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The intelligence is in the sound.

—-Verfaille, Zölzer, and Arfib (2006)



A B S T R A C T

Audio effects modeling is the process of emulating an audio effect unit and seeks

to recreate the sound, behaviour and main perceptual features of an analog ref-

erence device. Audio effect units are analog or digital signal processing systems

that transform certain characteristics of the sound source. These transformations

can be linear or nonlinear, time-invariant or time-varying and with short-term and

long-term memory. Most typical audio effect transformations are based on dynam-

ics, such as compression; tone such as distortion; frequency such as equalization;

and time such as artificial reverberation or modulation based audio effects.

The digital simulation of these audio processors is normally done by designing

mathematical models of these systems. This is often difficult because it seeks to

accurately model all components within the effect unit, which usually contains

mechanical elements together with nonlinear and time-varying analog electronics.

Most existing methods for audio effects modeling are either simplified or opti-

mized to a very specific circuit or type of audio effect and cannot be efficiently

translated to other types of audio effects.

This thesis aims to explore deep learning architectures for music signal process-

ing in the context of audio effects modeling. We investigate deep neural networks

as black-box modeling strategies to solve this task, i.e. by using only input-output

measurements. We propose different DSP-informed deep learning models to em-

ulate each type of audio effect transformations.

Through objective perceptual-based metrics and subjective listening tests we

explore the performance of these models when modeling various analog audio ef-

fects. Also, we analyze how the given tasks are accomplished and what the models

are actually learning. We show virtual analog models of nonlinear effects, such as

a tube preamplifier; nonlinear effects with memory, such as a transistor-based lim-

iter; and electromechanical nonlinear time-varying effects, such as a Leslie speaker

cabinet and plate and spring reverberators.

We report that the proposed deep learning architectures represent an improve-

ment of the state-of-the-art in black-box modeling of audio effects and the respec-

tive directions of future work are given.
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1
I N T R O D U C T I O N

Audio effects are widely used in various media such as music, live performances,

television, films or video games. In the context of music production, audio effects

are mainly used for aesthetic reasons and are usually applied to manipulate the

dynamics, spatialisation, timbre or pitch of vocal or instrument recordings. This

manipulation is achieved through effect units, or audio processors, that can be

linear or nonlinear, time-invariant or time-varying and with short-term or long-

term memory.

Most of these effects can be implemented directly in the digital domain through

the use of digital filters and delay lines. Nevertheless, modeling specific effect units

or analog circuits and their salient perceptual qualities has been heavily researched

and remains an active field. This is because their analog circuitry, often together

with mechanical elements, yields a nonlinear and time-varying system which is

difficult to fully emulate digitally.

Methods for modeling audio effects mainly involve circuit modeling and opti-

mization for specific analog components such as vacuum-tubes, operational ampli-

fiers or transistors. Such audio processors are not easily modeled, requiring com-

plex, customized digital signal processing (DSP) algorithms. This often requires

models that are too specific for a certain circuit or making certain assumptions

when modeling specific nonlinearities or components. Therefore such models are

not easily transferable to different effects units since expert knowledge of the type

of circuit being modeled is always required. Also, musicians tend to prefer analog

counterparts because their digital implementations may lack the broad behaviour

of the analog reference devices.

In recent years, deep neural networks (DNN) for music have experienced a sig-

nificant growth. Most music applications are in the fields of music information

retrieval, music recommendation, and music generation. End-to-end deep learn-

ing architectures, where raw audio is both the input and the output of the system,

follow black-box modeling approaches where an entire problem can be taken as

a single indivisible task which must be learned from input to output. Thus, the

desired output is obtained by learning and processing directly the incoming raw

1



1.1 outline 2

audio, which reduces the amount of required prior knowledge and minimizes the

engineering effort.

Prior to this PhD project, deep learning architectures using this principle, i.e.

processing directly raw audio, had not been explored for audio processing tasks

such as audio effects modeling, although they have been investigated for various

music processing tasks (see Section 3.8).

Nevertheless, DNNs for audio effects modeling have recently become an emerg-

ing field and have been investigated as end-to-end methods or as parameter esti-

mators of audio processors (see Section 3.9). Most of the end-to-end research has

focused on modeling nonlinear audio processors with short-term memory, such

as distortion effects. Moreover, the methods based on parameter estimation are

based on fixed audio processing architectures. As a result, generalization among

different types of audio effect units is usually difficult. This lack of generalization

is accentuated when we take into account the broad characteristics of the different

types of audio effects, some of which are based on highly complex nonlinear and

time-varying systems whose modeling methods remain an active field.

In this thesis, we aim to investigate a general-purpose deep learning architecture for

audio processing in the context of audio effects modeling. Thus, our motivation is to

demonstrate the feasibility of DNNs as audio processing blocks for generic black-

box modeling of all types of audio effects. In this way, given an arbitrary audio

processor, we research whether a neural network learns and applies the intrinsic

characteristics of this transformation.

In this respect, we explore whether a deep neural network is capable of recreating the

sound, behaviour and main perceptual features of various types of audio effects. Based on

the modeling capabilities of DNNs together with domain knowledge from digital

audio effects, we propose different deep learning architectures and investigate if

these models can process and output audio that matches the sonic and percep-

tual qualities of a reference audio effect. Throughout this thesis, we measure the

performance of the models via objective perceptual-based metrics and subjective

listening tests.

1.1 outline

Chapters 2 and 3 present the relevant literature related to digital audio effects,

audio effects modeling and deep learning. In Chapter 4, as a proof-of-concept, we

implement a novel deep learning architecture to model linear effects such as equal-
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ization (EQ). Based on end-to-end convolutional neural networks (CNN), we in-

troduce a general-purpose architecture for equalization matching. Thus, by using

an end-to-end learning approach, the model approximates the equalization target

as a content-based transformation without directly finding the transfer function.

We show the model performing matched equalization for shelving, peaking, lowpass

and highpass digital equalizers.

In Chapter 5 we build on the previous model in order to emulate much more

complex transformations such as nonlinearities. Also, we analyse a model solely

based on temporal dilated convolutions, thus we investigate end-to-end DNNs for

modeling linear and nonlinear audio effects with short-term memory. We explore

nonlinear emulation as a content-based transformation without explicitly obtain-

ing the solution of the nonlinear system. We show the model performing nonlinear

modeling for distortion, overdrive, amplifier emulation and combinations of linear and

nonlinear digital audio effects.

Since the previous architectures do not generalize to transformations with long

temporal dependencies such as modulation based audio effects, in Chapter 6 we

explore how a DNN can learn the long-term memory which characterizes these

effect units as well as the possibilities to match nonlinearities within the audio

effects. We build on the preceding models and we explore whether a latent-space

based on recurrent neural networks (RNN) or temporal dilated convolutions is

able to learn time-varying transformations. We show the model matching mod-

ulation based digital audio effects such as chorus, flanger, phaser, tremolo, vibrato,

auto-wah, ring modulator and Leslie speaker. Furthermore, we extend the applica-

tions of the model by including nonlinear time-invariant audio effects with long

temporal dependencies such as compressor and multiband compressor.

The previous chapters have focused on modeling several linear and nonlinear

time-varying and time-invariant digital audio effects. Thus, in Chapter 7, through

objective perceptual-based metrics and subjective listening tests we explore the

performance of each of the architectures from Chapters 5-6 when modeling vari-

ous analog audio effects. We show virtual analog models of nonlinear effects, such

as a vaccum-tube preamplifier; nonlinear effects with long-term memory, such as a

transistor-based limiter; and nonlinear time-varying effects, such as the rotating horn

and rotating woofer of a Leslie speaker cabinet.

Drawing further connections between DNNs and signal-processing systems in

Chapter 8, we propose a DSP-informed deep learning architecture for the model-

ing of artificial reverberators. We show the model matching plate and spring rever-



1.2 contributions 4

berators and we explore the capabilities of DNNs to learn such highly nonlinear

electromechanical responses. In order to measure the performance of the model,

we conduct a perceptual evaluation experiment and we also analyze how the given

task is accomplished and what the model is actually learning.

1.2 contributions

The principal contributions of this thesis are:

• Chapter 4: a novel deep learning architecture to perform matched equaliza-

tion: Convolutional EQ modeling network (CEQ). To the best of our knowledge,

this work represents the first DNN for end-to-end black-box modeling of

linear audio effects.

• Chapter 5: a novel deep learning architecture which represents the state-of-

the-art for black-box modeling of nonlinear and linear audio effects. Thus,

in this chapter we introduce the Convolutional Audio Effects modeling network

(CAFx) and we also review the Feedforward WaveNet Audio Effects modeling

network (WaveNet), which is based on active research (Rethage et al., 2018).

• Chapter 6: two general-purpose deep learning architectures to model au-

dio effects with long-term memory: the Convolutional Recurrent Audio Effects

modeling network (CRAFx) and the Convolutional and WaveNet Audio Effects

modeling network (CWAFx). These architectures build on Chapter 5 and are

based on RNNs and temporal dilated convolutions respectively. In addition,

they represent state-of-the-art DNN architectures to model nonlinear time-

varying audio effects, and in general, to learn long temporal dependencies

for end-to-end audio processing tasks.

• Chapter 7: through objective perceptual-based metrics and subjective listen-

ing tests we perform a systematic comparison between the previous archi-

tectures. We report that models containing recurrent layers are able to learn

long temporal dependencies and therefore outperform other architectures.

• Chapter 8: a novel signal processing-informed DNN to model reverberation:

the Convolutional Recurrent and Sparse Filtering Audio Effects modeling network

(CSAFx). This network uses domain specific insights, such as sparse FIR fil-

ters, within a deep learning framework. Thus introducing a more explainable

network which also outperforms the previous RNN-based model. The pro-

posed architecture represents the state-of-the-art of deep learning for black-

box modeling of artificial reverberators.
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2
A U D I O E F F E C T S

In this chapter and in the next chapter, we present an overview of the necessary

background that is required to motivate a deep learning approach to the mod-

eling of audio effects. We introduce the signal processing characteristics of the

different types of audio effects followed by the different modeling methods and

their technical challenges. Furthermore, Appendix A presents the relevant audio

representations used throughout this thesis.

2.1 equalization - eq

EQ is an audio effect widely used in the production and consumption of music

(Välimäki and Reiss, 2016). It consists of the modification of frequency content

through positive or negative gains which change the harmonic and timbral char-

acteristics of the audio. This is performed for different purposes, such as a correc-

tive/technical filter to reduce masking or leakage within a mixing task, to modify

the frequency response of a speaker system, or as an artistic or creative tool when

recording a specific audio source.

An equalizer is normally implemented via a filter bank whose coefficients are

obtained from the designed cut-off frequency fc and quality factor Q. In general,

EQ is performed through a gain G at a given fc and Q, and it can be applied

in the time-domain and frequency-domain (Verfaille et al., 2006). The filter bank

consists of Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filters,

whose main difference corresponds to the absence or presence of feedback loops

(Gaydecki, 2004). The non-recursive FIR discrete difference equation is

y(n) =

M−1∑
k=0

ak · x(n− k), (2.1)

where y(n) is the output signal, x(n) is the input signal and ak correspond to

the M filter coefficients. This non-recursive system is characterized by being a

weighted sum of delayed inputs, thus a general FIR filter consists of a feed-forward

system with M− 1 delay lines. The recursive IIR discrete difference equation is

6



2.1 equalization - eq 7

y(n) =

M−1∑
k=0

ak · x(n− k) −

N∑
k=1

bk · y(n− k). (2.2)

The IIR systems are characterized by a weighted sum of delayed inputs and

outputs. This feedback system consists of an input delay line of M− 1 elements

and an output delay line of N elements. The recursive coefficients are bk.

The frequency-domain behaviour of digital filters is commonly described with

the Z-transform of the input signal X(z) and output signal Y(z), i.e. the transfer

function H(z) (Gaydecki, 2004). The main characteristic of the Z-Transform is the

time-shifting property, which means that a multiplication by z−n delays a signal

sample by n intervals. The transfer function of the IIR filter from Eq. (2.2) is

H(z) =
Y(z)

X(z)
=

∑M−1
k=0 ak · z−k

1+
∑N
k=1 bk · z−k

. (2.3)

The various types of filters can be classified into the following classes (Zölzer,

2011).

• Lowpass: attenuates frequencies above fc and Q determines a boost or reso-

nance of frequencies around fc.

• Highpass: attenuates frequencies below fc and Q determines a boost or reso-

nance of frequencies around fc.

• Bandpass: attenuates frequencies above and below a frequency band with band-

width fb and center frequency fc. Q is the relative bandwidth fc/fb. A ban-

dreject filter attenuates frequencies within the frequency band.

• Shelving: a low-frequency shelving filter (lowshelf ) boosts or cuts frequencies

below fc while preserving frequencies above fc. A high-frequency shelving fil-

ter (highshelf ) boosts or cuts frequencies above fc while preserving frequencies

below fc. Q determines the resonance of frequencies around fc.

• Peaking: boosts frequencies between flc and fhc while preserving frequen-

cies outside this frequency band. A notch filter cuts frequencies within the

frequency band.

• Allpass: allows all frequencies, but modifies the phase relationships of the fre-

quencies of the input signal. In general, the cut-off frequency fc is where the

phase response reaches −90°and Q sets the bandwidth.

These types of filters can be implemented via FIR or IIR filters whose coefficients

determine G, fc and Q.

Linear Time Invariant (LTI) systems such as FIR or IIR filters can be character-

ized by their impulse response, frequency response or transfer function (Smith,
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2010). Thus, if the impulse response h(n) of a system is known, the output signal

y(n) can be obtained via a discrete convolution with the input signal x(n). Taking

into account that convolving time-domain signals is the same as multiplying their

frequency representation (Pestana, 2013), filtering is described by

y(n) =

∞∑
k=−∞ x(k) · h(n− k) = x(t) ∗ h(t)→ Y(f) = X(f) ·H(f), (2.4)

where ∗ corresponds to the convolution operator, f denotes frequency, H(f) is the

frequency response of the system and X(f), and Y(f) are the frequency-domain

representations of the input and output signals respectively.

In general, the convolution of two signals means filtering one with the other

(Zölzer, 2011). In this manner, EQ can be described with a set of time-domain

convolutions, where the frequency response of the filter bank can be expressed

through various signals in the time-domain and the equalized audio signal is ob-

tained through the respective convolutions.

2.2 matched equalization

Most existing methods for matched EQ show effective performance and have been

implemented to obtain the filter coefficients in order to match a specific frequency

response. Välimäki and Reiss (2016) provide a review of the different state-of-the-

art approaches. These methods apply numerical optimization to find a transfer

function that corresponds to a given complex or magnitude frequency response.

Most common techniques are based on the equation error method (Smith, 2007),

the Yule-Walker algorithm (Friedlander and Porat, 1984), the Steiglitz-McBride

method (Jackson, 2008) and the frequency warped method (Härmä et al., 2000).

Within an automatic mixing framework (De Man et al., 2017), automatic EQ

corresponds to automatically equalizing a mix based on music production criteria

or the spectrum of a target mix. Perez-Gonzalez and Reiss (2009, 2011) explored

multitrack EQ as a cross-adaptive audio effect, where the processing of an indi-

vidual track depends on the content of all the tracks involved, then, the gains of

a five filter, first order, filter bank were obtained based on a perceptual loudness

weighing.

Given the raw multitrack recording and the final mixture, Barchiesi and Reiss

(2010) used least-squares optimization to estimate the gains and f0 of FIR filters.

Mimilakis et al. (2013) proposed a pitch tracking system to perform automatic

EQ within a mastering task, where the selected pitches are considered as center
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frequencies for a set of second order peaking filters. Ma et al. (2013) used least

squares fitting to equalize an audio signal by using IIR filters with arbitrary fre-

quency responses. A cross-adaptive EQ was implemented in (Matz et al., 2015),

where center and cut-off frequencies of peaking and shelving filters were obtained

through the minimization of spectral masking and source separation. Similarly,

based on unmasking, Hafezi and Reiss (2015) obtained the center frequencies and

gains of peaking filters and Ronan et al. (2018) attains the gains of a six-band

equalizer based on second-order IIR filters.

Based on a perceptual task, Reed (2000) proposed a method where the model is

trained manually by the users and through nearest neighbor techniques the equal-

izer gains are obtained in order to match the training data. In a similar approach,

Sabin and Pardo (2009); Pardo et al. (2012) investigated a model that associates

the gain of each frequency band with the user’s training data. Vairetti et al. (2018)

proposed an optimization method to match the complex frequency response of a

target loudspeaker or room EQ.

In order to obtain optimal results, most automatic EQ implementations rely on

fixed architectures of filter banks or require prior knowledge of the type of filters

to be modeled. Therefore, in Chapter 4 we explore a general-purpose architecture

capable of performing matched EQ given an arbitrary frequency response.

2.3 nonlinear audio effects

Nonlinear processors correspond to all the signal processing systems that do not

satisfy the linearity condition, i.e. systems that do not have the homogeneous or

additive property (Chen, 1998). These systems are characterized by a harmonic

and intermodulation distortion consisting of the introduction of intentional or un-

intentional harmonic or inharmonic frequency components that are not present in

the input signal (Zölzer, 2011). Harmonic distortion is when the system introduces

energy at every multiple, or harmonic, of each input frequency. Intermodulation

distortion occurs when the system inserts frequency addition or subtraction be-

tween the frequency components of the input signal (Reiss and McPherson, 2014).

For example, given x(n) = sin(2πf1Tn) + sin(2πf2Tn) where x(n) is the input

signal containing the frequency components f1 and f2 and T is the sampling pe-

riod, harmonic distortion occurs when the output signal of a nonlinear system

y(n) contains sin(2π(Kf1)Tn) where K ∈ Z. Likewise, intermodulation distortion
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occurs when sin(2π(f1 + f2)Tn) or sin(2π(f1 − f2)Tn) are present in the output

signal.

In the case of musical signals, due to aesthetic reasons, harmonic distortion is a

desirable property of nonlinear audio processors, while intermodulation distortion

is generally avoided. (Reiss and McPherson, 2014). Thus, nonlinear audio effects

are extensively used by musicians and sound engineers and can be classified into

two main types of effects: dynamic processors such as compressors or limiters;

and distortion effects such as tube amplifiers (Zölzer, 2011).

2.3.1 Distortion processors

Distortion effects are mainly used for aesthetic reasons and are usually applied

to electric musical instruments such as electric guitar, bass guitar, electric piano or

synthesizers. The main sonic characteristic of these effects is due to their nonlinear-

ities and the most common processors are overdrive, distortion pedals, tube am-

plifiers and guitar pickup emulators. These effects can be described by their char-

acteristic curve or waveshaping nonlinearity. For example, a waveshaping trans-

formation depends on the amplitude of the input signal and consists in using a

nonlinear function, such as an hyperbolic tangent, to distort the shape of the in-

coming waveform (Puckette, 2007). An instance of a distortion waveshaping curve

is

y(n) =


1, x(n) > 0.6

tanh(x(n)), −0.6 6 x(n) 6 0.6

−1, x(n) < −0.6

, (2.5)

where x(n) and y(n) are the input and output signals, respectively.

Eq. (2.5) can be considered as a memoryless or static nonlinear system. Although

most distortion analog circuits are characterized by a short-term memory behavior,

we consider distortion effects as time-invariant, where the output samples do not

depend on time but only on the current input samples (Reiss and McPherson,

2014).

Distortion effects can be classified into the following types (Zölzer, 2011).

• Overdrive: linear audio effect at low input levels which becomes nonlinear

when driven by higher input levels. It has a warm and smooth sound e.g. tube

amplifiers.
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• Distortion: mainly operates in the nonlinear region of the waveshaping curve

and saturates or clips when reaching the upper or lower input levels. It covers

a tonal area from warmth to crunch.

• Fuzz: operates completely in the nonlinear region. It is characterized by being

a more aggressive style distortion.

2.3.2 Dynamic range processors

Dynamic range processors are nonlinear time-invariant audio effects with long

temporal dependencies, and their main purpose is to alter the variation in volume

of the incoming audio. This is achieved with a varying amplification gain factor,

which depends on an envelope follower along with a waveshaping nonlinearity.

Long-term memory behavior describes these effects, since the output depends

on the current and previous values of the input samples. These effects tend to

introduce a low amount of harmonic distortion, while for tube amplifiers a strong

distortion is desired (Zölzer, 2011).

Usually, the amount of gain depends on different parameters such as threshold,

ratio, attack and release times and knee. For a compressor: threshold is the level above

which compression starts, ratio determines the amount of compression applied,

normally is set as the input/output rate for levels larger than the threshold. Once

the signal level rises above or falls below the threshold level, attack and release

times establish how fast the compressor starts and stops applying compression,

respectively. Knee controls the smoothness of the transition at the threshold point.

The various types of dynamic range processors can be classified into the follow-

ing types of effects (Zölzer, 2011; Reiss and McPherson, 2014).

• Compressor: reduces the dynamics of the input signal by applying a variable

gain. Based on the ratio, this decreased gain is applied to the input signals that

are above the threshold. This can further increase the overall levels of the output

signal thus boosting the loudness.

• Expander: does the opposite of the compressor by increasing the dynamics of

the input signals that are above the threshold.

• Multiband Compressor: applies compression to selected frequency bands via

a filter bank which splits the input signal, so each band is individually com-

pressed.

• Limiter: eliminates any dynamics above the threshold by keeping the output

level constant, i.e. ratio is ∞/1.
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• Noise gate: eliminates any dynamics below the threshold by keeping the output

level muted.

Overall, distortion effects and dynamic range processors are based on the alter-

ation of the waveform which leads to various degrees of harmonic distortion. The

nonlinear behavior of certain components of the effects’ circuit performs this alter-

ation, which can be seen as a waveshaping nonlinearity applied to the amplitude

of the incoming audio signal in order to add harmonic and inharmonic overtones.

See Zölzer (2011) for a further review of other types of nonlinear audio proces-

sors such as de-esser, tape saturation, exciters and enhancers.

2.4 modeling of nonlinear audio processors

Since a nonlinear system cannot be characterized by its impulse response, fre-

quency response or transfer function (Smith, 2010), digital emulation of distortion

effects has been extensively researched (Pakarinen and Yeh, 2009).

Different methods have been proposed such as memoryless static waveshaping

(Möller et al., 2002), where input-output measurements are used to approximate

the nonlinearity; dynamic nonlinear filters (Karjalainen et al., 2006), where the wave-

shaping curve changes its shape as a function of the input signal or system-state

variables; circuit simulation techniques (Yeh et al., 2008; Yeh and Smith, 2008; Yeh

et al., 2010), where a complete study of the analog circuitry is performed and non-

linear filters are derived from the differential equations that describe the circuit;

and analytical methods (Abel and Berners, 2006; Hélie, 2006), where the nonlinearity

is modeled via Volterra series theory or nonlinear black-box approaches such as

Wiener and Hammerstein models (Gilabert Pinal et al., 2005; Eichas and Zölzer,

2016, 2018).

Modeling of dynamic range processors, such as compressors, has been based

on black-box methods such as system identification techniques, where a model is

structured using only the measurements of the input and output signals; and

white-box methods where a complete study of the internal circuit is carried out,

such as circuit simulation.

In (Kröning et al., 2011), state-space models are used to simulate the circuit

of a specific analog guitar compressor. Black-box (Eichas et al., 2017) and gray-

box (Gerat et al., 2017) modeling of general-purpose dynamic range compressors

has been investigated via input-output measurements and optimization routines.
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The latter differs from black-box modeling, since gray-box approaches use some

information about the circuit together with input-output signals.

Generalization among different audio effect units is usually difficult since these

modeling methods are often either simplified or optimized to a very specific cir-

cuit. This lack of generalization is accentuated when we consider that each audio

processor is also composed of components other than the nonlinearity. These com-

ponents also need to be modeled and often involve filtering before and after the

nonlinearity, as well as short and long temporal dependencies such as hysteresis

or attack and release gates.

Automatic dynamic range compression has also been investigated recently. Sim-

ilar to automatic EQ, it corresponds to the use or modeling of dynamic range

processors in order to match a target sound (Sheng and Fazekas, 2017) or to per-

form certain audio engineering tasks, such as mixing (Maddams et al., 2012; Gian-

noulis et al., 2013; Ma et al., 2015) or mastering (Hilsamer and Herzog, 2014). This

is achieved based on the selection of low-level audio features to cross-adaptively

(Verfaille et al., 2006) control or estimate the parameters of the respective dynamic

range processors. These implementations are based on fixed architectures of the

processors and also on predetermined low-level audio features, which makes the

models too specific for a given task. Thus, the specificity of these methods certainly

represents a restriction since mixing and mastering are carried out with a wide va-

riety of audio processors. Besides, the models cannot be extended to complex or

unusual sounds.

In Chapter 5 and Chapter 6 we explore general-purpose architectures to model

nonlinear audio effects with short-term and long-term memory, respectively. Ta-

ble 2.1 includes a summary of the different approaches for virtual analog modeling

of noninear audio effects.

2.5 time-varying audio effects

Audio processors whose parameters are modified periodically over time are often

referred as time-varying or modulation based audio effects. Thus, time-varying

audio effects involve audio effect units that include a modulator signal within their

analog or digital implementation (Reiss and McPherson, 2014). These modulator

signals are in the low frequency range (usually below 20 Hz). Their waveforms

are based on common periodic signals such as sinusoidal, squarewave or sawtooth

oscillators and are often referred to as Low Frequency Oscillators (LFOs).
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The LFO periodically modulates certain parameters of the audio processors to

alter the timbre, frequency, loudness or spatialization characteristics of the audio.

This differs from time-invariant audio effects which do not change their behavior

over time. Based on how the LFO is employed and the underlying signal process-

ing techniques used when designing the effect units, we can classify modulation

based audio effects into time-varying filters such as phaser or wah-wah; delay-line

based effects such as flanger or chorus; and amplitude modulation effects such as

tremolo or ring modulator (Zölzer, 2011).

2.5.1 Time-varying filters

Time-varying filters correspond to filters whose parameters, such as gain, cut-off

frequency and Q factor, can be controlled by modulator signals. Special sonic char-

acteristics are obtained when different types of modulations are applied to the

various types of filters, as in the following effect units.

• Phaser: or phase shifter is implemented through a cascade of allpass or notch

filters. The characteristic sweeping sound of this effect is obtained by modu-

lating the center frequency of the filters, which creates phase cancellations or

enhancements when combining the filter’s output with the input audio. This

phase shifting creates a series of notches in the frequency domain which re-

sult from destructive interference. Thus, the sound of the phaser results from

the time-varying control of these notch frequencies, which can be designed or

placed arbitrarily along the frequency spectrum.

The transfer function of a phaser implemented via a first-order IIR allpass filter

is

H(z) =
z−1 + c

1+ cz−1
, (2.6)

where

c =
tan(πfcT) − 1
tan(πfcT) + 1

, (2.7)

and fc is the cut-off frequency (Zölzer, 2011). Phasers are often modulated via

exponential motion of the notch frequencies (Reiss and McPherson, 2014), thus,

the time-varying behaviour can be described with the following modulation:

fc = α
LFO(2πfLFOTn), (2.8)

where α is the sweep width or frequency range in Hz of the modulation and LFO

is the periodic signal with rate fLFO.
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• Wah-wah: is implemented with a bandpass, peaking, or resonant lowpass filter

with a variable center or cutoff frequency fc, usually controlled by a pedal. If

fc is modulated by an LFO or an envelope follower, the effect is commonly

called auto-wah. The effect is characterized by introducing a vowel-like sound to

the input signal, since the bandwidth fb corresponds to vocal formants in the

spectrum. Thus, the typical ranges of the designed frequency bands are between

400 Hz and 1200 Hz (Reiss and McPherson, 2014).

The transfer function of an auto-wah modulated by an LFO and implemented

via a second-order bandpass filter is (Zölzer, 2011)

H(z) =
1

2

[
1−

−c+ d(1− c)z−1 + z−2

1+ d(1− c)z−1 − cz−2

]
, (2.9)

where

c =
tan(πfbT) − 1
tan(πfbT) + 1

, (2.10)

and

d = − cos(2πfcT). (2.11)

The LFO that controls the center frequency fc is

fc = fmin + (1+αLFO(2πfLFOTn)) , (2.12)

where fmin is the lowest center frequency.

The second type of auto-wah is via an envelope follower. Thus, fc is controlled

by the amplitude of the signal. This modulation works similarly and has the

same controls and long-term memory behavour as the varying-gain of the com-

pressor in Section 2.3.2.

2.5.2 Delay-line based effects

Delay lines have the function of introducing a time delay between their input and

output. Accordingly, delay-line based effects rely on the modulation of the length

of the delay lines. Multiple variations of this modulation result in different sonic

characteristics and audio effects, such as the following (Smith, 2010).

• Flanger: or flanging is an effect based on the mixing of two identical signals,

where one of the signals is delayed with a modulated delay time. Since a comb

filter consists of adding a delayed version of a signal to itself, a flanger is imple-

mented in the digital domain via a modulated feedforward comb filter which

causes constructive and destructive interference. Unlike the phaser, the notch
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and peak frequencies caused by the flanger’s sweep comb filter effect are equally

spaced in the spectrum, thus causing the known metallic sound associated with

this effect.

The difference equation of a flanger implemented via a first-order FIR comb

filter is (Smith, 2010)

y(n) = x(n) + gx
(
n− (M+αLFO(2πfLFOTn))

)
, (2.13)

where the delay M is generally within the range of 1 to 10 ms and is modulated

according to a periodic LFO, typically triangular or sinusoidal. α is the width of

the delay modulation and the depth g sets the amount of delayed signal which

is mixed with the input.

