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(A1773)

Abstract: Purpose: Coronary luminal dimensions change during the cardiac cycle. However,
contemporary volumetric intravascular ultrasound (IVUS) analysis is performed in non-
gated images as existing methods to acquire gated or to retrospectively gate IVUS
images have failed to dominate in research. We developed a novel deep learning (DL)-
methodology for end-diastolic frame detection in IVUS and compared its efficacy
against expert analysts and a previously established methodology using
electrocardiographic (ECG)-estimations as reference standard.
Methods: Near-infrared spectroscopy-IVUS (NIRS-IVUS) data were prospectively
acquired from 20 coronary arteries and co-registered with the concurrent ECG-signal
to identify end-diastolic frames. A DL-methodology which takes advantage of changes
in intensity of corresponding pixels in consecutive NIRS-IVUS frames and consists of a
network model designed in a bidirectional gated-recurrent-unit (Bi-GRU) structure was
trained to detect end-diastolic frames. The efficacy of the DL-methodology in identifying
end-diastolic frames was compared with two expert analysts and a conventional
image-based (CIB)-methodology that relies on detecting vessel movement to estimate
phases of the cardiac cycle. A window of ±100ms from the ECG estimations was used
to define accurate end-diastolic frames detection.
Results: The ECG-signal identified 3,167 end-diastolic frames. The mean difference
between DL and ECG estimations was 3±112ms while the mean differences between
the 1st-analyst and ECG, 2nd-analyst and ECG and CIB-methodology and ECG were
86±192ms, 78±183ms and 59±207ms, respectively. The DL-methodology was able to
accurately detect 80.4%, while the two analysts and the CIB-methodology detected
39.0%, 43.4% and 42.8% of end-diastolic frames, respectively (P<0.05).
Conclusions: The DL-methodology can identify NIRS-IVUS end-diastolic frames
accurately and should be preferred over expert analysts and CIB-methodologies, which
have limited efficacy.

Response to Reviewers: We have attached point-by-point responses to the reviewers in the attached word
document with the manuscript ("Responses to the reviewers’ comments.docx") which
includes a figure we are unable to copy into this text box. If we should submit this in
another format please do let us know.
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Abstract 

Purpose: Coronary luminal dimensions change during the cardiac cycle. However, contemporary 

volumetric intravascular ultrasound (IVUS) analysis is performed in non-gated images as existing 

methods to acquire gated or to retrospectively gate IVUS images have failed to dominate in research. 

We developed a novel deep learning (DL)-methodology for end-diastolic frame detection in IVUS and 

compared its efficacy against expert analysts and a previously established methodology using 

electrocardiographic (ECG)-estimations as reference standard.  

Methods: Near-infrared spectroscopy-IVUS (NIRS-IVUS) data were prospectively acquired from 20 

coronary arteries and co-registered with the concurrent ECG-signal to identify end-diastolic frames. A 

DL-methodology which takes advantage of changes in intensity of corresponding pixels in consecutive 

NIRS-IVUS frames and consists of a network model designed in a bidirectional gated-recurrent-unit 

(Bi-GRU) structure was trained to detect end-diastolic frames. The efficacy of the DL-methodology in 

identifying end-diastolic frames was compared with two expert analysts and a conventional image-

based (CIB)-methodology that relies on detecting vessel movement to estimate phases of the cardiac 

cycle. A window of ±100ms from the ECG estimations was used to define accurate end-diastolic frames 

detection.  

Results: The ECG-signal identified 3,167 end-diastolic frames. The mean difference between DL and 

ECG estimations was 3±112ms while the mean differences between the 1st-analyst and ECG, 2nd-analyst 

and ECG and CIB-methodology and ECG were 86±192ms, 78±183ms and 59±207ms, respectively. 

The DL-methodology was able to accurately detect 80.4%, while the two analysts and the CIB-

methodology detected 39.0%, 43.4% and 42.8% of end-diastolic frames, respectively (P<0.05). 

Conclusions: The DL-methodology can identify NIRS-IVUS end-diastolic frames accurately and 

should be preferred over expert analysts and CIB-methodologies, which have limited efficacy.  

 

Key Words: intravascular ultrasound; near-infrared spectroscopy; machine learning. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 
 

Declarations 

Funding: This study is jointly funded by the British Heart Foundation (PG/17/18/32883), University 

College London Biomedical Resource Centre (BRC492B) and Rosetrees Trust (A1773). RB, AR, VT, 

AM, AB and CVB are funded by Barts NIHR Biomedical Research Centre, London, UK. This study 

was supported by the Cardiovascular Devices Hub at the Centre for Cardiovascular Medicine and 

Devices, Queen Mary University of London. 

Conflicts of interest/Competing interests: All authors have no conflicts of interests to declare. 

Ethics approval: The study protocol complied with the Declaration of Helsinki and was approved by 

the local research ethics committee. 

Consent to participate: All recruited patients gave written informed consent. 

Consent for publication: All recruited patients gave written informed consent. 

Availability of data and material (data transparency): not applicable 

Code availability: custom code not publicly available.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

Introduction 
 
Intravascular ultrasound (IVUS) is the preferred intravascular imaging modality for the evaluation of 

coronary plaque burden and the efficacy of emerging therapies targeting plaque evolution [1]. 

