX  is the distance between sensor nodes is  and js , 

and Z  is a real number . The decomposed fitness functions ),,( giD Ssf δ  that indicates 

the ability of sensor nodes to execute the tasks is calculated for each sensor node mi Ss ∈  

as follows:  
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where 10 ≤≤ β . To improve the load balancing and energy efficiency, each sensor node 

mi Ss ∈  is assigned a number of tasks, ),( Nsn i  so that: 
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Therefore, from Equations (5.10) and (5.14), the value of Z  determines how much the 

sensor node Ts  can participate in the task execution. Larger values of Z  give larger 

values of ),,( gTD Ssf δ  and ),( Nsn T . The chemical diffusion strength of sensor node 

Ts  itself is assumed to be the same as the chemical diffusion strength of  Ts  on any 

sensor far away from Ts  by 2/rR  where rR  is the radio range. Therefore, Z  in Equation 

(5.10) is set to rR/2 . 
 

The target tracking proposed in Chapter 3 and 4 is one that is assumed to be 

partially decomposed into independent equal-weighted tasks because it has intensive 

matrix calculations. Furthermore, a stream equal independent network jobs can be 

allocated in WSNs using BITA. The sensor node Ts  can be the MN and the set nS  

consists of the HN(s). 
 

The same biological inspired aspects adopted in the BTMS algorithm are applied in 

the operation of the BITA algorithm. Each sensor node specializes to execute particular 

tasks according to its available resources and its location. 

5.4 Chapter Summary 

In this chapter, TMS in WSNs is presented. If the application can be decomposed into 

independent tasks, BTMS is used as TMS algorithm. The main aim of BTMS is to 

reduce the energy consumption and the execution time such that the application 

deadline is met. Conversely, BITA is used as the TMS algorithm in the case when the 

application can be divided into independent equal-weighted tasks. The main goal of the 

BITA algorithm is to reduce the execution time of the application by parallelizing its 

execution and to increase the network lifetime by adopting load balancing. 
 

In Chapter 6 the simulation environment, data structures and simulation events are 

introduced in relation to the simulator used to evaluate the proposed target tracking, and 

task mapping and scheduling techniques proposed in Chapter 3, 4 and 5. 
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Chapter 6  Simulation Environment 

6.1 Chapter Introduction 

Chapters 3 and 4 present STT and MTT schemes for WSNs.  In Chapter 5, a task 

mapping and scheduling (TMS) scheme is proposed. In this chapter, the simulation 

models used to evaluate the proposed target-tracking and TMS are explained. In the 

beginning of the chapter, event driven simulation is introduced. The main simulator 

flow chart and the random number generator used are then introduced. The data 

structures and different event types are discussed. A chapter summary is provided at the 

end.  

6.2 Event Driven Simulation 

Most real systems are complex. Hence, analytical solutions become very difficult to 

obtain. Therefore, simulations are used to evaluate the system numerically. Mainly, two 

types of simulation exist which are discrete and continuous simulations. System states 

that describe the system at a particular time are discrete in discrete simulation and 

continuous in continuous simulation. A discrete event simulation is a simulation in 

which the system is modelled as it evolves over a time (i.e., dynamic simulation). 

Therefore, the system state variables change instantaneously at separate points in time 

(i.e., discrete simulation). As a result, the system can only change at a countable number 

of points in times, at which the events can occur.  Therefore, the event is an 

instantaneous occurrence that may change the state of the system [147][148]. The 

proposed target tracking and TMS in this thesis are considered as complex discrete 

systems. Therefore, a discrete event simulation has been developed to evaluate them.  

6.3 Simulation Framework 

Figure 46 shows the overall structure of the implemented event-driven simulator. The 

chart summarizes the steps involved to run one experiment (i.e., trial) of the simulator. 

The simulator starts by reading the input parameters and constants. Then, the output 

files are created and initialized to store the results.  After that, the cumulative statistical 

counters are initialized. The simulation initialization routine is called to initialize the 

simulation clock, build data structures and create the first event. After that, the timing 

function is called to obtain the next event and advance the simulation clock. Depending 
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on the next event type, the appropriate event subroutine is called. Extra events are added 

to the event list based on the current event. The simulation stop condition is checked. If 

the condition is met, the simulator generates the statistical report and terminates. If the 

condition is not met, the timing function is called again to obtain the next event and 

advance the simulation clock. The simulation stop condition varies depending on the 

simulated scenario. 

 
Figure 46 Overall Simulator Structure 

6.4 Object Oriented Programming 

Although existing simulators could have been used to evaluate the proposed scheme, 

such as NS2 and SensorSim, the authors chose to implement their own tool to evaluate 

the proposed schemes in a way that better matched the particular characteristics of the 

scenarios. This includes the mobility models, MAC layer behaviour, energy 

consumption model and tracking protocol operation. The concept of adaptive sampling 

and consideration of the target classes are not implemented in any existing simulators. 
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Additionally, many physical and MAC layers aspects of these simulators are not 

required. Therefore, the same programming effort or maybe more would be spent 

adapting one of the available simulators rather than developing a bespoke solution. C++ 

[149][150], which is an object-oriented language, has been used to build the simulation 

models. The class principle and use of libraries in C++ helped to implement large 

models in a modular fashion.  

The Mersenne Twister [151] random number generator has been implemented in a 

separate class with attributes to set different seeds and functions that implement 

different property distributions. Objects are declared from the random number generator 

class as needed.  The node is modelled in a class and node objects from this class are 

used to create the network node data structures. The target attributes are encapsulated in 

a class and objects of that class are initiated as needed. The messages are also 

implemented in one class and objects of this class are created when the node needs to 

send a message. 

As shown in Figure 47, the world where the network is deployed is modelled as a 2-

dimensional array using a random placement of the sensor nodes. The distance between 

any two objects ),(),,( jjjiii yxOyxO  in the world can be calculated using Euclidean 

distance: 

22 )()( jijijiij yyxxOOd −+−=−=  (6.1) 

 
Figure 47 The Simulation World Model 

Simulation parameters can be read from an input file or they can be declared as 

constants. Vectors, lists and arrays are primarily used to store the simulation data 
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structures. Detailed description about the developed simulators is introduced in details 

in Appendix A. 

6.5 CSMA/CA Event List 

In the simulator, the packet exchange is designed based on the CSMA/CA MAC 

protocol. When the target arrives at the sensing area, the main events that manage the 

message exchange between nodes are target arrival, ready to send, wait Distributed 

Inter-Frame Space (DIFS), back off, transmission, reception, wait acknowledgment 

(i.e., collision), and tick events. Figure 48 shows these in an events graph. Defer and 

Process shown in the Figure 48 are not events. They are included just to clarify certain 

event operations. As shown, target arrivals allow the simulation to commence. After 

that, the nodes that detect the target start to transmit control packets to identify the 

group and serve the target. The tick event is triggered periodically in the simulator to 

record some of the simulation results. The simulation is stopped based on predefined 

conditions. The pseudo code for each event is explained briefly in Appendix A. 

 

 
Figure 48 CSMA/CA Event Graph 
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6.6 Chapter Summary 

In this chapter, the simulation environment is explained. The simulator employs 

Mersenne Twister random number generator. The event graph is presented. Detailed 

description about the developed simulators is presented in Appendix A. For further 

information, the pseudo code of the main events is given in Appendix A. The next 

chapter discusses the simulation results. A critical assessment of the results is also 

provided. 
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Chapter 7  Simulation Results 

7.1 Chapter Introduction 

In this chapter a performance evaluation of the MS-ASTT, MS-DMTT, MS-AMTT, 

BTMS and BITA schemes that are proposed in Chapter 3, 4 and 5 is given. A critical 

assessment and discussion of the simulation results is also provided. Additionally, the 

proposed schemes are compared against well-known approaches. Finally, a summary of 

the chapter is provided. 

7.2 Simulation Assumptions 

In this section the assumptions common to all simulations presented in this chapter are 

introduced.  The performance of the proposed schemes presented in Chapter 3, 4 and 5 

are evaluated using a C++ simulation environment and 1.73 GHz Pentium IV processor. 

Unless specifically stated, to improve the statistical significance of the simulation 

results [137], the results are averaged over 20 runs using different random sensor 

placements with a fixed density. Line of sight (LOS) communication is assumed 

between the nodes within the same coverage area. Two nodes are in the same coverage 

area if the distance between them is equal to or less than the radio range, which is set to 

100m. The radio range is set to be twice the sensing range [69]. Therefore, the sensing 

range is set to 50m. The Carrier Sense Multiple Access/Collision Avoidance 

(CSMA/CA) protocol proposed in Section 2.4 is used as the MAC layer protocol. 

According to the Bianchi model [152], the parameters of CSMA/CA using Frequency-

Hopping Spread Spectrum (FHSS) as a physical layer protocol are listed in Table 1. As 

in [133], the energy model parameters for Equation (3.10) to Equation (3.12) are set as 

follows: ,//10 2mbpJFSamp ==εε  ,26mVVT =  ,5.0=c  ,67.0 nFC =  ,96.1 mAIo =  

26.21=n , VMHzK /28.239= , ,/50 bnJEelec =  and MHzf 100= . If the sensor 

node detects the target, the sensing energy cost is assumed to be 8 × 10-9 J [5]. In the 

MS-ASTT scheme, all the sensor nodes are assumed to have identical measurement 

noise variances, 001.02 =sσ  [5]. For the MS-DMTT and MS-AMTT schemes, γ  in 

Equation (4.10) is set to 0.001 [5]. The amount of randomness in the process noise is 

50=
jTq  for all targets [5]. )1( +kS  in Equation (3.6) and )1( +kS

jT  in Equation (4.6) are 

set to 40 for all k  and all targets [110]. n  in Equation (3.6) and Equation (4.6) is set to 
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2 for all k  and all targets [110]. The adaptive sampling interval, α  in Equation (3.32) 

is set to 0.5 so that the weight of measured sampling interval is the same as the previous 

sampling interval. The adaptive sampling and target importance, mK  in Equation (3.27) 

is chosen to cover snapshots over the last 2 seconds of the target path. DSDV discussed 

in Chapter 2, has been implemented in the model as the multi-hop network layer routing 

protocol. 

Parameter Value 
Packet Payload 8184 bits 
PHY Header 128 bits 
MAC Header 272 bits 
ACK 112 bits + PHY Header 
RTS 160 bits + PHY Header 
CTS 112 bits + PHY Header 
Channel bit rate 1Mbps 
Propagation delay 1μs 
Slot Time 50μs 
SIFS 28μs 
DIFS 128μs 
ACK_Timeout 300μs 
CTS_Timeout 300μs 
CWmin 255 
CWmax 1024 

Table 1  CSMA/CA FHSS Parameters 

7.3 MS-ASTT Scheme Evaluation 

In this section, the MS-ASTT scheme proposed in Chapter 3 is evaluated and compared 

with other well-known STT schemes. The results are critically assessed at the end of 

this section. 

7.3.1 Simulation Setup 

As described in Section 3.12, a uniformly distributed random deployment of 500 

wireless sensor nodes across an area of 300m × 300m can guarantee the coverage of the 

target at any location by at least 3 sensors. For simplicity [5][110], the data processing 

required to localize the target, predict the target next state, update the target state and 

recover the target location in case of loss are assumed to be =N 1, 2, 2 and 1 MCC 

(Mega Clock Cycles), respectively. The size of every message used for the operation of 

the MS-ASTT scheme is assumed to be 288=l bits. The energy consumption to trigger 

the nodes to wakeup using the low energy communication channel is neglected [134]. 

The “Timer_recovery” and “Timer_levels” timers used for recovery are set to 0.05 
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seconds. Unless specifically stated, an adaptive sampling interval is used according to 

Equation (3.31) and Equation (3.32) with 1.0min =T  sec and 5.0max=T  sec [5][110]. The 

maximum energy level of each sensor node max
isE  is set to 100J. The group size to track 

the target 3)( =kng  for all k . The recovery mechanism presented in Chapter 3 is used to 

recapture lost targets. 