• Chorus: occurs when mixing the input audio with delayed and pitch modulated

copies of the original signal. This is similar to various musical sources playing

the same instrument but slightly shifted in time. This differs from a flanger

since a chorus uses longer delay times, usually from 20 to 30 ms, thus creating

a more subtle effect (Smith, 2010).

The chorus implementation is identical to Eq. (2.13), the only difference is a

longer delay M. Also, since the effect recreates various sources playing in uni-

son, it is usual to implement the chorus with several delayed copies of the input

signal, whose delay times vary in a small and random way.

• Vibrato: consists of a periodic frequency shift. This is achieved by modulating

the input delay time, since variable delay lines can alter the pitch of the input

signal (Puckette, 2007). Thus, to create this pitch shift, the delay is periodically

lengthened and shortened thereby changing the playback speed of the sampled

audio (Reiss and McPherson, 2014).

Unlike a chorus or flanger, the input signal is not mixed with the output of the

delay line. The difference equation of a vibrato implemented with a modulated

delay line is shown below.

y(n) = x
(
n− (M+αLFO(2πfLFOTn))

)
(2.14)

Typical values for the delay time are 5 to 10 ms and a sinusoidal LFO is often

used to emulate musical vibrato (Reiss and McPherson, 2014).
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2.5.3 Amplitude modulation effects

Effect units based on amplitude modulation consist of audio processors where the

amplitude or gain of the input signal varies periodically. This is achieved with a

modulator signal and various techniques have been designed to accomplish this

transformation. The main audio effects based on this principle are the following.

• Tremolo: consists of an amplitude modulation where an LFO is used to directly

vary the amplitude of the incoming audio, creating in this way a perceptual

temporal fluctuation. This modulation is achieved by directly multiplying the

input signal with the modulator LFO.

y(n) = x(n) (1+αLFO(2πfLFOTn)) (2.15)

Where α is the depth of the amplitude modulation. Typical values for the rate

fLFO are from 0.5 to 20 Hz and sine, triangular and square waves are usually the

LFO waveform.

• Ring Modulation: is similar to the amplitude modulation of the tremolo, al-

though the modulation is achieved by having the input audio multiplied by a

signal with higher carrier frequencies. The characteristic sound of this effect is

based on the multiplicative properties of its input and carrier signal. Given a

modulating carrier signal m(n), which is usually a sinusoidal signal, the output

of a ring modulator is based on the following equation.

y(n) = x(n)m(n) (2.16)

Thus, with x(n) and m(n) as sinusoids of two frequency components f1 and

f2, respectively, and taking into account that the multiplication of two sinusoids

results in the sum and difference of its frequencies (Puckette, 2007), the ring

modulation between these signals is shown below.

y(n) = sin(2πf1Tn) cos(2πf2Tn) (2.17)

y(n) =
1

2

[
sin(2π(f1 + f2)Tn) + sin(2π(f1 − f2)Tn)

]
(2.18)

This type of modulation is the same as the intermodulation distortion described

in Section 2.3. If the carrier signal comprises several spectral components, the
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same effect is produced in each of the components, thus obtaining a quite par-

ticular and complex audible effect (Zölzer, 2011).

In the analog domain, this effect is commonly implemented with a diode bridge,

which adds a nonlinear behavior and a distinct sound to this effect unit.

• The Leslie speaker: is a type of modulation based effect that combines ampli-

tude, frequency and spatial modulation. It consists of a vacuum-tube amplifier

and crossover filter followed by a rotating horn and rotating woofer inside a

wooden cabinet. This effect can be interpreted as a combination of tremolo,

Doppler effect and reverberation (see Section 2.7).

A crossover filter is a filter bank that splits the incoming audio into two or more

adjacent frequency bands. It is usually implemented with lowpass, bandpass

and highpass IIR filters. The rotating speakers are preceded by a 800 Hz passive

crossover filter, i.e. the horn and woofer amplify frequencies above and below

800 Hz respectively. The rotation of both speakers is achieved with slow and

fast A.C. induction motors (Henricksen, 1981).

Two speeds are available for each rotating speaker; tremolo for a fast rotation and

chorale for a slow rotation. The rotation frequency of the horn is approximately 7

Hz and 0.8 Hz for the tremolo and chorale settings respectively, while the woofer

has slower speed rotations (Herrera et al., 2009).

Amplitude modulation is achieved by the increase and decrease of sound in-

tensity due the rotation of the speakers. Frequency modulation occurs due to

the Doppler effect. Thus, as the speakers rotate toward the listener; the pitch

increases, as they rotate away, the pitch decreases. Furthermore, since musical

sources are projected throughout the respective listening room, spatial modu-

lation occurs as the musical sources undergo multiple reflections (Henricksen,

1981). In addition, by moving closer to the rotating speaker, reverberation occurs

along the walls of the wooden cabinet, which also acts as a resonant body thus

increasing the wide and unique sonic characteristics of this audio processor.

Therefore, the Leslie speaker cabinet is an electromechanical audio effect con-

sisting of a highly complex nonlinear and time-varying spatial system.

2.6 modeling of time-varying audio processors

Most of the time-varying processors can be implemented directly in the digital

domain through the use of digital filters and delay lines. Nevertheless, specific

perceptual qualities of the analog implementations of these effect units are due to
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the nonlinearities introduced by certain circuit components, such as operational

amplifiers, diodes, transistors or integrated chips. Methods for modeling such au-

dio processors remain an active field of research, which mainly involve circuit

modeling and optimization for specific analog components.

Therefore, modeling time-varying audio effects has been explored mostly via

white-box methods. In (Huovilainen, 2005), phasers implemented via Junction Field

Effect Transistors (JFET) and Operational Transconductance Amplifiers (OTA) are

modeled using circuit simulation techniques that discretize the differential equa-

tions that describe these components. Using a similar circuit modeling procedure,

delay-line based effects are also modeled, such as flanger and chorus as imple-

mented with Bucket Brigade Delay (BBD) chips.

BBD circuits have been widely used in analog delay-line based effect units and

several digital emulations have been investigated. Raffel and Smith (2010) emu-

lated BBD devices through circuit analysis and electrical measurements of the

linear and nonlinear elements of the integrated circuit. Holters and Parker (2018)

modeled BBDs as delay-lines with fixed length but variable sample rate.

Based on BBD circuitry, a flanger effect was modeled in (Mačák, 2016) via the

nodal DK-method. This is a common method in virtual analog modeling (Yeh,

2012) where nonlinear filters are derived from the differential equations that de-

scribe an electrical circuit. In (Holters and Zölzer, 2011), a wah-wah pedal is im-

plemented using the nodal DK-method and the method is extended to model

the temporal fluctuations introduced by the continuous change of the pedal. In

(Eichas et al., 2014), the MXR Phase 90 phaser effect is modeled via a thorough cir-

cuit analysis and the DK-method. This effect unit is based on JFETs, and voltage

and current measurements were performed to obtain the nonlinear characteristics

of the transistors.

Amplitude modulation effects such as an analog ring modulator were modeled

in (Parker, 2011b), where the diode bridge is emulated as a network of static non-

linearities. The Leslie speaker cabinet represents a special case of modulation based

audio effects, since amplitude and frequency modulation occurs along with the

reverberation and structural resonance of the wooden cabinet. In (Smith et al.,

2002), the rotating horn of the Leslie speaker is modeled via varying delay-lines,

artificial reverberation and physical measurements from the rotating loudspeaker.

Likewise, (Pekonen et al., 2011; Herrera et al., 2009) modeled the Leslie speaker horn

and woofer through time-varying spectral delay filters and time-varying FIR filters

respectively. In these Leslie speaker emulations, various physical characteristics of
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the effect are not taken into account, such as the frequency-dependent directivity

of the loudspeakers or the effect of the wooden cabinet.

In (Kiiski et al., 2016), based on all-pass filters and multiple measurements of

impulse responses, a gray-box modeling method for linear time-varying audio ef-

fects is proposed. The method was based on input-output measurements but the

time-varying filters were based on knowledge of analog phasers. Another method

to model time-varying audio effects is discretizing electrical circuit elements via

Wave Digital Filters (WDF) (De Sanctis and Sarti, 2009). The Hammond organ vi-

brato/chorus was modeled using WDFs in (Werner et al., 2016), and Bogason and

Werner (2017) performed circuit modeling through WDFs to emulate modulation

based effects that use OTAs.

In Chapter 6 we explore general-purpose architectures to model several linear

and nonlinear time-varying audio effects. In Chapter 7 we show virtual analog

models of electromechanical nonlinear time-varying processors such as the rotat-

ing horn and rotating woofer of a Leslie speaker cabinet. Table 2.1 includes a summary

of the different approaches for virtual analog modeling of time-varying audio ef-

fects.

2.7 artificial reverberation

Reverberation occurs when delayed and attenuated copies of the direct sound

appear as reflections. Each reflection is frequency dependent and defined by the

directivity of the sound source and the physical attributes of the reflecting surfaces

(Zölzer, 2011). The reflections that occur immediately after the sound event are con-

sidered early reflections. These are not perceived individually, but as a combination

of all the reflections. Late reflections appear more randomly and are characterized

by increasing the echo density, that is, the number of echoes per time unit, which

generates a diffuse reverberation. Perceptually, the reflections merge into a sound

of continuous decay (Reiss and McPherson, 2014). Therefore, the impulse response

of an acoustic space is often divided into: direct sound, early reflections and late

reflections.

In the music and film industry, artificial reverberation was initially researched

as a way of approximating the reflections occurring in room acoustics. This led to

techniques that simulate reverberation, such as chamber, plate, spring and digital

reverberators (Välimäki et al., 2012).
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2.7.1 Digital reverberators

Reverberation is approximately linear and time-invariant. Thus, most of the digital

methods that emulate reverberation attempt to match the perceptual characteris-

tics of the respective impulse responses. There are various methods which rely on

digital filters, delay networks and convolution-based algorithms.

• Comb and Allpass filters: Schroeder and Logan (1961) proposed a digital rever-

berator based on a parallel filter bank of feedback comb filters and a series of

allpass filters. The difference equation of a feedback comb filter is

y(n) = x(n−M) + gy(n−N), (2.19)

where M and N are the input and output delay times respectively, and g is

the feedback coefficient. When M is large, the impulse response of the filter is

heard as discrete echoes or reflections which are exponentially decaying and

uniformly spaced in time. Thus, by adjusting the delay time of each feedback

comb filter, the parallel filter bank simulates the reverberant reflections of an

acoustic environment.

The allpass filters emulate the late reflections of the reverberator, for which the

difference equation is

y(n) = x(n−M) − gx(n) + gy(n−M). (2.20)

Each allpass filter also produces a series of decaying echoes, thus increasing

overall echo density, and expanding the previous single reflections into many

reflections. This simulates the diffuse reverberation.

Moorer (1979) included an FIR lowpass into the feedback loop of each comb

filter to model more accurately the early reflections of the impulse response.

This is since the feedback comb filters do not attenuate the high frequencies

and this do not replicate typical physical attributes of the reflecting surfaces.

More complex structures can be built on the above methods, such as feedback

delay networks (Jot and Chaigne, 1991; Smith, 2007).

• Sparse pseudo-random algorithms: Sparse FIR filtering has proven to be an ef-

ficient digital reverberation method (Rubak and Johansen, 1999; Välimäki et al.,

2012). Dispersive reflections are approximated via FIR filters within feedback

loops with sparsely placed coefficients. These coefficients are often determined

by a pseudo-random number sequence such as velvet noise (Järveläinen and Kar-

jalainen, 2007).
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Thus, sparse pseudo-random reverberation algorithms use discrete coefficient

values such as -1 and +1, where each one of the coefficients follows an interval

of Ts samples while all the other samples are zero. This greatly improves com-

putational complexity, since this type of filtering can be implemented without

multiplications (Välimäki et al., 2012).

In order to have a high-quality reverberation, 2000 to 4000 coefficients per sec-

ond are needed (Rubak and Johansen, 1999). Also, different types of envelopes

are applied to the output of the FIR filters, this in order to avoid audible artifacts

due to repetition in the feedback loop (Järveläinen and Karjalainen, 2007).

• Convolutional: consists in convolving the input signal with a recorded or es-

timated impulse response of an acoustic environment. The impulse response

can be measured via sinusoidal sweeps, where a linear or logarithmic sweep of

constant amplitude is recorded in the respective acoustic space (Farina, 2000).

Convolutional reverb is implemented via FIR filtering, where each coefficient

corresponds to each value of the impulse response, resulting in a very high-

order filter (Välimäki et al., 2012).

A common approach to overcome this computational load is to use block-based

convolutions and comb and allpass filters (Reiss and McPherson, 2014). Thus,

convolution via FIR filtering generates the early reflections of the impulse re-

sponse, and IIR filters, such as feedback comb and allpass filters, generate the

diffuse reverberation.

2.7.2 Electromechanical reverberators

Electromechanical reverberators such as plate and spring were first used and re-

searched as means to substitute real room reverberation. Currently, they are often

used in music production for aesthetic reasons due to their particular sonic char-

acteristics.

• Plate reverb: is based on a large metal plate which vibrates due to a moving-coil

transducer attached to its centre. This transducer is fed with an amplified dry

input signal and the plate vibrations are read by a pickup sensor and further

amplified (Kuhl, 1958). The plate reverb sound is different from room acoustic

reverberation as the speed of sound is faster in metal than in air, increasing the

echo density (Bilbao, 2009).

This particular response is due to the mechanical and physical characteristics

of the plate. Unlike wave propagation in air, phase and group velocities are
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not constant within a plate. Thus, high frequencies travel faster than low fre-

quencies, which generate the diffused and noisy response. In addition, several

reflections are missing since the mode density of the plate is constant, whereas

in an acoustic space the mode density is frequency dependent (Zölzer, 2011).

The higher echo density and constant mode density characterizes the "smooth"

late reflections of plate reverberators.

Typically, the reverberators are constructed with steel or gold plates, with thick-

ness and surface area of 0.5 mm and 2 m2, respectively.

• Spring reverb: is based on one or various helical springs suspended under

low tension, attached to a magnetic bead and driven via an electromagnetic

coupling (Parker and Bilbao, 2009). The input audio source is transduced to

spring vibrations which are read through a pickup sensor at the opposite end.

The distinct sound of spring reverb is due to the various types of vibrations that

occur, transverse and longitudinal, which cause a peculiar combination of wave

and dispersive propagation (Zölzer, 2011).

Due to the physical characteristics of the helical structures, the frequency re-

sponse is characterized by a cutoff frequency fc which depends on the wavenum-

ber, i.e. the spatial frequency of a wave. Thus, the spring exhibits a group ve-

locity increment for wavenumbers above fc, which is perceived as distorted

echoes at higher rates. Also, the group velocity decreases as the wavenumber

approaches fc, thus respective frequency components are distorted at slower

rates. The group velocity is constant for low wavenumbers, which is perceived

as strong dispersive echoes (Bilbao, 2013).

Common spring reverberators are built with steel helical springs of uncoiled

length of 5 m, coil radius of 4 mm and wire diameter of 0.2 mm.

2.8 modeling of electromechanical reverberators

Although originally developed as substitutes for room reverberators, digital imple-

mentations of these devices have been widely researched due to their distinctive

sounds which has been of great interest among musicians, music producers and

sound engineers.

Plate reverberation has been emulated with different approaches such as numer-

ical simulation techniques, where a finite difference scheme (Bilbao et al., 2006;

Bilbao, 2007; Arcas and Chaigne, 2010) or a modal description (Willemsen et al.,

2017; Ducceschi and Webb, 2016) is derived from the differential equations that
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describe the motion of the plate; and hybrid digital filter-based algorithms (Abel

et al., 2009; Greenblatt et al., 2010; Lee et al., 2010), where convolutional impulse

responses and feedback delay networks are used to model the desired impulse

response.

Similarly, modeling of spring reverberation has been explored as wave digital

filters (Abel et al., 2006), to explicitly model the wave and dispersive propaga-

tion; numerical simulation techniques such as finite difference schemes (Bilbao

and Parker, 2009; Parker and Bilbao, 2009; Bilbao, 2013), and nonphysical model-

ing techniques (Välimäki et al., 2010; Parker, 2011a), where chains of allpass filters

and varying delay lines are used to approximate the dispersive and reverberant

features of spring reverb.

The modeling of these audio processors and their salient perceptual qualities

remains an active research field. Their mechanical elements together with their

analog circuitry yield a spatial system which is difficult to fully emulate digitally.

Most of the methods are based on complete physical models or perceptual sim-

plifications , thus, such models are not easily transferable to different artificial

reverberators or cannot capture the full response of the system. In Chapter 8 we

explore the capabilities of deep neural networks to learn the respective transfor-

mation and perceptual qualities of these electromechanical reverberators.

2.9 conclusion

In this chapter we introduced the signal processing properties of the different

types of audio effects as well as their modeling methods and technical challenges.

This background is required to motivate a deep learning approach to the modeling

of audio effects. Therefore, the technical chapters related to the audio effects and

modeling methods presented in this chapter correspond to; Chapter 4 where we

explore a deep learning architecture for matched EQ; Chapter 5 where we propose

a network for modeling nonlinear audio effects with short-term memory; Chap-

ter 6 where we investigate deep neural networks for modeling audio effects with

long temporal dependencies; Chapter 7 where we show virtual analog models of

a tube-amplifier, a transistor-based limiter and a Leslie speaker cabinet; and Chapter 8

where we propose a network to model artificial reverberators such as plate and

spring reverb.
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Table 2.1: Summary of approaches for virtual analog modeling of nonlinear, time-varying

and time-invariant audio effects with short-term and long-term memory.

Type Audio effect Approach Reference

tube amplifier static waveshaping Möller et al. (2002)

tube amplifier dynamic nonlinear filters Karjalainen et al. (2006)

distortion static waveshaping & numerical methods Yeh et al. (2008)

distortion circuit simulation K-method & WDF Yeh and Smith (2008)

distortion circuit simulation Nodal DK Yeh et al. (2010)

speaker, amplifier analytical method Volterra series Abel and Berners (2006)

Moog ladder filter analytical method Volterra series Hélie (2006)

nonlinear power amplifier black-box Wiener & Hammerstein Gilabert Pinal et al. (2005)

with distortion black-box Wiener Eichas and Zölzer (2016)

short-term tube amplifier black-box Wiener-Hammerstein Eichas and Zölzer (2018)

memory equalization black-box end-to-end DNN Publication I

tube amplifier black-box end-to-end DNN Schmitz and Embrechts (2018)

tube amplifier black-box end-to-end DNN Zhang et al. (2018)

equalization & distortion black-box end-to-end DNN Publication II

tube amplifier black-box end-to-end DNN Damskägg et al. (2019)

tube amplifier, distortion black-box end-to-end DNN Wright et al. (2019)

distortion circuit simulation & DNN Parker and Esqueda (2019)

compressor circuit simulation state-space Kröning et al. (2011)

time-dependent compressor black-box system-identification Eichas et al. (2017)

nonlinear compressor gray-box system-identification Gerat et al. (2017)

compressor black-box end-to-end DNN Hawley et al. (2019)

ring modulator static waveshaping Parker (2011b)

phaser circuit simulation numerical methods Huovilainen (2005)

phaser circuit simulation Nodal DK Eichas et al. (2014)

modulation based with OTAs circuit simulation WDF Bogason and Werner (2017)

flanger with BBDs circuit simulation Nodal DK Mačák (2016)

modulation based with BBDs circuit simulation & system-identification Bogason and Werner (2017)

time-varying Leslie speaker horn digital filter-based & system identification Smith et al. (2002)

Leslie speaker horn & woofer digital filter-based Pekonen et al. (2011)

Leslie speaker horn & woofer digital filter-based Herrera et al. (2009)

flanger, chorus digital filter-based Huovilainen (2005)

modulation based with BBDs digital filter-based Holters and Parker (2018)

modulation based gray-box system-identification Kiiski et al. (2016)

modulation based & compressor black-box end-to-end DNN Publication III
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D E E P L E A R N I N G F O R A U D I O

This chapter covers the fundamentals of deep learning for audio and can be con-

sidered as a brief tutorial on the field. The chapter starts with an introduction to

relevant terms of machine learning and ends with a review of the different ap-

plications of deep learning for music, as well as for audio effects modeling. The

reader with knowledge of deep learning for audio can skip Sections 3.1 to 3.7 and

go directly to Sections 3.8 and 3.9. Nevertheless, it is recommended to review Sec-

tion 3.3, as it introduces Smooth Adaptive Activation Functions which is a specific

activation function that is used in most of the proposed models of this thesis.

3.1 machine learning concepts

Machine learning is a field of Artificial Intelligence (AI) that is based on the con-

struction of mathematical and statistical models directly from the data. Therefore,

through different learning algorithms, the models can make the respective predic-

tions or decisions given new examples of input data. Most of the machine learning

tasks can be divided into the following types (Bishop, 2006).

• Classification: The main objective of this task is to identify to which set of

categories or classes a new input belongs. Thus, the model learns a function

f : Rn 7→ {1, ...,k}, where k is the number of classes. An example of a clas-

sification task is genre recognition, where the input is a representation of a

particular song, and the output is a probability distribution over the respective

genre classes.

• Regression: This task is based on the prediction of a continuous numerical value

given a new input. For instance, the model learns a function f : Rn 7→ R. An

example of a regression task is the prediction of the next audio sample or the

estimation of musical tempo. All modeling tasks in this thesis are regression

tasks.

To perform these tasks, machine learning methods can be classified according

to the arrangement of the dataset or training data. A dataset is a collection of

examples or data points, where each example consists of a feature vector x ∈ Rn,

26
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which represents a quantitative measure of the respective input data. For example,

the features of an audio signal may be the sample values of the waveform or

the respective frequency representation. Most of the learning algorithms can be

divided into the following categories (Goodfellow et al., 2016).

• Supervised learning: It is based on learning a function from a set of training

examples, each of which consists of pairs of an input feature vector x and its

desired output y. The trained models learn a function that maps the input to an

output, thus predicting y from x usually by estimating the conditional probabil-

ity p(y|x). Overall, most of the machine learning applications for music use this

method, e.g. instrument or mood classification, beat tracking, melody extraction,

score alignment, etc.

• Unsupervised learning: It is based on learning representations or transforma-

tions of the input data without any targets or labels. The main objective is to

learn useful properties of the structure of the dataset, thus, given various ex-

amples x, the trained models often learn the probability distribution p(x). Un-

supervised learning algorithms are often used as an initial step before solving

a particular task through a supervised learning method, e.g. feature learning

is often done before performing audio classification (Hamel and Eck, 2010; Fu

et al., 2010).

3.2 deep neural networks

Deep learning is a field of machine learning that is based on learning of representa-

tions directly from the data. This is usually achieved by stacking successive layers

of artificial neural networks. The number of stacked layers determines the depth

of the model, thus giving the characteristic name of this field as the models are

usually deep.

A deep neural network can be considered as a function approximator f̂ (x; W),

which learns the parameters or weights W in order to match the function f (x).

Thus, within a supervised learning framework, where each example x has its cor-

responding target y = f (x), the objective of the model is to produce an output

ŷ = f̂ (x; W) which closely approximates y (Goodfellow et al., 2016).

Artificial neural networks

Artificial neural networks are systems characterized by the number of units and

layers and loosely based on the neurons of biological brains (Goodfellow et al.,
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2016). Each layer within a network is represented as a vector, where each element

or scalar value corresponds to a single unit or node. The layers can be classified

into input, hidden and output layers. Input and output layers are the first and last

layers, respectively, while the hidden layers are the layers in between input and

output layers. The number of units of the hidden layers determines the width of

the model.

For a hidden or output layer, each unit is connected to the units of the previ-

ous layer through the respective weights. Therefore, a weighted sum of the inputs

for each unit is often calculated to obtain the numerical value of the vector repre-

senting the layer. A bias unit storing the value of 1 is usually added to the input

and hidden layers. These units are not connected to the previous layer and repre-

sent an additive weight learned for each layer. Moreover, a nonlinear function f(),

which is generally known as an activation function (see Section 3.3), is applied to

the weighted sum of each unit in order to produce the final output.

Designing deep neural networks

Before the learning or training process begins, the hyperparameters of the network

must be defined. Hyperparameters differ from the weights W, since the former are

constant and non-trainable parameters that define the architecture of the network.

Examples of hyperparameters are the type and structure of the layers, the loss

function and the optimizer. (Chollet, 2018).

• Layers: When learning representations and solving a specific deep learning task,

different layers are appropriate for each type of data transformation. For ex-

ample, dense layers are used when processing simple vector data. Convolutional

layers are used when the spatial structure of the input is significant, such as

one-dimensional or two-dimensional representations of audio. Recurrent layers

are used when processing sequence data where the temporal structure of in-

puts is relevant. The number of units or hidden layers or the type of activation

functions are examples of hyperparameters when choosing a layer.

• Loss function: This is the quantity that represents the performance of the model

during the training process. Thus, for the current parameters W, the loss or cost

function J(W) measures the difference between the prediction ŷ and the target

y and its numerical value is the feedback used for learning. For regression tasks,

the most common loss functions are the L1 and L2 distances; mean absolute error

(mae) and mean squared error (mse), respectively.
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mae(y, ŷ) =
∑N
i=1 |yi − ŷi|

N
(3.1)

mse(y, ŷ) =
∑N
i=1(yi − ŷi)

2

N
(3.2)

Where N is the number of examples. Various cost functions are used for classifi-

cation tasks, such as categorical or binary cross-entropy, Kullback–Leibler divergence

(KL) or hinge loss (see Bishop, 2006; Goodfellow et al., 2016).

In addition, to improve the generalization capabilities of DNNs, weights and

activity regularization are introduced. This consists of adding a penalty term to

the cost function, which is usually the norm of the L1 or L2 of the respective

weights or outputs of neurons (Goodfellow et al., 2016).

• Optimizer: This is the iterative and gradient-based algorithm that updates the

weights of the network based on the numerical value of the loss function. Many

methods are commonly used, which all are based in a variant implementation of

Stochastic Gradient Descent (SGD) (Amari, 1993). Gradient descent is based on

the chain rule and computes the directional derivative of a composite function,

such as a DNN. It consists of minimizing the loss function J(W) by updating

the values of W towards the opposite direction of its gradient ∇J(W). SGD is

characterized by using the mean gradient of randomly selected batches of m

examples (Goodfellow et al., 2016). For a single iteration across a selected batch,

the weight update can be described as follows.

W→W −α∇J(W) (3.3)

The batch size m is one of the hyperparameters of the optimizer together with

the learning rate α and the initial value of W. The initialization of W is generally

done through sampling variations of normal or uniform distributions (see Le-

Cun et al., 2012; Glorot and Bengio, 2010). The learning rate α is usually reduced

during training as the loss approaches a local minimum.

Different optimizers based on this principle are commonly used, such as Adam

(Kingma and Ba, 2015), RMSprop (Tieleman and Hinton, 2012) or Adagrad (Duchi

et al., 2011).
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Training and evaluation

In order to train and evaluate the model, the dataset is typically divided into three

subsets: training, validation and test. See Bishop (2006) for different methods to split

the dataset.

During the learning process the model iterates over the training data in batches

of m samples. Each iteration over all the training set is called an epoch. After each

epoch, the validation set is presented to the model to provide an indication of

the model’s performance when processing new data. Therefore, weights are not

updated during the validation process. The validation set is also commonly used

for hyperparameter tuning.

In general, the learning and validation process is computed for a fixed number

of epochs, and the model with the lowest error for the validation set is selected.

Early stopping is a common procedure in which the training stops if there is no

improvement in the validation loss. This, after a predefined number of epochs

which is referred as patience. Once the model is selected, the final evaluation of the

model is carried out by processing the test subset only one time.

Another common procedure that takes place during the learning process is

dropout, which consists of randomly ignoring some of the layer outputs (Srivastava

et al., 2014). Dropout helps to prevent the network from overfitting the training set,

i.e. when the network closely matches the training data while performing poorly

for the validation or test subsets.

3.3 activation functions

The final numerical value of each unit is obtained after applying a nonlinear func-

tion f() to the weighted sum of inputs. This function is often known as activation

function due to the loose analogy to biological neurons; where each neuron re-

ceives inputs from several other neurons and computes its own activation value

Goodfellow et al. (2016). Nevertheless, they are of great importance, since by in-

troducing nonlinearities between layers, the model increases the ability to learn

complex functions.

The most common types of activation functions are described below, where x is

the weighted input of a unit.

Rectifier Linear Unit (ReLU): f(x) = max(0, x) (3.4)
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Sigmoid: σ(x) =
1

1+ e−x
(3.5)

Hyperbolic tangent: tanh(x) =
ex − e−x

ex + e−x
(3.6)

Softplus: fsp(x) = ln(ex + 1) (3.7)

Trainable activation functions have been shown to improve generalization capa-

bilities and accelerate the learning process of neural networks, such as parametric

logarithmic, linear, and exponential functions (Godfrey and Gashler, 2015), cubic

spline functions (Solazzi and Uncini, 2000; Uncini, 2003) and piecewise polyno-

mial functions (Hou et al., 2016, 2017). In this thesis, we focus on a particular case

of piecewise polynomial functions, which is defined as follows.

• Smooth Adaptive Activation Function (SAAF): it consists of piecewise second

order polynomials which can approximate any continuous function and are reg-

ularized under a Lipschitz constant to ensure smoothness (Hou et al., 2017). A

function f(x), defined in [a,b], is Lipschitz continuous if and only if its first

derivative is bounded, i.e. there is a constant C ∈ R such that |f ′(x)| 6 C, ∀x ∈
[a,b] (Phillips and Taylor, 1996). Thus, differentiability and bounded smooth-

ness are characteristics of SAAFs.