Grayscale-IVUS analysis in intravascular imaging studies is usually performed at 1-mm intervals 

ignoring the phase of the cardiac cycle [2], even though this approach neglects cyclical changes in 

luminal dimensions and the longitudinal motion of the IVUS catheter within the vessel, which can affect 

accurate quantification of atheroma [3–5]. It has been suggested that gated-IVUS analysis may be more 

accurate and reproducible [6, 7]; however, commercial catheters in contemporary use do not incorporate 

an electrocardiographic (ECG)-signal to allow the end-diastolic frame to be discerned. Whilst hardware 

for gated-IVUS acquisition has been developed, it has not found widespread use partly due to the 

increased time required for image acquisition [8]. Moreover, the automated methodologies developed 

to retrospectively-gate IVUS images, taking advantage of the relative movement of the lumen with 

regards to the IVUS catheter, have failed to dominate in research as most of them have not been robustly 

validated against ECG estimations as reference standard or they have not been incorporated in user-

friendly software [9–17]. Over recent years, deep learning (DL) algorithms have gained interest as 

potential solutions for the rapid and accurate analysis of large datasets in cardiac imaging [18]. These 

approaches rely on the use of a pre-defined reference standard to train algorithms that can detect features 

on a training dataset and then apply these algorithms on new data. Despite the potential value of this 

approach, its application in intravascular imaging has not been fully explored yet [19–24]. 

It is hypothesised that a DL-based methodology will be able to detect end-diastolic frames in IVUS 

datasets and may be superior to human experts and previous automated methodologies. The aims of 

this study are: a) to develop and train a novel DL-based methodology for automated detection of end-

diastolic frames in IVUS sequences, b) examine the reproducibility of expert analysts in detecting end-

diastolic IVUS frames and c) validate the performance of DL, the expert analysts and an established, 

conventional image-based (CIB)-methodology in detecting end-diastolic frames in patients with co-

registered IVUS images and ECG-recordings. 

 

Methods 
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Study population 

Twenty coronary arteries from six consecutive patients in sinus rhythm who were recruited to the 

“Evaluation of the efficacy of computed tomographic coronary angiography (CTCA) in assessing 

coronary artery morphology and physiology” study (NCT03556644), were included in the present 

analysis. The rationale, study design, and inclusion and exclusion criteria have been presented in detail 

elsewhere [25]. Briefly, patients with stable angina and obstructive coronary disease on coronary 

angiography referred to Barts Heart Centre for invasive assessment were considered eligible for 

participation. All patients underwent CTCA followed by coronary catheterisation and 3-vessel near-

infrared spectroscopy (NIRS)-IVUS imaging. Only native vessels were included in the study. The study 

protocol complied with the Declaration of Helsinki and was approved by the local research ethics 

committee. All recruited patients gave written informed consent.  

Intravascular ultrasound analysis and ECG co-registration 

NIRS-IVUS imaging was performed using the 50MHz Dualpro system (Infraredx, Burlington, 

Massachusetts, United States) according to a standardised protocol. After administration of 400mcg of 

nitrates the NIRS-IVUS probe was advanced to the distal part of the vessel and an angiographic 

projection was obtained under contrast agent injection to identify the location of the probe. The probe 

was pulled back at a constant speed of 0.5mm/s using an automated pullback device (frame-rate: 30 

frames per second (fps)). A concurrent ECG tracing was recorded at the time of pullback. The NIRS-

IVUS data and the ECG tracing were imported in a viewer-mixer that enabled simultaneous 

visualisation of the two recordings; the displays of the viewer-mixer were recorded at 120fps and digital 

video files were transferred to an offline workstation for further analysis.    

Manual end-diastolic frame detection 

Analysis was performed by two well-trained analysts (RB and YK) who have segmented >375,000 

NIRS-IVUS frames. The two analysts reviewed the digital-video files that simultaneously portrayed the 

NIRS-IVUS pullback and the ECG tracing and identified each NIRS-IVUS frame that corresponded to 

the peak of the R-wave as an end-diastolic frame. These ECG estimations were checked by a third 

analyst (CVB); any conflicts were resolved by consensus.  
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Two months after this process the two analysts reviewed the original NIRS-IVUS sequences blindly to 

the ECG and manually identified the end-diastolic frames; in this analysis, it was assumed that the 

NIRS-IVUS frame with the minimal lumen motion before the largest movement of the lumen in relation 

to the NIRS-IVUS catheter corresponded to the end-diastolic frame. The 1st-analyst performed the 

analysis twice (3 weeks apart) to report intra-observer variability while the estimations of the 2nd-analyst 

were used to report inter-observer variability.  

To explore the effect of frame rate on the estimations of the two analysts, a second analysis was 

performed in NIRS-IVUS sequences with a frame rate of 15fps; these data were obtained after 

excluding 1 of every 2 frames from each sequence. Again, intra- and inter-observer variability were 

reported and their estimations compared to ECG estimations, which were calculated by halving the 

frame number of the initial ECG estimations.    