7.3.2 Recovery Mechanism Evaluation 

In this scenario, a single target travels in straight line for 10 min starting from the 

position (10, 10). When the target reaches the edge of the sensing area, it randomly 

changes its direction to keep travelling inside the sensing area. In Equation (3.31), maxT  

is changed during the simulation over the interval ]5.01.0[  while minT   is kept fixed to 

a value of 0.1 seconds. Figure 49 shows the real and estimated trajectories of the target 

after 5 min. The estimated trajectory is close to the true trajectory.  
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Figure 49 Target Trajectory using 1.0max=T  min and Velocity=10m/s 

In Figure 50, 51 and 52, the number of recovery events, the total energy consumption 

and the total recovery time are plotted versus maxT  for different velocity values. In Figure 

50, the number of recovery events increases with increasing maxT  and velocity. 
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Figure 50 Number of Recovery Events Variations with maxT  

In Figure 51, the energy consumption decreases dramatically with increasing maxT  

because less tracking snapshots are processed. On the other hand, with increasing 

velocity, the increase in the energy consumption is small, although the number of 

recovery events is larger for higher velocities. As shown in Figure 52, the time required 

for recovery increases with increasing maxT  and velocity. Finally, first and second level 

recoveries are found to be sufficient to successfully recover the tracking. Moreover, the 

percentage of level-1 recoveries during this scenario is 99.38%. 
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Figure 51 Energy Consumption Variations with maxT  
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Figure 52 Total Recovery Time Variations with maxT  

7.3.3 Impact of Adaptive Node Election 

The effect of the weighting parameter δ , defined in Equation (3.41) is evaluated in this 

section. The same scenario as used in Section 7.3.2 is employed with 1.0min =T sec, 

5.0max =T sec and velocity 10m/s. The simulation is stopped after 600 minutes. The 

network lifetime is defined as the time at which the first sensor node death occurs. The 

performance metric that indicates the load balancing performance is defined as follows: 

m

EE

P

m

j
ss

m

jj∑
== 1

max

 (7.1) 

where m  is the number of the sensor nodes in the network (i.e., 500), 
jsE is the 

remaining energy of the sensor node js  and max
jsE  is the initial energy of the sensor 

node js  which is chosen randomly over the interval, 10 max <<
isE  Joules. mP  is 

recorded at the end of each simulation run. Table 2 shows the lifetime, mP  and energy 

consumption for different δ  values. Setting δ  to zero improves the load balancing (i.e., 

mP ) and in turn the network lifetime. On the other hand, choosing a value of unity for 

δ  reduces the energy consumption of the network. Adaptive calculation of δ  reduces 

the energy consumption and improves load balancing.  

Approach Lifetime(min) Pm Energy (J) 
0=δ  14.23 0.628 198.964 
1=δ  2.55 0.479 198.848 

Adaptive δ  14.04 0.636 198.893 
Table 2 Lifetime, Load Balancing Performance and Energy Consumption for Different δ Values 
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7.3.4 Impact of Group Size 

The effect of the group size, )(kng  that is formed to track the target is evaluated in this 

section. The same scenario as used in Section 7.3.3 is used. The group size is set to 

fixed values of 1, 2, 3, 4 and 5. In Figure 53 and 54, the total number of recovery events 

and time required during the simulation decreases with increasing the group size 

because the tracking accuracy is improved with increasing the sensor node 

measurements.  
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Figure 53 Number of Recovery Events versus Group Size with a 95% Confidence Interval 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Group Size(ng)

To
ta

l R
ec

ov
er

y 
Ti

m
e 

(s
ec

)

 
Figure 54 Total Recovery Time versus Group Size with a 95% Confidence Interval 

In Figure 55, different overhead messages are plotted. The number of “TRan” messages 

increase with increasing group size. “GTrig”, “TLos” and “TRec” messages decrease 

with increasing the group size because as shown in Figure 53 the number of recovery 

events increases with decreasing the group size. The number of “TRec” messages equals 

to the number of “TLos” messages if only level-1 recovery is needed. In Figure 56, the 

number of overall overhead increases with group size.  
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Figure 55 Overhead Message Characteristics 
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Figure 56 Total Messages versus Group Size 

In Figure 57, the overhead time is defined as the time required at each tracking time 

step to send the “TRan” and “GTrig” messages. The overhead time increases with the 

group size. However, the overhead time is always less than the minimum sampling 

interval (i.e., 1.0min =T  sec). 
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Figure 57 Average Overhead Time versus Group Size 

In Figure 58, the energy consumed during the simulation period is plotted. In Figure 53, 

the number of recovery events with a group size of 2 is less than with a group size of 1 

by only about 0.3. Therefore, the energy consumption rises at group size of 2 because as 

shown in Figure 56 more messages are required for the larger group size. However, it 

then reduces at a group size of 3 because as shown in Figure 53, the number of recovery 

events at group size of 3 is less than the group size of 2 by about 8. After that, it starts to 

rise again at group size of 4 and 5 as more messages are required for larger group sizes, 

whilst there is little impact on the number of recovery events. 
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Figure 58 Energy Consumption versus Group Size with a 95% Confidence Interval 

In Figure 59, the total number of retransmissions at the simulation end increases with 

increasing the group size because as shown in Figure 55 more ”TRan“ messages are 

sent with increasing group size. This increases the possibility that sensor nodes will 

access the channel at the same time and in turn increases the possibility of the 

collisions.  
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Figure 59 Number of Retransmissions versus Group Size with a 95% Confidence Interval 

7.3.5 Comparison with other STT Schemes Using Fixed Trajectory 

In this section, a single target travels for 2 minutes with constant speed of 10m/s and 

importance, 1=TZ , along the path shown in Figure 60. The border sensors initiate the 

tracking process with initial target state ] 5   100   5   [0 ′ and initial covariance matrix 

I10 [110], where I  is the identity matrix. In this section, the tracking update error is 

defined as the “trace” of the updated state covariance matrix, )|( kkP  while the tracking 

prediction error is defined as the “trace” of the predicted target location covariance 

matrix ( )|1( kkT +Σ ). In Figure 60, the true and estimated target trajectories for the 

proposed MS-ASTT scheme are plotted. The estimated trajectory is close to the true 

trajectory.  
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Figure 60 Real and Estimated Target Trajectories 

 

The proposed MS-ASTT scheme is compared against the schemes of Xiao [110], Lin 

[5] and one with a uniform sampling interval of 0.1sec. The sampling interval variation 

over time for different schemes is plotted in Figure 61.  
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Figure 61 Sampling Interval for Different Schemes 

In Xiao’s scheme the next sampling interval is computed so that the tracking update 

error is satisfactory. The threshold of the updated tracking error for Xiao’s approach is 

set to 18. In Lin’s approach the next sampling interval is calculated so that the tracking 

prediction error is satisfactory. The predicted tracking error threshold for Lin’s 

approach is set to 5. In the proposed MS-ASTT scheme, the measured sampling interval 

is proportional to the location metadata shown in Figure 62. Therefore, the sampling 

interval is a weighted sum of the measured sampling interval and previous sampling 

interval. The sampling interval is large during times when the target travels along a 

uniform path. On the other hand, the sampling interval reduces when the target 

manoeuvres sharply. The sampling interval progressively increases to its maximum 

value once the target’s path returns to a steady trajectory. In Figure 61 the average 

sampling interval plotted for the proposed MS-ASTT scheme is 0.48 second.  
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Figure 62 Location Metadata Variations 
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The tracking update and prediction errors are plotted in Figure 63 and 64, respectively, 

for different schemes. The uniform scheme obviously produces the smallest tracking 

error because the tracking snapshot is performed every 0.1 seconds. Unless there is no 

recovery, the tracking update error for the Xiao scheme is guaranteed to be less than or 

equal the threshold value (i.e., 18). Similarly, unless there is no recovery, the tracking 

prediction error for Lin’s scheme is guaranteed to be less than or equal the threshold 

value (i.e., 5). Although the tracking error in the proposed MS-ASTT scheme is the 

largest, it still successfully tracks the target over the complete observation period. 
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Figure 63 Tracking Update Error for Different Schemes 
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Figure 64 Tracking Prediction Error for Different Schemes 

The total energy consumption for different schemes is plotted in Figure 65. At the end 

of the simulation, the total energy consumption of the uniform, Lin, Xiao and proposed 

MS-ASTT schemes are 3.2J, 1.1J, 2.4J and 0.68J, respectively, averaged over 20 

simulations. Therefore, the proposed MS-ASTT approach can save 79%, 38% and 72% 

of the energy used by uniform, Lin and Xiao schemes, respectively, representing a 

significant improvement.   
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Figure 65 Energy Consumption for Different Schemes 

In Table 3, the number of recovery events and total recovery time during the simulation 

are tabulated. The uniform scheme using a sampling interval of 0.1 second does not 

have any recovery events. The proposed MS-ASTT scheme has the largest number of 

recovery events.  

The STT Approach Number of Recoveries Recovery Time (sec) 
Proposed MS-ASTT 1.25 0.094893 

Lin Scheme 1.10 0.079778 
Uniform Scheme 0 0 

Xiao Scheme 0.1 0.007326 
Table 3 Recovery Results for Different Schemes 

The overhead and recovery times are plotted in Figure 66. The overhead time is the sum 

of the times required for communication and processing. The communication time is 

due to “TRan” and “GTrig” transmissions. The processing time is due to the EKF 

update or localization processing, sampling interval calculations, EKF prediction 

processing, the group selection algorithm and the MN election processes. The recovery 

time is the sum of “Timer_recovery” and all “Timer_levels” timers, and “TLos” and 

“TRec” transmission times. As shown in Figure 66, both times are less than 0.1 seconds 

which is the minimum sampling interval. 
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Figure 66 Overhead and Recovery Times 

7.3.6 Impact of Adaptive Group Size 

In this section, the adaptive group size algorithm proposed in Section 3.9.3 is evaluated. 

The tracking error threshold ( 0ψ ) shown in Figure 25 is set to 0.001. A single target 

travels for 2 minutes with constant speed of 10m/s and importance, 1=TZ , along the 

path shown in Figure 67.. 
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Figure 67 Real and Estimated Target Trajectories 

The border sensors initiate the tracking process with initial target state ] 5   0   5   [0 ′  and 

initial covariance matrix I10 [110]. The adaptive group size algorithm uses 1min =gn  and 

10max=gn . In Figure 67, the true and estimated target trajectories are plotted. The 

estimated trajectory is close to the true trajectory 
 

The number of sensors for each tracking step is plotted in Figure 68. The results are 

approximated to integer numbers. Five sensors are the most used group size. However, 

more or less sensors could be used to try to guarantee the updated tracking accuracy.  
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Figure 68 Group Size Variation 

The tracking error defined in Equation (3.39) is plotted in Figure 69.  The updated 

tracking error is initially large (i.e., about 20 at time 0). Note that the initial tracking 

error is not shown in Figure 69 to permit showing other values of the update tracking 

error more clearly. The tracking error stabilizes as more measurements are obtained.  

Most of the time, the updated tracking error is below the threshold because more 

sensors are involved for tracking when updated tracking error is high. 
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Figure 69 Updated Tracking Error using Adaptive Group Size 

7.3.7 Results Discussion 

In Figure 50 the number of recovery events increases with increasing the maxT  and the 

velocity because the prediction of the next state is more likely to fail when maxT  or  the 

velocity is large, especially during sharp manoeuvrings of the target that happen at the 

edge of the sensing area. Figure 50 to Figure 52 show that increasing of the number of 

recovery events slightly increases the energy consumption and dramatically increases 

the time required for recovery. Therefore, the proposed recovery mechanism is energy 
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efficient and the main cost of the recovery is the time required to perform it which can 

lead to target loss during the recovery process. 
 

In Table 2, if δ is set to 1, the load balancing in terms of energy remaining will not 

be considered in the election algorithm. Therefore, if the battery level of the MN that 

performs most of the processing and management tasks is small, the MN will die 

quickly leaving a “hole” in the network coverage and in turn the network lifetime is 

reduced. Adaptive selection of δ  improves the network lifetime and energy saving. 
 

As shown in Figure 53 and 58, group sizes of 1 and 2 have high number of recovery 

events compared to other group sizes. Therefore, energy consumption increased due to 

the high number of recovery events. Therefore, selecting group size greater than or 

equal to 3 can improve the number of recovery times and energy consumption for this 

particular scenario. 
 