Hou et al. (2016) shows that SAAFs can approximate any one-dimensional func-

tion given a sufficient number of polynomial segments. Thus, SAAFs can be

defined as follows, where n is the number of segments outlined by the break-

points a1, ...,an+1, which are real numbers in ascending order.

f(x) = w0x+

n∑
k=1

wkb
2
k(x) (3.8)

Where w0 and wk are the weights of the activation function and are learned

during the training process. b2k(x) are the basis functions, which are defined as

the double integral of the boxcar function b0k(x).

b2k(x) =

∫x
0

∫x
0

b0k(α)∂
2α (3.9)

b0k(x) =

1, ak 6 x < ak+1

0, otherwise
(3.10)
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Figure 3.1: SAAF with n = 6 and equally spaced breakpoints between -1 and 1. The param-

eters wk, or second derivatives, are displayed for each segment and w0 = 0.1 .

Axes are unitless.

Thus, for x ∈ [ak,ak+1], the numerical value of an SAAF is as follows.

f(x) = w0x+
1

2
wk(x− ak)

2 (3.11)

Following this definition SAAFs are guaranteed to be continuous, including

at the locations of the n+ 1 breakpoints. For each segment, there is only one

parameter wk which controls the 2th order derivative within the segment. In

addition, the Lipschitz constant C for piecewise second order polynomials is

defined in terms of the parametersw0 andwk and corresponds to the maximum

derivative magnitude of f(x). Therefore the smoothness of an SAAF can be

regularized by applying L2 regularization on its parameters (Hou et al., 2016).

Fig. 3.1 shows a example of an SAAF.

C = max
∣∣∣w0 + ∫x

0

n∑
k=1

wkb
2
k(α)∂α

∣∣∣ (3.12)

3.4 dense layers

Densely connected layers, also called dense layers, fully connected (FC) networks,

deep feedforward networks, or multilayer perceptrons, are the most common type

of layers in DNNs (Chollet, 2018). Their name is due to the fact that each neuron is

connected to all the outputs of the previous layer, thus, densely connected. Mod-

els based on FC layers are considered feedforward networks because there is no
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feedback or recursive connections within the model. Therefore, information flows

directly from the input to the output, via the hidden layers (Goodfellow et al.,

2016).

The output feature map Yk of the kth layer of an FC network is described as

Yk = fk(Wk ·Xk), (3.13)

where fk() is the element-wise activation function and Wk and Xk are the ma-

trices corresponding to the weights and input, respectively.

Throughout this thesis, the operator · is defined as follows: If Wk and Xk are

matrices, the operator · denotes their matrix multiplication; and if Wk is a matrix

and Xk is a one-dimensional array, the operator · denotes a sum product over the

last axis of Wk and Xk. Also, for the sake of clarity and across this thesis, the bias

weights are contained in the corresponding matrix of weights Wk.

Dense layers learn deterministic nonlinear transformations from input to output.

Thus, learning a function f : RDin → RDout , where Din and Dout are the dimen-

sions of the input and output vectors, respectively. As for the design, the number

of layers, as well as the number of units per layer determine how this transforma-

tion is achieved. For example, when learning compressed representations of the

input, i.e. dimensionality reduction, it is common to use a bottleneck architecture

where Dout < Din.

The mapping learned by FC layers is usually very effective when processing sim-

ple vector data, i.e. feature vectors without spatial nor temporal structure. There-

fore, since dense layers are not shift nor scale invariant, when processing data

with these characteristics, these are placed after more specialized layers such as

convolutional or recurrent.

3.5 convolutional layers

Convolutional neural networks (CNN), also called convnets, are a type of feed-

forward network which is characterized by using the convolution operation (see

Eq. (2.4). This differs from dense layers, which are based on the dot product oper-

ation or matrix multiplications.

The main advantage of convolutional layers over dense layers is that, when

processing their input vector or feature space, the convolution operation allows

them to learn local patterns, while dense layers can only learn global patterns.

Therefore, convolutional layers are shift invariant, since after learning a specific
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pattern, CNNs can recognize the pattern at any other location within the input

feature space. In addition, convnets can process inputs of variable size and are

also more computationally efficient than dense matrix multiplications (Chollet,

2018).

Thus, CNNs are used when the spatial structure of the input is relevant, e.g. au-

dio waveforms or two-dimensional time-frequency representations of audio. The

operation performed by a convolutional layer is

Yk = fk(Xk ∗Wk), (3.14)

where Yk and Xk are the matrices corresponding to the output and input feature

maps, respectively. Wk is the matrix of convolutional kernels or filters and fk() is

the element-wise activation function.

Eq. (3.14) illustrates the general operation performed by convnets, which also

assumes convolutions over more than one axis at a time. i.e. multidimensional

convolutions, where the kernel and input feature map can be one, two or three-

dimensional. In this thesis we focus on one-dimensional convolutions, also called

temporal convolutions, as we investigate end-to-end architectures that directly

process raw audio. Thus, across this thesis, Xk, Wk and Yk generally represent

matrices of multichannel one-dimensional audio representations, e.g. multichan-

nel audio waveforms, filter banks or envelopes, and the convolution operation is

defined over the rows of these matrices.

The following are the various hyperparameters when designing CNNs.

• Number of filters: corresponds to the total of convolutional kernels or rows

in the matrix Wk and also establishes the dimensionality of the output feature

map Xk.

• Kernel size: consists of the length of each filter, thus it represents the number

of columns in the matrix Wk.

• Padding: sets the way the convolutional layer processes the border values of Xk.

It is common to pad with zeros on each sides of the input feature map, at the

beginning and at the end, so the sliding convolutional kernel can process each

numerical value of the input. When padding is not performed, the length of the

output feature map is reduced. Also, causal padding consists in inserting zeros

only at the beginning of the input.

• Stride: corresponds to the hop size of the sliding convolution window, i.e. the

number of positions that the filters move when processing the next input value.

When the stride is larger than 1, the length of Yk is less than the length of Xk.
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• Dilation: consists of increasing the receptive field of each filter by matching the

kernel values to non-subsequent elements of the input, thus, introducing gaps

in the input feature map. When dilation is larger than 1, the length of the input

feature map, or resolution, is preserved and the field of view of the kernels is

increased.

Furthermore, It is common practice to use subsampling or pooling layers when

stacking various convolutional layers. Subsampling functions, such as max-pooling

or average-pooling layers, consist of moving windows of size n, where the max-

imum or average value within each window corresponds to the output feature

map. When n is equal to the length of the input, these layers are called global-max-

pooling and golbal-average-pooling, respectively.

The operations performed by a convolutional layer can be divided into three

steps; convolution between the input feature map and the filters; the nonlinear

function, which is applied element-wisely to each resulting convolution and pro-

duces a set of nonlinear activations; and the pooling operation, which reduces the

dimensions of the output feature map and also induces this representation to be

translation invariant (Goodfellow et al., 2016). It is worth noting that the input

feature map for CNN-based architectures that process raw audio, such as those

presented in this thesis, corresponds to a sliding window across the audio wave-

form. Commonly, the input audio frame is multiplied by a window function, such

as rectangular or hann functions and with or without overlap, depending on the

application.

3.6 recurrent layers

Recurrent neural networks (RNN) are extended feedforward networks by means

of feedback connections. Dense and convolutional layers are characterized by learn-

ing deterministic mappings and having no memory. Therefore, each input feature

map is always processed independently and always generates the same output.

When feedback connections are incorporated into the layers, the resulting net-

works learn to maintain states between inputs. This allows RNNs to learn from

the temporal structure of the input, which is essential when processing data with

long temporal dependencies (Chollet, 2018).
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Vanilla RNN

The most simple type of RNN, often called vanilla RNN, is characterized by having

recurrent connections between their hidden units and for generating an output at

each time step. These networks are described as

yt = fout(Wout · ht), (3.15)

where

ht = fh(Win · xt + Wh · ht−1), (3.16)

where xt, ht and yt are the input, hidden state and output matrices at the current

time step t, respectively. Likewise, fout() and fh() are the activation functions for

the output and hidden layers. The matrices W represent the weight of the recur-

rent layer, where Win is the weight matrix for the input-to-hidden connections,

and correspondingly Wh for the hidden-to-hidden connections and Wout for the

hidden-to-output connections (Chollet, 2018).

It is common to reset the state of the hidden units when processing independent

sequences or batches. Thus, the RNN learns to map the input sequence xt, ..., x0 to

a hidden state ht, which contains relevant features of the input up to the current

time step t. Furthermore, the network learns how to update ht based on the pre-

vious hidden state ht−1 and, finally, the network learns how to use ht in order to

obtain the output feature map yt.

Bidirectional RNN

Schuster and Paliwal (1997) proposed bidirectional recurrent layers in order to

improve the long-term memory capabilities of RNNs. A bidirectional RNN consists

of two RNNs, one that moves from the start of the sequence, while the other moves

from the end of the sequence. Thus, bidirectional recurrent layers can access long-

term context from both backward and forward directions, which improves the

capabilities of learning long temporal dependencies when processing sequences

where the context of the input is needed (Graves and Schmidhuber, 2005; Graves

et al., 2013).

The operation of a bidirectional RNN is described in the following equations:

yt = fout(Wout · ht + Vout · gt), (3.17)
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gt = fg(Vin · xt + Vg · gt+1), (3.18)

where Vin, Vg and Vout are the input-to-hidden, hidden-to-hidden and hidden-

to-output weight matrices of the RNN moving backwards in time. gt and fg()

corresponds to the hidden state and activation function, respectively, and ht is

defined in Eq. (3.16).

Long short-term memory (LSTM)

In general, the main drawbacks of RNNs are related to the propagation of the gra-

dient, such as vanishing gradient or exploding gradient. As the gradient propagates

across many states, this could lead to a severe increase or decrease of the gradi-

ent. Vanishing gradient refers to a gradient that exponentially decreases across the

layers, which prevents the weights of the earlier layers from being updated, while

an exploding gradient occurs when the gradient grows exponentially, so that the

network becomes unstable (Pascanu et al., 2013).

Various types of RNNs have been explored in oder to overcome vanishing or

exploding gradients, such as long short-term memory networks (Hochreiter and

Schmidhuber, 1997). LSTM networks correspond to gated RNNs where the neural

network learns when to reset or regulate the flow of information within the recur-

rent layer. This is achieved via gates implemented with the sigmoid function σ(),

which are called input gate, output gate and forget gate (Gers et al., 1999). LSTMs

incorporate an internal hidden state, often called cell or memory ct, which is able

to keep states over arbitrary time intervals and is regulated by the three gates.

The gates within an LSTM network are described as follows:

gtin = σ(Win · xt + Wh · ht−1), (3.19)

gtout = σ(Uin · xt + Uh · ht−1), (3.20)

gtforget = σ(Vin · xt + Vh · ht−1), (3.21)

where gtin, gtout and gtforget are the matrices corresponding to the input, output and

forget gates, respectively. Win, Uin and Vin represent their input weight matrices

and Wh, Uh, and Vh their recurrent weight matrices. ht−1 is the output feature

map of the LSTM at the previous time step t− 1.
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The LSTM cell state is updated with

ct = gtforget × ct−1 + gtin × tanh(Cin · xt + Ch · ht−1), (3.22)

where × denotes element-wise multiplication. Cin and Ch are the input and re-

current weight matrices of the cell, respectively. tanh is used as the element-wise

gating function of the cell unit to allow negative values for ct. Finally, the output

ht of the LSTM is computed as

ht = tanh(ct)× gtout. (3.23)

LSTMs have been shown to learn long-term dependencies more efficiently than

other types of RNNs. This is due to their ability to maintain states without van-

ishing during the processing of the input sequences (Chollet, 2018). In addition,

variant implementations of LSTMs have been explored, such as gated recurrent

units (GRUs) (Cho et al., 2014).

3.7 squeeze-and-excitation layers - se

Squeeze-and-Excitation networks (Hu et al., 2018) explicitly model interdependen-

cies between channels, i.e. the rows of input matrices, by adaptively scaling the

channel-wise information of feature maps. The SE blocks have been shown to

provide significant improvements to the representational power of DNNs and to

generalize effectively across different tasks and datasets (Hu et al., 2018).

The SE layers correspond to a global-average-pooling (GAP) operation followed

by two dense layers and a sigmoid function. The pooling layer squeezes the global

spatial information of the input feature map into a descriptor per channel or filter,

whereas the dense layers act as an adaptive gating mechanism via the σ activation

function. The latter denotes an excitation operation, where the channel descriptors

are mapped to a set of channel weights se. Subsequently, the channel weights se

are used to scale the input feature map in order to perform feature recalibration.

A block diagram can be seen in Fig. 3.2 and its function is described in detail in

the following equations (Hu et al., 2018):

se = σ(W2 ·ReLU(W1 ·GAP(X1))), (3.24)

X2 = X1 × se, (3.25)
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Figure 3.2: Block diagram of SE layers.

where X1 and X2 are the matrices corresponding to the input and output feature

maps and W1 and W2 are the weight matrices of the first and second dense layers.

The dense layers are followed by ReLU and σ activation functions, respectively. The

output of the GAP operation corresponds to a vector of size equal to the number

of channels in X1 and, consequently, the resulting se is also a vector whose size is

the number of channels of the input.

3.8 deep learning for music

In recent years, deep learning for music has been a constantly growing field, where

a large percentage of current research has been devoted to extract information and

understand its content. Most of the examples are in the fields of music informa-

tion retrieval (Sigtia and Dixon, 2014; Sigtia et al., 2016), music recommendation

(Van den Oord et al., 2013; Wang and Wang, 2014), and audio event recognition

(Lee et al., 2009; Stowell and Plumbley, 2014).

For example, dense layers were initially used as feature estimators for various

music information retrieval tasks, such as audio classification (Sigtia and Dixon,

2014; Hamel et al., 2013), downbeat tracking (Durand et al., 2015) or chord esti-

mation (Korzeniowski and Widmer, 2016; Deng and Kwok, 2016). Convolutional

layers have also been extensively researched for similar tasks, such as chord esti-

mation (Humphrey and Bello, 2012, 2014), music transcription (Sigtia et al., 2016),

downbeat tracking (Schlüter and Böck, 2014), onset detection (Schlüter and Böck,

2013) and audio classification (Han et al., 2016). Similarly, recurrent layers have

been investigated for chord and melody estimation (Eck and Schmidhuber, 2002),

note prediction (Huang and Wu, 2016) and music transcription (Sigtia et al., 2015;

Sturm et al., 2016).
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Most deep learning applications for music are based on frequency representa-

tions of audio such STFT, or Mel-spectogram frames. Nevertheless, end-to-end

networks where the audio waveform is the input have also experienced significant

growth. Automatic audio tagging tasks have been explored within this framework

(Dieleman and Schrauwen, 2014; Pons et al., 2017). The networks autonomously

learn features related to the frequency and phase of the raw waveforms, although

architectures based on spectrograms still yielded better results. In (Sigtia et al.,

2016) an end-to-end neural network is investigated for the transcription of poly-

phonic piano music. In the context of end-to-end supervised source separation,

Venkataramani et al. (2017) proposed an adaptive convolutional architecture capa-

ble of learning a latent representation from the raw waveform.

Furthermore, end-to-end deep learning applied to the generation of music has

also become a growing field with emerging architectures such as wavenet (Oord

et al., 2016), which is an autoregressive network of stacked temporal convolutions

and characterized by dilation factors that increase exponentially. Engel et al. (2017)

proposed NSynth, a wavenet architecture that generates audio sample by sample

and allows instrument morphing from a dataset of short musical notes. This was

achieved using an end-to-end architecture, where raw audio is both the input and

the output of the system. Similarly, Mehri et al. (2017) obtained raw audio gen-

eration without the need of handcrafted features and Blaauw and Bonada (2017)

accomplished singing voice synthesis.

3.9 deep learning for audio effects modeling

Deep learning architectures for audio processing tasks, such as audio effects mod-

eling, have been investigated as end-to-end methods or as parameter estimators of

audio processors. Rämö and Välimäki (2019) predicted the filter gains of an EQ us-

ing a multilayer perceptron and Sheng and Fazekas (2019) explored CNNs and FC

layers to estimate multiple parameters of a dynamic range processor when match-

ing a compressed audio target. Also, Mimilakis et al. (2016) investigated dense

layers to predict gain coefficients in order to perform automatic dynamic range

compression for mastering applications.

The aforementioned methods differ from end-to-end deep learning architec-

tures, where raw audio is both the input and the output of the DNN. End-to-end

deep learning is based on the idea that an entire problem can be taken as a single

indivisible task which must be learned from input to output.
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Following this approach, Damskägg et al. (2019) explored variants of the wavenet

architecture in order to model nonlinear effects such as a tube amplifier. Thus,

based on a wavenet for speech denoising (Rethage et al., 2018), a feedforward ar-

chitecture is proposed in (Damskägg et al., 2019), where a nonlinear audio effect

and its controls are emulated. This network outperforms current state-of-the-art

analytical methods for nonlinear black-box modeling such as the block-oriented

Wiener models presented in (Eichas and Zölzer, 2016).

In (Hawley et al., 2019), black-box modeling is proposed for nonlinear effects

with long temporal dependencies such as compressors. The architecture is based

on the U-Net (Ronneberger et al., 2015) and Time-Frequency (Lim et al., 2018) net-

works, where input-output measurements and knowledge of the attack and release

gate times are used to emulate different compressors and their respective controls.

Similarly, various RNNs for real-time black-box modeling of tube amplifiers and

distortion pedals were explored in (Wright et al., 2019), and LSTM networks were

investigated to learn static configurations of tube amplifiers in (Schmitz and Em-

brechts, 2018; Zhang et al., 2018). Also, a gray-box method is explored in (Parker

and Esqueda, 2019), where a DNN is used to model the state-space system of

nonlinear distortion circuits.

Table 2.1 outlines the different deep learning approaches for audio effects mod-

eling. Most of the active research has focused on modeling nonlinear audio proces-

sors without long-term memory, so it omits a large percentage of the other types

of audio effects. In addition, the methods based on parameter estimation are based

on fixed audio processing architectures, resulting in a lack of generalization.

3.10 conclusion

Therefore, in the following chapters, we explore general-purpose end-to-end deep

learning architectures for all types of audio effects. Equalization matching is achieved

in Chapter 4 and Publication I. Nonlinear modeling is explored in Chapter 5 and

Publication II, where different models are capable of modeling an arbitrary com-

bination of linear and nonlinear audio effects with short-term memory. The latter

architectures do not generalize to transformations with long temporal dependen-

cies such as modulation based audio effects. Thus, several linear and nonlinear

time-varying and time-invariant audio effects were modeled in Chapter 6 and

Publication III. Virtual analog experiments for the previous architectures are con-
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ducted in Chapter 7 and Publication V. Finally, artificial reverberators are modeled

in Chapter 8 and Publication V.



4
M O D E L I N G E Q E F F E C T S

In this chapter we introduce a novel deep learning architecture to model linear

effects in the context of matched EQ. As discussed in Section 2.2, matched equal-

ization corresponds to methods that match a target frequency response by opti-

mizing the filter coefficients of specific types of filters. Nevertheless, most of these

methods rely on fixed architectures of filter banks or require prior knowledge of

the type of filters to be modeled.

Thus, by using an end-to-end approach, we implement a deep learning architec-

ture to perform black-box modeling of linear audio effects, such as EQ matching.

The model approximates the EQ target as a content-based transformation without

directly finding the transfer function, i.e. without explicitly obtaining the parame-

ters of the filters: G, fc and Q (see Section 2.1).

We show that a procedure based on convolutional and dense layers, via time-

domain convolutions and latent-space modifications, can lead us to perform EQ

matching. Therefore, we investigate EQ as a time-domain convolution transforma-

tion, where the inherent content of the input and filtered signals can lead a CNN

to match a target frequency response.

Given an arbitrary EQ configuration or target, our regression task is to train a

DNN to learn the specific transformation. In this way, a filter bank decomposi-

tion and its latent representation are learned from the input data, and these are

transformed respectively to obtain an audio signal that matches the target. The

network learns how to process the audio directly in order to match the equalized

target audio.

Accordingly, we explore whether the model can be used for EQ matching us-

ing an end-to-end architecture, where raw audio is both the input and the output

of the system. We analyze what the model is actually learning and how the given

task is accomplished, and we use a relevant loss function in the time and frequency

domains in order to achieve the equalizer task. We show the model performing

matched equalization for shelving, peaking, lowpass and highpass IIR and FIR equal-

izers. Audio samples can be found in Appendix B.
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4.1 convolutional eq modeling network - ceq

In order to design the network, we follow a similar procedure as in Venkatara-

mani et al. (2017), although based entirely on the time-domain. The model can be

divided into three parts: adaptive front-end, synthesis back-end and latent-space

DNN. The model is depicted in Fig. 4.1 and its structure is described in detail

in Table 4.1. To the best of our knowledge, this model represents the first deep

learning architecture for black-box modeling of EQ effects. Appendix C shows the

number of parameters and processing times of the model. Code is availabe online1.

We use an input frame of size 1024, sampled with a hop size of 256 samples and

windowed by a hann function. All convolutions are along the time dimension and

all strides are of unit value. This means, during convolution, we move the filters

one sample at a time. In addition, padding is done on each side of the input fea-

ture maps so that the output maintains the resolution of the input. Dilation is not

introduced.

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 

Figure 4.1: Block diagram of CEQ; adaptive front-end, synthesis back-end and latent-space

DNN based on LC and FC layers.

For a specific EQ configuration or arbitrary combination of filters, consider x

and y the raw and equalized audio signals respectively. We train a CNN which

operates as a filter bank and produces a latent representation Z of the given EQ

matching task. The latent representation corresponds to compressed or subsam-

pled audio waveforms or learned audio features relevant to the regression task.

From Section 3.5, a single one-dimensional convolutional layer can be described

as

Xk =

N−1∑
i=0

Xk−1(n− i) ·Wk(i), (4.1)

where Xk is the output feature map of the kth layer. N represents the size of the

input feature map Xk−1 or input frame x in the case of the first layer. Throughout

1 https://mchijmma.github.io/end-to-end-equalization/
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Table 4.1: Detailed architecture of CEQ with an input frame size of 1024 samples. Output

shape = (m,n) denotes m columns and n rows. Weights = m(n) denotes m

kernels of size n, and Weights = n denotes n hidden units.

Layer Output shape Weights Output

Input (1024, 1) . x

Conv1D (1024, 128) 128(64) X1

Residual (1024, 128) . R

Abs (1024, 128) . .

Conv1D-Local (1024, 128) 128(128) X2

MaxPooling (64, 128) . Z

Dense-Local (64, 128) 64 Ẑh

Dense (64, 128) 64 Ẑ

Unpooling (1024, 128) . X̂2

R× X̂2 (1024, 128) . X̂1

deConv1D (1024, 1) . ŷ

this thesis, these feature maps represent matrices of multichannel one-dimensional

audio representations, i.e. each row is an audio waveform or envelope. Wk is the

kernel matrix with Mk filters where each filter correspond to a row in the matrix.

The convolution operation is computed between the rows of the input and kernel

matrices.

The latent representation Z is obtained after the designated number of convo-

lutional and subsampling layers of the adaptive front-end and corresponds to a

compressed or learned representation

Thus, in order to obtain a ŷ that matches the EQ target y, we implement a latent-

space DNN to modify Z based on the EQ matching regression task. Finally, the

synthesis back-end implements the deconvolution operation and reconstructs the

time-domain signal by inverting the operations of the encoder. We train the whole

network within an end-to-end learning framework and we minimize a suitable

metric between the target and the output of the network.

Based on an EQ matching task, we expect the network to learn the relevant

filters Wk, latent representation Z and further manipulation. We attempt to find a

general architecture that can serve as a matching equalizer based on an arbitrary

time-invariant EQ target.
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The general structure of CEQ corresponds to the main or base architecture of the

subsequent models proposed throughout this thesis. Overall, the adaptive front-

end learns a filter bank decomposition and its correspondingly latent representa-

tion. The front-end also generates a frequency band decomposition of the input

audio as a residual connection. The latent representation is modified by the latent-

space DNN and fed to the synthesis back-end along with the residual connection.

Finally, the back-end transforms the residual connection via the modified latent

representation and thus synthesizes a waveform based on the specific audio ef-

fects modeling task.

Adaptive front-end

The adaptive front-end consists of a convolutional encoder. It contains two con-

volutional layers, one pooling layer and one residual connection. The front-end

is considered adaptive since its convolutional layers learn a filter bank for each

modeling task and directly from the audio.

The first convolutional layer is followed by the absolute value as nonlinear acti-

vation function and the second convolutional layer is locally connected (LC). This

means we follow a filter bank architecture since each filter is only applied to its

corresponding row in the input feature map. The latter layer is followed by the

softplus nonlinearity. The max-pooling layer is a moving window of size 16, where

the maximum value within each window corresponds to the output and the posi-

tions of the maximum values are stored and used by the back-end. From Eq. (4.1),

the operation performed by the first layer can be described as

X1 = x ∗W1, (4.2)

R = X1, (4.3)

where W1 is the kernel matrix from the first layer, and X1 is the feature map after

the input audio x is convolved with the rows of W1. The weights W1 consist of

128 one-dimensional filters of size 64, i.e. a matrix of 64 columns and 128 rows.

The residual connection R is equal to X1, which corresponds to a matrix of 128

channels of 1024 samples, i.e. a matrix of 1024 columns and 128 rows. R and

X1 correspond to the frequency band decomposition of the input x. This, since

Conv1D can be seen as a filter bank.

The operation performed by the second layer is described as
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X
(i)
2 = fsp(|X

(i)
1 | ∗W(i)

2 ), ∀i ∈ [1, 128], (4.4)

where X
(i)
2 and W

(i)
2 are the ith row of the feature map X2 and kernel matrix

W2, respectively. Thus, X2 is obtained after the LC convolution between X1 and

W2, the weight matrix of Conv1D-local. Each row or channel of the input feature

map is convolved only with its respective filter in W2, which consist of 128 one-

dimensional filters of size 128, i.e. a matrix of 128 columns and 128 rows. X2

corresponds to a matrix of 128 channels of 1024 samples. fsp() is the softplus func-

tion.

The adaptive front-end performs time-domain convolutions with the raw audio

and is designed to learn a latent representation for each audio effect modeling task.

It also generates a residual connection which is used by the back-end to facilitate

the synthesis of the waveform based on the specific audio effect transformation.

This differs from traditional encoding practices, where the complete input data

is encoded into a latent-space, which causes each layer in the decoder to solely

generate the complete desired output (He et al., 2016). Furthermore, a full encod-

ing approach such as Engel et al. (2017); Oord et al. (2016) will require very deep

models, large data sets and difficult training procedures.

By using the absolute value as activation function of the first layer and by having

larger filters W2, we expect the front-end to learn smoother representations of the

incoming audio, such as envelopes as shown in Venkataramani et al. (2017).

Latent-space DNN

The latent-space DNN contains two dense layers. Following the filter bank archi-

tecture, the first layer is based on LC dense layers and the second layer consists

of an FC layer. The DNN modifies the latent representation Z into a new latent

representation Ẑ which is fed into the synthesis back-end. The first layer applies a

different dense layer to each row of the matrix Z and the second layer is applied to

each row of the output matrix from the first layer. In both layers, all dense layers

have 64 hidden units and are followed by the softplus function (fsp).

The operation performed by the latent-space DNN is

Ẑ
(i)
h = fsp(V

(i)
1 ·Z(i)), ∀i ∈ [1, 64], (4.5)

Ẑ = fsp(V2 · Ẑh), (4.6)
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where Ẑ
(i)
h is the ith row of the output feature map Ẑh of the LC layers. Likewise,

V
(i)
1 is the ith dense layer corresponding to the weight matrix V

(i)
1 of the LC

layer. V2 corresponds to the weights of the FC layer. Z, Ẑh and Ẑ correspond to

matrices of 128 channels of 64 samples. In both layers, the weights V1 and V2 are

applied to the complete latent representation rather than to the channel dimension

of Z and Ẑh, respectively, i.e. the matrix multiplication is computed between the

weights and the rows of the input feature maps which correspond to 128 learned

envelopes of size 64 samples.

The output of the max pooling operation Z corresponds to a matrix that rep-

resents the latent representation of the input audio given the EQ task, such as

envelopes. The DNN is trained to modify these envelopes, thus, a new latent rep-

resentation or set of envelopes Ẑ is fed into the synthesis back-end in order to

reconstruct an audio signal that matches the target task.

Synthesis back-end

In order to invert the operations performed by the front-end, the decoder con-

sists of one CNN layer and one unpooling layer. Since the max-pooling function is

non-invertible, the inverse can be approximated by recording the locations of the

maximum values in each pooling window (Zeiler and Fergus, 2014) and only up-

sampling Z at these time indices. Thus the discrete approximation X̂2 is obtained.

The approximation X̂1 of matrix X1 is obtained through the element-wise mul-

tiplication of the residual R and X̂2:

X̂1 = R× X̂2. (4.7)

Depending on whether Z has been modified or not, Eq. (4.7) can be seen as a

sampling or transformation of X1.

The final layer deConv1D corresponds to the deconvolution operation, which can

be implemented by transposing the first layer transform. This layer is not trainable

since its kernels are transposed versions of W1. In this way, the synthesis layer

reconstructs the audio signal in the same manner the front-end decomposed it.