Conventional image-based gating algorithm 

CIB-gating was performed in the NIRS-IVUS data using a special version of the QCU-CMS software 

(version 4.69, Leiden University Medical Center, Leiden, The Netherlands) by implementing  an 

established solution, the only one that has previously been incorporated in a user-friendly software 

package for IVUS analysis [10]. This approach is further described in the Data Supplement. The CIB 

algorithm processed the NIRS-IVUS sequences twice and its intra-observer variability was reported. 

Deep learning methodology 

We propose a novel DL-methodology for identifying end-diastolic frames in NIRS-IVUS sequences. 

The methodology consists of several steps (Figure 1). First, a median filter was applied to reduce the 

impact of noise on the overall changes in the pixel intensity between consecutive NIRS-IVUS frames. 

Then, the absolute pixel-intensity difference between corresponding pixels in the entire image in 

consecutive NIRS-IVUS frames was calculated and these differences were summed up across the entire 

pullback. The obtained values indicate the relative motion of the vessel with regards to the NIRS-IVUS 

probe; this data was further smoothened by the Hanning smoothing algorithm applied on a 13-frame 

sliding window. The aim was to reduce the impact of noise on the frame-to-frame change data which 

forms the foundation for the subsequent vessel motion feature extraction process. 
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This sequence was processed by the DL-methodology which consists of a network model designed in 

a bidirectional gated-recurrent-unit (Bi-GRU) structure (Supplementary Figure 1), capable of analysing 

data sequentially in both temporal directions, taking advantage of patterns extracted from frames before 

and after the end-diastolic frame [27]. This approach was found to be superior to a long short-term 

memory network model which was also tested as a potential solution. It is necessary to input a complete 

cardiac cycle into the network to identify the end-diastolic frame; however, an extra cardiac cycle can 

help the network better identify the motion of the vessel and localise the frame of interest. Based on 

these considerations, a meaningful sequence-length for training the DL-algorithm was assumed to 

contain at least two full cardiac cycles. The majority of end-diastolic frame intervals in the training 

dataset were between 19 and 30 frames, therefore a segment length of 64 frames was used. That segment 

started from the beginning of the smoothened sequence and advanced frame-by-frame until this swept 

the entire studied vessel. In this way, for every NIRS-IVUS sequence n-63 segments of 64 frames were 

generated where n is the number of NIRS-IVUS frames. These segments were regarded as the basic 

units for training the DL model; training was performed separately in the left anterior descending 

(LAD), left circumflex (LCx) and right coronary artery (RCA) using the ECG-defined end-diastolic 

frames to generate models for each vessel type.  

The choice of loss function used for the Bi-GRU model was mean square error and learning rates in all 

experiments were set to 1e−3. The maximum training epoch was 50 with batch size set to 1 during all 

experiments. As the model is ready-trained using the data without any manual fine tuning of 

hyperparameters, no validation set was required in this experiment.  

Testing of the DL models was performed using the leave-one-out cross-validation approach - all 

pullbacks performed in the LAD, or the LCx, or the RCA were used for training apart from one vessel 

from each vessel type (LAD/LCx/RCA) that was used for testing. This process was repeated 

sequentially leaving a different vessel out from the training set until all vessels were used for testing. 

Similar to the training set, a 64-frame segment was generated that swept the entire NIRS-IVUS 

sequence. For each segment, the probability of the 32nd frame to be the end-diastolic frame was 

calculated and the frames with the highest probability amongst neighbouring frames were selected and 
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constituted the network output. The DL-methodology analysed the NIRS-IVUS images twice and its 

intra-observer variability was reported. 

Statistical methods 

Numerical variables are presented as mean±standard deviation (SD) while categorical variables are 

reported as absolute values and percentages. Comparison between categorical variables was performed 

using the chi-square test. Bland-Altman analysis was used to assess the intra- and inter-observer 

variability of the analysts and compare their estimations and the estimations of the CIB- and DL-

methodology against the end-diastolic frames identified by the ECG. The root mean square error 

(RMSE) between the estimations of the analysts, the CIB, the DL-methodology and the ECG were 

computed and compared. Considering that the temporal resolution of NIRS-IVUS imaging is 33.3ms 

(30fps) we used a fixed cut-off range of ±100ms from the peak of R-wave on ECG to define correct 

end-diastolic frame detection (Figure 2). In the absence of “true/false negatives” we defined the 

accuracy of each of the above approaches as the percentage of the correct end-diastolic frames from the 

end-diastolic frame estimations corresponding with a cardiac cycle. A P-value of <0.05 was taken to be 

statistically significant. Statistical analyses were performed using SPSS for Mac version 23 (IBM, 

Armonk, New York). 

 

Results 

Studied patients 

The baseline characteristics of the included patients are shown in Table 1. NIRS-IVUS imaging was 

performed in 20 vessels [6 LAD, 9 LCx (3 performed in the main vessel and 6 in major obtuse 

marginals) and 5 RCA]; the total number of acquired frames was 92,526, of which 3,271 frames were 

classified as end-diastolic frames by ECG-signal. From these, we excluded 104 frames due to image 

artefacts obscuring detection of the peak of R-wave or identification of frame number. Therefore, in 

total 3,167 frames were included in the final analysis.  