In Figure 61, the sampling interval for the proposed MS-ASTT scheme is large 

during times when the target travels along a uniform path, and hence the energy 

efficiency is improved. The sampling interval reduces during the target manoeuvrings to 

improve the tracking accuracy and continuity. 
 

As shown in Figure 63, 64 and Table 3, the proposed MS-ASTT scheme has the 

highest tracking error and number of recovery events compared with other schemes. 

However, the number of recovery events of the MS-ASTT scheme is less than 2 

recoveries. Additionally, the proposed MS-ASTT scheme provides the minimum energy 

consumption as shown in Figure 65. In fact, there is trade-off between the tracking error 

and the energy consumption. As shown in Figure 58 for group sizes of more than or 

equal to 3 sensor nodes, the energy consumption increases with increasing group size. 

However, the group size can be used to maintain the tacking error that is below a 

predefined threshold. Therefore, the trade-off between the tracking error and energy 

consumption can be decided according to the target and the application.  
 

In Figure 68 and 69, the updated tracking accuracy is satisfied. The group size is 

small for small update tracking errors. It starts to rise when the update tracking error is 

exceeds the threshold. However, a maximum value of group size is selected to reduce 

the likelihood of channel access contention and the increment of energy consumption 

due to the use of large numbers of group nodes.   
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7.4 MS-DMTT Scheme Evaluation  

In this section, the MS-DMTT scheme proposed in Chapter 4 is evaluated. The 

simulation assumptions are presented firstly. Then, different results are presented. The 

results are critically discussed at the end of this section. 

7.4.1 Simulation Setup 

As described in Section 3.12, a uniformly distributed random deployment of 500 

wireless sensor nodes across an area of 300m × 300m can guarantee the coverage of one 

target at any location by at least 3 sensors. In this simulation, three targets are assumed 

to be tracked and any sensor node is capable of tracking and serving only one target at a 

time. Therefore, 1500 wireless sensor nodes are required to be randomly deployed 

across the sensing area. For all targets, an adaptive sampling interval is used with 

1.0min=T  sec and 5.0max=T  sec [5][110].  

7.4.2 Sensor Nodes Selection  

Three targets, Target 1, Target 2 and Target 3 with importance of 30, 20 and 10 

respectively are assumed to be tracked. In Figure 70 and 71, particular locations and the 

selected sensor nodes for the three targets are shown with and without consideration of 

the target importance respectively.  
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Figure 71 Selected Sensors without considering Target Importance 

In Figure 70, since Target 1 is the most important one, its selected group of nodes are 

the nearest to it compared with other targets. In Figure 71, the sensor selected for a 

particular target cannot then be reselected for another, even if it has higher importance.  

7.4.3 Tracking Error and Sampling Interval 

In this section, Target 1, 2 and 3 travel for 60 seconds with constant speed of 10m/s and 

importance of 30, 20 and 10, respectively, along the paths shown in Figure 72 (a). The 

border sensors initiate the tracking process with initial Target 1, 2 and 3 states of 

] 5   15   5   [15 ′ , ] 5   16   5   [15 ′  and ] 5   14   5   [15 ′ , respectively. The initial covariance matrix 

for all targets is I10 [5]. In Figure 72 (a), the true and estimated target trajectories for the 

proposed scheme are plotted. The estimated trajectories are close to the true trajectories. 

The sampling interval variations for different targets are plotted in Figure 72 (b). 
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Figure 72 (a) Real and Estimated Trajectories and (b) Sampling Interval for Different Targets 
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The tracking update error of jT  is defined as the “trace” of the updated state covariance 

matrix )|( kk
jTP . The tracking update errors for each target with and without 

consideration of target importance are plotted in Figure 73 and 74, respectively. As 

shown in Figure 72, targets travel close to each other during the first 20 seconds. 

Therefore, conflict nodes arise during this period. In Figure 73, during the first 20 

seconds, the tracking update error is smaller for high importance targets. On the other 

hand, in Figure 74, tracking update error takes a similar value for all targets. 
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Figure 73 Tracking Update Error for Different Targets with Target Importance  
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Figure 74 Tracking Update Error for Different Targets without Target Importance  

7.4.4 Results Discussion 

As shown in Figure 72 and 73, the proposed MS-DMTT scheme can successfully track 

targets that move along paths that include random abrupt manoeuvrings. The sampling 

interval for each target is adaptively calculated according to the target location 

metadata. The calculation of the sampling interval for each target is independent of 

other targets. Therefore, the MS-DMTT scheme is a series of MS-ASTT problems. In 
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Figure 72 (b), the sampling interval for each target is based on its past movement 

pattern (i.e., location metadata). However, the conflict nodes problem can arise in the 

case of the MS-DMTT scheme because it supports multiple target tracking. The DMS 

algorithm introduced in Section 4.5.4 is invented to tackle the conflict node problem. 

The DMS algorithm is a new technique in MTT literature. However, in Section 7.3.5 

the proposed MS-ASTT scheme is compared against well-known STT algorithms and 

the results show that the proposed MS-ASTT scheme performs better than other 

approaches in terms of energy-efficiency. Therefore, since MS-DMTT is a series of 

MS-ASTT problems, it will perform better than other tracking schemes that adopt an 

adaptive sampling interval. Furthermore, the proposed DMS algorithm is evaluated and 

the results are plotted in Figure 73 and 74.  The tracking error is smaller for targets with 

higher importance because conflict nodes prefer to serve and track the high importance 

targets. 

7.5 MS-AMTT Scheme Evaluation  

In this section, the MS-AMTT scheme proposed in Chapter 4 is evaluated and 

compared with other well-known MTT schemes. The simulation assumptions are 

presented first. Then, different results are plotted. The results are critically discussed at 

the end of this section. 

7.5.1 Simulation Setup 

In this simulation, three targets are assumed to be tracked and the sensor node is 

assumed to detect and serve more than one target at the same time. As described in 

Section 3.12, a uniformly distributed random deployment of 500 wireless sensor nodes 

across an area of 300m × 300m can guarantee the coverage of a target at any location by 

at least 3 sensors. The sampling interval )(ktΔ  is set to 1 sec for all k  and all targets.  

mZ , maxI  and minI  for Equation (4.33) and (4.45) are set to 100, 30 and 10, respectively.   

7.5.2 Sensor Node Selection  

Assume three targets, Target 1, 2 and 3 are to be tracked. Target 1 and 3 move in a 

uniform manner and Target 2 follows a manoeuvring pattern. Figure 75, 76 and 77 

show the particular target locations and the selected sensor nodes for the three targets 

using the selection strategies of closest-sensor, MS-AMTT considering the target 

importance and MS-AMTT without considering the target importance (i.e., 
jTZ  is zero 

for all targets), respectively.  
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Figure 75 Selected Sensors using Closest-Sensor Selection 
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Figure 76 Selected Sensors using MS-AMTT considering Target Importance 

50 100 150 200 250
80

100

120

140

160

180

200

220

x (m)

y 
(m

)

 

 

Target 1
Target 2

Target 3

Target 1 Nodes
Target 2 Nodes
Target 3 Nodes

 
Figure 77 Selected Sensors using MS-AMTT without considering Target Importance 

In the blind closest-sensor selection technique shown in Figure 75, the nearest three 

sensor nodes to the predicted target location are selected for each target. In Figure 76, 

Target 2 has more sensor nodes to track it because its importance is the highest (i.e., 
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Target 2 moves randomly). This compensates for the potential failure in the next state 

predictions for Target 2 despite to its random movement and allows for seamless 

tracking of all targets. In Figure 77, the tasking sensor nodes are selected based on the 

overall update tracking error of the targets defined in Equation (4.28) without 

considering the target’s importance. As shown in Figure 77, Target 3 is tracked by the 

highest number of nodes despite it moving in a uniform manner. 

7.5.3 Targets’ Importance and Group Size 

In Figure 78, Target 1, 2 and 3 travel for 60 seconds with constant speed of 10m/s. The 

border sensors initiate the tracking process with initial Target 1, 2 and 3 states of 

] 5   300   5   [0 ′ , ] 5   0   5   [0 ′  and ] 5   0   5   [300 ′  respectively. The initial covariance matrix for 

all targets is I10 . In Figure 78, the true and estimated target trajectories for the MS-

AMTT scheme considering the target importance are plotted. The estimated trajectory is 

close to the true trajectory.  
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Figure 78 Real and Estimated Trajectories for Different Targets 

The target importance and location metadata variation over time for each target are 

plotted in Figure 79 and 80 respectively. The target importance is inversely proportional 

to the location metadata of the targets according to the Equation (4.33). As shown in 

Figure 78 and 79, the target importance is small during times when the targets travel 

along a uniform path. On the other hand, the target importance increases when the target 

manoeuvres sharply. 
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Figure 79 Target Importance for Different Targets 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time (sec)

Lo
ca

tio
n 

M
et

ad
at

a

 

 

Target 1
Target 2
Target 3

 
Figure 80 Target Metadata for Different Targets 

In Figure 81 and 82 the group size for each target using MS-AMTT, with and without 

consideration of the target importance, are plotted.  

0 10 20 30 40 50 60
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Simulation Time (sec)

G
ro

up
 s

iz
e

 

 
Target 1
Target 2
Target 3

 
Figure 81 Group Size using MS-AMTT without considering Target Importance 
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Figure 82 Group Size using MS-AMTT considering Target Importance 

In Figure 82, during the target manoeuvrings, its importance is high and hence the 

objective function is biased by this. Therefore, the final solution involves more sensor 

nodes for targets that move with abrupt changes of speed and direction. On the other 

hand, sensor group sizes for targets are chosen in Figure 81 without consideration of the 

target importance. 

7.5.4 Tracking Update Error 

In Figure 83, the location and velocity errors, which are defined as the difference 

between the estimated and real values, are plotted for MS-AMTT with and without 

consideration of the target importance. Generally, the location and velocity errors are 

high during the target manoeuvrings due to the prediction error and they are low when 

the targets travel in predictable and uniform fashion. However, as shown in Figure 83 

the location and velocity errors when considering the target importance are small 

compared with MS-AMTT without considering the target importance. The Root Mean 

Square Error (RMSE) of location and velocity over 20 simulations runs for MS-AMTT 

scheme and the closest-sensor selection strategy during its successful tracking time are 

tabulated in Table 4. The percentage of tracking loss time for the closest-sensor 

selection strategy is shown in Table 5. Obviously, closest-sensor selection strategy has 

the largest errors because this strategy assigns the same number of sensor nodes for 

each target without considering the movement patterns for the targets (i.e., targets’ 

importance). 
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Figure 83 Location and Velocity Errors using MS-AMTT without (red curves) and with (blue 

curves) considering of the Target Importance 
 

Location RMSE (m) Velocity RMSE (m/s) Sensor Selection  
Strategy T1 T2 T3 T1 T2 T3 

MS-AMTT with Importance 0.2 0.2 0.4 0.3 0.3 0.8 
MS-AMTT without Importance 0.6 0.6 0.7 0.5 0.8 0.9 

Closest-sensor Selection 4.9 2.0 2.7 2.9 2.1 2.0 
Table 4 Average Location and Velocity Errors 

7.5.5 Local Search Iteration 

The average number of iterations, computational time and the percentage of tracking 

loss events for MS-AMTT with and without considering the target importance, and 

closest-sensor schemes are shown in Table 5. The tracking loss is the percentage of the 

time during which the target is lost. The computational time of the MS-AMTT scheme 

with considering the target importance is greater than the case of MS-AMTT without 

consideration of target importance. The closest-sensor selection scheme obviously does 

not require any local search to select the tasking sensor nodes. However, due to target 

sharp manoeuvring, the closest-sensor selection approach tracks the target only 20% of 

the simulation time. 
 

Sensor Selection  
Strategy 

Number of 
Iterations 

Computational 
Time (sec) 

Percentage 
Tracking Loss 

MS-AMTT with importance 10.038 1.585 0 
MS-AMTT without importance 9.421 1.215 0 

Closest-sensor Selection 0 0 80 
Table 5 Average Iterations, Computational Time and Tracking Loss 
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The performance results for adaptive and fixed allowable iterations are tabulated in 

Table 6 and 7. With increasing allowable iterations, the average number of iterations 

and computational time increase while the location and velocity errors decrease. 