This layer does not apply an activation function, thus is considered linear and is

depicted as

ŷ = X̂1 ∗WT
1 , (4.8)

where ŷ corresponds to the output frame of 1024 samples.
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Loss function

The loss function to be minimized is based in time and frequency and described

as follows:

loss = α1KL(Y, Ŷ) +α2MSE(Y, Ŷ) +α1MAE(y, ŷ), (4.9)

where KL is the normalized Kullback-Leibler divergence, the mean squared error

is MSE, and MAE is the mean absolute error (see Section 3.2). Y and Ŷ are the

frequency magnitude of the target and output respectively, and y and ŷ their

respective waveforms. We use a 1024-point FFT in order to obtain Y and Ŷ. The KL

divergence is computed after normalizing Y and Ŷ as probability distributions.

In order to scale the time and frequency losses, we empirically set α1 = 1.0,

α2 = 1.0 and α3 = 0.1. We selected a more specialized loss function since by

introducing spectral terms in a frequency related task, such as EQ, fewer training

iterations were required. Since small amplitude errors are as important as large

ones, the loss function to be minimized in the time-domain is the mean absolute

error between the target and output waveforms.

4.2 experiments

4.2.1 Training

The training of the model includes an initialization step. This pretraining stage

consists in optimizing a network formed solely by the convolutional and pooling

layers of the front-end and back-end. This pretraining allows to have a better fitting

when training for the EQ matching tasks. Within an unsupervised learning task,

the network is trained to process and reconstruct both the dry audio x and target

audio y. Only during this step the unpooling layer of the back-end uses the time

positions of the maximum values recorded by the max-pooling operation.

During the pretraining only the weights W1 and W2 are optimized. This means

the model is being prepared to reconstruct the input and target data in order to

have a better fitting when training for the EQ task.

Once the front-end and back-end are pretrained, the latent-space DNN is in-

corporated in the model. The second step consists of an end-to-end supervised

learning task based on a given EQ target. Hence, the second training procedure

consists in using as objectives of the model x and y as input and target respec-
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tively. During the end-to-end learning, all the weights of the convolutional and

dense layers are updated. This is done independently for each EQ task.

In both training procedures the input and target audio is windowed by a hann

function. The batch size consisted of the total number of frames per audio sample

and 100 epochs were carried out in each training step. Adam (Kingma and Ba, 2015)

is used as optimizer and the initial learning rate is 1e− 4.

4.2.2 Dataset

The raw audio x is obtained from the Salamander Grand Piano V3 dataset2, which

consists of a Yamaha C5 grand piano sampled in minor thirds from the A0 note

and with 16 velocities for each note. The dataset is augmented by pitch shifting

each note by +1 and +2 semitones until all the 88 notes of the piano are obtained.

This gives us a total of 1408 samples. The piano notes are downsampled to 16 kHz

and trimmed to 4 seconds. The test and validation subsets correspond to 4.55% of

the dataset each, and only contain the B notes from B0 to B7.

The EQ targets y are obtained by applying the filters described in Table 4.2.

Table 4.2: Filter parameters of the EQ targets.

EQ filter type order gain (dB) fc (Hz) Q

shelving IIR 2 10 500 0.707

peaking IIR 2 10 500 0.707

lowpass FIR 50 0 500 .

highpass FIR 50 0 500 .

4.3 results

The training steps were performed for each type of EQ target. Then, the models

were tested with samples from the test dataset. Audio is available online3.

Fig. 4.2 shows various visualizations from the front-end and back-end of CEQ af-

ter the pretraining step. Fig. 4.2a displays the waveform and frequency magnitude

2 https://archive.org/details/SalamanderGrandPianoV3, accessed on 02/03/2020

3 https://mchijmma.github.io/end-to-end-equalization/
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of a test frame x of 1024 samples and its respective reconstruction x̂. The weights

W1 of Conv1D can be seen in Fig. 4.2c, where the first 32 filters are shown.

Also, in order to obtain x̂, different plots from the front-end, latent-space and

back-end are shown in Figs. 4.2d to 4.2f. The results of Eq. (4.2) can be seen in

Fig. 4.2d where the first 32 rows of X1 are displayed. Fig. 4.2e presents their latent-

space representation Z, which is obtained through the second convolutional and

subsampling layers. Fig. 4.2f shows X̂1, which is the result of Eq. (4.7). This is the

input to the deconvolution layer prior to obtaining the output frame x̂.

Following the pretraining of the network, the model is trained through an end-

to-end supervised learning method. For each EQ task, Figs. 4.3 and 4.4 show the

results of selected samples from the test dataset. For a specific frame of 1024 sam-

ples, the input, target and output waveforms as well as their FFT magnitudes

are displayed. The power spectrogram of the respective 4-second samples is also

shown. Finally, together with the input and the target, the complete reconstructed

output waveform of a shelving EQ task is presented in Fig. 4.5.

The performance of the models, and their respective losses in time and fre-

quency can be seen in Table 4.3. This based on Eq. (4.9).
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Figure 4.2: Various plots after the pretraining step. Figs. 4.2a and 4.2b show the input x and

output x̂ frames and their respective FFT magnitude. Fig. 4.2c shows 32 filters

from W1; Figs. 4.2d and 4.2e the respective 32 rows of X1 and Z, accordingly;

Fig. 4.2f the resulting element-wise multiplication between R and X̂2. Vertical

axes in Figs. 4.2c to 4.2f are unitless and horizontal axes correspond to time.
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Figure 4.3: Results with the test dataset for the following EQ tasks. Figs. 4.3a and 4.3b:

shelving, Figs. 4.3c and 4.3d: peaking. Figs. 4.3a and 4.3c show the input, tar-

get and output frames of 1024 samples and their respective FFT magnitudes.

Figs. 4.3b and 4.3d show from top to bottom: input, target and output power

spectrograms of the 4-second test samples. Colour intensity represents higher

energy.
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Figure 4.4: Results with the test dataset for the following EQ tasks. Figs. 4.4a and 4.4b:

lowpass, Figs. 4.4c and 4.4d: highpass. Figs. 4.4a and 4.4c show the input, tar-

get and output frames of 1024 samples and their respective FFT magnitudes.

Figs. 4.4b and 4.4d show from top to bottom: input, target and output power

spectrograms of the 4-second test samples. Color intensity represents higher

energy.
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Figure 4.5: For a test sample of the shelving EQ task, complete waveform reconstruction

of the output and comparison with the input and target. See Fig. 4.3b for the

power spectrogram of these waveforms.

Table 4.3: Evaluation of the models with the test datasets. Loss values for each EQ task.

EQ KL MSE MAE loss

shelving 0.021845 0.007764 0.02474 0.032083

peaking 0.022038 0.007847 0.02521 0.032406

lowpass 0.025365 0.005345 0.02710 0.033420

highpass 0.021463 0.000951 0.01293 0.023708

4.4 discussion

Adaptive front-end and synthesis back-end

From the results of the pretraining step, Fig. 4.2 shows that the model manages to

reconstruct the input frame almost perfectly. There are minor differences between

the magnitudes of the lower and higher frequencies, but it is worth mentioning

that the network achieves this by optimizing only two convolutional layers.
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During this first training step, the model learns the W1 and W2 weight matri-

ces with 128 filters each. These filters correspond to the weights of the front-end

for the decomposition and reconstruction of the training data. As expected, from

the W1 kernels shown in Fig. 4.2c, it can be observed the filters represent sinu-

soids and distributions of different frequencies. Also, upon examination of all the

weights, we find some redundancy between the filters. This can be improved by

adding kernel or activity regularizations, such as the L1 or L2 norm regularizers.

In addition, some weights follow the shape of the hann window, which is expected

since all input frames were windowed.

From the output feature map matrix X1 in Fig. 4.2d it can be seen the filters W1

are actively acting as a filter bank or frequency selectors. Thus, X1 correspond to

the decomposition of the input data into different frequency bands. Since X1 is

also the residual matrix R, this feature map consists of the frequency band decom-

position that is fed to the back-end to be modified and resynthesized according to

the EQ task.

The second convolutional layer is acting as a smoothing layer, since X2 corre-

sponds to envelopes from X1. This is due to the learned averaging filters and

the absolute and softplus activation functions. The subsampled feature map Z is

shown in Fig. 4.2e, where different types of envelopes are evident. Therefore, the

model is learning a latent-space representation based on the envelopes of selected

frequencies.

The resulting feature map of the unpooling layer X̂2 corresponds to the values

of Z at the time positions registered by the max-pooling layer and padded with

zeros between each maximum value. Therefore the element-wise multiplication of

X̂2 with R generates a discrete version of the latter, which indicates the amplitudes

and positions in time that the deconvolution layer should use to reconstruct the

input signal (see Fig. 4.2f). Thus, convolving X̂1 with WT
1 generates the output

frame presented in Fig. 4.2a.

The front-end and back-end manage to match closely and reconstruct the test

piano notes. Since the training was performed with a hop size of 256 samples,

an ideal unit sample hop size would decrease the loss value, although the train-

ing time will increase notably. Furthermore, it is worth noting that the convolu-

tional layers have a relatively small number of trainable parameters (24,832), which

achieves a low-error reconstruction.
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EQ task

The model was trained in a frame-by-frame basis and the input frames were win-

dowed. So the model learned the windowing procedure and the output frames

followed the hann window shape. Therefore, in order to reconstruct the complete

audio signal (see Fig. 4.5), no further windowing was needed, as the model gen-

erates windowed frames. The overlapping procedure was carried out by applying

a gain in order to ensure a Constant Overlap-Add (Antoni and Schoukens, 2007),

which is specific to the type of window and hop size.

Table 4.3 shows the model performance for each EQ task. To provide a reference,

the mean loss value between the inputs and targets of the shelving testing samples

is 1.21. The KL is fairly uniform across the four types of equalizers, with a minor

increase for the lowpass EQ. The same can be said about the MSE and MAE with

the exception of a significant decrease for the highpass EQ. Therefore, loss function

values were minimal and the model is capable of matching the most common

types of EQ, whether these are based on FIR or IIR filters.

The model achieved the best results during the highpass task, which could be an

indication of the frequency distribution among the training data. Since only piano

notes where used, and most spectral energy of acoustic pianos is within 250 Hz to

1 kHz with higher frequencies responsible for the perceived timbral quality of the

notes (Koenig, 2014). Thus, having a 500 Hz cut-off frequency could signify that

the model more effectively filters out the lower-end of the piano notes due to the

frequency content of the dataset. The slightly worse performance for the lowpass

task could be further explored by extending the dataset to include lower frequency

samples.

Figs. 4.3 and 4.4 confirm the correct EQ matching for the different types of equal-

izers. The spectral and waveform comparison between input, target and output

shows how accurate the model is at reconstructing an audio signal that matches

the EQ task. For individual frames and complete piano notes, the different types of

filtering are evident from the FFT magnitude and power spectogram, respectively.

For the shelving EQ in Fig. 4.3b, the effect of the equalizer can be seen in the

target and output spectral plots. The power spectrogram shows how the spectral

energy was boosted for frequencies lower than 500 Hz. From the FFT magnitude

it can be noticed a minor deviation in the lower-end of the target, where there is a

boost increment around 20 Hz. This could indicate a weak generalization around
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these frequencies, which could be improved by using a loss function with higher

frequency resolution in the lower-end (Härmä et al., 2000).

The peaking equalizer can be seen in Fig. 4.3d. The selective boost at 500 Hz

can be seen in both in the FFT magnitude and in the power spectrogram. There is

a minor boost in the lower-end which is a consequence of the reasons discussed

above. Overall the results indicate a significant fitting for the peaking EQ task. Ac-

cordingly, the model is able to match EQ tasks based on peaking and shelving IIR

filters.

Likewise, the lowpass and highpass EQ targets were correctly accomplished. The

spectrograms in Figs. 4.4b and 4.4d show the cut of frequencies higher than 500Hz

for the lowpass and the opposite for the highpass. As discussed, it can be seen that

the model performs the best for the highpass EQ task, obtaining a highly accurate

matching between target and output in both time and frequency domains.

4.5 conclusion

In this chapter, we proposed CEQ: a deep learning architecture capable of perform-

ing EQ matching. To achieve this, based on the universal approximation capabili-

ties of neural networks, we explored a model based on a convolutional adaptive

front-end and back-end together with a latent-space DNN. Thus, we introduced

a general-purpose architecture for EQ matching able to model different types of

equalizers and filters.

We showed the model matching shelving, peaking, lowpass and highpass IIR and

FIR equalizers. For each EQ task the model was trained via an end-to-end learning

approach, which presents and advantage towards common methods of automatic

EQ since no prior knowledge of the type of filters nor fixed filter bank architec-

ture is required. Accordingly, the proposed model approximated the target as a

content-based transformation without using or obtaining filter parameters. There-

fore, the model learned a filter bank decomposition and latent representation from

the training data, and correspondingly, how to modify it in order to obtain an au-

dio signal that matches the EQ task.

As future work, the architecture can be further tested by matching analog equal-

izers or other linear audio effects with short-term memory. An exploration of the

latent-space DNN, or deeper convolutional layers within the encoder and decoder

could improve the results of the model. In addition, the modeling capabilities of
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the model can be explored by the use of regularizers, loss functions based on

frequency wrappers or different loss weights α1, α2 and α3.

Also, since training on piano semitones provides only a sparse sampling of

the frequency dimension, the generalization capability of the model should be

extended for much more complex audio signals, such as noise, human voice or

non-musical sounds. Therefore, a further exploration with a less homogeneous

dataset together with an analysis of the type of filters learned by the model could

benefit the design of a general-purpose architecture for modeling audio effects.

Possible applications for this architecture are within the fields of automatic mix-

ing and audio effect modeling. For example, style-learning of a specific sound

engineer could be explored, where the model is trained with several tracks equal-

ized by the engineer and finds a generalization from the engineer’s EQ practices.

Also, automatic EQ for a specific instrument across one or several genres could be

analyzed and implemented by the model.

Perceptually, most output waveforms are indistinguishable from their EQ target,

although a further subjective study or listening test is required. The network im-

plemented in this chapter serves as a base model for deep learning architectures

for audio effects modeling. Therefore we can conclude that, as proof of concept,

the model achieved low-error matching with various EQ matching tasks. Never-

theless, a further comparative evaluation with existing methods is required to test

the performance of the proposed model.

In the following chapters, we build on this architecture and explore whether

adaptive activation functions or RNNs can improve the capabilities of the network

to model much more complex audio effects. In this case, we will explore transfor-

mations involving long temporal dependencies such as compression or different

modulation effects, as well as complicated distortion effects or electromechanical

reverberators. In addition, perceptually-based objective functions and relevant lis-

tening tests will also be performed.
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M O D E L I N G N O N L I N E A R A U D I O E F F E C T S

In this chapter we build on the CEQ modeling network from Chapter 4 in order to

emulate much more complex transformations, such as distortion effects. Therefore

we introduce CAFx: a novel deep learning architecture for modeling nonlinear

and linear audio effects with short-term memory. In addition, we also compare

our model with the proposed architecture in Rethage et al. (2018), which is a

feedforward variation of the original autoregressive model from Oord et al. (2016).

As mentioned in Sections 2.3 and 2.4, distortion effects are mainly used for

aesthetic reasons and are usually applied to electric musical instruments. Most

existing methods for nonlinear modeling are often either simplified or optimized

to a very specific circuit. Thus, in this chapter we investigate end-to-end DNNs for

black-box modeling of nonlinear audio effects.

For an arbitrary combination of linear and nonlinear audio effects with short-

term memory, the models learn how to process the audio directly in order to match

the target audio in a regression task. Given a nonlinearity, consider x and y the

raw and distorted audio signals respectively. In order to obtain a ŷ that matches

the target y, we train a DNN to modify x based on the nonlinear task.

We explore nonlinear emulation as a content-based transformation without ex-

plicitly obtaining the solution of the nonlinear system. CAFx, a new model based

on convolutional and dense layers can incorporate trainable activation functions,

such as smooth adaptive activation functions (SAAFs, see Section 3.3), this in or-

der to explicitly train SAAFs to act as waveshapers in audio processing tasks such

as nonlinear modeling. Thus, since distortion effects are characterized by their

waveshaping nonlinearity, we rely on the smooth attributes of SAAFs, which can

approximate any continuous function, to act as trainable waveshapers within a

DNN modeling framework.

In this manner, we explore the capabilities of DNNs as audio processing blocks

in the context of modeling nonlinear audio effects. Through the use of specific

domain knowledge, such as waveshaping nonlinearities, we increase the function

approximation capabilities of DNNs when performing nonlinear audio processing

tasks with short-term memory.

60
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Through the same nonlinear modeling tasks we analyse a model solely based

on temporal dilated convolutions. We measure the performance of the models via

a perceptually-based objective metric and we report that both models perform

similarly when modeling distortion, overdrive, amplifier emulation and combinations

of linear and nonlinear digital audio effects.

In the following sections we present the architecture of the different modeling

networks. All the models are based entirely in the time-domain and are end-to-

end; with raw audio as the input and processed audio as the output. Code is

availabe online1 and the number of parameters and processing times are shown in

Appendix C. Audio samples for CAFx can be found in Appendix B.

5.1 convolutional audio effects modeling network - cafx

Following the CEQ architecture, the model is divided into three parts: adaptive

front-end, synthesis back-end and latent-space DNN. The architecture is designed

to model nonlinear audio effects with short-term memory and is based on a paral-

lel combination of cascade input filters, trainable waveshaping nonlinearities, and

output filters. All convolutions are along the time dimension, all strides are of unit

value and no dilation is incorporated. We use the same padding as in CEQ.

The model is depicted in Fig. 5.1 and its structure is described in detail in Ta-

ble 5.1. We use an input frame of size 1024, sampled with a hop size of 256 samples

and rectangular windows.

The adaptive front-end and latent-space DNN are exactly the same as in CEQ (see

Section 4.1). The main difference is the incorporation of dense layers and SAAFs

into the back-end. This in order to allow the model to learn the waveshaping

nonlinearities that characterize distortion effects.

Synthesis back-end

The synthesis back-end accomplishes the nonlinear task by the following steps.

First, X̂2 corresponds to a matrix of 128 channels of 1024 samples and is obtained

via unpooling the modified envelopes Ẑ. Then the feature map X̂1 is the result of

the element-wise multiplication of the residual connection R and X̂2. This can be

seen as an input filtering operation, since a different envelope gain is applied to

each of the frequency band decompositions obtained in the front-end.

1 https://github.com/mchijmma/DL-AFx/tree/master/src
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Figure 5.1: Block diagram of CAFx; adaptive front-end, synthesis back-end and latent-

space DNN.

Table 5.1: Detailed architecture of CAFx with an input frame size of 1024 samples. Output

shape = (m,n) denotes m columns and n rows. Weights = m(n) denotes m

kernels of size n, and Weights = n denotes n hidden units.

Layer Output shape Weights Output

Input (1024, 1) . x

Conv1D (1024, 128) 128(64) X1

Residual (1024, 128) . R

Abs (1024, 128) . .

Conv1D-Local (1024, 128) 128(128) X2

MaxPooling (64, 128) . Z

Dense-Local (64, 128) 64 .

Dense (64, 128) 64 Ẑ

Unpooling (1024, 128) . X̂2

R× X̂2 (1024, 128) . X̂1

Dense (1024, 128) 128 .

Dense (1024, 64) 64 .

Dense (1024, 64) 64 .

Dense (1024, 128) 128 .

SAAF (1024, 128) 128(25) X̂0

deConv1D (1024, 1) . ŷ

The second step is to apply various waveshapping nonlinearities to X̂1. This is

achieved with a processing block containing dense layers and smooth adaptive

activation functions (DNN-SAAF). The DNN-SAAF consists of 4 FC layers. The

weights of the dense layers are applied to the channel dimension of the input
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feature maps, i.e. the matrix multiplication is computed between the weights and

the columns of the input matrix which correspond to 1024 samples of 128 channels.

All dense layers are followed by the softplus function with the exception of the

last layer. Locally connected SAAFs are used as the nonlinearity for the last layer.

Overall, each SAAF is locally connected and composed of 25 intervals between −1

to +1.

We tested different standard and adaptive activation functions, such as the para-

metric and non parametric ReLU, hyperbolic tangent, sigmoid and fifth order poly-

nomials. Nevertheless, we found stability problems and non optimal results when

modeling nonlinear effects. Since each SAAF explicitly acts as a waveshaper, the

DNN-SAAF is constrained to behave as a set of trainable waveshaping nonlin-

earities, which follow the filter bank architecture and are applied to the channel

dimension of the modified frequency decomposition X̂1.

Finally, the last layer corresponds to the deconvolution operation, which can

be implemented by transposing the first layer transform. As in CEQ, this layer

is not trainable since its kernels are transposed versions of W1. In this way, the

back-end reconstructs the audio waveform in the same manner that the front-end

decomposed it. The complete waveform is synthesized using a hann window and

constant overlap-add gain.

5.2 feedforward wavenet audio effects modeling network - wavenet

The WaveNet model corresponds to a feedforward variation of the original autore-

gressive model from Oord et al. (2016). Recently it has been shown that temporal

dilated convolutions can be effective for modeling raw audio (Rethage et al., 2018;

Mor et al., 2019; Chorowski et al., 2019). For a regression task, such as nonlinear

modeling, the predicted samples are not fed back into the model, but through a

sliding input window, where the model predicts a set of samples in a single for-

ward propagation. The WaveNet model corresponds to the architecture proposed

in Rethage et al. (2018). The model is divided into two parts: stack of dilated con-

volutions and a post-processing block. The model is depicted in Fig. 5.2 and its

structure is described in Table 5.2.

We use 2 stacks of 6 dilated convolutional layers with a dilation factor of 1,2,...,32

and 16 filters of size of 3. This model differs from the network in Damskägg et al.

(2019), where their implementation uses 1 stack of dilated convolutions with a

dilation factor of 1,2,...,512 and a post-processing block based solely on FC layers.
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Figure 5.2: Block diagram of the feedforward WaveNet; stack of dilated convolutional lay-

ers and the post-processing block.

From Figure 5.1, prior to the stack of dilated convolutions, the input x is pro-

jected into 16 channels via a 3x1 convolution. This is in order to match the number

of channels within the feature maps of the dilated convolutions.

The stack of dilated convolutions processes the input feature map Rin with 3x1

gated convolutions and exponentially increasing dilation factors. This operation

can be described by:

z = tanh(Wf ∗Rin)× σ(Wg ∗Rin) (5.1)

Where Wf and Wg are the filter and gated convolutional kernels, tanh and

σ the hyperbolic tangent and sigmoid functions and ∗ and × the operators for

convolution and element-wise multiplication. The residual output connection Rout

and the skip connection S are obtained via a 1x1 convolution applied to z. There-

fore S is sent to the post-processing block and Rout is added to the current input

matrix Rin, thus, resulting in the residual input feature map of the next dilated

convolutional layer.

The post-processing block consists in summing all the skip connections S followed

by a ReLU. Two final 3x1 convolutions are applied to the resulting feature map,

which contain 2048 and 256 filters and are separated by a ReLU. As a last step, a

1x1 convolution is introduced in order to obtain the single-channel output audio

ŷ.

The receptive field rf corresponds to the largest range of input samples to which

the network can be exposed, and for a model based on time dilated convolutions

it can be calculated with the following equation (Oord et al., 2016):

rf = 1+n(fk − 1)

D∑
i=1

di, (5.2)



5.3 experiments 65

Table 5.2: Detailed architecture of WaveNet with input and output frame sizes of 1277 and

1024 samples respectively. Output shape = (m,n) denotes m columns and n

rows. Weights = m(n) denotes m kernels of size n.

Layer - Output shape - Weights Output

Input (1276, 1) x

Conv1D (1276, 16) - 16(3) Rin

Dilated conv (1276, 16) - 16(3) Dilated conv (1276, 16) - 16(3) .

Tanh (1276, 16) Sigmoid (1276, 16) . .

Multiply (1276, 16) z

Conv1D (1276, 16) - 16(1) Conv1D (1276, 16) - 16(1) Rout S

Add (1024, 16) .

ReLU (1024, 16) .

Conv1D (1024, 2048) - 2048(3) .

ReLU (1024, 16) .

Conv1D (1024, 256) - 256(3) .

Conv1D (1024, 1) - 1(1) ŷ

where n is the number of stacks, fk is the size of the filters, D is the number of

dilated layers and di corresponds to each dilation factor. For this architecture, the

receptive field of the model is of 253 samples and the target field tf is 1024 samples.

Therefore the input frame if presented to the model consists of sliding windows

of 1276 samples and is calculated as follows (Rethage et al., 2018).

if = rf + (tf − 1) (5.3)

5.3 experiments

5.3.1 Training

The training of CAFx includes the same initialization step as CEQ (see Section 4.2.1)

Once the model is pretrained, the latent-space DNN and DNN-SAAF are incorpo-

rated into the model, and all the weights of the convolutional, dense and activation

layers are trained following an end-to-end supervised learning task. The WaveNet

model is trained directly following this second step.
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Since small amplitude errors are as important as large ones, the loss function

to be minimized is the mean absolute error, see Eq. (3.1), between the target and

output waveforms. In addition, in both training procedures, the input and target

audio segments are framed with a rectangular window. The batch size consisted

of the total number of frames per audio sample and 1000 iterations were carried

out in each training step. The learning rate is 10
−4. We select the model with the

lowest error for the validation subset and Adam (Kingma and Ba, 2015) is used as

optimizer.

5.3.2 Dataset

The audio is obtained from the IDMT-SMT-Audio-Effects dataset (Stein et al., 2010),

which is a large library of 20,592 monophonic recordings of electric guitar and

bass guitar respectively. The samples correspond to individual 2-second notes and

cover the common pitch range of 2 different 6-string electric guitars and 2 different

4-string bass guitars.

The recordings include the raw notes and their respective effected versions af-

ter 3 different settings for each effect. We use unprocessed and processed audio

with distortion, overdrive, and EQ. These effects correspond to digital implementa-

tions of audio processors, such as Virtual Studio Technology (VST) audio plug-ins

(Steinberg, 1999).

In addition, we also apply a custom audio effects chain (FxChain) to the raw

audio. The FxChain consist of different cascade configurations of lowshelf and high-

shelf filters (see Section 2.1) together with an overdrive. We use SoX2 to implement

the nonlinear audio effect and the filters.

In total we use 624 raw and distorted notes for each audio effect setting. The

test and validation samples are randomly selected and correspond to 5% of this

dataset each. The recordings were downsampled to 16 kHz and Table 5.3 shows

the details of the settings for each audio effect.

For the FxChain task we further evaluate the generalization capabilities of the

trained modeling networks. We test the models with recordings from a broader

dataset, i.e. the NSynth dataset (Engel et al., 2017). This dataset consists of individ-

ual notes of 4 seconds from more than 1000 instruments.

2 http://sox.sourceforge.net/
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5.3.3 Evaluation

Two metrics are used when testing the models with the various nonlinear model-

ing tasks. Since the mean absolute error depends on the amplitude of the output

and target waveforms, before calculating this metric, we normalize the energy of

the target and the output and define it as the energy-normalized mean absolute

error (mae).

As a perceptually-based objective metric, we measure the MFCCs which are

based on a model of human auditory perception (see ??). The mfcc_cosine cor-

responds to the mean cosine similarity of the MFCCs. The cosine similarity or

distance computes the cosine of the angle between two vectors in order to mea-

sure their similarity. Therefore it consists of the dot product between two vectors

divided by the product of their L2 norms. The cosine distance indicates whether

the vectors are pointing in the same direction (Han et al., 2011).

The mfcc_cosine is calculated as follows:

• A log-power-melspectogram is computed from the energy-normalized audio

waveforms. This is calculated with 40 mel-bands and audio frames of 4096

samples and 50% hop size.

• 13 MFCCs are computed using the DCT and the mfcc_cosine metric is the

mean cosine similarity across the MFCC vectors.

5.4 results

The training procedures were performed for each type of nonlinear effect and for

bass guitar and electric guitar, i.e. we train a model for each audio effect and

instrument, respectively. Then, the models were tested with samples from the test

dataset. Audio examples for CAFx are available online3.

Figs. 5.3 and 5.4 show the mae and mfcc_cosine for the different models when

tested with the test subset of each modeling task. For each FxChain setting and for

each instrument, Fig. 5.10 shows the mae and mfcc_cosine values when the models

are tested with the test samples of the NSynth dataset.

For selected test samples of the distortion and overdrive tasks and for both CAFx

and WaveNet, Figs. 5.5 and 5.6 show the input, reference, and output waveforms to-

gether with their respective spectrogram. To more closely display the performance

of these nonlinear tasks, Fig. 5.7 shows a segment of the respective waveforms.

3 https://github.com/mchijmma/modeling-nonlinear
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In addition, for both CAFx and WaveNet, Figs. 5.8 and 5.9 show the target and

obtained waveshaping nonlinearities for various bass guitar and electric guitar

modeling tasks. This for the distortion and overdrive tasks, respectively.
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Table 5.3: Settings for each audio effect modeling task.