End-diastolic frame detection in NIRS-IVUS sequences with a frame-rate of 30fps  

The representative analysis time for an analyst identifying end-diastolic frames manually for a 

representative 5000-frame vessel was approximately 15 minutes. Automated methodologies were 
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significantly quicker: the CIB-methodology required 135s while the DL-methodology required 15s for 

the same number of frames to be analysed.  

The 1st-analyst identified 3,144 end-diastolic frames; 3,034 estimations corresponded with the ECG-

defined cardiac cycle; 133 estimations could not be matched with the ECG estimations as there were 

other annotations closer to the peak of R-wave, while in 110 cases the analyst failed to identify an end-

diastolic frame for a cardiac cycle. Similar results were reported when analysis was repeated by the 1st-

analyst or when end-diastolic frame detection was performed by the 2nd-analyst (Table 2). There was 

no difference between the analysts and the CIB-methodology in the incidence of frames that were 

matched with the ECG estimations, of frames that could not be matched to ECG estimations and to 

missed end-diastolic frames for a cardiac cycle (P=0.182). Conversely, the DL-methodology missed 

cardiac cycles more frequently than the analysts or the CIB-methodology (P≤0.010). Vessel-level 

analysis demonstrated that this difference was mainly due to a larger number of missed end-diastolic 

frames in the LAD. In the LCx, the analysts were more likely to detect additional end-diastolic frames 

not corresponding to ECG estimations than the CIB- and DL-methodologies. Finally, in the RCA, the 

CIB- and DL-methodologies were found to more frequently identify extra end-diastolic frames not 

detected on ECG than the two analysts.  

Bland-Altman analysis demonstrated an intra- and inter-observer variability for the detected end-

diastolic frames in all the studied vessels of 13±224ms and 23±227ms, respectively. This was in contrast 

to the CIB- and DL-methodologies which were perfectly reproducible, identifying exactly the same 

end-diastolic frames in repeated analyses. The vessel type did not impact the intra- or inter-observer 

agreement (Figure 3). 

Figure 4 illustrates the Bland-Altman analyses between ECG estimations and the estimations of the 1st-

analyst, 2nd-analyst, CIB- and DL-methodologies. The differences between the estimations of the 

analysts and ECG or between the CIB-methodology and ECG were similar (86±192ms for the 1st-

analyst, 78±183ms for the 2nd-analyst, 59±207ms for the CIB-methodology); conversely the DL-

methodology was more accurate, with a smaller mean difference between its estimations and the ECG 

(3±112ms). These findings were consistent in all three coronary arteries. RMSE analysis also confirmed 

the superiority of DL-methodology (Table 3). 
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Using a cut-off of ±100ms difference from ECG estimations to define correct end-diastolic frame 

detection, we found that the 1st-analyst correctly identified 1182 frames (39.0%), the 2nd-analyst 1333 

(43.4%), the CIB-methodology 1306 (42.8%) and the DL-methodology 2401 (80.4%) frames (Figure 

5, P<0.05). The accuracy of the analysts was significantly better for the LAD and LCx, compared to 

the RCA (P<0.05), while the CIB-methodology was more accurate in the LAD and RCA compared to 

the LCx (P<0.001). DL had excellent accuracy and was superior to the analysts and the CIB-

methodology in all 3 coronary arteries and appeared to perform better in the LCx than the LAD. Results 

were not different when accuracy was defined as the ratio of correctly identified end-diastolic frames 

versus all frames estimated by each approach (Figure 6).  

The results were similar when we took into account patient heart rate variability and defined accurate 

end-diastolic frame detection as estimations falling within ±10% of the R-R interval from the peak of 

R-wave. An accuracy of 68.0% was reported for the DL-methodology; the accuracy of the 1st-analyst 

was 35.6%, of the 2nd 29.7% and of the CIB-methodology 29.7%. 

End-diastolic frame detection in NIRS-IVUS sequences with a frame-rate of 15fps  

The results from analysis at a frame-rate of 15fps are shown in Table 4. The CIB-methodology in this 

dataset detected more end-diastolic frames that did not correspond with ECG compared to the analysts 

or the DL-methodology. Vessel-level analysis indicated that this difference was driven by the 

performance of the CIB-methodology in the LCx and RCA. The DL-methodology performed similarly 

to the analysts in terms of detecting extra end-diastolic frames, but as before it missed more end-

diastolic frames than the analysts or the CIB-methodology in the LAD. 

Similar to the 30fps analyses, the intra- (26±240ms for all vessels) and inter-observer (26±221ms for 

all vessels) variability was higher for the estimations of the analysts when compared to the CIB- and 

DL-methodologies that were again perfectly reproducible (Figure 3). 

Bland-Altman analyses of frames identified by the ECG, 1st-analyst, 2nd-analyst, CIB- and DL-

methodologies are shown in the Supplementary Figure 2. The agreement between DL and ECG 

estimations (3±117ms) was higher than the agreement between ECG and 1st-analyst (76±315ms), 2nd-

analyst (46±186ms) or CIB-methodology (13±223ms). These findings were consistent in all three 

coronary arteries. RMSE analysis again confirmed the superiority of the DL-methodology (Table 3). 
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The DL-methodology had a significantly higher accuracy than the analysts or the CIB approach in 

detecting the correct end-diastolic frame in all 3 coronary arteries (Supplementary Figure 3).  