However, using adaptive allowable iterations yields similar errors to the fixed schemes 

using high allowable iterations whilst the computation time is near that of the fixed 

scheme using small allowable iterations. 
 

Allowable 
Iterations 

Number of 
Iterations 

Computational 
Time (sec) 

30 13.682 2.350 
20 12.500 1.914 
10 9.019 1.014 

Adaptive 10.038 1.585 
Table 6 Average Iterations and Computational Time 

 

 

Location RMSE (m) Velocity RMSE (m/s) Allowable 
Iterations T1 T2 T3 T1 T2 T3 

30 0.2 0.2 0.3 0.2 0.3 0.7 
20 0.4 0.3 0.4 0.4 0.3 0.8 
10 0.6 1.1 0.6 0.8 1.4 0.9 

Adaptive 0.2 0.2 0.4 0.3 0.3 0.8 
Table 7 Average Location and Velocity Errors 

7.5.6 Comparison with Other Well-Known MTT Schemes 

In Table 8 and 9, the performance of the proposed MS-AMTT scheme considering 

target importance is compared with “Tharmarasa” and “naive” approaches [103] using 

500 and 1000 sensor nodes.  The maximum allowable iterations is set to infinity. This 

means that the local search runs until the final solution is found. In Tharmarasa’s 

method, the objective function for each sensor node is computed using that sensor node 

alone. Then, the sensor nodes are ranked according to their objective functions. The best  

Gn  sensor nodes are chosen as the initial solution. For each current solution, the 

remaining sensor nodes are ranked based on their individual objective functions (i.e., 

when using each sensor node alone). Then, each sensor node of those remaining are 

ranked, replacing one-by-one the Gn  sensors in sC  to form Gn  neighbours. The naive 

method chooses the sensor nodes that have the maximum index (i.e., sensor 

identification) as the initial solution. The remaining sensor nodes are ordered by index 
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to generate the neighbourhood. As shown in Table 8 and 9, the proposed MS-AMTT 

method has the smallest value of computational time and the number of iterations. 

Local Search 
Strategy 

Computational 
Time (sec) 

Number of 
Iterations 

MS-AMTT Method 3.528 14.523 
Tharmarasa Method 6.944 30.497 

Naive Method  8.042  32.698 
Table 8 Average Iterations and Computational Time using 500 Sensors 

 

Local Search 
Strategy 

Computational 
Time (sec) 

Number of 
Iterations 

MS-AMTT Method 20.352 15.264 
Tharmarasa Method 79.969 37.193 

Naive Method 84.428 38.920 
Table 9 Average Iterations and Computational Time using1000 Sensors 

7.5.7 Results Discussion 

The closest-sensor selection strategy shown in Figure 75 is not always a good solution 

due to the target location triangulation calculation [103], the sensor nodes’ co-linearity 

[95] and the prediction failure of the target next state that likely happens during random 

movements of the target. Moreover, the sensor nodes selected for Target 2 shown in 

Figure 75 are far from the target’s true location because the sensor node selection is 

based on the distance from the predicted target location which is not accurate for Target 

2 due to its manoeuvring. Therefore as shown in Table 4, the average location and 

velocity errors of the closest-sensor selection strategy is high compared with the MS-

AMTT scheme. Figure 76 and 77 show that considering the target importance in the 

objective function of sensor selection, defined in Equation (4.28), can force the 

selection of more sensor nodes for manoeuvring targets and, in turn, the tracking 

continuity is improved for all targets. On the other hand, the goal of the objective 

function without consideration of the target importance is simply to minimize the 

overall tracking error of the targets.  
 

As shown in Table 5, considering the target importance in the objective function 

requires more iterations to obtain a solution. Therefore as shown in Figure 78 and 79, 

the target importance is small during times when the targets travel along a uniform path, 

and hence the local search efficiency (i.e., the number of iterations to get a suitable 

solution) is improved because the solution is obtained without the objective function 

being biased by the target importance. On the other hand, the target importance 

increases when the target manoeuvres sharply, and hence the tracking error shown in 
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Figure 83 is reduced and seamless tracking is achieved because more sensor nodes are 

involved in the tracking for more important targets as shown in Figure 82. For example, 

at time 18 seconds in Figure 82, Target 1 is manoeuvring. Therefore, Target 1 has more 

selected sensor nodes to improve its tracking accuracy and maintain continuity.  
 

Unlike the proposed MS-AMTT scheme, the number of sensor nodes used in 

Tharmarasa’s method is not ranked by the number of targets they detect. Additionally, 

the solutions used in Tharmarasa’s method do not check whether all targets are detected 

by at least one sensor node. Therefore, as shown in Table 8 and 9, the proposed MS-

AMTT scheme performs better than Tharmarasa’s method.  
 

As shown in Table 8 and 9, the main drawback of the using optimization techniques 

for sensor selection in MTT is the risk of experiencing a computational time that 

exceeds the sampling interval. However there are different approaches to overcome this 

drawback. One approach is to use more powerful processing but this may not be 

appropriate for tiny sensor nodes. Another approach is to increase the sampling interval 

[103] but this will degrade the tracking accuracy and potentially lose targets for long 

periods. A third approach is to adopt BTMS and BITA algorithms presented in Chapter 

5 so that the execution of the algorithm is parallelized among a group of nodes. As 

shown in Section 7.6 and 7.7, this approach is efficient both in terms of execution time 

and energy saving.  

7.6 BTMS Algorithm Evaluation  

In this section, the performance of the BTMS algorithm, presented in Chapter 5, is 

evaluated. Recall from Chapter 5, BTMS is used to parallelise the execution of an 

application that can be decomposed into a number of dependent tasks. The performance 

of BTMS algorithm is compared against the MTMS [128] algorithm. 

7.6.1 Simulation Setup 

This simulation setup is performed before the target tracking simulations take place. 

The sensor nodes are randomly (i.e., using uniform distribution) deployed across an 

area of 1km × 1km. sε , sτ  and λ  in Equation (5.6), Equation (5.8) and Equation (5.9) 

are set to 0.5uJ, 0.6528ms and 0.5, respectively. At the beginning of the simulation, the 

sensor node Ts , that makes a request to its neighbouring sensor nodes to ask them to 

share in its execution of an application, is selected randomly from the all sensor nodes. 

The subtasks of the application DAG are mapped to the neighbours of the sensor node 
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Ts  according to the BTMS scheme proposed in Figure 42. This means that it is not 

necessary to use all the neighbours of sensor node Ts  to execute the application DAG. 

Mapping and scheduling are performed in the neighbours of sensor node Ts  until all 

subtasks of the DAG are completed.   

7.6.2 Network Node Density 

The sensor node density is first calculated. The simulation finishes for each trial when 

the number of target arrivals reaches fifty. Some of these targets will find nodes that can 

detect and serve them and other targets will not find any nodes around them. Therefore, 

the percentage of targets served is calculated after the end of each trail based on the 

formula: 

 100* /50) targetsserved of(Number   (%) PercentageDetection Target =  (7.2) 

The target detection percentage reaches 100% when the node density is about 350 nodes 

in the chosen evaluation area. It means that all the target arrivals will find at least one 

node to serve them. For this reason, the node density is chosen to be 350 nodes in the 

ensuing simulations.  

7.6.3 Real Example of Distributed Visual Surveillance 

In [128], a distributed visual surveillance application is presented. Figure 84 shows an 

example visual surveillance DAG.  

 
Figure 84 DAG of Visual Surveillance 

Tasks Vo to V3 represent background subtraction and bounding box abstraction. The 

moving object will be bordered by a rectangular bounding box from each camera and it 

is represented by the vertices of the bounding box. Tasks V4 to V7 represent the 

estimation error. To eliminate the estimation error, the location estimations from all 
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cameras are combined in task V8 to V10. The communication edges e04 to e37 represent 

the bounding box coordinates. e48 to e9,10 represent the estimation object location and 

error estimation. Finally, the object location is calculated and sent to the sink node.  
 

 

The Collaborative Execution Time (CET) and energy consumption is evaluated for 

the visual surveillance application DAG using the proposed BTMS and MTMS 

algorithms [103]. The simulation results are averaged over 20 runs with different visual 

image sizes (i.e., different number of computational cycles for the tasks and data size 

for communication edges). The average CET and energy consumption are tabulated in 

Table 10.  
 

BTMS can perform better than MTMS in terms of CET and energy consumption. In 

BTMS, tasks in each level are arranged in decreasing order. Therefore, the large tasks 

are mapped first. Therefore, this feature decreases the CET because instead of executing 

large task after finishing the small ones, the large tasks will be executed concurrently 

with the execution of smaller ones 
 

Algorithm CET (ms) Energy Consumption (mJ) 
BTMS 25.496 2.304713 
MTMS 44.2731 2.468315 

Table 10  Results for Visual Surveillance DAG 

7.6.4 CET and Energy Consumption using Random DAG 

In this section, the simulation is repeated 250 times using 250 different DAGs. Each 

DAG is created using the following parameters: maximum immediate successors 

(maxSucc) of entry and normal tasks = 3, the minimum immediate successors 

(minSucc) of entry and normal tasks = 1, number of entry tasks = 5, number of normal 

tasks = 10 and number of exit tasks = 1. The entry tasks should not have any immediate 

predecessors and the exit tasks should not have any immediate successors. All other 

tasks (i.e., normal tasks) have at least one immediate predecessor. The number of 

immediate successors (numSucc) of entry to a normal task, (vi) are uniformly 

distributed over [minSucc, min {maxSucc, number of tasks greater than (vi) without 

including the entry tasks} ]. After that the immediate successors of entry or normal 

tasks, (vi) are chosen randomly from the tasks greater than (vi) without including the 

entry tasks.  

The deadlines are chosen so that they increase with increasing the computational 

load. For simplicity, deadlines are selected to be equal to the serial execution time, 
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which is the time needed to execute the application using one sensor node. Therefore, 

the deadlines increase with increasing computational load. In Figure 85, the CET 

increases with increasing deadlines for a fixed communication load (i.e., the data size 

for all communication edges). With increasing communication load, CET increases for 

a specified deadline. Therefore, CET increases with increasing communication and 

computational load. 
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Figure 85 CET versus Deadline 

In Figure 86, the energy consumption increases with increasing deadline for fixed 

communication load because as the computational loads increases, the deadline will 

increase and in turn, the computational energy consumption increases. With increasing 

communication load, energy consumption increases for a specified deadline because 

more energy will be dissipated when there is more communication. Therefore, energy 

consumption increases with increasing communication and computational load. 
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Figure 86 Consumed Energy versus Deadline 
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7.6.5 Network Lifetime Performance 

In this section, the simulation is repeated twenty times for different network topologies. 

The average lifetime performance ratio (LTBTMS / LTMTMS) of the lifetimes of the 

proposed BTMS and the MTMS algorithms are plotted in Figure 87. The BTMS 

algorithm improves the lifetime relative to MTMS.  
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Figure 87  Lifetime Ratio versus Number of Tasks with a 95% confidence interval 

7.6.5 Results Discussion 

In Figure 85, the deadline has to be large enough so that CET can meet it.  Therefore, 

the BTMS would be inefficient if the computational complexity was small relative to 

the communication overhead. 
 

Figure 87 shows that BTMS improves the network lifetime compared with MTMS 

because BTMS adopts the decision rules presented in Chapter 5. The BTMS algorithm 

allows the mapping of tasks onto nodes on which the predecessors are mapped. 

Therefore, the energy consumption is reduced.  