Fx # Bass Guitar

distortion

1 Sawing: ’Edge - 9 o clock’, ’Gain - 3 o clock’,

’Level - 12 o clock’, ’Tone - 3 o clock’

Sawing: ’Edge - 10 o clock’, ’Gain - 2 o clock’,

’Level - 12 o clock’, ’Tone - 1 o clock’

2 Screaming: ’Contour - 80%’, ’Drive - 90%’, ’Fac-

tory Preset - evil’, ’Input - 0dB’, ’Output - -17dB’,

’Shape - 3’

Screaming: ’Contour - 90%’, ’Drive - 95%’, ’Fac-

tory Preset - wracky’, ’Input - 0dB’, ’Output - -

17dB’, ’Shape - 3’

3 Muffled: ’Drive - 30%’, ’Muffle - 60%’, ’Output

- -2dB’

Muffled: ’Drive - 40%’, ’Muffle - 40%’, ’Output

- 0dB’

overdrive 1 Rock Bass ’Drive - 3’, ’High Frequency - 5 kHz’,

’High Q - 0.5’, ’Input - 0dB’, ’Low Cut - 40 Hz’,

’Mid Frequency - 250 Hz’, ’Mid Gain - -3dB’,

’Output - -7dB’, ’Shape - 4’, ’Tone - 3’

Rocking Blues ’Drive - 7’, ’High Frequency -

5 kHz’, ’High Q - 1.4’, ’Input - 0dB’, ’Low Cut -

325 Hz’, ’Mid Frequency - 600 Hz’, ’Mid Gain -

0dB’, ’Output - -4dB’, ’Shape - 7’, ’Tone - 4’

2 Tubish: ’Limiter - Off’, ’Output - -20dB’, ’Shape

- 3 o clock’, ’Shaper - On’

Tubish: ’Limiter - Off’, ’Output - -10dB’, ’Shape

- 5 o clock’, ’Shaper - On’

3 Drive: ’Bass - 3dB’, ’Factory Preset - magic OD’,

’High - -12dB’, ’Input - -2dB’, ’Mid - 6dB’, ’Out-

put - -15dB’

Drive: ’Bass - 3dB’, ’Factory Preset - magic OD’,

’High - -3dB’, ’Input - 0dB’, ’Mid - 6dB’, ’Output

- -10dB’

EQ
1 Speaker Simulation: ’Bias - 0’, ’Drive - 0’,

’Model - Spkr Sim’, ’Output - 0 dB’, ’Process -

Mono’

Fender Twin: ’Bright - On’, ’High - 5’, ’Low - 5’,

’Mid - 5’, ’Tr Intens - 0’, ’Tr Speed - 5’, ’Volume -

8.8’

2 Rock Bass EQ: ’Band 1 Frequency - 60 Hz’,

’Band 1 Gain - 0 dB’, ’Band 1 Q - 1’, ’Band 1 Type

- Shelve’, ’Band 2 Frequency - 400 Hz’, ’Band 2

Gain - 3 dB’, ’Band 2 Q - 1’, ’Band 2 Type - Peak’,

’Band 3 Frequency - 1500 Hz’, ’Band 3 Gain - 4

dB’, ’Band 3 Q - 2’, ’Band 3 Type - Peak’, ’Band

4 Frequency - 4500 Hz’, ’Band 4 Gain - -3 dB’,

’Band 4 Q - 1’, ’Band 4 Type - Peak’

Speaker Simulation: ’Bias - 0’, ’Drive - 0’,

’Model - 4x12 1’, ’Output - 0dB’, ’Process - Mono’

FxChain 1 lowshelf: ’Gain - +20 dB’, ’Frequency - 500 Hz’

highshelf: ’Gain - -20 dB’, ’Frequency - 500 Hz’

overdrive: ’Gain - +30 dB’, ’Colour - 0’

lowshelf: ’Gain - +20 dB’, ’Frequency - 500 Hz’

highshelf: ’Gain - -20 dB’, ’Frequency - 500 Hz’

overdrive: ’Gain - +30 dB’, ’Colour - 0’

2 lowshelf: ’Gain - +20 dB’, ’Frequency - 500 Hz’

overdrive: ’Gain - +30 dB’, ’Colour - 0’

highshelf: ’Gain - -20 dB’, ’Frequency - 500 Hz’

lowshelf: ’Gain - +20 dB’, ’Frequency - 500 Hz’

overdrive: ’Gain - +30 dB’, ’Colour - 0’

highshelf: ’Gain - -20 dB’, ’Frequency - 500 Hz’

3 overdrive: ’Gain - +30 dB’, ’Colour - 0’

lowshelf: ’Gain - +20 dB’, ’Frequency - 500 Hz’

highshelf: ’Gain - -20 dB’, ’Frequency - 500 Hz’

overdrive: ’Gain - +30 dB’, ’Colour - 0’

lowshelf: ’Gain - +20 dB’, ’Frequency - 500 Hz’

highshelf: ’Gain - -20 dB’, ’Frequency - 500 Hz’
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Figure 5.3: For both architectures and for all modeling tasks, the mae and mfcc_cosine

values of bass guitar models when evaluated with test datasets. Lower is better

for all metrics.
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Figure 5.4: For both architectures and for all modeling tasks, the mae and mfcc_cosine

values of electric guitar models when evaluated with test datasets. Lower is

better for all metrics.
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Figure 5.5: Results with selected samples from the test dataset for the bass guitar distor-

tion task #1. The waveforms and their respective spectrograms are shown and

vertical axes represent amplitude and frequency (Hz) respectively.

5.5 discussion

Nonlinear modeling tasks

Figs. 5.3 and 5.4 show the performance of the networks for each nonlinear model-

ing task and for both bass guitar and electric guitar models. To provide a reference,
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Figure 5.6: Results with selected samples from the test dataset for the electric guitar over-

drive task #2. The waveforms and their respective spectrograms are shown and

vertical axes represent amplitude and frequency (Hz) respectively.

across all modeling tasks, the mean mae and mfcc_cosine values between inputs and

target waveforms are 0.1 and 0.9, respectively.

Overall, CAFx and WaveNet achieved low-error objective metrics. From Fig. 5.7,

it can be seen that, both in time and frequency, the models accomplished the non-

linear target with high and almost identical accuracy. Furthermore, from Figs. 5.8

and 5.9, the models were able to match precisely the input-target waveshaping

curve or ratio for selected settings. Therefore the models correctly accomplished
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Figure 5.7: For the test samples from Figs. 5.5 and 5.6, a segment of the respective wave-

forms: 5.7a bass guitar distortion task #1 and Fig. 5.7b electric guitar overdrive

task #2. Vertical axes represent amplitude. The reference, CAFx and WaveNet

waveforms are mostly overlapping.

the timing settings from the nonlinear effects, such as attack and release, which

are evident in the hysteresis behavior present in Figs. 5.8 and 5.9.

We obtained the best results with the overdrive task #2 for both instruments.

This is due to the waveshaping curves from Fig. 5.9b where it can be seen that
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Figure 5.8: For CAFx, input-target and input-output waveshaping ratio for each distortion

setting. Fig. 5.8a bass guitar distortion task #1. Fig. 5.8b electric guitar distortion

task #2. Fig. 5.8c electric guitar distortion task #3. Horizontal axes represent

input amplitude and vertical axes represent target/output amplitude.

the transformation does not involve timing nor filtering settings. We obtained the

largest error for FxChain setting #3. Due to the extreme filtering configuration

after the overdrive, it could be more difficult for the networks to model both the

nonlinearity and the filters.

For the distortion and overdrive tasks and for both instruments, CAFx outper-

formed WaveNet based on the obtained objective metrics. In general, the tasks that

involve filtering, such as EQ and FxChain, introduced the largest errors. In par-

ticular, CAFx and WaveNet decreased their performance when modeling electric

guitars for theses tasks, e.g. the larger mfcc_cosine values for the electric guitar

FxChain task.
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Figure 5.9: For WaveNet, input-target and input-output waveshaping ratio for each over-

drive setting. Fig. 5.9a electric guitar overdrive task #1. Fig. 5.9b electric guitar

overdrive task #2. Fig. 5.9c bass guitar overdrive task #3. Horizontal axes repre-

sent input amplitude and vertical axes represent target/output amplitude.

Therefore for the FxChain task we further test the trained models. From Fig. 5.10

it can be seen that, when tested with different instrument recordings, both archi-

tectures decreased their performance with WaveNet obtaining better results than

CAFx. This higher performance obtained by the WaveNet architecture might be

due to the smaller size of the filters, which compared to larger CAFx filters are

less prone to overfitting and could generalize better (Lee et al., 2018).

Furthermore, taking into account that in the other modeling tasks, CAFx tend to

reach lower metric values, we could point towards a trade-off between optimiza-

tion for a specific instrument and generalization among different instruments. This

also means the convolutional and dense layers within CAFx are being tuned to find

certain feature patterns of the respective instrument recordings. A training subset
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Figure 5.10: Evaluation of the generalization capabilities of the models. mae and

mfcc_cosine values for CAFx and WaveNet when tested with a different test

dataset (NSynth). Fig. 5.10a shows the metrics for the bass guitar models and

Fig. 5.10b shows the metrics for the electric guitar models. Lower is better for

all metrics.

with broader types of musical recordings could further improve the generaliza-

tion capabilities of the models as well as regularization methods, such as dropout

layers as shown in Publication II.

It is worth mentioning that the EQ task is also nonlinear, since the effects that

were applied include amplifier emulation, which involves nonlinear modeling.

Therefore, for this task, the models are also achieving linear and nonlinear model-

ing, although with lesser extent in terms of objective metric values. This can be fur-

ther improved by exploring a loss function that considers the frequency-domain,

such as Eq. (4.9) in the case of the CEQ model.

Also, the audio samples for all the effects from the IDMT-SMT-Audio-Effects

dataset have a fade-out applied in the last 0.5 seconds of the recordings. Thus,

when modeling nonlinear effects related to dynamics, this represents an additional

challenge to the networks. We found that the CAFx might capture more closely this

amplitude modulation via visual inspection of the waveforms, although additional

tests are required.



5.5 discussion 77

Other black-box modeling methods suitable for the FxChain task, such as Wiener

and Hammerstein models (Gilabert Pinal et al., 2005; Eichas and Zölzer, 2016,

2018), would require additional optimization in order to find the optimal com-

bination of linear/nonlinear components. Moreover, further assumptions on the

Wiener and Hammerstein static nonlinearity functions (i.e. invertibility) are needed

and common nonlinearities which are not invertible are for example a dead-zone

and a saturation (Hagenblad, 1999). Therefore, the proposed end-to-end deep

learning architecture CAFx represents an improvement of the state-of-the art in

terms of flexibility, although a further analysis of the trade-off between instru-

ment specificity and generalization is required. Compared to the analytical meth-

ods, CAFx makes less assumptions about the modeled audio system and is thus

more suitable for generic black-box modeling of nonlinear and linear audio effects.

Gradient Ascent

We perform gradient descent analysis in order to obtain a further insight of the

filters learned by CAFx in the layers Conv1D and Conv1D-Local. This method allows

us to compute the input waveform that activates the most each convolutional filter

and it has been shown to provide more meaningful interpretations of the features

learned by CNNs (Lee et al., 2018; Erhan et al., 2009; Zeiler and Fergus, 2014).

We start with a random noise frame as an input and a loss function that max-

imizes the activation of a specific filter. Then we use SGD to modify iteratively

the input frame, thus, obtaining the input waveform that activates the most the

respective filter. For selected nonlinear tasks, various spectrum visualizations of

the obtained waveforms are displayed in Fig. 5.11.

From the spectrum visualizations for the Conv1D filters, it can be seen that

the distortion and EQ modeling tasks introduce features with a narrow bandwidth,

whereas for the overdrive and FxChain tasks, the computed features represent filters

with a wider and less defined bandwidth. We can see that most filters contain

high magnitudes for lower frequencies (<1000 Hz), which is similar to logarithmic

compressed representations such as MFCCs.

For the Conv1D-Local filters, the peak frequencies of the obtained features only

reached the half of the sampling frequency for the distortion task. This could be

due to the fact that this task represents the most severe nonlinearity and, therefore,

implies greater harmonic distortion at high frequencies. In addition, the obtained
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Figure 5.11: Spectrum visualization of the input waveforms that maximize the activation

of each filter. Filters are ordered in ascending peak frequency and x-axis rep-

resents the index of the filter. From top to bottom: Conv1D and Conv1D-Local

for the following modeling tasks: Fig. 5.11a bass guitar distortion task #1,

Fig. 5.11b electric guitar overdrive task #2, Fig. 5.11c electric guitar EQ task

#1 and Fig. 5.11c electric guitar FxChain task #3.

features represent more selective peak filters with narrower bandwidths. Logarith-

mic compression at the lower frequencies is also present.

5.6 conclusion

In this chapter, we introduced CAFx, a general-purpose deep learning architecture

for audio processing in the context of nonlinear modeling. Complex nonlinearities

with attack, release and filtering settings were correctly modeled by the network
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due to the low-errors obtained in the objective metrics. Since the model was trained

on a frame-by-frame basis, we can conclude that most transformations that occur

within the frame-size will be captured by the network.

To achieve this, we built on CEQ and we explored an end-to-end network based

on an adaptive convolutional front-end and back-end, latent-space DNNs and

smooth adaptive activation functions. We showed the model matching distortion,

overdrive, amplifier emulation and combination of linear and nonlinear audio effects. To

the best of our knowledge, prior to this work, deep learning architectures have not

been successfully implemented to model nonlinear and linear audio effects.

Through the use of specific domain knowledge, we explored trainable wave-

shaping nonlinearities, such as SAAFs, along with a powerful DNN audio effects

modeling network. Therefore we have shown the capabilities of DNNs as audio

processing blocks in the context of modeling nonlinear audio effects with short-

term memory.

We also compare our model to WaveNet, a nonlinear modeling network that

corresponds to the feedforward variant of Oord et al. (2016) and implemented by

Rethage et al. (2018). It is worth noting that this method was designed for speech

denoising and not for audio effects modelling. Therefore, since Damskägg et al.

(2019) proposed a similar architecture for tube amplifier emulation, further com-

parison with their model is required, which is shown to outperform the current

state-of-the-art analytical method for nonlinear black-box modeling.

Overall, we measure the modeling capabilities of the models via a perceptually-

based objective metric and we conclude that both architectures perform similarly.

We show that the models accomplished the nonlinear modeling tasks with al-

most identical accuracy. Perceptually the obtained waveforms are virtually indis-

tinguishable from their target counterparts although a listening test is required

(see Chapter 7).

The CAFx architecture performed better when modeling nonlinear nonlinear

tasks such as distortion and overdrive, while WaveNet generalized better when

matching tasks that involve cascades of filters and nonlinearities. Generalization

capabilities among instruments and optimization towards an specific instrument

were found among the trained models. As future work, further generalization

could be explored with the use of dropout layers or weight regularizers as well as

training data with a wider range of instruments.

Although the models currently run on a GPU, real-time implementations could

be further explored since processing times are already close to real-time temporal
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constraints. Table C.1 displays processing times using the non optimized python

implementation. In addition, shorter input frames can also be explored for low-

latency applications. Since the model is learning a static representation of the

audio effect, parametric models could also be explored by introducing, during

training, effect controls as inputs as shown in Hawley et al. (2019).

Possible applications for these architectures are digital emulations of nonlinear

audio effects that indistinguishably match the sonic behavior of the analog coun-

terparts. Also, automatic linear and nonlinear processing within an automatic mix-

ing task can be investigated. Specific instrument recordings and their respective

mixing processing could be analyzed and implemented by the models.

In the following chapter, we build on these architectures and we explore RNNs

and latent-space temporal dilated convolutions to model transformations involv-

ing long term memory such as dynamic range compression or different modula-

tion effects.



6
M O D E L I N G T I M E - VA RY I N G A U D I O E F F E C T S

As mentioned in Section 2.5, audio effects whose parameters are modified peri-

odically over time are often referred as time-varying or modulation based audio

effects. Furthermore, as discussed in Section 2.3.2, a broad family of time-invariant

audio effects is based on long-term dependencies, such as compressors. By assum-

ing linear behaviour or by omitting certain nonlinear circuit components, most of

these effects can be implemented directly in the digital domain through the use of

digital filters and delay lines.

Nevertheless, modeling of this type of effects remain an active field, since musi-

cians tend to prefer analog counterparts and current methods are often optimized

to a very specific circuit. Therefore such models are not easily transferable to dif-

ferent effects units since expert knowledge of the type of circuit being modeled

is always required and cannot be efficiently generalized to other time-varying or

time-invariant audio effects with long-term memory.

Since the architectures from previous chapters do not generalize to transforma-

tions with long temporal dependencies, in this chapter we explore the capabilities

of end-to-end DNNs to learn the long-term memory which characterizes these ef-

fect units. We build on the CAFx and WaveNet architectures and we propose two

novel general-purpose modeling networks: CRAFx and CWAFx. Based on the adap-

tive front-end and back-end structures from previous models, we explore whether

a latent-space based on Bidirectional Long Short-Term Memory (Bi-LSTM) layers

or temporal dilated convolutions is able to learn time-varying transformations. To

the best of our knowledge, these models represent the first DNNs for modelling

time-varying audio effects with long temporal dependencies. Code is available on-

line1 and the number of parameters and computational complexity are shown in

Appendix C. Audio samples for CRAFx can be found in Appendix B.

Therefore we introduce deep learning architectures for generic black-box mod-

eling of audio processors with long-term memory. We show the models matching

digital implementations of modulation based audio effects such as chorus, flanger,

phaser, tremolo, vibrato, LFO-based auto-wah, ring modulator and Leslie speaker. Fur-

1 https://github.com/mchijmma/DL-AFx/tree/master/src

81
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thermore, we extend the applications of the models by including nonlinear time-

invariant audio effects with long temporal dependencies such as auto-wah with

envelope follower, compressor and multiband compressor. We also introduce nonlin-

earities such as overdrive into linear time-varying effect units, in order to test the

capabilities of the networks when modeling nonlinear time-varying audio trans-

formations.

We explore linear and nonlinear time-varying emulation as a content-based

transformation without explicitly obtaining the solution of the time-varying sys-

tem. In order to measure the performance of the model, we propose an objective

metric based on the psychoacoustics of modulation frequency perception. We also

analyze what the model is actually learning and how the given task is accom-

plished.

6.1 convolutional recurrent audio effects modeling network -

crafx

The CRAFx model builds on the CAFX architecture and is also divided into three

parts: adaptive front-end, latent-space and synthesis back-end. A block diagram

can be seen in Fig. 6.1 and its structure is described in detail in Table 6.1. The main

difference is the incorporation of Bi-LSTMs (see Section 3.6) into the latent-space

and the modification of the synthesis back-end structure. We explore bidirectional

recurrent layers as they can access long-term context from backward and forward

directions (Graves et al., 2013), and Bi-LSTMs have been shown to be able to learn

long time dependencies when processing time series where the input context is

needed (Graves and Schmidhuber, 2005).

Thus, we incorporate Bi-LSTMs to allow the model to learn nonlinear transfor-

mations with long temporal dependencies, although further exploration of other

gated recurrent layers such as GRUs is needed. Also, instead of 128 channels, due

to the training time of the recurrent layers, this model uses a filter bank structure

of 32 channels or filters. As mentioned in Section 6.1, all convolutional layers use

strides of unit value, no dilation is incorporated and we follow the same padding

as in CAFx.

In order to allow the model to learn long-term memory dependencies, the input

consists of the audio frame x at the current time step t, concatenated with the k

previous and k subsequent frames. These frames are of size N and sampled with

a hop size τ. The concatenated input x is described as



6.1 convolutional recurrent audio effects modeling network - crafx 83

Conv1D
Conv1D

Local

Max

Pool

Adaptive Front-end

Bi-LSTM

SAAF

Input

audio

Output 

audio

deConv1DUnpool

Synthesis Back-end

DNN

SAAF

SE

Figure 6.1: Block diagram of CRAFx; adaptive front-end, latent-space Bi-LSTM and syn-

thesis back-end.

x(j) = x(t+ jτ), j = −k, ...,k. (6.1)

The adaptive front-end is exactly the same as the one from CAFx, but its layers

are time distributed, i.e. the same convolution or pooling operation is applied to

each of the 2k+1 input frames. The max-pooling operation is a moving window

of size N/64. In this model, R is the corresponding row in X1 for the frequency

band decomposition of the current input frame x(0). Thus, the back-end does not

directly receive information from the past and subsequent context frames.

Latent-space Bi-LSTM

Bi-LSTM
(64)

tanh

Bi-LSTM
(32)

tanh

Bi-LSTM
(16)

saaf

Figure 6.2: Block diagram of the latent-space of CRAFx.

The latent-space is depicted in Fig. 6.2 and consists of three Bi-LSTM layers

of 64, 32, and 16 units respectively (see Section 3.6). The Bi-LSTMs process the

latent-space representation Z, which is learned by the front-end and contains in-

formation regarding the 2k+1 input frames. With an input frame size of 4096

samples and ±4 context frames, the latent representation Z from the front-end

corresponds to 9 frames of 64 samples and 32 channels, which can be unrolled

into a feature map of 64 samples and 288 channels. The input-to-hidden weights

of the Bi-LSTM layers are applied to the channel dimension of the input feature

maps. For instance, for the first Bi-LSTM layer, the matrix multiplication is com-
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Table 6.1: Detailed architecture of CRAFx with input frame size of 4096 samples and ±4

context frames. Output shape = (k,m,n) denotes k frames of m columns and

n rows, and Output shape = (m,n) denotes m columns and n rows. Weights

= m(n) denotes m kernels of size n, and Weights = n denotes n hidden units.

Layer Output shape Weights Output

Input (9, 4096, 1) . x

Conv1D (9, 4096, 32) 32(64) X1

Residual (4096, 32) . R

Abs (9, 4096, 32) . .

Conv1D-Local (9, 4096, 32) 32(128) X2

MaxPooling (9, 64, 32) . Z

Bi-LSTM (64, 128) 64 .

Bi-LSTM (64, 64) 32 .

Bi-LSTM (64, 32) 16 .

SAAF (64, 32) 32(25) Ẑ

Unpooling (4096, 32) . X̂3

Multiply (4096, 32) . X̂2

Dense (4096, 32) 32 .

Dense (4096, 16) 16 .

Dense (4096, 16) 16 .

Dense (4096, 32) 32 .

SAAF (4096, 32) 32(25) X̂′
1

Abs (4096, 32) . .

Global Average (1, 32) . .

Dense (1, 512) 512 .

Dense (1, 32) 32 se

X̂′
1 × se (4096, 32) . X̂1

X̂1 + X̂2 (4096, 32) . X̂0

deConv1D (4096, 1) . ŷ

puted between the input-to-hidden weights and the columns of the input matrix,

which correspond to 64 samples and 288 channels.

These recurrent layers are trained to reduce the dimension of Z, while also learn-

ing a set of nonlinear modulators Ẑ. This new latent representation or modulators

corresponds to a matrix of 32 channels of 64 samples and is fed into the synthesis

back-end in order to reconstruct an audio signal that matches the time-varying
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Figure 6.3: Block diagram of DNN-SAAF-SE.

modeling task. Each Bi-LSTM has dropout and recurrent dropout rates of 0.1 and

the first two layers have tanh as activation function. Also, the nonlinearities of the

last recurrent layer are locally connected SAAFs.

As shown in Section 5.1, locally connected SAAFs are used as the nonlinearity

for the last layer. This in order to make use of the smooth characteristics of SAAFs,

which can approximate any continuous function such as the modulators of the re-

spective time-varying effect units. Each SAAF is composed of 25 intervals between

−1 to +1.

Synthesis back-end

The synthesis back-end accomplishes the reconstruction of the target audio by

processing the frequency band decomposition R and the nonlinear modulators

Ẑ. Similarly to CAFx, The back-end consists of an unpooling layer, a DNN-SAAF

block and a final convolutional layer. The DNN-SAAF block consists of four dense

layers of 32, 16, 16 and 32 hidden units respectively. Each dense layer is followed

by the tanh function except for the last one, which is followed by a SAAF layer.

The new structure of the back-end of CRAFx incorporates Squeeze-and-Excitation

layers (see Section 3.7) after the DNN-SAAF block (DNN-SAAF-SE).

We propose a SE block which applies a dynamic gain to each of the feature map

channels of X̂′
1, the output of DNN-SAAF. Based on the structure from Kim et al.

(2018), the SE block consists of a global average pooling operation followed by two

FC layers. The FC layers are followed by ReLU and sigmoid activation functions

accordingly.

Since the feature maps within the back-end are based on time-domain wave-

forms, we incorporate an absolute value layer before the global average pooling

operation. Fig. 6.3 depicts the block diagram of DNN-SAAF-SE, which input and

output are the feature maps X̂2 and X̂1, respectively.



6.1 convolutional recurrent audio effects modeling network - crafx 86

Following the filter bank architecture, the back-end matches the time-varying

task by the following steps. First, an upsampling operation is applied to the

learned modulators Ẑ which is followed by an element-wise multiplication with

the residual connection R. This can be seen as a frequency dependent amplitude

modulation to each of the channels or frequency bands of R:

X̂2 = X̂3 ×R, (6.2)

where X̂3 corresponds to a matrix containing the upsampled modulators Ẑ. Both

X̂3 and R feature maps have 32 rows or channels of 4096 samples.

This is followed by the nonlinear waveshaping and channel-wise scaled filters

from the DNN-SAAF-SE block. Thus, the modulated frequency band decompo-

sition X̂2 is processed by the learned waveshapers from the DNN-SAAF layers,

resulting in the feature map X̂′
1. This is further scaled by se, the frequency de-

pendent gains from the SE layer. The resulting feature map X̂1 can be seen as

modeling the nonlinear short-term memory transformations within the audio ef-

fects modeling tasks:

X̂1 = X̂′
1 × se, (6.3)

where se corresponds to a vector of 32 scalars and X̂′
1 is a matrix of 32 channels

of 4096 samples.

Then, X̂1 is added back to X̂2, acting as a nonlinear feedforward delay line:

X̂0 = X̂1 + X̂2, (6.4)

where X̂0, X̂1 and X̂2 correspond to matrices of 32 channels of 4096 samples.

Therefore the structure of the back-end is informed by the general architecture

in which the modulation based effects are implemented in the digital domain,

through the use of LFOs, digital filters and delay lines. By using this architecture,

we interpret that X̂2 corresponds to the linear component with long temporal de-

pendencies and X̂1 to the nonlinear component with short-term memory of time-

varying audio effects. Nevertheless, a further exploration is required to determine

if the model uses these feature maps exclusively in this way.

Finally, the complete waveform is synthesized in the same way as in CAFx,

where the last layer corresponds to the transposed and non-trainable deconvo-

lution operation.
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Figure 6.4: Block diagram of CWAFx; adaptive front-end, latent-space WaveNet and syn-

thesis back-end.

Table 6.2: Detailed architecture of the latent-space WaveNet. This is for a CWAFx with

input frame size of 4096 samples and ±4 context frames. Output shape = (m,n)

denotes m columns and n rows. Weights = m(n) denotes m kernels of size n.

Layer - Output shape - Weights Output

Z (576, 32) .

Conv1D (576, 32) - 32(3) Rin

Dilated conv (576, 32) - 32(3) Dilated conv (576, 32) - 32(3) .

Tanh (576, 32) Sigmoid (576, 32) . .

Multiply (576, 32) .

Conv1D (576, 32) - 32(1) Conv1D (576, 32) - 32(1) Rout S

Add (576, 32) .

ReLU (576, 32) .

Conv1D (576, 32) - 32(3) .

ReLU (576, 32) .

Conv1D (576, 32) - 32(3) .

FC (64, 32) - 64 Ẑ

6.2 convolutional and wavenet audio effects modeling network

- cwafx

We propose a new model based on the combination of the convolutional and dense

architectures from CRAFx with the dilated convolutions from WaveNet. Since the

Bi-LSTM layers in the former were in charge of learning long temporal dependen-

cies from the input and context audio frames, we replace these recurrent layers

with temporal dilated convolutions. This is due to the fact that dilated convolu-

tions have been shown to outperform recurrent approaches when learning sequen-
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tial problems (Bai et al., 2018), such as in MatthewDavies and Böck (2019), where

Bi-LSTMs are successfully replaced with this type of temporal convolutions.

Thus, we investigate whether a latent-space based on stacked dilated convolu-

tions can learn frequency-dependent amplitude modulation signals. The model is

depicted in Fig. 6.4. The adaptive front-end and synthesis back-end are the same as

the ones presented in CRAFx.

Latent-space WaveNet

The structure of the latent-space WaveNet is described in detail in Table 6.2.

With CWAFx with input frame size of 4096 samples and ±4 context frames, the

latent representation Z from the front-end corresponds to 9 frames of 64 samples

and 32 channels, which can be unrolled into a feature map of 576 samples and

32 channels. Thus, we approximate these input dimensions with a latent-space

WaveNet with receptive and target fields of 510 and 64 samples respectively. Thus,

based on Eq. (5.2), we use 2 stacks of 7 dilated convolutional layers with a dilation

factor of 1,2,...64 and 32 filters of size 3.

Also, we achieved better fitting by keeping the dimensions of the skip connec-

tions S and by replacing the final 1x1 convolution with a FC layer. The latter has

64 hidden units followed by the tanh activation function. The FC layer is applied

along the latent dimension rather than to the channel dimension, i.e. the matrix

multiplication is computed between the FC weights and the rows of the input

matrix, which corresponds to 576 samples and 32 channels. The new latent repre-

sentation Ẑ corresponds to a matrix of 32 channels of 64 samples

6.3 experiments

6.3.1 Training

The training of CRAFx and CWAFx includes the same initialization step as CEQ

and CAFx (see Section 4.2.1). Once the convolutional layers of the front-end and

back-end are pretrained, the DNN-SAAF-SE block and the latent-space Bi-LSTM

and Wavenet layers are incorporated into the respective models, and all the weights

are trained following an end-to-end supervised learning task.