 

Discussion 

In this study, we have introduced, trained and tested for the first time a novel DL-methodology for 

detecting end-diastolic frames in NIRS-IVUS sequences using ECG-defined estimations as the 

reference standard. The novelty of the proposed framework relies on the use of a Bi-GRU network, for 

learning and processing in a bidirectional fashion the temporal information in IVUS sequences to detect 

end-diastolic frames. We found that, 1) expert analysts have limited accuracy and reproducibility in 

identifying end-diastolic frames, 2) the CIB-methodology, while more reproducible, has similar 

accuracy to expert analysts, 3) the efficacy of the analysts and CIB-methodology varies dependent on 

vessel type and 4) the DL-methodology is superior to expert analysts and the CIB-methodology, and 

has an excellent accuracy in identifying end-diastolic frames in all three coronary arteries. 

The merits of analysing IVUS images obtained at the same phase of the cardiac cycle to accurately 

quantify volumetric changes in atheroma burden in longitudinal IVUS studies are well recognised. 

Previous studies have demonstrated that the lumen area can vary significantly, by as much as 10% in 

disease-free segments, during the cardiac cycle [4, 5]. Moreover, reports have demonstrated that the 

longitudinal motion of the IVUS catheter in the vessel during a cardiac cycle can reach up to 5.5mm [3, 

28]. A simulation study conducted by de Winter et al. showed that these factors can impact the efficacy 

of non-gated IVUS analysis in detecting changes in plaque burden in longitudinal studies; in their 

analysis, to detect a 3% decrease in plaque burden at follow-up, gated-IVUS analysis would require 26 

vessels, while non-gated IVUS 254 vessels [7]. These findings were not confirmed by a report which 

included 19 vessels which were assessed twice by gated and non-gated IVUS; in this study, the 

differences in lumen, external elastic membrane and plaque volume between the two IVUS 

examinations were numerically smaller when analysis was performed using an ECG-gated device, but 

not statistically significant from the differences reported in the non-gated IVUS analysis [29]. This may 

be explained by the fact that the study is lacking the power to demonstrate the superiority of the ECG-

gated analysis. 
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Hardware designed to selectively acquire gated IVUS frames [8] and automated image-based 

methodologies [9–17] to estimate end-diastolic frames have failed to dominate in clinical research. The 

lack of commercial availability of ECG-gated hardware and the increased time required for their use 

has limited their utility, while most of the CIB-methodologies have not been validated robustly against 

ECG estimations or incorporated in user-friendly software.  

In the present study, we validated the efficacies of a CIB-methodology and expert analysts in 3,167 

end-diastolic frames from 20 vessels assessed by NIRS-IVUS imaging against an ECG-defined 

reference standard. We found that the analysts had high intra- and inter-observer variability in detecting 

end-diastolic frames and that there were significant differences between their estimations and the ECG 

and that their performance varied between vessels. Both analysts performed better in the LAD and 

worse in the RCA where there is a higher relative motion of the lumen with regards to the catheter. In 

our analysis, the CIB-methodology was perfectly reproducible but its performance in detecting end-

diastolic frames was limited and not different from the experts’. Significant variations were noted in 

the performance of the CIB-methodology in different vessels, with better performance in the LAD 

compared to the LCx and RCA.  

Conversely, the proposed DL-methodology trained on the reference standard, taking into account the 

different patterns of motion in different vessels, appeared superior to the analysts and CIB-methodology 

with excellent accuracy in detecting end-diastolic frames overall and was not affected by the type of 

vessel. 

The results were not different when we took into account the variability in the R-R interval between 

patients and used a cut-off of ±10% of the R-R to define accurate end-diastolic frame detection. DL 

was again superior to the analysts and the CIB-methodology but it had a smaller accuracy than the one 

reported with the fixed cut-off of ±100ms. This should be attributed to the fact that the average heart 

rate of the studied patients was 73±18bpm but also to the limited temporal resolution of NIRS-IVUS 

imaging (33.3ms). For the latter reason we believe that the fixed cut-off may allow a more accurate 

estimation of the performance of the DL-methodology especially in patients that had an increased heart 

rate during pullback.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

The fixed cut-off that we used in our study also allowed us to examine the performance of the DL-

methodology in IVUS sequences with a frame-rate of 15fps. The analysts had poor reproducibility and, 

similar to the CIB-methodology, limited efficacy in detecting end-diastolic frames while the DL-

methodology did not appear to be affected by the lower spatial resolution and had excellent 

performance. These findings highlight the potential value of DL in processing intravascular imaging 

data acquired at a higher pull-back speed, or a lower frame-rate such as the NIRS-IVUS images acquired 

by the MC-9 system which obtains images at 14fps or the upcoming IVUS-photoacoustic imaging 

catheters that are expected to acquire images at a lower frame-rate than conventional IVUS systems 

[30]. 