7.7 BITA Algorithm Evaluation  

In this section, the performance of BITA is evaluated. Recall from Chapter 5, the BITA 

algorithm is used to parallelise the execution of applications that can be decomposed 

into independent and equal tasks. The performance of BITA is compared against 

Distributed Computing Architecture (DCA) [133] in which the cluster head performs 

high-level tasks. Therefore, in DCA, the number of sensor nodes or the group size ( mn ) 

that can share to execute the application in parallel is 1. 
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7.7.1 Simulation Setup 

In this simulator, 350 wireless sensor nodes are randomly (i.e., using uniform 

distribution) deployed across an area of 1km × 1km. The sensor node Ts  that makes a 

request to its neighbour sensor nodes to ask them to share it in the execution of an 

application is selected randomly from the all sensor nodes. After finishing serving the 

current application at Ts , another one is randomly selected. Each sensor node is 

assumed to be able to execute 10 tasks per second. Z  and β  are set to 0.02 and 0.5 in 

Equation (5.10) and Equation (5.11) respectively. Each task is assumed to consume 1 

unit of energy. Unless specifically stated otherwise, the total number of application 

independent tasks ( N ) is set to 100 and the maximum battery capacity of the sensor 

nodes ( max
ksE ) is set to 500 units.  The simulator is run twenty times with different node 

deployments and is stopped after 10 minutes.  

7.7.2 Cooperative Execution Time (CET) 

In Figure 88, for a fixed group size ( mn ), the CET increases with increasing the number 

of tasks ( N ) because the computational load increases with more tasks ( N ). BITA ends 

with less CET than DCA because of the parallel computation used by BITA. CET 

decreases with increasing group size ( mn ) because based on Equations (5.12) to (5.14), 

more load balancing can be achieved which increases the execution parallelism. 

100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

Number of Tasks (N)

C
ET

 (m
s)

 

 
DCA (nm=1)

BITA (nm=2)

BITA (nm=3)

BITA (nm=4)

 
Figure 88  CET versus Number of Tasks (N) 

7.7.3 The Performance Metric (Pm) 

In this simulation, max
ksE  is set randomly between 100 to 500 units using a discrete 

uniform distribution. The network performance metric (Pm) is defined in Equation (7.1). 
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In Figure 89, the performance metric (Pm) versus the group size ( mn ) is plotted. Due to 

node cooperation, BITA has a lower (Pm) than DCA because the 100 energy units 

required for each application is distributed between the group of sensor nodes and 

consequently the node can live for longer. With increasing group size ( mn ), a lower (Pm) 

is achieved because based on Equation (5.14), we can obtain more load balancing 

among the nodes. 
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Figure 89 Performance Metric versus Node Group Membership Size (ng) 

7.8 Code Verification 

In Appendix B, code verification for the proposed target tracking, and BITA and BTMS 

algorithms is presented. Analytical analysis is compared with simulation results to 

confirm the correctness of the simulation models. 

7.9 Chapter Summary  

This chapter presents different performance simulation results for the proposed target 

tracking and task mapping and scheduling algorithms. The simulation results show that 

the proposed schemes can successfully track targets that move along paths that include 

random abrupt manoeuvrings.  The MS-ASTT scheme is compared against Xiao’s and 

Lin’s schemes and the results show that the proposed MS-ASTT approach reduces the 

energy consumption whilst maintaining seamless tracking. Simulation results show that 

the tracking accuracy of the proposed MS-DMTT scheme is better for targets of higher 

importance. Simulation results also show that the proposed MS-AMTT scheme reduces 

the computational time whilst maintaining seamless tracking compared with 

Tharmarasa’s and “naive” approaches. 
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A critical assessment of these results is given. Code verification is given in 

Appendix B by analyzing typical scenarios analytically and comparing with the 

simulation results.  
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Chapter 8  Discussion and Conclusions  

8.1 Chapter Introduction 

The STT, MTT and TMS schemes in WSNs are presented in Chapter 3, 4 and 5, 

respectively. In Chapter 7, simulation results evaluating the proposed target tracking 

and TMS are introduced. This chapter provides a discussion of the simulation results, 

and the conclusion for this thesis. 

8.2 Discussion 

In this section, the results provided in Chapter 7 are analysed and discussed. The 

proposed target tracking schemes are firstly discussed. After that, the proposed task 

mapping and scheduling algorithms are analysed. 

8.2.1 Target Tracking in WSNs 

In Section 7.3.2, the recovery mechanism in target tracking is examined. The target 

recovery provides a reliability mechanism for the tracking operation such that the target 

can be recaptured if it is lost during the tracking process. Increasing the tracking 

sampling interval leads to an increasing number of recovery events because the 

prediction of the target state is more likely to fail, especially during sharp manoeuvrings 

of the target. Despite the recovery mechanism being reasonably energy-efficient the 

main drawback is the time required for recovery.  
 

The results presented in Section 7.3.3 show an improvement in network lifetime and 

energy saving when adopting the adaptive calculation of the weighting parameter of 

Equation (3.41). The MN is elected to be the nearest node of a group of nodes in the 

case of having the same energy level for all group members. On the other hand, the MN 

is elected to be the node that has the maximum energy remaining if the group nodes 

have different energy levels. In Section 7.3.4, increasing the group size reduces the 

number of recovery events, which is costly in terms of time. In Section 7.3.5, the idea of 

using an adaptive sampling interval according to the target historical location improves 

the energy efficiency compared with other well-known schemes. Furthermore, the target 

can be successfully tracked during the abrupt manoeuvrings. Energy saving is a crucial 

goal in WSNs because the sensor nodes have limited energy.  If one sensor node dies, it 

reduces the coverage in the network. Sensor nodes are typically very difficult to access 

after deployment. Therefore, if one sensor dies due to running out of energy, often it 
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cannot be recharged. The main drawback of the proposed STT is the lack of the tracking 

accuracy compared with other tracking schemes. However, the tracking accuracy can be 

improved by using multiple sensor nodes to track the target. Therefore, there is trade-off 

between improving the tracking accuracy and the energy consumption. In Section 7.3.6, 

the updated tracking accuracy is satisfied by using adaptive group size. The group size 

is small for small update tracking errors. It starts to rise when the update tracking error 

exceeds the threshold. Consequently, according to the results in Section 7.3.4 the 

number of recovery events is reduced. 
 

In Section 7.4, the problem of conflicting nodes in MTT is handled. It is shown that 

it is possible to improve the tracking accuracy of high importance targets compared 

with others, by setting the conflict nodes preference for serving high importance targets. 

In Section 4.6, sensor selection in MTT is considered as a solution of an optimization 

problem whose main goal is to maximize the overall tracking accuracy of the targets. 

The simulation results in Section 7.5 show that the proposed MS-AMTT scheme 

reduces the average location and velocity errors compared with the closest-sensor 

selection strategy as the sensor nodes are selected based on the objective of improving 

the overall tracking accuracy. The adaptive calculation of target importance according 

to the target’s previous locations improves the tracking continuity for all targets because 

the targets that travel in irregular patterns assigned more sensor nodes to track them (as 

they are classified as high importance targets). The proposed MS-AMTT scheme is 

compared against Tharmarasa’s and naive methods and it is found to perform better 

than other schemes because the number of sensor nodes used in Tharmarasa’s method is 

not ranked by the number of targets they detect. The computational complexity of the 

proposed MS-AMTT scheme is controlled by adaptively calculating the maximum 

number of allowable iterations according to the target’s metadata. The main drawback 

of the using optimization techniques for sensor selection in MTT is the computational 

time that may exceed the sampling interval. However, this drawback can be overcome 

by adopting the BTMS and BITA algorithms proposed in Chapter 5.  

8.2.2 Task Mapping and Scheduling in WSNs 

In Section 7.6 and 7.7, the proposed BTMS and BITA algorithms are evaluated. The 

application execution is shared among more than one sensor node, which enables 

distributing the resources required to serve the target among the group nodes. 

Additionally, this concurrent processing decreases the prevalence of gaps in the network 
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caused from dying nodes and consequently increases the network lifetime. Moreover, 

decision maker is introduced in each node specifically to improve the lifetime of the 

network. The concurrent processing also facilitates the timely completion of real time 

applications by exploiting the speed-up resulting from the decomposition. As a result, 

the service time (i.e., CET) is improved, the rate of node deaths reduces and network 

can stay alive for longer. As shown in the simulation results of BTMS, there is a 

communication cost associated with exchanging the tasks dependencies among the 

nodes.  Therefore, the parallelism of the application is useful if the computational costs 

of its dependent tasks are high enough compared to the communication costs of the 

dependencies. For example, with an application that has small computational cycles, it 

may be faster to execute it using one node rather than parallelizing it among several 

nodes because the time to send the dependencies among the nodes may well exceed the 

execution time of the whole application. This is a well-known result in parallelism. The 

coarse granularity parallelism which has large amounts of computational work 

compared with communication events is better that fine granularity parallelism which 

has small amounts of computational work compared with communication events [153]. 
 

8.3 Conclusions 

In this thesis, the problem of energy-efficient, reliable, accurate and self-organized 

target tracking in WSNs is considered for sensor nodes with limited physical resources 

and abrupt manoeuvring targets. MS-ASST, MS-DMTT and MS-AMTT schemes are 

proposed for target tracking. The main motivations of this research are to improve the 

tracking accuracy, reliability and continuity, and the energy-efficiency of the target 

tracking system. 
 

The MS-ASST scheme is used for STT and its operation can be summarized in four 

steps. Firstly, the sampling interval is computed using the location metadata pertaining 

to the target’s past locations. Secondly, the next tracking group is proactively selected 

based on information associated with the predicted target location probability density 

function. The group size is adaptively changed such that the tracking accuracy is 

improved. Thirdly, one of the group nodes is elected as a MN so that energy efficiency 

and load balancing are improved. Finally, target recovery is supported to provide 

tracking reliability in case of target loss due to selection or prediction failures. 

Therefore, the tracking continuity and energy-efficiency are improved. In the MS-
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DMTT scheme, a decision algorithm is proposed to allow the “conflict” nodes that are 

located in the sensing areas of more than one target at the same time to decide their 

preferred target according to the target importance and their distance to the target. The 

operational steps in MS-ASST scheme are as used for the MS-DMTT scheme but for 

multiple targets. 
 

In MS-AMTT scheme, the target importance and allowable iterations are computed 

according to the location metadata derived from target’s past locations, by which the 

movement pattern is computed.  Then, the next tracking groups are proactively selected 

such that the tracking continuity and accuracy are improved. After that, one node from 

the group is elected to be the MN and the LN is elected from the sensor nodes inside the 

area that is surrounded by group MNs. 
 

In this thesis, the problem of task mapping and scheduling in WSNs is also 

considered. BITA and BTMS algorithms are developed to execute an application using 

a group of sensor nodes. BTMS is used as the TMS algorithm to parallelize the 

execution of an application by decomposing it into dependent tasks. A DAG is adopted 

to model the application. BTMS is designed to map and schedule the application’s tasks 

to sensor nodes so that the energy consumption is reduced and the application deadline 

is met. BITA is used as the TMS algorithm when it is possible to divide the application 

into independent equal-weighted tasks. The main goal of BITA is to reduce the 

execution time of the application by parallelizing its execution and to increase the 

network lifetime by exploiting load balancing. 
 

The proposed tracking and TMS approaches are inspired from the biological 

principles. The inspiration is mainly from the biological behaviours of differentiation in 

zygote formation and the chemical emission. In target tracking schemes, the sensor 

nodes before the selection and election algorithms were all equal. The selection 

algorithm differentiates the functions of the sensors nodes so that some of them will be 

selected to sense the target and others will remain in a sleeping mode. The election 

algorithm classifies the selected group nodes into one MN and possibly one or more 

HN(s). In addition, the target is treated as a virtual chemical emitter. The nodes start 

from an initially uniform state and then exhibit some kind of differentiation to execute 

an application in a coordinated manner. The application tasks are mapped to the sensor 

nodes according to the node’s available resources and location. Therefore, each node is 

specialized to execute particular tasks based on its suitability.  
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Simulation results show that compared with other well-known schemes, the 

proposed tracking, task mapping and scheduling schemes can provide a significant 

improvement in energy-efficiency, network lifetime and computational time, whilst 

maintaining acceptable accuracy and seamless tracking, even with abrupt manoeuvring 

targets.  
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Chapter 9  Future Work  

The proposed STT tracking schemes are evaluated assuming targets travel with constant 

speed. Therefore, the ratio between maxT and minT  in Equation (3.32) is fixed. The 

tracking algorithms could be developed further by accommodating variable speed 

targets. In this case, the ratio between maxT and minT would need to be calculated at 

various times according to the speed of target.  