The loss function to be minimized is the mean absolute error between the target

and output waveforms, see Eq. (3.1). We explore input size frames from 1024 to



6.3 experiments 89

8192 samples and we always use a rectangular window with a hop size of 50%.

The batch size consisted of the total number of frames per audio sample.

Adam (Kingma and Ba, 2015) is used as optimizer and we perform the pre-

training for 200 epochs and the supervised training for 500 epochs. In order to

speed convergence, during the second training step we start with a learning rate

of 5·10
−5 and we reduce it by 50% every 150 epochs. We select the model with the

lowest error for the validation subset.

6.3.2 Dataset

Modulation based audio effects such as chorus, flanger, phaser, tremolo and vibrato

were obtained from the IDMT-SMT-Audio-Effects dataset (Stein et al., 2010). The

recordings correspond to individual 2-second notes which include electric guitar

and bass guitar raw notes and their respective effected versions. These effects

correspond to digital implementations of effect units, such as VST audio plug-ins.

For our experiments, for each of the above effects, we only use the setting #2

from where we obtained the unprocessed and processed audio for bass guitar. In

addition, processing the bass guitar raw audio, we implemented an LFO-based

auto-wah with a peak filter whose center frequency ranges from 500 Hz to 3 kHz

and modulated by a 5 Hz sinusoidal.

Since the previous audio effects are linear time-varying, we further test the capa-

bilities of the model by adding a nonlinearity to each of these effects. Thus, using

the bass guitar wet audio, we use SoX2 to apply an overdrive (gain= +10 dB) after

each modulation based effect.

We also use virtual analog implementations of a ring modulator and a Leslie

speaker to process the electric guitar raw audio. The ring modulator implementation3

is based on Parker (2011b) and we use a modulator signal of 5 Hz. The Leslie speaker

implementation4 is based on Smith et al. (2002) and we model each of the stereo

channels.

Finally, we also investigate the capabilities of the model with nonlinear time-

invariant audio effects with long temporal dependencies, such as compressors and

auto-wah based on an envelope follower. We use the compressor and multiband com-

pressor from SoX5 to process the electric guitar raw audio.

2 http://sox.sourceforge.net/

3 https://github.com/nrlakin/robot_voice/blob/master/robot.py

4 https://ccrma.stanford.edu/software/snd/snd/leslie.cms

5 See footnote 2.
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Similarly, we use an auto-wah implementation6 with an envelope follower and a

peak filter which center frequency modulates between 500 Hz to 3 kHz.

For each time-varying task we use 624 raw and effected notes and both the test

and validation samples are randomly selected and correspond to 5% of this subset

each. The recordings were downsampled to 16 kHz and amplitude normalization

was applied with exception to the time-invariant audio effects. Table 8.3 shows the

details of the settings for each audio effect.

6.3.3 Evaluation

Three metrics are used when testing the models with the various modeling tasks.

As shown in Chapter 5, we use the energy-normalized mean absolute error (mae).

As an objective evaluation for the time-varying tasks, we propose an objective

metric which mimics human perception of amplitude and frequency modulation.

The so-called modulation spectrum uses time-frequency theory integrated with

the psychoacoustics of modulation frequency perception, thus, providing long-

term knowledge of temporal fluctuation patterns (Sukittanon et al., 2004). The

modulation spectrum mean squared error (ms_mse) is based on the audio features

from McDermott and Simoncelli (2011) and McKinney and Breebaart (2003) and

is defined as follows:

• A Gammatone filter bank (see ??) is applied to the target and output entire

waveforms. In total we use 12 filters, with center frequencies spaced logarith-

mically from 26 Hz to 6950 Hz.

• The envelope of each filter output is calculated via the magnitude of the

Hilbert transform (Hahn, 1996) and downsampled to 400 Hz.

• A Modulation filter bank is applied to each envelope. In total we use 12 filters,

with center frequencies spaced logarithmically from 0.5 Hz to 100 Hz.

• The FFT is calculated for each modulation filter output of each Gammatone

filter. The energy is summed across the Gammatone and Modulation filter

banks and the ms_mse metric is the mean squared error of the logarithmic

values of the FFT frequency bins.

The evaluation for the nonlinear time-invariant tasks (compressor and multiband

compressor) corresponds to mfcc_cosine: the mean cosine distance of the MFCCs

(see Section 5.3.3).

6 https://github.com/lucieperrotta/ASP
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Table 6.3: Settings for each audio effect modeling task.

Fx settings

chorus Heavy Chorus: ’Delay Time - 12 ms’, ’Rate - 0.501 Hz’, ’Spread - Off’, ’Depth

- 70%’, ’Mix - 1:1’, ’Level - 0 dB’

flanger Standard Flange: ’Time - 3.98 ms’, ’Rate - 1.2 Hz’, ’Sync - Off’, ’Depth -

50%’, ’Spread - Off’, ’Feedback - 70%’,’Mix - 1:1’, ’Level - 0 dB’

phaser Metallic Space: ’Stages - 6’, ’Upper - 1933 Hz’, ’Rate - 0.24 Hz’, ’Sync - Off’,

’Depth - 100%’, ’Spread - Off’, ’Feedback - 0%’,’Mix - 1:1’, ’Level - 0 dB’

tremolo Slow Pulsing: ’Frequency - 2 Hz’, ’Oscillator - Sine’, ’Output - 100%’, ’Level

- 100%’

vibrato Slow Expressive Vibrato: ’Delay Time - 6 ms’ , ’Dry Mix - 0%’ , ’Wet Mix -

100%’ , ’Feedback - 0%’ , ’Modulation Rate - 2 Hz’ , ’Modulation Depth - 1.1

ms’

auto-wah Peak filter: ’Oscillator - Sine’, ’Modulation Rate - 5 Hz’ , ’Filter - IIR 2nd

order’ , ’Q - 1’ , ’Peak Height - 0.8’ , ’Upper - 3000 Hz’ , ’Lower - 500 Hz’

auto-wah

envelope

follower

Peak filter: ’Moving Average Width - 2000’ , ’Filter - IIR 2nd order’ , ’Q - 1’ ,

’Peak Height - 0.8’ , ’Upper - 3000 Hz’ , ’Lower - 500 Hz’

ring

modulator

Diode-based: ’Diode Constants - 0.2, 0.4’, ’Gain Modulator - 0.5’ , ’Oscillator

- Sine’, ’Modulation Rate - 5 Hz’

leslie speaker Doppler Simulation and the Leslie: ’Speed Source Listener - 3.33 ms’ ,

’Gain Output - 0.35’ , ’Reverb Amount - 0.025’ , ’Horn Angular Velocity - 1.0’ ,

’Baffle Angular Velocity - 1.0” , ’Horn Angle - 0.0’ , ’Baffle Angle - 0.0’ , ’Horn

Radius - 0.18’ , ’Baffle Radius - 0.19050’, ’Cabinet Length - 0.71’, ’Cabinet

Width - 0.52’

compressor SoX: ’Attack Time - 10 ms’ , ’Release Time - 100 ms’ , ’Knee - 1 dB’ , ’Ratio -

4:1’ , ’Threshold - -40 dB’

multiband

compressor

SoX: ’Frequency bands - 2’ , ’Crossover Frequency - 500 Hz’ , ’Attack Time 1

- 5 ms’ , ’Release Time 1 - 100 ms’ , ’Knee 1 - 0 dB’ , ’Ratio 1 - 3:1’ , ’Threshold

1 - -30 dB’ , ’Attack Time 2 - 625 µs’ , ’Release Time 2 - 12.5 ms’ , ’Knee 2 - 6

dB’ , ’Ratio 2 - 6:1’ , ’Threshold 2 - -60 dB’
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Figure 6.5: mae values for CRAFx when modeling linear time-varying tasks with different

input size frames. Lower is better.

Figure 6.6: mae, mfcc_cosine and ms_mse values with the test dataset for all the modeling

tasks. od, ef and mb mean overdrive, envelope follower and multiband respectively.

Lower is better for all metrics.
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6.4 results & analysis

First, we explore the capabilities of Bi-LSTMs to learn long-term temporal depen-

dencies. For CRAFx, Fig. 6.5 shows the mae results of the test dataset for different

input frame sizes and various linear time-varying tasks. The results with the low-

est mae are the ones with an input size of 4096 samples, since shorter frame sizes

result in a higher error and 8192 samples do not yield a significant improvement.

Since the average modulation frequency in our tasks is 2 Hz, for each input size

we select a k that covers one period of this modulator signal. Thus, for the rest of

our experiments, we use an input size of 4096 samples and k =4 for the number

of past and subsequent frames.

For each model, the training procedures were performed for each type of time-

varying and time-invariant audio effect. Then, the models were tested with sam-

ples from the test dataset. Audio examples for CRAFx are available online7. Fig. 6.6

shows the different objective metrics for all the test subsets. To provide a reference,

the mean mae and ms_mse and values between input and target waveforms are

0.13, 0.83 respectively. For the compressor and multiband compressor, the mean

mfcc_cosine value is 0.15.

It can be seen that the models achieved low-error metrics in each linear time-

varying modeling task, and higher errors when modeling effects with added non-

linearities. Overall, the models achieved better results with amplitude modulation

and time-varying filter audio effects, although the modeling of delay-line based

effects also yielded low-error results. Based on the perceptual-based objective met-

rics, CRAFx and CWAFx closely match each audio effect modeling task with great

similarity. On the other hand, based on the mae results, the waveform of the mod-

eling targets is approximated with lower errors by CRAFx.

Fig. 6.7 displays the functioning of CRAFx for the tremolo task, where the se-

lected rows in Figs. 6.7c to 6.7f were chosen in order to illustrate how the model

accomplishes the amplitude modulation task. It shows how the model processes

the input frame x(0) into the feature maps X1 and X2, learns a set of modulator sig-

nals Ẑ, and applies the respective amplitude modulation. This linear time-varying

audio effect is easy to interpret. For more complex nonlinear time-varying effects,

a more in-depth analysis of the model is required.

7 https://mchijmma.github.io/modeling-time-varying/
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Figure 6.7: For CRAFx, various internal plots for the test dataset of the tremolo modeling

task. Fig. 6.7a input, target and output frames of 4096 samples and their respec-

tive FFT magnitudes. Fig. 6.7c, for the input frame x(0), 8 selected rows from

R. Fig. 6.7d, following the filter bank architecture, respective 8 rows from X2.

Fig. 6.7e, from Ẑ, corresponding 8 modulator signals learned by the Bi-LSTM

layer. Fig. 6.7f, in the same manner, 8 rows from X̂0, which is the input to

the deconvolution layer prior to obtaining the output frame ŷ. Vertical axes in

Figs. 6.7c to 6.7f are unitless and horizontal axes correspond to time.
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Figure 6.8: Results with selected samples from the test dataset for the chorus task.

Figs. 6.8a and 6.8b show the waveforms and their respective modulation spec-

tra. Vertical axes represent amplitude and Gammatone center frequency (Hz)

respectively.

For selected linear and nonlinear time-varying tasks, Figs. 6.8 to 6.11 show the

input, target, and output waveforms together with their respective modulation

spectra. In the time-domain, it is evident that the models are matching the target

waveform in a similar manner. From the modulation spectrum it is noticeable that

the models equally introduce different modulation energies into the output which
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Figure 6.9: Results with selected samples from the test dataset for the ring modulator

task. Figs. 6.9a and 6.9b show the waveforms and their respective modulation

spectra. Vertical axes represent amplitude and Gammatone center frequency

(Hz) respectively.

were not present in the input and which closely match those of the respective

targets.

The task becomes more challenging when a nonlinearity is added to a linear

time-varying transformation. Fig. 6.11 depicts results for the phaser-overdrive task.

Given the large overdrive gain, the resulting audio has a lower-frequency mod-

ulation. It can be seen that the models introduce modulations as low as 0.5 Hz.
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Figure 6.10: Results with selected samples from the test dataset for the Leslie speaker task

(right channel). Figs. 6.10a and 6.10b show the waveforms and their respective

modulation spectra. Vertical axes represent amplitude and Gammatone center

frequency (Hz) respectively.

But the waveforms are not as smooth as the target, hence the larger mae values in

Fig. 6.6. Although the mae increases for modeling tasks that include the overdrive

nonlinearity, the models do not significantly reduce performance and are able to

match the combination of nonlinear and modulation based audio effects.

Much more complicated time-varying tasks, such as the ring modulator and Leslie

speaker virtual analog implementations were also modeled with low-error metrics.
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Figure 6.11: Results with selected samples from the test dataset for the phaser-overdrive

task. Figs. 6.11a and 6.11b show the waveforms and their respective modu-

lation spectra. Vertical axes represent amplitude and Gammatone center fre-

quency (Hz) respectively.

This represents a significant result, since these implementations include emulation

of the modulation introduced by nonlinear circuitry; as in the case of the ring

modulator, or varying delay lines together with artificial reverberation and Doppler

effect simulation; as in the Leslie speaker implementation.

The models are also able to perform linear and nonlinear time-invariant mod-

eling. From waveform inspection, the long temporal dependencies of an envelope
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driven auto-wah, compressor and multiband compressor are matched by the networks.

From Fig. 6.6, the mfcc_cosine values for the multiband compressor task indicate a

lesser fitting, nevertheless the low mae values represent that the models are per-

forming well when modeling these type of processors. Furthermore, in this latter

case, the crossover filters denote a more complicated task which is being correctly

modeled. More specific perception-based metrics for compressors can be further

investigated, as well as subjective tests.

Overall, based on low-error objective metrics, the models performed better when

modeling effect units based on amplitude modulation, such as tremolo or ring

modulator, and time-varying filters, such as phaser. Likewise, similar performance

was achieved for delay-line effects based on frequency modulation as in the case

of flanger or the Leslie speaker stereo channels. Nevertheless, vibrato and vibrato-

overdrive represent the modeling tasks with highest errors. This might be because

vibrato is an effect based solely on frequency modulation whose rate is around 2

Hz. Since this represents a modulation rate higher than the rotation horn of the

Leslie speaker, this indicates that the performance of the models decreases when

matching effects based on low-frequency modulation such as the slow rotating

setting of the Leslie speaker (see Chapter 7). This could be improved by increasing

the frequency resolution by introducing more filters or channels, e.g. a filter bank

architecture of 128 filters, or by increasing the size of the latent-space through

smaller max pooling.

6.5 conclusion

In this chapter, we introduced CRAFx and CWAFx, two general-purpose deep

learning architectures for modeling audio effects with long temporal dependen-

cies. Through these two architectures, we explored the capabilities of end-to-end

DNNs with Bi-LSTM layers and temporal dilated convolutions to learn long tem-

poral dependencies such as low-frequency modulations and to process the audio

accordingly. We can conclude that both models achieved similar performance in

terms of objective metrics and were able to match digital implementations of linear

and nonlinear time-varying audio effects, time-varying and time-invariant audio

effects with long-term memory.

Based on the mae, CRAFx accomplished a closer match of the target waveforms.

Nevertheless, both models performed equally well when tested with perceptual-

based metrics such as mfcc_cosine and ms_mse. It is worth to mention that the
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computational processing times on GPU are significantly lower for CWAFx (see

Appendix C). This is due to GPU-accelerated libraries such as cuDNN (Chetlur

et al., 2014), which are highly optimized for convolutional layers.

In both architectures, we incorporated SE layers in order to learn and apply a

dynamic gain to each of the feature map channels or frequency band decomposi-

tions. This allowed the models to apply the respective modulator signals to each

channel and then further scale them through the SE layers. The introduction of this

dynamic gain provided a better fitting when modeling the various time-varying

tasks.

Other white-box or gray-box modeling methods suitable for these time-varying

tasks would require expert knowledge such as specific circuit analysis and dis-

cretization techniques. Moreover, these methods cannot easily be extended to other

time-varying tasks, and assumptions are often made regarding the nonlinear be-

havior of certain components. To the best of our knowledge, this work represents

the first architectures for black-box modeling of linear and nonlinear, time-varying

and time-invariant audio effects.

Using a small amount of training examples we showed the model matching cho-

rus, flanger, phaser, tremolo, vibrato, LFO-based and envelope follower-based auto-

wah, ring modulator, Leslie speaker and compressors. We proposed ms_mse, an objec-

tive perceptual metric to measure the performance of the model. The metric is

based on the modulation spectrum of a Gammatone filter bank, thus measuring

the human perception of amplitude and frequency modulation.

We demonstrated that the models process the input audio by applying different

modulations which closely match with those of the time-varying target. Perceptu-

ally, most output waveforms are indistinguishable from their target counterparts,

although there are minor discrepancies at the highest frequencies and noise level.

This could be improved by using more convolution filters, as in CAFx, which

means a higher resolution in the filter bank structures. Moreover, as shown in

Chapter 4, a loss function based on time and frequency can be used to improve

this frequency related issue, though listening tests may be required (see Chapter 7).

The generalization can also be studied more thoroughly, since the models learn

to apply the specific transformation to the audio of a specific musical instrument,

such as the electric guitar or the bass guitar. In addition, considering that the

models use 256 ms input and output frames and strive to learn long temporal

dependencies with shorter input frames, more research is needed on how to adapt

these architectures to low-latency and high-resolution audio implementations.
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Real-time applications would benefit significantly from the exploration of RNNs

or temporal dilated convolutions to model transformations that involve long-term

memory without resorting to large input frame sizes and the need for past and

future context frames. Therefore, uni-directional LSTMs can be used to explore

causal models where only past context frames are needed. The latter could im-

prove the inherent latency of these architectures and the open the way to higher

sampling rates, such as 44.1 kHz.

Although the models were able to match the artificial reverberation of the Leslie

speaker implementation, a thorough exploration of reverb modeling is needed, such

as plate, spring or convolution reverberation (see Chapter 8). In addition, since the

models are learning a static representation of the audio effect, ways of devising

a parametric model could also be explored. Finally, applications beyond virtual

analog can be investigated, for example, in the field of automatic mixing the model

could be trained to learn a generalization from mixing practices.
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V I RT U A L A N A L O G E X P E R I M E N T S

The previous chapters have focused on modeling several linear and nonlinear time-

varying and time-invariant digital implementations or approximations of analog

effect units. Furthermore, hitherto we have only evaluated the models with objec-

tive metrics. Thus, in this and the following chapters, we extend the evaluation

of previous architectures by including perceptual listening tests and by modeling

various analog audio effects.

Virtual analog modeling of audio effects consists of emulating the sound of an

analog audio processor reference device. Therefore, we show virtual analog mod-

els of nonlinear effects, such as the Universal Audio vacuum-tube preamplifier 610-B;

nonlinear effects with long-term memory, such as the Universal Audio transistor-

based limiter amplifier 1176LN; and electromechanical nonlinear time-varying pro-

cessors, such as the rotating horn and rotating woofer of a 145 Leslie speaker cabinet.

Audio samples can be found in Appendix B.

Through objective perceptual-based metrics and subjective listening tests we ex-

plore the performance of each of the architectures from Chapters 5 and 6: CAFx,

WaveNet, CRAFx and CWAFx, when modeling these analog processors. We per-

form a systematic comparison between these architectures and we report that

CAFx and WaveNet perform similarly when modeling nonlinear audio effects with-

out memory and with long temporal dependencies, but fail to model time-varying

tasks such as the Leslie speaker. On the other hand, and across all tasks, the models

that incorporate latent-space RNNs or latent-space temporal dilated convolutions

to explicitly learn long temporal dependencies, such as CRAFx and CWAFx, tend

to outperform objectively and subjectively the rest of the models.

7.1 experiments

7.1.1 Models

For the experiments of this chapter we use the CAFx, WaveNet, CRAFx and CWAFx

architectures. In order to provide a fairer comparison, CAFx and WaveNet are

102
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adapted to process input frames of size 4096 and sampled with a hop size of

2048 samples. CRAFx and CWAFx are used exactly as described in Sections 6.1

and 6.2, respectively.

The main modification to CAFx is in the adaptive front-end where we increase

the max-pooling layer to a moving window of size 64. The rest of the model is as

depicted in Section 5.1.

With regards to WaveNet, we extend the model to 2 stacks of 8 dilated convolu-

tional layers with a dilation factor of 1,2,...,128. Based on Eq. (5.2), the receptive

field of this architecture is of 1021 samples. The target field is 4096 samples, thus

the input frame presented to the model consists of sliding windows of 5116 sam-

ples (see Eq. (5.3)). The rest of the architecture is as presented in Section 5.2.

Code is available online1. Also, Appendix C shows the number of parameters

and processing times across all models.

7.1.2 Training

As mentioned in previous chapters, the training of the CAFX, CRAFx and CWAFx

architectures includes an initialization step (see Section 4.2.1). Once the front-end

and back-end are pretrained, the rest of the convolutional, recurrent, dense and

activation layers are incorporated into the respective models, and all the weights

are trained following an end-to-end supervised learning task. The WaveNet model

is trained directly following this second step.

The loss function to be minimized is the mean absolute error and Adam (Kingma

and Ba, 2015) is used as optimizer. For these experiments and for each model, we

carried out the same supervised learning training procedure.

We use an early stopping patience of 25 epochs, i.e. training stops if there is

no improvement in the validation loss. The model is fine-tuned further with the

learning rate reduced by a factor of 4 and also a patience of 25 epochs. The initial

learning rate is 1e−4 and the batch size consists of the total number of frames per

audio sample. On average, the total number of epochs is approximately 750.

We select the model with the lowest error for the validation subset (see Sec-

tion 7.1.3). For the Leslie speaker modeling tasks, the early stopping and model

selection procedures were based on the training loss. This is explained in more

detail in Section 7.3.

1 https://github.com/mchijmma/DL-AFx/tree/master/src
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Table 7.1: Settings for each analog audio effect modeling task.

Fx settings

preamp ’Gain - +10 dB’, ’Level - 6’, ’Impedance - Line’, ’High Boost/Cut - 0 dB’, ’Low

Boost/Cut - 0 dB’

limiter ’Attack Time - 800 µs’, ’Release Time - 1100 ms’, ’Input Level - 4’, ’Output

Level - 7’, ’Ratio - ALL’

Leslie speaker Tremolo: ’Rotation Speed - Fast’ - Chorale: ’Rotation Speed - Slow’

7.1.3 Dataset

Raw recordings of individual 2-second notes of various 6-string electric guitars

and 4-string bass guitars are obtained from the IDMT-SMT-Audio-Effects dataset

(Stein et al., 2010). We use the 1250 unprocessed recordings of electric guitar and

bass to obtain the wet samples of the respective audio effects modeling tasks. The

raw recordings are amplitude normalized and for each task the test and validation

samples are randomly selected and correspond to 5% of this dataset each. After

the analog audio processors were sampled with the raw notes, all the recordings

were downsampled to 16 kHz. The dataset is available online2.

Universal Audio vacuum-tube preamplifier 610-B

This microphone tube preamplifier (preamp) is sampled from a 6176 Vintage Chan-

nel Strip unit. In order to obtain an output signal with high harmonic distortion,

the preamp is overdriven with the settings from Table 7.1.

Universal Audio transistor-based limiter amplifier 1176LN

Similarly, the wildly used field-effect transistor limiter 1176LN is sampled from

the same 6176 Vintage Channel Strip unit. The limiter samples are recorded with

with the settings from Table 7.1. We use the slowest attack and release settings in

order to further test the long-term memory of the models. The compression ratio

value of ALL corresponds to all the ratio buttons of an original 1176 being pushed

simultaneously. Thus, this setting also introduces distortion due to the variation

of attack and release times.

2 https://zenodo.org/record/3562442
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145 Leslie speaker cabinet

The output samples from the rotating horn and woofer of a 145 Leslie speaker cabinet

are recorded with an AKG-C451-B microphone. Each recording is done in mono

by placing the condenser microphone perpendicularly to the horn or woofer and

1 meter away. Two speeds are recorded for each rotating speaker; tremolo for a

fast rotation and chorale for a slow rotation. The rotation frequency of the horn is

approximately 7 Hz and 0.8 Hz for the tremolo and chorale settings respectively,

while the woofer has slower speed rotations (Herrera et al., 2009).

Since the horn and woofer speakers are preceded by a 800 Hz crossover filter,

we apply a highpass FIR filter with the same cutoff frequency to the raw notes

of the electric guitar and use only these samples as input for the horn speaker.

Likewise, for the woofer speaker we use a lowpass FIR filter to preprocess the raw

bass notes. The audio output of both speakers is filtered with the respective FIR

filters. This in order to reduce mechanical and electrical noise and also to focus the

modeling tasks on the amplitude and frequency modulations. Also, the recordings

are amplitude normalized.

7.1.4 Objective Metrics

Three metrics are used when testing the models with the various modeling tasks;

mae, the energy-normalized mean absolute error; mfcc_cosine, the mean cosine dis-

tance of the MFCCs (see Section 5.3.3); and ms_mse, the modulation spectrum

mean squared error (see Section 6.3.3).

7.1.5 Listening Test

Thirty participants between the ages of 23 and 46 took part in the experiment3

which was conducted at a professional listening room at Queen Mary University

of London. The Web Audio Evaluation Tool (Jillings et al., 2015) was used to set up

the test and participants used Beyerdynamic DT-770 PRO studio headphones.

The subjects were among musicians, sound engineers or experienced in critical

listening. The listening samples were obtained from the test subsets and each page

of the test contained a reference sound, i.e. a recording from the original analog

device. The aim of the test was to identify which sound is closer to the reference,

3 The Queen Mary Ethics of Research Committee approved the listening test with reference number

QMREC2165.
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Figure 7.1: User interface used by the participants for the listening test.

and participants rated 6 different samples according to the similarity of these in

relation to the reference sound.

Therefore, participants were informed what modeling task they were listening

to, and were asked to rate the samples from ’least similar’ to ’most similar’. This

in a scale of 0 to 100, which was then mapped into a scale of 0 to 1. The samples

consisted of a dry sample as anchor, outputs from the 4 different models and a

hidden copy of the reference. The test is based on the MUSHRA method (Union,

2003) and a screenshot of the user interface is shown in Fig. 7.1.

7.2 results

The training procedures were performed for each architecture and each modeling

task: preamp corresponds to the vacuum-tube preamplifier, limiter to the transistor-

based limiter amplifier, horn tremolo and horn chorale to the Leslie speaker rotating

horn at fast and slow speeds respectively, and woofer tremolo and woofer chorale to

the rotating woofer at the corresponding speeds. Then, the models were tested

with samples from the test subset and the audio results are available online4.

Fig. 7.2 shows the mae, mfcc_cosine and ms_mse for all the test subsets. It can be

seen that the mae models’ performance is similar within each modeling tasks with

limiter having the lowest error. Also, CAFx presents the largest errors, with the

Leslie speaker chorale settings being the highest.

In terms of perceptually-based metrics such as the mfcc_cosine and ms_mse, the

CRAFx and CWAFx models achieved the best scores. This with the exception of

the woofer chorale task, where the CWAFx model did not manage to accomplish

the task. Overall, CRAFx and CAFx correspond to the highest and lowest scoring

models respectively.

4 https://mchijmma.github.io/DL-AFx/
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Figure 7.2: mae, mfcc_cosine and ms_mse values with the test dataset for all modeling

tasks. Lower is better for all metrics.

The results of the listening test for all modeling tasks can be seen in Fig. 7.3 as

notched box plots. The end of the notches represents a 95% confidence interval and

the end of the boxes represent the first and third quartiles. Also, the green lines

illustrate the median rating and the purple circles represent outliers. In general,

both anchors and hidden references have the lowest and highest median respec-

tively. Listeners who did not rate these samples as expected were not eliminated

from the presented results, as they represent outliers; nevertheless, additional anal-

ysis and post-experiment selection of subjects may be required.

The perceptual findings match closely the objective metrics from Fig. 7.2, since

the architectures that explicitly learn long-temporal dependencies, such as CRAFx

and CWAFx outperform the rest of the models. Furthermore, for the woofer chorale

task, the high-error performance of the latter is also evidenced in perceptual rat-

ings. This indicates that the latent-space WaveNet fails to learn low-frequency

modulations such as the woofer chorale rotating rate.
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Figure 7.3: Box plot showing the rating results of the listening tests. Fig. 7.3a preamp,

Fig. 7.3b limiter, Fig. 7.3c Leslie speaker horn-tremolo, Fig. 7.3d Leslie

speaker woofer-tremolo, Fig. 7.3e Leslie speaker horn-chorale and Fig. 7.3f

Leslie speaker woofer-chorale.
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For selected test samples of the preamp and limiter tasks and for all the different

models, Figs. 7.4 and 7.5 show the input, reference, and output waveforms together

with their respective spectrogram. Both in the time-domain and in the frequency-

domain, it is observable that the waveforms and spectrograms are in line with the

objective and subjective findings. To more closely display the performance of these

nonlinear tasks, Fig. 7.6 shows a segment of the respective waveforms. It can be

seen how the different models match the waveshaping from the overdriven preamp

as well as the attack waveshaping of the limiter when processing the onset of the

test sample.

Regarding the Leslie speaker modeling task, Figs. 7.7 to 7.10 show the differ-

ent waveforms together with their respective modulation spectrum and spectro-

gram: Fig. 7.7 horn-tremolo, Fig. 7.8 woofer-tremolo, Fig. 7.9 horn-chorale and Fig. 7.10

woofer-chorale. From the spectra, it is noticeable that CRAFx and CWAFx introduce

and match the amplitude and frequency modulations of the reference, whereas

CAFX and WaveNet do not introduce these modulations when modeling these

time-varying tasks.
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Figure 7.4: Results with selected samples from the test dataset for the preamp task.