Another advantage of the developed DL-methodology is that it is rapid, enabling processing of large 

datasets within a few seconds: analysis of an IVUS sequence of 5,000 frames takes less than 15s in a 

computer with an Intel-i5 processor and 16GB RAM. The proposed approach has also been 

incorporated in the user-friendly QCU-CMS software, widely used for the processing of intravascular 

imaging data and this is likely to facilitate its utility in research. Moreover, the DL-methodology is 

expected to have applications in future computational fluid dynamic (CFD) studies assessing the 

implications of the local hemodynamic forces on plaque evolution. Recently, convincing evidence has 

emerged highlighting the role of coronary blood flow patterns on plaque progression and destabilisation 

[31, 32], while reports have shown that multimodality intravascular imaging combined with CFD 

estimations enables more accurate assessment of plaque pathophysiology and progression [33]. 

However, accurate reconstruction of coronary anatomy requires fusion of angiography with 

intravascular images at the end-diastolic phase of the cardiac cycle. None of the recently developed 

high-resolution IVUS or hybrid-IVUS systems incorporate ECG-gated hardware or are able to visualise 

the ECG alongside the acquired IVUS images. The developed DL-methodology overcomes these 

limitations, enabling retrospective, fast and accurate identification of end-diastolic frames necessary for 

reliable reconstruction of vessel architecture. 

Limitations 

The present study has several limitations that should be acknowledged. Firstly, the number of vessels 

included was small and thus we could not examine the implications of the erroneous estimations of the 
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analysts and of the CIB-methodology on the quantification of the lumen and vessel volumes [6]. 

Secondly, there was a variability in the number of vessels between LAD, LCx and RCA groups; 

however, the number of end-diastolic frames in each group was relatively large (>1,000 frames/group, 

Table 1) and similar in the 3 vessel groups, while the non-end-diastolic frames add up to around 85,000; 

both end-diastolic frames and non-end-diastolic frames are considered in training to highlight the 

differences of positive and negative training samples. Using leave-one-out cross-validation scheme, the 

size of training set for each validation is approximately 25,000 frames. Therefore, we believe that the 

obtained data were sufficient to adequately train the DL-methodology [34]. 

All included patients were in sinus rhythm, with a heart rate between 45 and 85 beats-per-minute and 

had a relatively stable R-R interval; nevertheless, premature atrial or ventricular ectopics were often 

seen during the pull-back and were included in the analysis. Therefore, the developed DL-methodology 

should be used only in patients in sinus rhythm as it is uncertain how significant rhythm variability 

might affect its performance. Moreover, the present analysis excluded stented segments where the 

friction effect between the catheter and the protruded struts may affect the movement of the lumen with 

regards to the IVUS probe – further research is needed to examine the performance of the proposed 

methodology in such segments. Finally, this study did not examine the value of IVUS-gating in the 

accurate quantification of atheroma burden compared to non-gated IVUS; this should be tested in a 

large-scale appropriately sized study.  

 

Conclusion 

In conclusion, the proposed DL-methodology is capable of detecting end-diastolic frames in 50MHz 

NIRS-IVUS datasets of all three coronary arteries rapidly and reproducibly, with greater accuracy than 

both expert analysts and a CIB-methodology. The DL-methodology’s performance is unaffected by the 

rate at which IVUS images are acquired. These features render it a useful tool for the analysis of IVUS 

datasets in longitudinal studies and in studies that fuse IVUS and X-ray angiographic data to assess the 

implication of the haemodynamic forces on plaque evolution. 
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Figure legends 

Figure 1. Schematic representation of the DL-methodology introduced for accurate detection of end-

diastolic frames: 1) implementation of a Median filter to reduce noise in NIRS-IVUS images, 2) 

estimation of the absolute difference of grayscale-intensity of corresponding pixels identified in 

sequential frames, 3) schematic representation of the sum of the pixel differences that indicates the 

relative movement of the lumen with regards to the NIRS-IVUS probe; a segment of 64 frames is 

created that incorporates at least one cardiac cycle and sweeps the NIRS-IVUS sequence,  4) these data 

are used as a training set and entered into a 64-cell Bi-GRU (bidirectional-gated recurrent unit) neural 

network, 5) the trained network is used to process 64-frame segments generated in the test set and 

identify in this set the end-diastolic frames. 

Figure 2. ECG recording with the corresponding NIRS-IVUS frames acquired at different phases of 

the cardiac cycle. The IVUS frame corresponding to the peak of the R-wave was defined by the ECG 

as the end-diastolic frame (green line). The green shaded area represents a period within ±100ms of the 

peak of R-wave. Frames detected by the analysts or the CIB- or DL-methodologies that fell in the green 

shaded area were classified as correctly detected end-diastolic frames. It is apparent in the NIRS-IVUS 

frames above the ECG that there is no motion of the lumen with regards to the NIRS-IVUS probe in 

frames that correspond to the end-diastolic period (shown with a green or a yellow colour); conversely 

the relative movement of the lumen with regards to the NIRS-IVUS probe is increased in the frames 

that do not correspond to the end-diastolic period and are portrayed with an orange colour.  