Determination of minimum sampling interval of the target so that tracking 

continuity and energy-efficiency are improved is a research topic receiving considerable 

attention. An analogy can be made with Nyquist theory where to avoid aliasing, the 

minimum sampling frequency should be at least two times the highest frequency 

contained within the signal [23].  
 

In the target dynamic models proposed in Chapters 3 and 4, the acceleration of the 

target is modelled by a Gaussian distribution. The proposed tracking scheme can be 

evaluated in future work using more advanced dynamic models that are introduced in 

[73].  
 

The sensing area, target states and sensor node coordination are assumed to be in a 

two-dimensional plane. Future work could focus on advancing the proposed algorithms 

for use with three-dimensional space. 
 

In this thesis, EKF is adopted to calculate the predicted and updated target states and 

their covariance matrices. The Particle Filter (PF) proposed in Chapter 2 can be also 

used for the same purpose. Evaluating the proposed algorithms using PF and comparing 

them with the ones using EKF would be an interesting research topic with target 

tracking. Other filtering techniques, which are proposed in Chapter 2, could be used as 

well. 
 

An acoustic signal is used in this thesis to permit a passive detection mechanism to 

measure the range of the target. Bearing sensor nodes can measure the angle of the 

target with respect to the sensor location [67][98]. Therefore, future work could focus 

on the sensor nodes that can measure the angle as well as the range of the targets using 

other passive or active detection techniques. Furthermore, sensor nodes are assumed to 

detect the target with 100% probability if the target is in their sensing range. The 

detection model could be advanced by assuming a predefined probabilities model for 

the sensor node detection [5]. 
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In the proposed MTT schemes, false alarms in the network and the data association 

problem that determines which measurements were generated by which targets are not 

tacking into the account. The proposed MS-AMTT could be developed further by 

taking into the account false alarms within the network. It could then be enhanced by 

considering the problem of data association.  

In the proposed task mapping and scheduling algorithms, the application is 

modelled using a DAG. Generating the DAG representations of the proposed STT and 

MTT tracking algorithms could be examined further in future work. 
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Appendix A Simulation Framework 

A.1 Appendix Introduction 

This appendix introduces the simulation framework. Detailed descriptions of the target 

tracking, task mapping and scheduling models are firstly presented. After that, the 

pseudo code for the various simulation events is explained. The C++ code is enclosed 

with this thesis (or available from the author).   

A.2 Detailed Description of Simulation Framework 

In this section, the developed models are introduced in detail. Firstly, the target tracking 

model is presented. After that, task mapping and scheduling models are explained.  

A.2.1 Target Tracking Model 

Figure 90 shows the pseudo code of the target-tracking model. In line 1, the needed 

C++ libraries are included such as math, input/output, list, vector and string libraries. 

The external libraries (header files) include the Mersenne Twister random variable 

generator, matrices manipulation and implemented data structure header files. In the 

data structure header file, the sensor node defines a class that encapsulates all the node 

attributes such as node ID, remaining energy, CSMA/CA attributes, neighbours 

information and routing table. As discussed in Chapter 6, the simulation is event driven. 

Therefore, the event is defined as a class that includes the event parameters such as 

event time (which indicate the time of event execution), event place (that shows on 

which node the event will be executed) and event name. In line 2, the simulation 

constants are given, including the sensing area dimensions, radio range, sensing range, 

CSMA/CA parameters, recovery timers, weighted parameters, energy-consumption 

parameters, tracking parameters, number of sensor nodes and event names. The global 

variables and statistical counters include writer variable that writes the results in text 

files, world array that models the sensing area, the number of dying nodes variable, 

matrices that encapsulate the target predicted and updated states, and their covariance 

matrices, group vector, that stores the current tasking group to track the target, the 

number of recovery events, the overhead time, a random variable that is generated for 

Mersenne Twister class, the events variable that is declared as list, the sensor nodes 

variable that are stored in vector and total energy consumption counter.  
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1. Include the required C++ and external libraries; 

2. Declare the simulation constants, global variables and statistical counters; 

3. Open the text files to store the simulation results; 

4. Initialize the simulator { //start of initialization 

5.     Set the simulation time (sTime) to zero; 

6.     Create the sensor nodes; 

7.     Create the sensing area and deploy the sensor nodes randomly in it; 

8.     Schedule the TArrive event at sTime and insert it in the event list variable; 

9. }  //end of initialization 

10. while (sTime < Stop Condition) do: 

11.    Get the next event from the event list and update the sTime (i.e., sTime = Event time ); 

12.    switch (event) do: 

13.       TArrive: Execute the target arrive procedure; 

14.       LOCALIZATION: Execute the target localization procedure; 

15.       PREDICTION:  Execute the target prediction procedure; 

16.       NextSnapshot: Execute the target next snapshot procedure; 

17.       Ready: Execute the Ready event procedure to transmit messages; 

18.       UPDATE: Execute the target update procedure; 

19.       RECOVERY: Execute the target recovery procedure; 

20.       TICK: Execute the TICK event procedure; 

21.       waitDIFS: Execute the waitDIFS event procedure; 

22.       Backoff: Execute the Backoff event procedure; 

23.       TX: Execute the TX event procedure; 

24.       RX: Execute the RX event procedure; 

25.       waitACK: Execute the waitACK event procedure; 

26. end switch 

27. end while 

28. Write the results into the text files; 

29. Initialize all the statistic counters and simulation parameters; 

30. Change the node deployment; 

31. if (number of runs is not over) do: 

32.     go to step  4; 

33. finish; 

Figure 90 Target Tracking Handling within the Simulator 
In line 3, the text files that store the results are created using the writer variable. In line 

6, the sensor nodes are created as objects from the class that encapsulates the node 

attributes. These objects are then stored in the sensor nodes variable that is declared as a 

vector. In line 7, sensor nodes are deployed randomly in the sensing area. The world 
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variable is a 2D array that stores the node ID. Therefore, the ID for each node is 

randomly stored in the world array. From line 13 to 25, the procedure for different 

events is executed. In Section A.3, the pseudo code for these events is introduced. 

A.2.2 Task Mapping and Scheduling Models 

TMS models are developed using the same principle used to simulate the target tracking 

schemes, which is presented in Section A.2.1. Therefore, the CSMA/CA events shown 

in Figure 90 are also used to evaluate the BTMS and BITA algorithms. More events are 

added to code the proposed TMS algorithms. The application DAG is created according 

to the strategy introduced in Section 7.6.3. The Ts  node defined in Sections 5.2.2 and 

5.3 is represented as the target and its neighbours represented as the group nodes. 

Basically, each group node will have routing information (i.e. single-hop routes) 

about its neighbours. However, multi-hop routing paths between nodes that are not in 

the same radio range are determined. Destination Sequenced Distance Vector Routing 

(DSDV) has been implemented in this model as multi-hop network layer protocol. 

DSDV is a proactive routing protocol, in which each node maintains a routing table for 

the whole network topology. However, in this thesis, DSDV only runs inside the group 

of nodes that detect the target.  The node uses the Route Discovery (RDis) unicast 

messages to exchange the routing table information. At the same time as sending an 

RDis packet, the node sets its Routing_timer which is used to indicate finishing of the 

RDis packet transmission and thus to start transmission the next control packets. The 

Routing_timer is chosen to be 200ms. The node only sends the routing table information 

to the neighbours that do not have this information. Each node stores information about 

the source of the routing packets. For example, for single hop-communication, RDis 

packets will not be sent by any nodes because all nodes have routing information about 

each other. Another example is shown in Figure 91. Both node 1 and 3 have 

information about node 2 from the RDis message sent by node 2. Node 2 has 

information about both node 1 and 3 from the RDis messages sent by them. Therefore, 

node 1 and 3 will not have any routing information to be sent to node 2. On the other 

hand, node 2 will send RDis to both node 1 and 3 to inform them about each other. 

Since the communication could be multi-hop ad hoc links, the RDis message is sent 

three times to ensure the group nodes have a full routing table about all the neighbours 

which detect the same target. 
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Figure 91 Sending RDis Packets 

Therefore, the algorithm shown in Figure 92 is mainly used when the node sends the 

RDis packets to each neighbour. 
 

1. for (node routing table) do:      //loop the node routing table 

2.    if (the record is not in my neighbour routing table) do: 

3.        send this record to my neighbour; 

4.    end if 

5. end for 
Figure 92 Routing Algorithm 1 

The RDis message mainly contains the routing table records of the available group 

nodes paths. When a node receives an RDis packet, it updates its routing table based on 

the shortest path (i.e. the minimum number of hops to the destination). For each routing 

record in the RDis message, the node runs the algorithm shown in Figure 93.  
1. Route_Flag = true; 

2. for (node routing table) do:       //loop the node routing table 

3.    if (the received route record is in my routing table) do: 

4.       Route_Flag = false; 

5.        if (number of hops in the received record < number of  hops in the routing table) do: 

6.             Delete the old route from the routing table; 

7.             Add the new shorter route to my routing table; 

8.             Add the nodes which have this record; 

9.        end if 

10.  end if 

11.  if (Route_Flag) do:    //The node does not have this record  

12.     Add the received routing record to the node routing  table; 

13.  end if 

14. end for 
Figure 93  Routing Algorithm 2 
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A.3 Event Handling Pseudo Code 

In this section, the pseudo code associated with events to perform the CSMA/CA as 

MAC protocol and the target tracking is introduced. The graph of CSMA/CA events is 

shown in Figure 48.  

A.3.1 TArrive Event 

In the target arrival (TArrive) event, the initial real state (i.e., location and velocity in 

2D coordinates) of the target is declared. After that, the localization (LOCALIZATION) 

event is scheduled at time of simulation time plus the required time to perform the 

calculation of the target localization.  

A.3.2 LOCALIZATION Event 

The target localization (LOCALIZATION) event pseudo code is shown in Figure 94. In 

line 3, the sensor nodes that are in active mode cooperate to calculate the updated target 

state. In this case, the updated covariance matrix is initialized to a predefined value. 
 

1. Calculate the energy consumption required to localize the target; 

2. Update the total energy consumption counter; 

3. Localize the target updated state and initiate the updated covariance matrix; 

4. Set the sampling interval to its minimum value; 

5. Schedule the PREDICTION  event at sTime plus the required time to execute EKF;  

     prediction stage and insert it in the event list variable; 

6. Schedule the NextSnapshot event at sTime plus current sampling interval;   

Figure 94 LOCALIZATION Event  

A.3.3 PREDICTION Event 

In Figure 95, the pseudo code associated with the PREDICTION event is shown. In line 

4, the current main node selects the next tracking group according to the algorithm 

described in Section 3.9.2. The group size is adjusted so that the updated tracking error 

is satisfied based on the adaptive group size algorithm presented in Section 3.9.3. In line 

5, the main node is elected according the election algorithm described in Section 3.10. 

In line 6, the current main node schedules Ready event to wakeup the next selected 

group via a GTrig message. 
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1. Calculate the target predicted state and its covariance matrix using EKF; 

2. Calculate the energy consumption required to predict the next target state; 

3. Update the total energy consumption counter; 

4. Select the next tasking group nodes so that the updated tracking accuracy is satisfied; 

5. Elect one sensor node as MN; 

6. Schedule Ready event immediately to send GTrig message;  

Figure 95 PREDICTION Event  

A.3.4 NextSnapshot Event 

In Figure 96, the pseudo code associated with the NextSnapshot event is shown. The 

NextSnapshot is the event at which the target arrives to the next tracking step. In line 2, 

the real state of the target is computed. The target real state evolves according to the 

current target motion types, which could be uniform motion in straight line, circular 

motion in circles and curvature motion in curves. In line 3 to 7, each helper node 

initiates a TRan message transmission if it detects the target.   
 