Figs. 7.4a and 7.4b show the waveforms and their respective spectrograms. Ver-

tical axes represent amplitude and frequency (Hz) respectively.
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Figure 7.5: Results with selected samples from the test dataset for the limiter task.

Figs. 7.5a and 7.5b show the waveforms and their respective spectrograms. Ver-

tical axes represent amplitude and frequency (Hz) respectively.
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Figure 7.6: For the test samples from Figs. 7.4 and 7.5, a segment of the respective wave-

forms: Fig. 7.6a preamp task and Fig. 7.6b limiter task when processing the

onset of the input audio. Vertical axes represent amplitude.
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Figure 7.7: Results with selected samples from the test dataset for the Leslie speaker horn-

tremolo tasks. Fig. 7.7a waveform, Fig. 7.7b modulation spectrum and Fig. 7.7c

spectrogram. Vertical axes represent amplitude, Gammatone frequency (Hz)

and FFT frequency (Hz) respectively.
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Figure 7.8: Results with selected samples from the test dataset for the Leslie speaker

woofer-tremolo tasks. Fig. 7.8a waveform, Fig. 7.8b modulation spectrum

and Fig. 7.8c spectrogram. Vertical axes represent amplitude, Gammatone fre-

quency (Hz) and FFT frequency (Hz) respectively.
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Figure 7.9: Results with selected samples from the test dataset for the Leslie speaker horn-

chorale tasks. Fig. 7.9a waveform, Fig. 7.9b modulation spectrum and Fig. 7.9c

spectrogram. Vertical axes represent amplitude, Gammatone frequency (Hz)

and FFT frequency (Hz) respectively.
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Figure 7.10: Results with selected samples from the test dataset for the Leslie speaker

woofer-chorale tasks. Fig. 7.10a waveform, Fig. 7.10b modulation spectrum

and Fig. 7.10c spectrogram. Vertical axes represent amplitude, Gammatone

frequency (Hz) and FFT frequency (Hz) respectively.
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7.3 discussion

Nonlinear task with short-term memory - preamp

The architectures that were designed to model nonlinear effects with short-term

memory, such as CAFx and WaveNet, were outperformed by the models that incor-

porate temporal dependencies. With CRAFx and CWAFx being the highest scoring

models both objectively and perceptually. Although this task does not require a

long-term memory, the context input frames and latent-space recurrent layers and

temporal dilated convolutions from CRAFx and CWAFx respectively, benefited the

modeling of the preamp. This performance improvement could be on account of

the temporal behaviour present on the vaccum-tube amplifier, such as hysteresis

or attack and release timings, although additional tests on the preamp might be

required.

Given the results reported in Chapter 5 it is remarkable that the performance of

these architectures (CAFx and WaveNet) is exceeded by CRAFx and CWAFx. It is

worth noting that CAFx and WaveNet from Chapter 5 are trained with input frame

sizes of 1024 samples, which could indicate a decrease in modeling capabilities

when handling larger input frame sizes, such as 4096 samples.

Nevertheless, from Fig. 7.3a, we can conclude that all models accomplished the

modeling of the preamp. Most of the output audio is only slightly discernible from

their target counterparts, with CRAFx and CWAFx being virtually indistinguish-

able form the real analog device.

Time-dependent nonlinear task - limiter

Since the limiter task includes long temporal dependencies such as a 1100 ms

release gate, as expected, the architectures that include memory achieved a higher

performance both objectively and subjectively. From Fig. 7.5b it can be seen that

CAFx and WaveNet introduce high frequency information that is not present in the

reference spectrogram. This could be an indication that the models compensate

for their limitations when modeling information beyond one input frame, such as

the distortion tone characteristic due to the long release time together with the

variable ratio of the limiter. Furthermore, from Fig. 7.6b it is noticeable how each

architecture models the attack behavior of the limiter.
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We can conclude that although all networks closely matched the reference target,

it is CRAFx and CWAFx which achieved the lowest objective metrics and highest

perceptual ratings when modeling the saturation waveshaping characteristic of

the audio processor. The latter is accentuated with the perceptual results from

Fig. 7.3b, where CRAFx and CWAFx are again virtually indistinguishable from

the reference target. While CAFx and WaveNet are ranked behind due to the lack

of long-term memory capabilities, it is noteworthy that these models closely ren-

dered the desired waveform.

Time-varying task - Leslie speaker

With respect to the horn tremolo and woofer tremolo modeling tasks, it can be seen

that for both rotating speakers, CRAFx and CWAFx are rated highly whereas CAFx

and WaveNet are rated poorly when modeling these tasks. Thus, the perceptual

findings from Figs. 7.3c and 7.3d confirm the results obtained with the ms_mse

metric and overall, the woofer task has a better matching that the horn task. Nev-

ertheless, for CRAFx and CWAFx, the objective and subjective ratings for the horn

tremolo task do not represent a significant decrease of performance and it can be

concluded that both time-varying tasks were modeled by these architectures.

CRAFx is perceptually ranked slightly higher than CWAFx. Although a statis-

tical analysis is required, this might indicate a closer matching of the reference

amplitude and frequency modulations, which can be seen in the respective modu-

lation spectra and spectrograms from Fig. 7.7 and Fig. 7.8.

Based on the perceptual ratings, for the horn chorale and woofer chorale modeling

tasks, CRAFx and CWAFx modeled the former while only CRAFx accomplished

the woofer chorale task. Since the woofer chorale task corresponds to modulations

lower than 0.8 Hz, we can conclude that Bi-LSTMs are more adequate than a

latent-space WaveNet when modeling such low-frequency modulations. Further-

more, this is closely associated with the objective metrics reported in Section 6.4,

where CWAFx obtained the highest mae values when modeling effects based on

low-frequency modulation, such as vibrato.

In general, from Fig. 7.7 to Fig. 7.10, it is observable that the output waveforms

do not match the waveforms of the references. This shows that the models are

not overfitting to the waveforms of the training data and, taking into account the

perceptual ratings, this indicates that the highest rated models are learning to in-

troduce the respective amplitude and frequency modulations. The models cannot
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replicate the exact reference waveform since the phase of the rotating speakers

varies across the whole dataset. For this reason, the early stopping and model se-

lection procedures of these tasks were based on the training loss rather than the

validation loss. This is also the reason of the high mae scores across the Leslie speaker

modeling tasks, due to these models applying the modulations yet without exactly

matching their phase in the target data. Further exploration of a phase-invariant

cost function could improve the performance of the different architectures.

CAFx and WaveNet were not able to accomplish these time-varying tasks. It

is worth noting that both architectures try to compensate for long-term memory

limitations with different strategies. It is suggested that CAFx wrongly introduces

several amplitude modulations, whereas WaveNet tries to average the waveform

envelope of the reference. This results in output audio significantly different from

the reference, with WaveNet being perceptually rated as the lowest for the horn

tremolo and horn chorale tasks. This also explains the ms_mse results from Fig. 7.2 for

the woofer chorale task, where WaveNet achieves the best score since averaging the

target waveform could be introducing the low-frequency amplitude modulations

present in the reference audio.

7.4 conclusion

In this chapter, we explored the different deep learning architectures from Chap-

ters 5 and 6. We tested the models when modeling nonlinear effects with short-

term and long-term memory such as a tube preamp and a transistor-based limiter;

and nonlinear time-varying processors such as the rotating horn and woofer of a

Leslie speaker cabinet.

Through objective perceptual-based metrics and subjective listening tests we

found that across all modeling tasks, the architectures that incorporate Bi-LSTMs

or, to a lesser extent, latent-space dilated convolutions to explicitly learn long tem-

poral dependencies, outperform the rest of the models. With these architectures

we obtain results that are virtually indistinguishable from the analog reference

processors, although a statistical analysis of the results of the listening tests is re-

quired in order to confirm their validity. Also, state-of-the-art DNN architectures

for modeling nonlinear effects with short-term memory perform similarly when

matching the preamp task and achieve low-error and high perceptual similarity

when modeling the limiter task, but fail to yield the same results when modeling

the time-varying Leslie speaker tasks.
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Based on the objective metrics and perceptual ratings, we can conclude that the

nonlinear amplifier, rotating speakers and wooden cabinet from the Leslie speaker

were emulated by CRAFx and to a certain extent by CWAFx. Nevertheless, the

crossover filter was bypassed in the modeling tasks and the dry and wet audio

were filtered accordingly. This was due to the limited frequency bandwidth of the

bass and guitar samples, thus, this modeling task could be further explored with

a more appropriate dataset such as Hammond organ recordings.

As future work, a cost function based on both time and frequency can be used

to further improve the modeling capabilities of the models. In addition, since the

highest ranked architectures use past and subsequent context input frames, more

research is needed on how to adapt these architectures to overcome the resulting

latency. Thus, real-time applications would benefit significantly from the explo-

ration of end-to-end DNNs that include long-term memory without resorting to

large input frame sizes and the need for past and future context frames. Also, an

end-to-end architecture of temporal dilated convolutions with a receptive field as

large as the context input frames from CRAFx and CWAFx could also be explored

for the time-varying modeling tasks.

Moreover, as shown in Damskägg et al. (2019), the introduction of controls as

a conditioning input to the networks can be investigated, since the models are

currently learning a static representation of the audio effect. Finally, applications

beyond virtual analog can be investigated, for example, in the field of automatic

mixing the models could be trained to learn a generalization from mixing prac-

tices.



8
M O D E L I N G A RT I F I C I A L R E V E R B E R AT I O N

In this chapter we present a deep learning architecture to model artificial reverber-

ators such as plate and spring. As mentioned in Section 2.7.2, plate and spring rever-

berators are electromechanical audio processors mainly used for aesthetic reasons

and characterized by their particular sonic qualities. The modeling of these rever-

berators remains an active research field due to their their mechanical elements

which frequency response is difficult to fully emulate digitally (see Section 2.8).

We explore the capabilities of DNNs to learn the respective transformation and

perceptual qualities of these electromechanical reverberators. Therefore based on

digital reverberators that use sparse FIR (SFIR) filters, we use domain knowledge

from signal-processing systems and we propose the Convolutional recurrent and

Sparse filtering audio effects modeling network (CSAFx).

CSAFx represents a DSP-informed DNN for modeling artificial reverberators

since we extend previous architectures by incorporating trainable FIR filters with

sparsely placed coefficients in order to model diffused and noisy responses, such

as those present in plate and spring devices. We also modify the Squeeze-and-Excitation

(SE) blocks from CRAFx (see Sections 3.7 and 6.1) in order to act as time-varying

mixing gains between the direct sound and the reflections. The SE blocks explicitly

scale the channel-wise information of input feature maps, i.e. the SE blocks apply

a scalar gain to each row or channel. Thus, we extend this block by placing LSTMs

to allow the model to learn long temporal dependencies, such as the time-varying

mixing gains for the direct sound and early and late reflections.

Based on the results of the virtual analog experiments from Chapter 7, we use

CRAFx as baseline model and we also test its capabilities when modeling artificial

reverberation. In order to measure the performance, we conduct a perceptual lis-

tening test and we also analyze how the given task is accomplished and what the

model is actually learning.

Prior to this work, end-to-end DNNs have not yet been implemented to model

artificial reverberators, i.e. learning from input-output data and applying the re-

verberant effect directly to the dry input audio. Although deep learning for dere-

verberation has become a heavily researched field (Feng et al., 2014; Han et al.,

121
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Figure 8.1: Block diagram of CSAFx; adaptive front-end, latent-space and synthesis back-

end.

2015), applying artificial reverberation or modeling plate and spring reverb with

DNNs has not been explored yet.

We report that CSAFx outperforms CRAFx for this task. Perceptual and objective

evaluations indicate that the proposed model accomplishes the emulation of elec-

tromechanical artificial reverberators. In addition, it achieves better results than a

proven DNN for black-box modeling of audio effects. Audio samples can be found

in Appendix B.

8.1 convolutional recurrent and sparse filtering network - csafx

The model builds on CRAFx and is also completely based on the time-domain;

the model uses raw and processed audio as input and output, respectively. It is

divided into three parts: adaptive front-end, latent-space and synthesis back-end.

A block diagram is depicted in Fig. 8.1, code is available online1 and Table C.1

displays the number of parameters and computational processing times.

The adaptive front-end is exactly the same as the one from CRAFx (see Table 6.1).

It follows the same time distributed convolutional and pooling layers, yielding a

filter bank architecture of 32 channels which learns the latent representation Z.

Likewise, the model learns long-term memory dependencies by having an input

x which consists of the current audio frame x concatenated with the ±4 previous

and subsequent frames. The input is described by Eq. (6.1). These frames are of

size 4096 (256 ms) and sampled with a hop size of 50%.

Latent-space

A block diagram of the latent-space can be seen in Fig. 8.2 and its structure is

described in detail in Table 8.1. The latent-space has as its main objective to process

1 https://github.com/mchijmma/modeling-plate-spring-reverb/tree/master/src



8.1 convolutional recurrent and sparse filtering network - csafx 123

� Bi-LSTM
(64)

tanh

Bi-LSTM
(32)

tanh

�̂ 
1

saaf

Bi-LSTM
(16)

saaf

Bi-LSTM
(16)

�̂ 
2

sigmoid

Dense
(1024)

tanh

Dense
(1024)

Sparse
Tensor

�̂ 
3

coeff

idx

SFIR

Figure 8.2: Block diagram of the latent-space of CSAFx.

Table 8.1: Detailed architecture of the latent-space of CSAFx. This with an input frame

size of 4096 samples and ±4 context frames. Output shape = (m,n) denotes m

columns and n rows.

Layer - Output shape Output

Z (64, 288)

Bi-LSTM (64, 128) .

Bi-LSTM (64, 64) .

Bi-LSTM (64, 32) Bi-LSTM (64, 32) .

SAAF (64, 32) SAAF (64, 32) Ẑ1 Ẑ2

. Dense (1024, 32) Dense (1024, 32) . .

. Sparse Tensor (4096, 32) . Ẑ3

Z into two latent representations, Ẑ1 and Ẑ2. The former corresponds to a set of

envelope signals and the latter is fed to the next layer in order to obtain a set of

sparse FIR filters Ẑ3.

The latent representation Z from the front-end corresponds to 9 frames of 64

samples and 32 channels, which can be unrolled into a feature map of 64 samples

and 288 channels. The latent-space consists of two shared Bi-LSTM layers of 64

and 32 units with tanh as activation function. The output feature map from these

Bi-LSTM layers is fed to two independent Bi-LSTM layers of 16 units. Each of these

layers is followed by locally connected SAAFs as the nonlinearity, obtaining in this

way Ẑ1 and Ẑ2, which correspond to matrices of 32 channels of 64 samples. As



8.1 convolutional recurrent and sparse filtering network - csafx 124

Abs Global
Average

Dense
(512)

Dense
(32)

ReLu sigmoid

LSTM
(32)

ReLu

Dense
(32)

Dense
(16)

Dense
(16)

Dense
(32)

tanh tanh tanh saaf

Abs Global
Average

Dense
(512)

Dense
(32)

ReLu sigmoid

LSTM
(32)

ReLu

Figure 8.3: Block diagram of the synthesis back-end of CSAFx.

shown in previous chapters, SAAFs can be used as nonlinearities or waveshapers

in audio processing tasks. The input-to-hidden weights of the Bi-LSTM layers are

applied to the channel dimension of the input feature maps.

We propose a SFIR layer where we follow the constraints of sparse pseudo-

random reverberation algorithms (Välimäki et al., 2012). As mentioned in Sec-

tion 2.7.1, early reflections are modeled via FIR filters with sparsely placed coeffi-

cients. These coefficients are usually obtained through a pseudo-random number

sequence (e.g. velvet noise), which is based on discrete coefficient values such as -1

and +1, where each one of the coefficients follows an interval of Ts samples while

all the other samples are zero.

Nevertheless, in SFIR, instead of using discrete coefficient values, each coeffi-

cient can take any continuous value within −1 to +1. Accordingly, each one of the

coefficients is placed at a specific index position within each interval of Ts samples

while the rest the samples are zero.

Thus, the SFIR layer processes Ẑ2 by two independent dense layers of 1024

units each. The dense layer is applied along the latent dimension rather than to

the channel dimension, i.e. the matrix multiplication is computed between the FC

weights and the rows of the input matrix. The dense layers are followed by a tanh

and sigmoid function, whose outputs are the coefficient values (coeff ) and their

index position (idx) respectively. To obtain the specific idx value, the output of the

sigmoid function is multiplied by Ts and a rounding down to the nearest integer
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Table 8.2: Detailed architecture of the synthesis back-end of CSAFx. This with input frame

size of 4096 samples and ±4 context frames.

Layer - Output shape Output

Ẑ1 (4096, 32) Ẑ3 (4096, 32)

Unpooling (4096, 32) R ∗ Ẑ3 (4096, 32) X̂4 X̂5

X̂4 × X̂5 (4096, 32) X̂3

X̂3 (4096, 32) R (4096, 32)

. Dense (4096, 32) . .

. Dense (4096, 16) . .

. Dense (4096, 16) . .

. Dense (4096, 32) . .

. SAAF (4096, 32) . X̂2

Abs (4096, 32) Abs (4096, 32) . .

G-Avg (1, 32) G-Avg (1, 32) . .

LSTM (1, 32) LSTM (1, 32) . .

Dense (1, 512) Dense (1, 512) . .

Dense (1, 32) Dense (1, 32) se1 se2

se1× X̂3 (4096, 32) se2× X̂2 (4096, 32) X̂1.1 X̂1.2

X̂1.1 + X̂1.2 (4096, 32) X̂0

deConv1D (4096, 1) ŷ

is applied. This operation is not differentiable so we use an identity gradient as a

backward pass approximation (Athalye et al., 2018). In order to have a high-quality

reverberation, we use 2000 coefficients per second (see Section 2.7.1), thus, Ts = 8

samples for a sampling rate of 16 kHz.

Synthesis back-end

The synthesis back-end can be seen in more detail in Fig. 8.3 and Table 8.2. The

back-end uses the SFIR output Ẑ3, the envelopes Ẑ1 and the residual connection R

to synthesize the waveform and accomplish the reverberation task. It consists of an

unpooling layer, a convolution and multiplication operation, a DNN with SAAFs



8.1 convolutional recurrent and sparse filtering network - csafx 126

(DNN-SAAF), two modified Squeeze-and-Excitation blocks (Hu et al., 2018) that

incorporate LSTM layers (SE-LSTM) and a final convolutional layer.

Following the filter bank architecture: X̂4 is obtained by upsampling Ẑ1 and the

feature map X̂5 is accomplished by the locally connected convolution between R

and Ẑ3. As in CRAFx, R is obtained from X1 and corresponds to the frequency

band decomposition of the current input frame x(0). X̂5 is obtained with the fol-

lowing equation:

X̂
(i)
5 = R(i) ∗ Ẑ(i)

3 ∀i ∈ [1, 32], (8.1)

where i denotes the ith row of the feature maps. The matrix R contains one-

dimensional audio representations, where each row is the resulting audio wave-

form after the filter bank in Conv1D, and Ẑ3 is a matrix where each row contains

a learned sparse FIR filter. R, Ẑ3 and X̂5 correspond to matrices of 32 channels

of 4096 samples. The convolution operation is computed between the rows of the

feature maps and follows a filter bank architecture of 32 channels.

The result of this convolution can be seen as explicitly modeling a frequency

dependent reverberation response with the incoming audio. Furthermore, due to

the temporal dependencies learnt by the Bi-LSTMs, X̂5 is able to represent from

the onset response to the late reflections of the reverberation task.

Then the feature map X̂3 is the result of the element-wise multiplication of the

reverberant response X̂5 and the learnt envelopes X̂4. The envelopes are applied in

order to avoid audible artifacts between input frames (Järveläinen and Karjalainen,

2007). X̂3 is computed with the following equation:

X̂3 = X̂5 × X̂4, (8.2)

where X̂4 and X̂3 correspond to matrices of 32 channels of 4096 samples.

Secondly, the feature map X̂2 is obtained when the waveshaping nonlinearites

from the DNN-SAAF block are applied to R. The result of this operation consists

of a learnt nonlinear transformation or waveshaping of the direct sound (see Sec-

tion 5.1). As used in CRAFx, the DNN-SAAF block consists of 4 dense layers of 32,

16, 16 and 32 hidden units respectively. Each dense layer uses tanh as nonlinearity

except for the last one, which uses a SAAF layer.

We propose an SE-LSTM block to act as a time-varying gain for X̂2 and X̂3. Since

SE blocks explicitly and adaptively scale the channel-wise information of feature

maps (Hu et al., 2018), we incorporate an LSTM layer in the SE architecture in

order to include long-term context from the input. Each SE-LSTM builds on the
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SE blocks from Section 6.1 which are based on the architecture from Kim et al.

(2018).

The SE-LSTMs blocks consist of an absolute value operation and global average

pooling operation followed by one LSTM and two dense layers of 32, 512 and

32 hidden units respectively. The LSTM and first dense layer are followed by a

ReLu, while the last dense layer uses a sigmoid activation function. The weights of

the dense and recurrent layers are applied to the channel dimension of the input

feature maps, i.e. the matrix multiplication is computed between the weights and

the columns of the input matrix. As depicted in Fig. 8.3, each SE-LSTM block

processes each feature map X̂2 and X̂3, thus, applying a frequency dependent

time-varying mixing gain se1 and se2. The resulting feature maps X̂1.1 and X̂1.2

are added together in order to obtain X̂0:

X̂1.1 = se1× X̂3, (8.3)

X̂1.2 = se2× X̂2, (8.4)

X̂0 = X̂1.1 + X̂1.2, (8.5)

where X̂0, X̂1.1, X̂1.2 and X̂2 correspond to matrices of 32 channels of 4096 samples,

and se1 and se2 correspond to column vectors of 32 channels.

As in the previous deep learning architectures, the last layer corresponds to the

deconvolution operation which is not trainable since its filters are the transposed

weights of the first convolutional layer. The complete waveform is synthesized

using a hann window and constant overlap-add gain. As shown in the previous

CEQ, CAFx, CRAFx and CWAFx architectures, all convolutions are along the time

dimension and all strides are of unit value. For each convolutional layer we use

the same padding and dilation is not incorporated.

Overall, each SAAF is locally connected and each function consists of 25 inter-

vals between −1 to +1 and each Bi-LSTM and LSTM have dropout and recurrent

dropout rates of 0.1.

8.1.1 Loss function

The loss function to be minimized is based in time and frequency and described

by:
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loss = α1MAE(y, ŷ) +α2MSE(Y, Ŷ) (8.6)

Where MAE is the mean absolute error and MSE is the mean squared error. Y

and Ŷ are the logarithmic power magnitude spectra in dBs of the target and out-

put respectively, and y and ŷ their respective waveforms. Prior to calculating the

MAE, the following pre-emphasis filter is applied to y and ŷ using the following

equation:

H(z) = 1− 0, 95z−1. (8.7)

As shown in Damskägg et al. (2019), H(z) is a highpass filter that we apply in

order to add more weight to the high frequencies. We use a 4096-point FFT to ob-

tain Y and Ŷ. In order to scale the time and frequency losses, we empirically set 1.0

and 1e−4 as the loss weights α1 and α2 respectively. We found empirically that ex-

plicit minimization in the frequency and time domains resulted crucial when mod-

eling such complex reverberant responses. The attention to the high frequencies is

further emphasized by incorporating the pre-emphasis filter and the logarithmic

power spectrum in the time and frequency domain, respectively.

8.2 experiments

8.2.1 Training

We follow the same pretraining initialization step as in Section 4.2.1. Once the con-

volutional layers of the front-end and back-end are initialized, the latent-space Bi-

LSTMs, SFIR, DNN-SAAF and SE-LSTM blocks are incorporated into the model,

and all the weights are trained jointly based on the reverberation task.

For both training steps, Adam (Kingma and Ba, 2015) is used as optimizer and

we use the same early stopping procedure from Section 7.1.2. We use a patience

value of 25 epochs if there is no improvement in the validation loss. Similarly,

afterwards the model is fine-tuned further with the learning rate reduced by 25%

and also a patience value of 25 epochs. The initial learning rate is 1e− 4 and the

batch size consists of the total number of frames per audio sample. We select the

model with the lowest error for the validation subset.
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Table 8.3: Settings for each artificial reverberation modeling task.

Fx settings

plate Smaertelectronix ambience: ’Gating Amount - 0’, ’Gating Attack" - 10 ms’,

’Gating Release - 10 ms’, ’Decay Time - 2225 ms’, ’Decay Diffusion - 50%’,

’Decay Hold - off’, ’Shape Size - 16%’, ’Shape Predelay - 0 ms’, ’Shape Width -

100%’, ’Shape Quality - 100%’, ’Shape Variation - 0’, ’EQ Bass Frequency - 43

Hz’, ’EQ Bass Gain - −7.8 dB’, ’EQ Treble Frequency - 5044 Hz’, ’EQ Treble

Gain - −3.7 dB’, ’Damping Bass Frequency - 158 Hz’, ’Damping Bass Amount

- 87%’, ’Damping Treble Frequency - 8127 Hz’, ’Damping Treble Amount -

32%’, ’Dry - −Inf’, ’Wet - 0dB’

spring Accutronics 4EB2C1B: ’Dry Mix - 0%’, ’Wet Mix - 100%’

8.2.2 Dataset

Plate reverberation is obtained from the IDMT-SMT-Audio-Effects dataset (Stein

et al., 2010), which corresponds to individual 2-second notes and covers the com-

mon pitch range of various electric guitars and bass guitars. We use raw and plate

reverb notes from the bass guitar recordings. Spring reverberation samples are ob-

tained by processing the electric guitar raw audio samples with the spring reverb

tank Accutronics 4EB2C1B. It is worth noting that the plate reverb samples corre-

spond to a VST audio plug-in, while the spring reverb samples are recorded using

an analog reverb tank which is based on 2 springs placed in parallel.

For each reverb task we use 624 raw and effected notes and both the test and

validation samples correspond to 5% of this subset each. The recordings are down-

sampled to 16 kHz and amplitude normalization is applied. Also, since the plate

reverb samples have a fade-out applied in the last 0.5 seconds of the recordings,

we process the spring reverb samples accordingly. The dataset is available online2.

8.2.3 Evaluation

Two objective metrics are used when testing the models with the various modeling

tasks; mae, the energy-normalized MAE; and mfcc_cosine, the mean cosine distance

of the MFCCs (see Section 5.3.3).

2 https://zenodo.org/record/3746119
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Figure 8.4: User interface used by the participants for the listening test.

Table 8.4: loss values for plate and spring reverb models when tested with the test dataset.

Fx model MAE MSE loss

plate CSAFx 0.00214 7.75815 0.00292

CRAFx 0.00316 27.08704 0.00587

spring CSAFx 0.00366 9.43629 0.00461

CRAFx 0.00474 33.09621 0.00805

As described in Section 7.1.5, we also conducted a perceptual listening test3 to

measure the performance of the models. Thirty participants completed the test

which took place at a professional listening room at Queen Mary University of

London. The subjects were among musicians, sound engineers or experienced in

critical listening. The audio was played via Beyerdynamic DT-770 PRO studio head-

phones and the Web Audio Evaluation Tool (Jillings et al., 2015) was used to set

up the test.

The participants were presented with samples from the test subset. Each page

contained a reference sound, i.e. from the original plate or spring reverb. Partici-

pants were asked to rate 4 different samples according to the similarity of these in

relation to the reference sound, i.e. from ’least similar’ to ’most similar’. The aim

of the test was to identify which sound is closer to the reference. Thus, the test is

based on the MUSHRA method (Union, 2003). The samples consisted of outputs

from CSAFx, CRAFx, a hidden copy of the reference and a dry sample as hidden

anchor. The user interface is displayed in Fig. 8.4.

3 The Queen Mary Ethics of Research Committee approved the listening test with reference number

QMREC2165.
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Figure 8.5: mae and mfcc_cosine values with the test dataset for all the plate and spring

reverb tasks.

8.3 results & analysis

In order to compare the reverberation modeling capabilities of CSAFx, we use

CRAFx as baseline, which has proven capable of modeling complex electrome-

chanical devices with long-term memory and low-frequency modulations such as

the Leslie speaker (see Chapter 7). The latter presents an architecture similar to

CSAFx, although its latent-space and back-end have been designed to explicitly

learn and apply amplitude and frequency modulations in order to match time-

varying audio effects (see Section 2.5). Both models are trained under the same

procedure, tested with samples from the test dataset and the audio results are

available online4.

Table 8.4 shows the corresponding loss values from Eq. (8.6) and Fig. 8.5 shows

the mae and mfcc_cosine for all the test subsets. The proposed model outperforms

CRAFx in both tasks. It is worth mentioning that for plate reverb, the mean mae

4 https://mchijmma.github.io/modeling-plate-spring-reverb/
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and mfcc_cosine values between input and target waveforms are 0.16 and 0.15,

respectively. Thus, from Fig. 8.5 we can observe that both models perform similarly

well in terms of mae, with CSAFx achieving better results. Nevertheless, in terms

of mfcc_cosine, the values obtained by CRAFx indicate that, perceptually, the dry

notes are closer to the target than the outputs from this model.

For the spring reverb task, the mean mae and mfcc_cosine values between input

and target waveforms are 0.22 and 0.34, respectively. In the same way, we can see

a similar matching to the waveform, this based on the improvement of the mae

values. Furthermore, based on the results of mfcc_cosine, it can be seen that only

CSAFx is capable of improving the values of the dry recordings. For both plate

and spring reverb tasks, the latter is further confirmed since the mean MSE values

between input and target waveforms are 9.64 and 41.29, respectively.