Figure 3. Bland-Altman analyses between the first and second set of estimations of the 1st-analyst at 

the NIRS-IVUS sequences acquired at 30fps (A) and 15fps (B) and between the estimations of the 1st- 

and 2nd-analyst in the same data set (C at 30fps; D at 15fps). Results are shown for the left anterior 

descending (LAD), left circumflex (LCx), and right coronary artery (RCA). The blue line represents 

the mean difference and the red lines correspond to the limits of agreement i.e., ±1.96 standard deviation 

(SD).  

Figure 4. Bland-Altman analyses in the NIRS-IVUS sequences acquired at 30fps for the estimations of 

the ECG and the 1st-analyst (A), of the ECG and the 2nd-analyst (B), of the ECG and the CIB-

methodology (C) and of the ECG and the DL-methodology (D). Results are shown for the left anterior 
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descending (LAD), left circumflex (LCx), and right coronary artery (RCA). The blue line represents 

the mean difference and the red lines correspond to the limits of agreement, i.e. ±1.96 standard deviation 

(SD). The green shaded area denotes estimations falling within ±100ms from the ECG estimations. 

Figure 5. Accuracy of expert analysts, the CIB- and DL-methodology in the NIRS-IVUS sequences 

acquired at 30fps. * indicates statistically significant (P<0.05) differences between the accuracy in left 

circumflex (LCx) or the right coronary artery (RCA) and the accuracy in the left anterior descending 

artery (LAD) within the same methodology. ** indicates statistically significant differences between 

the accuracy of the RCA and LCx within the same methodology. x indicates statistically significant 

differences between the 1st-analyst and the 2nd-analyst, CIB- or the DL-methodology while + indicates 

statistically significant difference between the CIB- and DL-methodology. 

Figure 6. Accuracy of the expert analysts, the CIB- and DL-methodology in the NIRS-IVUS sequences 

acquired at 30fps. In this analysis accuracy was defined as the percentage of the correct estimations 

versus the number of all the estimated end-diastolic frames. * indicates statistically significant (P<0.05) 

differences between the accuracy in left circumflex (LCx) or the right coronary artery (RCA) and the 

accuracy in the left anterior descending artery (LAD) within the same methodology. ** indicates 

statistically significant differences between the accuracy of the RCA and LCx within the same 

methodology. x indicates statistically significant differences between the 1st-analyst and the 2nd-analyst, 

CIB- or the DL-methodology while + indicates statistically significant difference between the CIB- and 

DL-methodology. 
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Table 1. Baseline demographics of the studied patients.  

 
 All patients (N=6) 

Age (years) 61.7±10.3 

Gender (male) 5 (83.3%) 

 Current smoker 0 (0%) 

 Family history of CAD 4 (66.7%) 

Co-morbidities  

Diabetes mellitus  3 (50.0%) 

Hypertension  4 (66.7) 

Hypercholesterolemia  4 (66.7) 

Renal failure* 0 (0%) 

Anemia 0 (0%) 

Previous PCI 2 (33.3%) 

LV function**  

     Normal LV function 5 (83.3%) 

     Impaired LV function 1 (16.7%) 

Studied vessels (n=20) 

Left anterior descending artery 6 (30.0%) 

- Number of frames 32,171 

- Number of end-diastolic frames 1,219 

Left circumflex artery 9 (45.0%) 

- Number of frames 31,306 

- Number of end-diastolic frames 1,070 

Right coronary artery  5 (25.0%) 

- Number of frames 29,049 

- Number of end-diastolic frames 1,008 
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Medications at discharge  

Aspirin 6 (100.0%) 

Thienopyridines 6 (100.0%) 

Beta-blocker 2 (33.3%) 

Statin 6 (100.0%) 

Table footnote: CAD, coronary artery disease; LV, left ventricle; PCI, percutaneous coronary 

intervention. 

*Renal failure was defined as an estimated glomerular filtration rate of < 60 ml/min/1.73m2. 

**Normal LV function was defined as LV ejection fraction ≥50%; impaired LV function was defined 

as LV ejection fraction >30% and <50%. 
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Table 2. Vessel-level analysis of end-diastolic frame estimations of the 1st- and 2nd-analyst and of the 

CIB- and DL-methodologies in the NIRS-IVUS sequences acquired at 30fps. 

Studied 

vessel 

Segmentation 

approach 

End-diastolic frames 

corresponding to ECG 

estimations  

End-diastolic frames not 

corresponding to ECG 

estimations 

Missed cardiac 

cycles 

P 

 

 

All studied 

vessels 

1st-analyst 1st estimation 3034 (92.6%) 110 (3.4%) 133 (4.1%)  

1st-analyst 2nd estimation 3014 (93.1%) 72 (2.2%) 153 (4.7%)  

2nd-analyst 3069 (93.5%) 117 (3.6%) 98 (3.0%) <0.001 

CIB-methodology 3052 (93.5%) 96 (2.9%) 115 (3.5%)  

DL-methodology 2987 (91.6%) 95 (2.9%) 180 (5.5%)  

 

Left anterior 

descending 

artery 

 

1st-analyst 1st estimation 1141 (94.7%) 23 (1.9%) 42 (3.4%)  