1. Schedule the RECOVERY event at sTime plus Timer_recovery;   

2. Compute the current real state of the target; 

3. for all helper nodes of the current group do: 

4.    if (target is in the vicinity of the node) do: 

5.        At time sTime plus the required time for sensing, schedule on the sensor node the    

            Ready event to send TRan message to the main node; 

6.    end if; 

7. end for; 

Figure 96 NextSnapshot Event  
A.3.5 Ready Event 

As shown in Figure 97, the Ready event is used to initiate messages transmissions. Each 

node is modelled so that it has output (qOut) and input (qIn) buffers. The node drops the 

message if its output buffer is full. If the output buffer is not empty, the node adds the 

message to queue of the output buffer to be served after finishing the leading message 

in the queue. Otherwise, the node defines a back off (bo) number which is a random 

number generated from uniform distributed over [0, CW], where CW is the predefined 

contention window. After that, the node senses the channel. If the channel is free, the 

node schedules a waitDIFS event after DIFS seconds from the simulation time (sTime), 

where DIFS is predefined Distributed Inter-Frame Space. Otherwise, the node defers 

the transmission and adds the message to output buffer. Finally, after the predefined 

timer expires, the node schedules the next Ready event to initiate the next message. 
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1. Prepare the message to be sent; 
2. if (qOut is full) do: 
3.    drop the message;   
4. else do: //else of if in line 2 
5.    if ( qOut is empty ) do:   
6.        bo = uniform distributed over(0, CW); 
7.        if (Channel is free) do:     
8.            schedule waitDIFS at t = sTime + DIFS; 
9.        else do:      //channel is busy 
10.          add the message to the qOut; 
11.          defer = true;     
12.  else do:   //else of if in line 5 
13.      add the message to the qOut; 
14.      schedule the next Ready at t = sTime + predefined Timer; 

Figure 97 Ready Event 

A.3.6 UPDATE Event 

If the main node detects the target and receives TRan messages from all helper nodes, it 

schedules the UPDATE event at current sTime plus the required time to execute EKF 

update stage and the sampling interval calculation. Figure 98 shows the pseudo code 

associated with the UPDATE event. In line 2, the sampling interval is calculated from 

the past target location using the algorithm introduced in Section 3.8. 
1. Calculate the target updated state and its covariance matrix using EKF; 

2. calculate the next sampling interval; 

3. Calculate the energy consumption required to update the target state and calculate the  

     sampling interval; 

4. Update the total energy consumption counter; 

5. Schedule the PREDICTION  event at sTime plus the required time to execute EKF;  

     prediction stage and insert it in the event list variable; 

6. Schedule the NextSnapshot event at sTime plus current sampling interval;   

Figure 98 UPDATE Event 

A.3.7 RECOVERY Event 

If the one of the tasking group nodes does not detect the target, the main node sends the 

TLos message to the old main node. The old main performs the first level recovery. The 

pseudo code associated with the RECOVERY event is shown in Figure 99. In line 1 and 

11, the first and second level recovery nodes are calculated according to the mechanism 

presented in Section 3.11. 
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1. Calculate the first level recovery nodes; 

2. Calculate the energy consumption required for first level recovery; 

3. Update the total energy consumption counter; 

4. Schedule Ready event to send TRec message at sTime plus the required time to perform  

    the first level recovery; 

5.  if (number of response > group size) do: 

6.      Localize the target using the received target measurements; 

7.      Set the sampling interval to its minimum value; 

8.      Schedule the PREDICTION  event at sTime plus the required time to execute EKF;  

          prediction stage and insert it in the event list variable; 

9.      Schedule the NextSnapshot event at sTime plus current sampling interval;   

10. else do: 

11.    perform level 2 recovery; 

Figure 99 RECOVERY Event 

A.3.8 Wait DIFS (waitDIFS) Event 

In the waitDIFS event shown in Figure 100, if the channel was free during the last 

DIFS, the node schedules a BackOff event after one predefined time slot. Otherwise, if 

the channel is now free, the node finishes the deferring and schedules waitDIFS after 

DIFS time. 
 

1. if (Channel was free during the last DIFS) do:   
2.      schedule BackOff at t = sTime + Slot Time; 
3. else do:   
4.      if (Channel is free) do:     
5.           defer = false;        // stop the defer 
6.           schedule waitDIFS at t = sTime + DIFS; 
7.      else do: 
8.           defer = true;   

Figure 100 waitDIFS Event 

A.3.9 Back off (Backoff) Event 

In this event, which is explained in Figure 101, if the channel was free during the last 

time slot, the node checks the back off (bo) value. If bo is over and the channel is now 

free, the node schedules a TX event immediately.  If bo is over and the channel is now 

busy, the node defers the transmission. The node decrements bo and schedules BackOff 

event after one predefined time slot, if bo is not over. If the channel was busy at any 

time during the last time slot and the channel is now busy, the node defers the 

transmission. If the channel was busy at any time during the last time slot and the 

channel is now free, the node schedules waitDIFS after DIFS time.  
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1. if (Channel was free during the last time slot) do:   
2.     if (bo = 0) do: 
3.         if (Channel is free) do: 
4.             Schedule TX immediately; 
5.         else do:  //else of if in line 3 
6.              defer = true;   
7.     else do:   //else of if in line 2 
8.          Decrement bo; 
9.           Schedule Backoff at t = sTime + time slot; 
10. else do:  //channel became busy one time in the previous time slot 
11.    if (Channel is free) do:   // currently the channel is free 
12.        schedule waitDIFS at t = sTime + DIFS;   
13.    else do:       // currently the channel is busy 
14.        defer = true;      

Figure 101 Backoff Event 

A.3.10 Transmit (TX) Event 

With the TX event shown in Figure 102, the source node defers its transmission if there 

is acknowledgment (ACK) being sent from it. ACK transmission is initiated after 

receiving a unicast message.  The ACK message will be ignored if the source node is 

sending other messages at the same time. The simulator determines the source node’s 

neighbours. After that the channel status of the source node and its neighbours are set to 

the busy state. The message transmission times to the neighbours are calculated 

according to the following equation: 

ptsRX  t  t tt ++=  (A.1) 

where are st  and p t  are the simulation time and propagation time, and tt  is the 

transmission time which can be calculated based on the following equation: 

 Speed ChannelSize Messaget t =   (A.2) 

Then, the simulator schedules receive (RX) event. Finally, the source node schedules 

waitACK event, if the message is unicast. 

1. if (node is sending ACK) do: 
2.     defer = true;       //do not send this packet and defer 
3. else do: 
4.     if (message to be sent is ACK & the node is busy in sending other packets) do: 
6.         do not send the ACK; 
7.     else do: 
8.         Determine the neighbour nodes; 
9.         Set Channel flag to busy state in the node and the node’s neighbours;   
10.       Schedule RX at tRX;  
11. if (message is unicast) do: 
12.    Schedule waitACK at t = t(RX) + ACK Timeout; 

Figure 102 TX Event 
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A.3.11 Collision (waitACK) Event 

As shown in Figure 103 the source node initiates retransmissions of unicast messages 

that are not acknowledged. The maximum number of retransmissions is set in the node.  

The source node discards the message if the maximum permitted number of 

retransmissions is exceeded. For each retransmission, the CW is extended until it 

reaches to maximum value (CWmax). After that, the source node starts the transmission 

procedures by scheduling waitDIFS event.  
 

1. if (Number Of Retransmissions is not over) do: 
2.     Increment Number Of Retransmissions; 
3.     CW = 2*CW; 
4.     if (CW > CWmax) do: 
5.         CW = CWmax; 
6.         bo = uniform distributed over(0, CW);   
7.         Schedule waitDIFS at t = sTime + DIFS;  
8. else do: 
9.     message dropped; 
10.   send the next message in the qOut;  

Figure 103 waitACK Event 

A.3.12 Receive (RX) Event 

At the RX event shown in Figure 104, the simulator sets the channel status to free for 

the source node and its neighbours. The source node and its neighbours end the 

deferring action, if any. Each source node’s neighbour ignores the message if there are 

full or partial collisions. Otherwise, it processes the broadcast message and 

acknowledges the unicast message. The source node’s neighbour either processes the 

unicast message if it is the final destination or redirects the message to the next hop.  
 

1. Set channel status for free state in the node and its neighbours; 
2. Cancel node and its neighbours defer if any; 
3. for (all node neighbours) do: 
4.     if (no full or partial collisions) do: 
5.         if (message is unicast) do: 
6.             Send ACK after SIFS time; 
7.             if (The node is the final destination) do: 
8.                 Process the message; 
9.             else do: 
10.                Update message header and redirect it to the next hop; 
11.       else do:     //the message is broadcast 
12.           Process the message; 
13.   else do:  // message is collided 
14.       Ignore the message in the collided receivers; 

Figure 104 RX Event 



 172

A.3.13 TICK Event 

This is an interruptible event that runs periodically. The TICK event runs in the 

simulator every given number of seconds (e.g. once each second). Some simulation 

results are reported when the TICK event occurs. In the TICK event subroutine, the 

statistical counters are updated.  

A.4 Appendix Summary 

In this appendix, the simulation framework is described in detail. The target tracking, 

task mapping and scheduling implementations are first introduced. After that, the 

pseudo code for individual event handling is explained. 
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Appendix B Code Verification 

B.1 Target Tracking Verification 

In this section, target-tracking schemes proposed in Chapter 3 and 4 are verified. The 

target-tracking scenario presented in Section 7.3.5 is assumed. The snapshot at time of 

9.6998 second is verified in this section. Figure 105 shows the target real location and 

the group nodes at time of 9.6998 second.  

 
Figure 105 Target Tracking Snapshot at Time= 9.6998 seconds 

B.1.1 Analytical Analysis 

As shown in the Figure 105, nodes 487, 272 and 312 can detect the target because 

md 3)3()5.0( 22
1 =+= , md 5.6)003.0()5.6( 22

2 =+= and md 6.4)9.2()5.3( 22
3 =+=  are 

less than the sensing range (i.e., 50m). When the MN (i.e., 487) detects the target, it 

measures its range and schedules the recovery process after a Timer_recovery of 0.05 

second. Therefore, the recovery event is scheduled at time = 9.6998 + 0.05 = 9.7498 

second. The HNs (i.e., 272 and 312) measure the target range and send it to the MN 

through TRang message. The HNs contend to transmit the TRang message as shown in 

Figure 106. All the nodes will wait DIFS = 128 ms and check the channel. If the 

channel is free, each node picks up a random number from the simulator RNG to set the 

back off times. The random back off values for nodes 272, and 312 are 40, 207 time 

slots (TS) respectively. 
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Figure 106 CSMA/CA Contention 

The following equations are used to calculate the reception time after which the MN 

receives the TRang packet: 

RateBit  elSize/ChannPacket   )Time(t Transition TX =  (B.1) 

Delayn Propagatio  Time Transition  Time Simulation  )Time(tReception RX ++=  (B.2) 

Therefore, transmission time for TRang packet is ms 0.288  )10*288/(1  t 6
TX == and for ACK 

is ms 0.240  106)*240/(1  tTX == . The propagation delay is neglected. Therefore, node 272 

initiates its transmission at time = 9.6998  + DIFS + 40*TS = 9.70196 second and its 

reception at time = 9.70196 + 0.000288 = 9.70225 second. The wait for ACK event will 

be scheduled at time = 9.70196 (Time of transmission) +  tTX + 0.0003 (ACK timeout) 

= 9.70255 second. When the MN (i.e., 487) receives the TRang packet, it transmits 

ACK to the node 272 at time = 9.70225 (Time of reception) + 0.000028 (SIFS time) = 

9.70228 second. The ACK will be received at node 272 at time = 9.70228 (Time of 

ACK transmission) + 0.000240 (Transition Time of ACK) = 9.70252 second, which is 

less than the ACK timeout. 
 

Node 312 initiates its transmission at time = 9.70252 (Received Time of ACK at 

node 272 where the channel becomes free) + DIFS + (207-40)*TS = 9.71099 second 

and its reception at time = 9.71099 + 0.000288 = 9.71128 second. The wait for ACK 

event will be scheduled at time = 9.71099 (Time of transmission) +  tTX + 0.0003 (ACK 

timeout) = 9.71158 second. When the MN (i.e., 487) receives the TRang packet, it 

transmits ACK to the node 312 at time = 9.71128 (Time of reception) + 0.000028 (SIFS 

time) = 9.71131 second. The ACK will be received at node 312 at time = 9.71131 
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(Time of ACK transmission) + 0.000240 (Transition Time of ACK) = 9.71155 second, 

which is less than the ACK timeout. 

After the MN receives the TRang packets from the HNs, it uses the EKF to calculate 

the target estimated state and the next sampling interval. These processes require 2MCC 

/100MHz=0.02 seconds. Therefore, the update stage finished at time = 9.71128 (time of 

second TRang reception) + 0.02 = 9.73128 second. The target estimated location at time 

9.6998 second is (48.4992, 184.003). The target estimated location is used with the 

previous locations to calculate the next sampling interval. Table 11 shows the target 

location after inserting its current location.  The data in Table 11 covers the target 

locations for more than 2 seconds history. Therefore, the oldest target location (i.e., 

index 1) will not be used in calculation.  

Index Time (sec) Tx  (m) Ty  (m) 
1 7.72404 38.4992 166.683 
2 8.22393 40.9992 171.013 
3 8.72918 43.4992 175.343 
4 9.22848 45.9992 179.673 
5 9.73128 48.4992 184.003 

Table 11 Target Estimated Locations Database 

The net travel is the distance between the target location in index 2 and index 5 that are 

shown in Table 11 while the total travel is the sum of the distances between indices 2 

and 3, 3 and 4, and 4 and 5. Therefore the net travel is 15 m, the total travel is 15 m and 

in turn the metadata is 15/15=1. The previous sampling interval was 0.5 seconds. 

Therefore, the measured sampling interval = (0.5 - 0.1) * 1 + 0.1 = 0.5 second and the 

sampling interval = 0.5 * 0.5 + 0.5 * 0.5 = 0.5 second. The next target snapshot will be 

scheduled at time = 9.6998 (the last time the target was detected) + 0.5 (sampling 

interval) = 10.1998 second.  
 

After that prediction of the target next state and the group formation are performed. 

These processes require 2MCC /100MHz=0.02 seconds. Therefore, the prediction stage 

finished at time = 9.73128 (finish time of update stage) + 0.02 = 9.75128 second. The 

target estimated location at time 9.6998 second is (50.9992, 188.333). Table 12 

summarizes the selected node’s information.   

Node 
isx  (m) 

isy  (m) Td (m) Tdc /1= (m-1) Ef  
272 55 184 22.6058 0.0442364 0.367548 
312 45 187 25.4403 0.0393077 0.326597 
446 57 196 27.1655 0.0368114 0.305855 

Table 12 Election Algorithm Information 
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In Table 12, Td  is the sum of the distances from other group nodes. Tdc /1=  is the node 

centrality. δ  defined in Equation (3.41) is assumed to be 1. Ef  is calculated based on 

Equation (3.41) as (c of the node)/summation of all c. Therefore, the MN for the next 

group is 272 because it has the maximum value of Ef .  
 

The old MN (i.e., 487) sends the target information to the next group a long with the 

group election results by broadcasting a GTrig so that the new group has knowledge of 

the target before it arrives in their vicinity.  The random back off value for nodes 487 is 

121 time slots (TS) respectively. Therefore, node 272 initiates its transmission at time = 

9.75128 (finish time of prediction stage) + DIFS + 121*TS = 9.75746 second and its 

reception at time = 9.75746 + 0.000288 = 9.75775 second. 

B.1.2 Simulation Results 

The simulation results of the scenario explained in Section B.1.1 are shown in this 

section through code output snapshots. Figure 107 shows the group nodes to track the 

target at time 9.6998 second. The target real location, the time of the recovery event and 

the HNs back off values are shown in Figure 107 as well.  

 
Figure 107 Target Tracking Snapshot at Time 9.6998 Seconds  

Figure 108 and 109 shows the transmission and reception of TRang unicast (refer as 

message_type = 0) packets from the HNs 272 and 312 to the MN 485. The message 

serial numbers are used to ignore the received messages if they are sent twice due to the 

collision. The MN receives the TRang packet and other neighbours reject it. After that, 

the MN sends ACK message to inform the HNs about the correct reception of TRang 

messages.  
 

Figure 110 shows the calculations of update stage, sampling interval, prediction 

stage and selection. The update stage that includes the sampling interval selection 

requires 0.02 seconds and the prediction stage that includes the formation of the next 

group needs 0.02 seconds as well.  
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Figure 108 Simulation Snapshot: TRang Packet Transmission from HN1 

 
Figure 109 Simulation Snapshot: TRang Packet Transmission from HN2 

 
Figure 110 Update and Prediction Stages 
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In Figure 111, the election of the next MN is shown. Centrality for each node is 

calculated first. Then, the MN is selected so that it has the maximum election fitness 

function. In this case, node 272 is elected as the MN. 

 
Figure 111 Election Algorithm 

Finally, Figure 112 shows the time of transmitting and reception of the GTrig packet 

from the current MN to the next group. The destination is set to 0 to indicate that this 

message is broadcast packet. 

 
Figure 112 Transmission of GTrig Messages 

The simulation snapshot shown in this section and the analysis presented in Section 

B.1.1 are both analytical matched. This indicates that the simulator is performed and run 

correctly. 

B.1.3 Multi Target Tracking and the Optimal Solution 

The simulation results in [103] show that the Tharmarasa’s approach is close to the 

optimal solution. In Section 7.5.6, the simulation results show that the performance of 

the proposed MS-AMTT scheme is better than the Tharmarasa’s approach in terms of 

computational time and number of iterations. Therefore, the proposed MS-AMTT 
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scheme is closer to the optimal solution compared with the Tharmarasa’s approach 

given a limited number of iteration. 

B.2 BITA Algorithm Verification 

In this section, the BITA algorithm presented in Chapter 5 is verified. Assume the 

scenario shown in Figure 113 where the sensor node ( Ts ) is 57 and the nS  nodes that 

will share Ts  in the execution of the application are 52 and 30. Assume the application 

can be divided into 100=N independent equal-weighted tasks. 

 
Figure 113 BITA Algorithm Verification 

B.2.1 Analytical Analysis 

The sensor node ( Ts ) performs the BITA algorithm. Assume the energy level for the 

three nodes is 100J.  Based on Equation (5.10), for 102.0 −= mZ , the influences of the 

nodes 52, 57 and 30 on the sensor node 57 are calculated as follows: 

122
5752 0.00894427)100()50(1),( −=+= mssG , 1

5730 0.02501),( −== mssG  and 

1
5757 02.0),( −== mZssG . Based on Equation (5.11) and for 5.0=β , the decomposed 

fitness functions are calculated as follows: 

( ) ( ) 0.370981300100*5.0)0.008944270.02(0.020.02*5.0),5.0,( 57 =+++=mD Ssf
( ) ( ) 0.258039300100*5.00.02)0.00894427(0.020.00894427*5.0),5.0,( 52 =+++=mD Ssf
( ) ( ) 0.370981300100*5.0)0.008944270.02(0.020.02*5.0),5.0,( 30 =+++=mD Ssf  

Based on Equation (5.14), for 100=N tasks, each group node will execute the 

following number of tasks: 

37.0981)370981.0258039.0370981.0(370981.0*100)100,( 57 =++=sn
25.8039)370981.0258039.0370981.0(258039.0*100)100,( 52 =++=sn
37.0981)370981.0258039.0370981.0(370981.0*100)100,( 30 =++=sn  

Assume, each node ks can execute 10=f tasks per second. Defines 
ksT as the 

execution finish time for the tasks allocated to the node ks . Therefore, Cooperative 

Execution Time (CET) can be calculated according to the following equations: 
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)(max
km sSk TCET ∈∀=  (B.3) 

f
NsnT k

s k

),(
=  (B.4) 

Therefore, sec 3.70981)37.0981/10 ,25.8039/10  1/10,max(37.098CET == . The same analytical 

analysis can be done for different N .  

B.2.2 Simulation Results 

Figure 114 shows the CET simulation results for the scenario in Section B.2.1 using 

different number of tasks N . Figure 115 shows more results detail for 100=N . Both 

analytical analysis and simulation results are matched. 
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Figure 114 CET versus Number of Tasks Simulation Results 

 
Figure 115 BITA: Simulation Results for N=100 

B.3 BTMS Algorithm Verification 

In this section, BTMS algorithm analytic analysis is compared with simulation results to 

verify the simulator. One simple scenario is verified in this section.  

B.3.1 BTMS Algorithm and GA Algorithm 

The simulation results in [122] shows that GA reduces the energy consumption among 

the sensor nodes by only 7% compared with Min-Min approach. The simulation results 

in Section 7.6.3 show that the proposed BTMS algorithm reduces the energy 
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consumption by 8% compared with BTMS algorithm that is based on Min-Min 

approach. Therefore, the performance of the proposed BTMS algorithm is close to the 

GA.  

B.3.2 Analytical Analysis 

The DAG application is generated as described in Section 7.6 with 3 entry tasks, 4 

normal tasks and one exit task. Figure 116 shows one of the level-based DAGs which 

be used for the code verification. The numbers beside each task denote the number of 

clock cycles in Mega Clock Cycle (MCC). The numbers between the tasks edges 

represent the edge data size in Kilo bit (Kb) to be transmitted between tasks.  

 
Figure 116 Level-Based DAG for Code Verification 

After converting the DAG into level-based DAG as shown in Figure 116, the tasks in 

each level are ordered in decreasing manner with respect to their number of 

computational cycles. Therefore, the BTMS will begin to map task 2 at level 0. For all 

group nodes, it uses Equation (5.6) and (5.7) to calculate the required energy 

consumption and the finishing execution time of task 2. Then, using Equation (5.9), the 

fitness function of mapping task 2 to each node is calculated. Obviously, at this stage all 

the nodes will have the same fitness function.  Therefore task 2 will map to one of the 

group nodes, which is node 47. This is shown in Figure 117. 
 

The same procedures are applied to map task 3. All the nodes apart from node 47 

will have the same fitness function. The availability of node 47 is greater than other 

nodes. Therefore, the fitness function of node 47 is greater than all other node. Task 3 

will be mapped to one of the group nodes except node 47, which will be node 159. By 

using the same mechanism, task 1 will be mapped to node 318.  
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Figure 117 BTMS Analytical Analysis 

At level 1, task 7 will be mapped first. Task 3, which is mapped to node 159, is the 

immediate predecessor of task 7. Therefore, node 159 will have the smallest fitness 

function defined and in turn, task 7 will be mapped to node 159. Like task 7 mapping 

strategy, task 4 at level 1 will be mapped to node 318 and task 5 at level 2 will be 

mapped to node 318.  
 

At level 3, the fitness function of all nodes to map task 6 is calculated. Tasks 2, 3 

and 5 are the immediate predecessors of task 6. Therefore, using Equation (4.24), the 

start execution time of task 6 at each node is calculated. After, that the finish executing 

time and the total energy consumption needed of task 6 at each node are calculated and 

passed to compute the fitness function. As shown in Figure 117, the start execution time 

of task 6 at node 318 is the smallest one and it will affect the calculation of the fitness 

function. Therefore, task 6 is mapped to node 318. Finally, task 8 is mapped to node 

318. As shown in Figure 117, based on the analytical analysis, the CET will be 185ms.  

B.3.3 Simulation Results 

Figure 118 shows the results of tasks generator. It shows the task ID, computational 

clock cycles and immediate predecessors. The edge sized of the tasks dependencies are 

shown in bits. The output of level-based DAG algorithm is also shown.   
 

BTMS algorithm starts to map each task. For each node, it computes the total 

energy consumption (i.e., computational and communication energy consumptions) 

required time to execute the task, the start and finish time of task’s execution, and the 

fitness function. Figure 119 shows a snapshot of this process.  
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Figure 118 Task Generator Results 

 

 
Figure 119 Decomposition Fitness Function Results 

For each task, after calculating the fitness functions for all group nodes, the task will be 

mapped to the group node that has the smallest fitness function as shown in Figure 120.  
 

Figure 121 shows the final results of BTMS algorithm. It shows the nodes that each 

task is mapped to and the start, execution and finish times of the task. The total energy 

consumption to execute the task is also shown. Finally, it shows the total overall 

communication and computing energy consumption to execute all the tasks. The 
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collaborative execution time (CET) of the application is shown I the bottom of Figure 

121.  

 
Figure 120 Task Mapping 

 
Figure 121 Summary of BTMS Results 
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