1st-analyst 2nd estimation 1136 (94.4%) 22 (1.8%) 46 (3.8%)  

2nd-analyst 1140 (94.7%) 22 (1.8%) 42 (3.5%) <0.001 

CIB-methodology 1119 (93.9%) 10 (0.8%) 63 (5.3%)  

DL-methodology 1062 (88.8%) 14 (1.2%) 120 (10.0%)  

 

Left 

circumflex 

artery 

1st-analyst 1st estimation 976 (92.8%) 41 (3.9%) 35 (3.3%)  

1st-analyst 2nd estimation 968 (94.3%) 16 (1.6%) 43 (4.2%)  

2nd-analyst 976 (92.6%) 43 (4.1%) 35 (3.3%) <0.001 

CIB-methodology 972 (94.0%) 23 (2.2%) 39 (3.8%)  

DL-methodology 971 (94.5%) 16 (1.6%) 40 (3.9%)  

 

Right 

coronary 

artery 

1st-analyst 1st estimation 917 (89.9%) 46 (4.5%) 57 (5.6%)  

1st-analyst 2nd estimation 910 (90.3%) 34 (3.4%) 64 (6.3%)  

2nd-analyst 953 (92.9%) 52 (5.1%) 21 (2.0%) <0.001 

CIB-methodology 961 (92.7%) 63 (6.1%) 13 (1.3%)  

DL-methodology 954 (91.8%) 65 (6.3%) 20 (1.9%)  

Table footnote: CIB, conventional image-based; DL, deep learning; ECG, electrocardiogram. 
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Table 3. Root mean square errors of the end-diastolic frame estimations of the analysts of the CIB- 

and DL-methodologies compared to ECG estimations. 

 

1st-

analyst 
2nd-analyst 

CIB-

methodology 

DL-

methodology 
P 

Analysis at 30fps 

All studied vessels (ms) 194 184 199 103 <0.001 

Left anterior descending artery (ms) 154 156 157 100 <0.001 

Left circumflex artery (ms) 193 188 234 104 <0.001 

Right coronary artery (ms) 228 207 203 104 <0.001 

Analysis at 15fps 

All studied vessels (ms) 204 177 207 108 <0.001 

Left anterior descending artery (ms) 188 154 167 105 <0.001 

Left circumflex artery (ms) 175 179 240 108 <0.001 

Right coronary artery (ms) 245 198 212 112 <0.001 

Table footnote: CIB, conventional image-based; DL, deep learning. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 
 

Table 4. Vessel-level analysis of the end-diastolic frame estimations of the 1st- and 2nd-analyst and of 

the CIB- and DL-methodology in the NIRS-IVUS sequences acquired at 15fps. 

Studied 

vessel 

Segmentation 

approach 

End-diastolic frames 

corresponding to ECG 

estimations  

End-diastolic frames not 

corresponding to ECG 

estimations  

Missed 

cardiac cycles 

P 

 

 

All studied 

vessels 

1st-analyst 1st estimation 2924 (90.4%) 68 (2.1%) 243 (7.5%)  

1st-analyst 2nd estimation 2940 (90.9%) 66 (2.0%) 227 (7.0%)  

2nd-analyst 3020 (93.2%) 72 (2.2%) 147 (4.5%) <0.001 

CIB-methodology 3036 (90.1%) 202 (6.0%) 131 (3.9%)  

DL-methodology 2993 (93.4%) 39 (1.2%) 174 (5.4%)  

 

Left anterior 

descending 

artery 

 

1st-analyst 1st estimation 1121 (93.5%) 17 (1.4%) 61 (5.1%)  

1st-analyst 2nd estimation 1182 (100.0%) 0 (0.0%) 0 (0.0%)  

2nd-analyst 1121 (93.3%) 19 (1.6%) 61 (5.1%) <0.001 

CIB-methodology 1111 (92.2%) 23 (1.9%) 71 (5.9%)  

DL-methodology 1093 (91.6%) 11 (0.9 %) 89 (7.5%)  

 

Left 

circumflex 

artery 

1st-analyst 1st estimation 887 (86.7%) 12 (1.2%) 124 (12.1%)  

1st-analyst 2nd estimation 949 (89.8%) 46 (4.4%) 62 (5.9%)  

2nd-analyst 965 (93.2%) 24 (2.3%) 46 (4.4%) <0.001 

CIB-methodology 973 (90.4%) 65 (6.0%) 38 (3.5%)  

DL-methodology 958 (94.0%) 8 (0.8%) 53 (5.2%)  

 

Right 

coronary 

artery 

1st-analyst 1st estimation 916 (90.4%) 39 (3.8%) 58 (5.7%)  

1st-analyst 2nd estimation 809 (81.4%) 20 (2.0%) 165 (16.6%)  

2nd-analyst 934 (93.1%) 29 (2.9%) 40 (4.0%) <0.001 

CIB-methodology 952 (87.5%) 114 (10.5%) 28 (2.0%)  

DL-methodology 942 (94.8%) 20 (2.0%) 32 (3.2%)  

Table footnote: CIB, conventional image-based; DL, deep learning; ECG, electrocardiogram. 
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