The results of the listening test can be seen in Fig. 8.7 as a notched box plot. The

end of the boxes represents the first and third quartiles, the end of the notches

represents a 95% confidence interval, the green line depicts the median rating

and the circles represent outliers. As expected, both anchor and reference have

the lowest and highest median respectively. It is evident that for both plate and

spring reverb tasks, CSAFx is rated highly whereas CRAFx achieves low perceptual

ratings when modeling the reverberation tasks.

The perceptual findings confirm the results obtained with the loss, mae and

mfcc_cosine metrics and likewise, plate models have a better matching that spring re-

verberators. These results are due to the fact that plate reverb samples correspond

to a digital emulation of a plate reverberator, whereas spring reverb samples corre-

spond to an analog reverb tank. Therefore, we interpret that spring reverb samples

represent a much more difficult task to model.
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Figure 8.6: Box plot showing the rating results of the listening

tests. From top to bottom: plate and spring reverb

tasks.
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Figure 8.7: Box plot showing the rating results of the listening

tests. From top to bottom: plate and spring reverb

tasks.
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Furthermore, the perceptual ratings and objective metric values for spring do

not represent a significant decrease of performance, nevertheless, the modeling of

spring late reflections could be further explored via a larger number of filters, dif-

ferent loss weights or input frame sizes. Furthermore, as mentioned in Section 7.2,

a statistical significance analysis and post-experiment selection of subjects may be

required.

For both reverb tasks and from the test subset, Figs. 8.8 and 8.9 show selected

input, target, and output waveforms together with their respective spectrograms.

From the spectrograms, the respective noisy and diffused reflections of the plate

and the spring are noticeable. Based on the waveforms from Figs. 8.8a and 8.9a,

in order to more closely display the performance of each model and for both

modeling tasks, Figs. 8.10 and 8.11 show shorter segments and their corresponding

FFT. As expected, it can be seen that CSAFx matches very closely the target in the

time and frequency domains.

Overall, the initial onset responses are being modeled more accurately, whereas

the late reflections differ more prominently in the case of the spring, which as

mentioned, in all the models it presents a higher loss. From Figs. 8.10 and 8.11

it is remarkable that the models are introducing specific reflections that are not

present in the input waveforms which closely match those of the respective targets.

Also, from Figs. 8.10b and 8.11b it can be seen that CRAFx fails to match the

high frequencies of the target, which goes along with the reported objective and

perceptual scores. For CSAFx, the differences in the time and frequency domains

in relation to the target, also correspond to the obtained loss values, therefore, a

further exploration of the loss weights α1 and α2 can be conducted.

Finally, Fig. 8.12 displays the functioning of CSAFx by showing internal plots

when processing the frame from Fig. 8.11. The selected rows were chosen in order

to illustrate how the network models the direct sound and reflections. It shows

how the model processes the input frame into the frequency band decomposi-

tion R and learns a set of sparse FIR filters Ẑ3 for each frequency band. Then,

the frequency dependent reverberation response X̂1.1 is obtained by applying the

learned sparse FIR filters and envelopes to R. The nonlinear transformation of

the direct sound X̂1.2 is accomplished through the learnt waveshapers from DNN-

SAAF. These two representations are added together via the time-varying mixing

gains from SE-LSTM, which is fed to the last layer so the audio waveform is recon-

structed in the same manner as the front-end that decomposed it.



8.3 results & analysis 136

Time (s)

Am
pl

itu
de

0.5

0.0

0.5 Input

0.5

0.0

0.5 CSAFx

0.5

0.0

0.5 CRAFx

0.0 0.5 1.0 1.5

0.5

0.0

0.5 Reference

(a)

Time (s)

Hz

2000

4000

6000

2000

4000

6000

2000

4000

6000

0 0.5 1 1.5

2000

4000

6000

(b)

Figure 8.8: Results with a selected sample from the test dataset for the plate reverb task.

Figs. 8.8a and 8.8b show the waveforms and their respective spectrograms. Ver-

tical axes represent amplitude and frequency (Hz) respectively.
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Figure 8.9: Results with a selected sample from the test dataset for the spring reverb task.

Figs. 8.9a and 8.9b show the waveforms and their respective spectrograms. Ver-

tical axes represent amplitude and frequency (Hz) respectively.
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Figure 8.10: Plate reverb. For the test sample from Fig. 8.8, a segment of the respective

waveforms and its FFT. Vertical axes represent amplitude and magnitude, re-

spectively.
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Figure 8.11: Spring reverb. For the test sample from Fig. 8.9, a segment of the respective

waveforms and its FFT. Vertical axes represent amplitude and magnitude, re-

spectively.
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Figure 8.12: Various internal plots for CSAFx from the test sample from Fig. 8.9, which

corresponds to the spring reverb task. Fig. 8.12a 4 selected rows from the

frequency band decomposition R. Fig. 8.12b from Ẑ3, corresponding 4 sparse

FIR filters learned by the latent-space. Following the filter bank architecture,

Figs. 8.12c and 8.12d show the corresponding 4 rows from X̂1.1 and X̂1.2

respectively. Vertical axes are unitless and horizontal axes are time.
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8.4 conclusion

In this chapter, we introduced CSAFx: a signal processing-informed deep learning

architecture for modeling artificial reverberators.

For this architecture we proposed the SFIR layer, therefore exploring the capabil-

ities of DNNs to learn the coefficients of sparse FIR filters. Likewise, we introduced

the SE-LSTM block in order to allow a DNN to learn time-varying mixing gains,

which are used by CSAFx to dynamically mix the direct sound and the respective

reflections. Thus introducing a more explainable network which also outperforms

the previous RNN-based model.

We explore whether a deep learning architecture is able to emulate plate and

spring reverberators and we measure the performance of the model through a

listening test. We show CSAFx matching the reverberant responses of these elec-

tromechanical audio processors.

Listening test results and perceptual-based metrics show that the model emu-

lates closely the electromechanical reverberators and also achieves higher ratings

than CRAFx, although a statistical analysis of the listening test results is required.

The latter corresponds to an audio effects modeling network which, in the previ-

ous chapter, has been proven to outperform several DNNs for black-box modeling

of audio effects. The proposed architecture represents the first deep learning archi-

tecture for black-box modeling of artificial reverberators.

From Table C.1, the computational processing times on both GPU and CPU are

significantly higher for CSAFx. Since these times were computed using the the non

real-time optimized python implementation, this higher computational cost could

be due to the fact that CSAFx contains custom layers, such as SFIR, which have

not been optimized within machine learning libraries such as tensorflow.

For future work, there is a need for additional systematic comparison between

the proposed DNN and current analytical methods for modeling plate and spring

reverb, such as numerical simulation or modal techniques. Also, modeling an ac-

tual electromechanical plate reverb would provide a deeper insight into the CSAFx

performance when modeling plate and spring reverberators.

The modeling of longer decay times and late reflections can also be investigated

since the plate and spring reverb samples have a fade-out applied in the last 0.5

seconds of the recordings. Parametric models can be explored by including the

respective controls as new input training data.
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Likewise, the architecture can be further tested by modeling vintage digital re-

verberators or via convolution-based reverb applications. The latter brings applica-

tions within the fields of sound spatialization and room acoustics modeling, where

accuracy has crucial role as current acoustic modeling methods underestimate the

role of phase in early reflections (Välimäki et al., 2012). Moreover, researching

causal models, i.e. without subsequent context frames, could open the way to real-

time implementations that can be explored alongside applications beyond audio

effects modeling, such as automatic reverberation, mixing and mastering.



9
C O N C L U S I O N

9.1 summary and discussion

This research investigated deep learning architectures for black-box modeling of

audio effects. Through the modeling capabilities of DNNs together with the do-

main knowledge from digital audio effects, we show several deep learning archi-

tectures that are capable of recreating the sound, behaviour and main perceptual

features of various types of audio effects. Based on quantitative evaluation via

objective perceptual-based metrics and qualitative evaluation through subjective

listening tests, it can be concluded that we demonstrated the feasibility of DNNs

as audio processing blocks in the context of audio effects modeling. This represents

an improvement of the state-of-the-art for black-box modeling of several types of

audio effects.

In order to achieve the latter, we proposed the following deep learning archi-

tectures for audio effects modeling: CEQ, CAFX, CRAFx, CWAFx and CSAFX (see

Appendix D). These models correspond to end-to-end networks, where raw audio

is both the input and the output of the systems. Thus, given a respective audio ef-

fect target, we showed these networks trained via supervised learning procedures

and processing and outputting audio that matches the sonic and perceptual charac-

teristics of the reference audio effect. Therefore we can conclude that these models

can learn and apply the intrinsic characteristics of the audio effects modeling task.

Based on current active research in the field, we also performed a systematic

comparison of the proposed models with the deep learning architecture WaveNet.

We demonstrated how various models, such as CAFx, CRAFx and CWAFx, out-

perform WaveNet architectures when modeling nonlinear and time-varying audio

effects with short and long-term memory. Furthermore, given that the architec-

tures proposed throughout this thesis are based on specific domain knowledge

from signal-processing systems and digital audio effects, we can also conclude

that we introduced more explainable networks than models solely based on stack

of temporal dilated convolutions. Correspondingly, as shown in previous chap-

143
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ters, we analyzed how the modeling tasks are carried out and we explored what

various models, such as CEQ, CRAFx and CSAFx, are actually learning.

In Chapter 4, we introduced CEQ: a Convolutional EQ modeling network that

we show being capable of performing an audio processing task such as modeling

different types of equalizers and filters. The overall structure on which CEQ is

based corresponds to the main or base architecture on which the subsequently

proposed models are built. Therefore, we proposed DNNs based on three parts:

adaptive front-end, latent-space DNN and synthesis back-end.

The main characteristic of this type of architecture is as follows: First, via the

adaptive front-end the model learns an optimal filter bank decomposition and its

corresponding latent representation. Second, based on the given modeling task,

this latent representation is modified by the latent-space DNN. Finally, since the

front-end also generates a residual connection, which corresponds to a frequency

band decomposition of the input audio, this feature map is used by the synthesis

back-end together with the modified latent representation. Therefore, the back-end

aims to modify the residual connection through the modified latent representation

and thus synthesize a waveform based on the specific transformation of the audio

effect.

By following this type of architecture, we investigated and introduced deep

learning architectures that function as audio processing blocks. The main objec-

tive of the proposed DNNs is to apply a learnt transformation to the incoming

audio, without losing its resolution or intrinsic qualitative characteristics. This dif-

fers from traditional DNN encoding-decoding practices, where the complete input

data is encoded into a latent-space and each layer in the decoder has to generate

the complete desired output.

First, in Chapter 5 we extended the capabilities of this architecture by intro-

ducing CAFx: a Convolutional audio effects modeling network for nonlinear and

linear audio effects with short-term memory. The main novelty of CAFx is the in-

corporation to the back-end of a processing block that contains dense layers and

smooth adaptive activation functions (DNN-SAAF). The SAAFs explicitly act as

trainable waveshaping nonlinearities which follow the filter bank architecture and

are applied to the modified frequency band decomposition.

The use of waveshapers follows most implementations of nonlinear audio effects

and through this domain knowledge we introduced a general-purpose DNN for

black-box modeling of linear and nonlinear effect units. Hence we demonstrated
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the feasibility of trainable waveshaping nonlinearities, such as SAAFs, along with

a powerful DNN audio effect modeling network.

We also measured the modeling capabilities of CAFx alongside with WaveNet, a

feedforward variation of the original autoregressive model from Oord et al. (2016)

and introduced by Rethage et al. (2018). We showed that both architectures per-

form similarly and each model accomplished the nonlinear modeling tasks with

similar accuracy based on a perceptual-based metric.

In Chapter 6, we built on previous architectures, which have focused solely on

linear and nonlinear transformations with short-term memory. We confirmed that

a latent-space based on Bi-LSTMs or temporal dilated convolutions is able to learn

the long temporal dependencies which characterize effect units such as modula-

tion based effects and compressors. This, together with an input consisting of the

current audio frame concatenated with previous and subsequent audio frames.

Therefore we introduced; CRAFx, a Convolutional Recurrent audio effects mod-

eling network; and CWAFx, a Convolutional and WaveNet audio effects modeling

network. These models correspond to two general-purpose deep learning archi-

tectures for modeling audio effects with long-term memory. We concluded that

both models achieved similar performance and, based on a perceptual-based met-

ric, the models were able to match digital implementations of audio effects with

long temporal dependencies such as low-frequency modulations, and to process

the audio accordingly.

The main innovation of CRAFx and CWAFx relates to their latent-space and

back-end structure. The main objective of their latent-space is to learn a set of

frequency-dependent amplitude modulators. These are obtained by modifying the

latent representation learned which corresponds to the current, past and future

input frames. The structure of the back-end is informed by the general architecture

in which the modulation based effects are implemented in the digital domain, i.e.

through the use of modulator signals, filters and delay lines.

In the back-end we also introduced a modification of Squeeze-and-Excitation

layers. We incorporated SE layers to allow the models to learn and apply a dy-

namic gain to each of the feature map channels, which in this case correspond

to waveforms following a filter bank architecture, i.e. frequency band decomposi-

tions. This permitted the back-end to apply a modulator signal to each frequency

band and then scale it further through the SE layers.

Hitherto, it has been shown that the proposed architectures can only model

digital implementations of linear, nonlinear and time-varying audio effects. Also,
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their performance was only measured via perceptual-based objective metrics, such

as ms_mse and mfcc_cosine. Thus, in Chapter 7 we further tested the modeling

capabilities of the architectures with listening tests and analog modeling tasks;

such as a tube amplifier; a transistor-based limiter; and the rotating horn and woofer

of a Leslie speaker cabinet.

We reported that across all modeling tasks, and based on objective perceptual-

based metrics and subjective listening tests, CRAFx, and to a lesser extent CWAFx,

outperform the rest of the models. We demonstrated that these architectures are

capable of outputting audio that is virtually indistinguishable from the analog ref-

erence processors, although a statistical significance analysis is required. Further-

more, the perceptual ratings coincided with the results of the objective metrics,

therefore, we can further validate the results reported in previous chapters where

only the objective metrics were taken into account.

Finally, in Chapter 8 we introduced CSAFx: a Convolutional recurrent and Sparse

filtering audio effects modeling network. CSAFx is a signal processing-informed

deep learning architecture for modeling artificial reverberators. This model ex-

tends CRAFx by adding a sparse FIR layer to the latent-space, therefore we ex-

plored the capabilities of DNNs to learn the coefficients of sparse FIR filters.

Since early reflections can be modeled via FIR filters with sparsely placed co-

efficients, the main objective of the latent-space is to learn a set of sparse FIR

filters and envelopes for each frequency band. Then, the back-end is in charge of

processing the residual connection with the learnt filters and envelopes, thus ob-

taining the frequency-dependent reverberation response. The synthesis back-end

also expands with the introduction of LSTMs to the SE layers. SE-LSTM blocks

allowed the model to learn time-varying mixing gains which dynamically mix the

frequency band decomposition of the direct sound together with the frequency-

dependent reflections. This is informed by the overall architecture in which digital

reverberators are implemented.

We tested CSAFx by modeling a digital implementation of plate reverb and an

analog spring reverb tank. We also compare this model with the previously best-

rated architecture, CRAFx. We measured the performance of the models through a

listening test and we showed CSAFx achieving high perceptual ratings when mod-

eling the characteristic noisy and diffused responses of these electromechanical

audio processors.
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The main conclusions of this dissertation can be summarised as follows:

• We demonstrated the usefulness of deep neural networks for audio processing

tasks such as audio effects modeling. In addition, we also showed the bene-

fit that deep learning architectures can obtain from the domain knowledge of

audio signal processing systems.

• Deep learning architectures based on an adaptive front-end, latent-space DNN

and synthesis back-end can be trained to learn and modify audio accordingly.

• The convolutional layers of the front-end learn a filter bank for each modeling

task. This filter bank architecture is maintained across all the networks and

yields models that are more explainable and signal-processing informed.

• A latent-space DNN based on locally connected dense layers can learn frequency-

dependent envelopes, which can be used to modify the frequency content of the

incoming audio, thus modeling EQ.

• SAAFs can be incorporated into DNNs to function explicitly as trainable wave-

shapers, thus modeling nonlinear audio processing systems with short-term

memory.

• A latent-space DNN based on Bi-LSTMs or stacks of temporal dilated convo-

lutions can learn long temporal dependencies such as modulator signals. This

is achieved through an input consisting of the current frame concatenated with

past and future context frames.

• Bi-LSTMs slightly outperform temporal dilated convolutions when modeling

low-frequency modulations.

• SE layers can function as trainable dynamic gains that are applied to each of the

channels in the filter bank architecture.

• SFIR layers can be incorporated into DNNs to learn the coefficients of sparse

FIR filters.

• Trainable sparse FIR filters and envelopes can be used to match the response of

artificial reverberators.

• SE-LSTM layers can be added to a DNN to act as time-varying mixing gains.

• Models that incorporate a latent-space DNN based on Bi-LSTMs or stacks of

temporal dilated convolutions outperform the rest of the architectures across all

modeling tasks.

• For reverberation tasks, models that incorporate SFIR layers achieve higher rat-

ings than architectures based solely on RNNs.
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9.2 future work

Throughout this thesis, we have identified some key areas to improve or explore

in the application of deep learning to audio processing tasks, such as modeling

audio effects.

In previous chapters, the proposed models learnt to apply the specific audio

transformation by being trained with specific musical instruments, such as elec-

tric guitar or bass guitar. Moreover, the selected datasets always corresponded to

individual notes of short duration. Thus it is not known whether the proposed

architectures would also work with different audio signals, such as speech signals

or mixtures of music with various instruments. As future work, generalization

capabilities among instruments could be explored with the use of a training data

with a wider range of instruments or sounds. In addition, dropout layers or weight

or activity regularizers can also be investigated in order to improve the modeling

capabilities of networks.

Therefore, considering that the models decreased their performance when pro-

cessing audio from different instruments (see Section 5.5), a further analysis is

required on how these models perform when processing much more complex

audio waveforms, such as mixtures of various musical sources; or test signals,

such as noise or swept-frequency sinusoids. Also, since we only explore long-term

memory transformations for individual notes of short duration, more research is

needed on how these architectures perform when processing longer or sustained

musical sources.

Parametric models could also be explored as the models are learning a static

representation of each audio effect modeling task. Therefore the behaviour of the

parameters of the effect units can be modeled by including the respective controls

as new input training data.

Causal models, i.e. without subsequent context frames, can also be investigated.

This is due to CRAFX, CWAFX and CSAFx using both past and subsequent context

input frames. Furthermore, considering that models use 256 ms input and output

frames to learn long temporal dependencies, more research is needed on how to

improve the inherent latency of these architectures.

Moreover, researching causal models that use shorter input frame sizes could

open the way to low-latency and real-time implementations. Although the pro-

posed models currently operate via an offline python implementation, real-time

models could be further explored since processing times are already close to real-
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time temporal constraints (see Appendix C). Thus, real-time applications would

benefit significantly from the exploration of DNNs to model transformations that

involve long-term memory.

More research can be done on the weights learnt by the latent-space DNNs

along with a deeper analysis of the filters learnt by the convolutional layers of the

front-end. Further investigation of these weights may yield more explainable mod-

els. In addition, these weights can be modified during inference to alter the way

the input audio is transformed, therefore new transformations could be achieved

which would not be possible by using common analog or digital audio processors.

An optimization of the number of filters or channels within the models can be in-

vestigated. This, along with more fine-tuned loss functions, such as differentiable

perceptual-based metrics. Also, to more closely follow the domain knowledge

from modulation based signal processing systems, feedback delay lines within a

DNN framework can be researched instead of the feedforward delay lines present

in CRAFx and CWAFx. The latter corresponds to a key area for future work, as dif-

ferentiable DSP systems, as proposed by Engel et al. (2020), could be incorporated

into deep learning models to perform audio processing tasks more effectively.

In this thesis we successfully researched and proposed DNNs that model vari-

ous types of audio effects, however these architectures could be further tested and

extended to model other types of audio processors. For example; nonlinear pro-

cessors, such as tape saturation, exciters or enhancers; or dynamic range processors,

such as de-esser or noise gates. Also audio effects with long temporal dependencies

that are based on echo, such as feedback delay, slapback delay or tape-based delay.

CRAFx and CWAFx are designed to model time-varying audio effects driven

by low-frequency modulator signals or envelopes, however stochastic effects, i.e.

audio processors driven by noise, can also be explored. For instance, a noise gen-

erator can be included in the synthesis back-end of these networks which can be

scaled via SE or SE-LSTM layers. Furthermore, the modeling capabilities of these

architectures can be additionally tested with time-varying effects driven by carrier

signals, such as modulation vocoder.

Completely different families of effects can also be investigated. This includes

audio-morphing; time-frequency transformations such as phase vocoder effects; time-

segment processors such as time stretching, pitch shifting, time shuffling and granula-

tion; spatial audio effects such as 3D sound localization or room acoustics modeling.

Adaptive digital audio effects, where low-level and perceptual features are ex-

tracted and mapped for the implementation of inter-channel cross-adaptive sys-
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tems can also be explored. Given an adaptive audio effects task, this mapping of

sound features to control the parameters of other processors can be investigated

by jointly training various of the proposed architectures.

Possible applications of adaptive audio effects are within the field of automatic

mixing and mastering. Automatic linear and nonlinear processing can be inves-

tigated for an automatic mixing task, such as automatic EQ, compression, or re-

verberation. Furthermore, style-learning of a specific sound engineer could be ex-

plored, where a network is trained with several tracks mixed by a sound engineer

and finds a generalization from the engineer’s mixing practices. Also, automatic

post-production for a specific instrument across one or several genres could be

analyzed and implemented by the models.

It is worth noting the immense benefit that generative music could obtain from

deep learning architectures for intelligent music production. The proposed models

could be used together with generative music methods in order to function as

automatic mixing or mastering systems.

Applications beyond audio effects modeling and intelligent music production

can also be investigated, for instance signal restoration methods such as undistor-

tion, denoising and dereverberation.

Overall, this thesis ventured for the application of artificial intelligence to the

manipulation of musical signals. We focused on recreating the sound crafted by

electronic engineers more than 80 years ago, and while this has enormous merit

on its own, I believe this research could be just the start of a new branch of digital

sound processors. Analogous to the great transformation that music production

had with the dawn of digital signal processing, an exciting future awaits for audio

processors based on neural networks, from intelligent assistants to new effects yet

to be discovered.



B I B L I O G R A P H Y

Jonathan S Abel and David P Berners. A technique for nonlinear system measure-

ment. In 121st Audio Engineering Society Convention, 2006.

Jonathan S Abel, David P Berners, Sean Costello, and Julius O Smith. Spring

reverb emulation using dispersive allpass filters in a waveguide structure. In

121st Audio Engineering Society Convention, 2006.

Jonathan S Abel, David P Berners, and Aaron Greenblatt. An emulation of the

emt 140 plate reverberator using a hybrid reverberator structure. In 127th Audio

Engineering Society Convention, 2009.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neu-

rocomputing, 5(4-5):185–196, 1993.

Jérôme Antoni and Johan Schoukens. A comprehensive study of the bias and vari-

ance of frequency-response-function measurements: Optimal window selection

and overlapping strategies. Automatica, 43(10):1723–1736, 2007.

Kevin Arcas and Antoine Chaigne. On the quality of plate reverberation. Applied

Acoustics, 71(2):147–156, 2010.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give

a false sense of security: circumventing defenses to adversarial examples. In

International Conference on Machine Learning, 2018.

Shaojie Bai, Jeremy Zico Kolter, and Vladlen Koltun. Convolutional sequence mod-

eling revisited. In 6th International Conference on Learning Representations (ICLR),

2018.

Daniele Barchiesi and Joshua D. Reiss. Reverse engineering of a mix. Journal of the

Audio Engineering Society, 58(7/8):563–576, 2010.

Stefan Bilbao. A digital plate reverberation algorithm. Journal of the Audio Engineer-

ing Society, 55(3):135–144, 2007.

Stefan Bilbao. Numerical sound synthesis. Wiley Online Library, 2009.

151



bibliography 152

Stefan Bilbao. Numerical simulation of spring reverberation. In 16th International

Conference on Digital Audio Effects (DAFx-13), 2013.

Stefan Bilbao and Julian Parker. A virtual model of spring reverberation. IEEE

Transactions on Audio, Speech and Language Processing, 18(4):799–808, 2009.

Stefan Bilbao, Kevin Arcas, and Antoine Chaigne. A physical model for plate

reverberation. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2006.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Merlijn Blaauw and Jordi Bonada. A neural parametric singing synthesizer. In

Interspeech, 2017.

Ólafur Bogason and Kurt James Werner. Modeling circuits with operational

transconductance amplifiers using wave digital filters. In 20th International Con-

ference on Digital Audio Effects (DAFx-17), 2017.

Chi-Tsong Chen. Linear system theory and design. Oxford University Press, Inc.,

1998.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,

Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep

learning. CoRR, abs / 1410.0759, 2014.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using RNN encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

Francois Chollet. Deep Learning with Python. Manning Publications Co., 2018.

Jan Chorowski, Ron J Weiss, Samy Bengio, and Aäron van den Oord. Unsuper-

vised speech representation learning using wavenet autoencoders. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 27(12):2041–2053, 2019.

Eero-Pekka Damskägg, Lauri Juvela, Etienne Thuillier, and Vesa Välimäki. Deep

learning for tube amplifier emulation. In IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), 2019.

Brecht De Man, Joshua D Reiss, and Ryan Stables. Ten years of automatic mixing.

In Proceedings of the 3rd Workshop on Intelligent Music Production, 2017.



bibliography 153

Giovanni De Sanctis and Augusto Sarti. Virtual analog modeling in the wave-

digital domain. IEEE Transactions on Audio, Speech, and Language Processing, 2009.

Junqi Deng and Yu-Kwong Kwok. Automatic chord estimation on seventhsbass

chord vocabulary using deep neural network. In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2016.

Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music au-

dio. In International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2014.

Michele Ducceschi and Craig J Webb. Plate reverberation: Towards the develop-

ment of a real-time physical model for the working musician. In International

Congress on Acoustics (ICA), 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning research,

12(Jul):2121–2159, 2011.

Simon Durand, Juan P Bello, Bertrand David, and Gaël Richard. Downbeat track-

ing with multiple features and deep neural networks. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

Douglas Eck and Juergen Schmidhuber. A first look at music composition using

lstm recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza

Artificiale, 103, 2002.

Felix Eichas and Udo Zölzer. Black-box modeling of distortion circuits with block-

oriented models. In 19th International Conference on Digital Audio Effects (DAFx-

16), 2016.

Felix Eichas and Udo Zölzer. Virtual analog modeling of guitar amplifiers with

wiener-hammerstein models. In 44th Annual Convention on Acoustics, 2018.

Felix Eichas, Marco Fink, Martin Holters, and Udo Zölzer. Physical modeling of

the mxr phase 90 guitar effect pedal. In 17th International Conference on Digital

Audio Effects (DAFx-14), 2014.

Felix Eichas, Etienne Gerat, and Udo Zölzer. Virtual analog modeling of dynamic

range compression systems. In 142nd Audio Engineering Society Convention, 2017.



bibliography 154

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad

Norouzi, Douglas Eck, and Karen Simonyan. Neural audio synthesis of mu-

sical notes with wavenet autoencoders. 34th International Conference on Machine

Learning, 2017.

Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts. DDSP: Dif-

ferentiable digital signal processing. In 8th International Conference on Learning

Representations (ICLR), 2020.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

Angelo Farina. Simultaneous measurement of impulse response and distortion

with a swept-sine technique. In 108th Audio Engineering Society Convention, 2000.

Xue Feng, Yaodong Zhang, and James Glass. Speech feature denoising and dere-

verberation via deep autoencoders for noisy reverberant speech recognition. In

IEEE International Conference on Acoustics, Speech, and Signal Processing, 2014.

Benjamin Friedlander and Boaz Porat. The modified Yule-Walker method of

ARMA spectral estimation. IEEE Transactions on Aerospace and Electronic Systems,

(2):158–173, 1984.

Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. A survey of audio-

based music classification and annotation. IEEE Transactions on Multimedia, 13

(2):303–319, 2010.

Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. Comparative evaluation

of various mfcc implementations on the speaker verification task. In International

Conference on Speech and Computer, 2005.

Patrick Gaydecki. Foundations of digital signal processing: theory, algorithms and hard-

ware design, volume 15. Iet, 2004.

Etienne Gerat, Felix Eichas, and Udo Zölzer. Virtual analog modeling of a urei

1176ln dynamic range control system. In 143rd Audio Engineering Society Conven-

tion, 2017.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual

prediction with LSTM. IET, 1999.



bibliography 155

Dimitrios Giannoulis, Michael Massberg, and Joshua D Reiss. Parameter automa-

tion in a dynamic range compressor. Journal of the Audio Engineering Society, 61

(10):716–726, 2013.

Pere Lluís Gilabert Pinal, Gabriel Montoro López, and Eduardo Bertran Albertí.

On the wiener and hammerstein models for power amplifier predistortion. In

IEEE Asia-Pacific Microwave Conference, 2005.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In the 13th International Conference on Artificial

Intelligence and Statistics, 2010.

Luke B Godfrey and Michael S Gashler. A continuum among logarithmic, linear,

and exponential functions, and its potential to improve generalization in neu-

ral networks. In 7th IEEE International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural Networks, 18

(5-6):602–610, 2005.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition

with deep recurrent neural networks. In IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), 2013.

Aaron B Greenblatt, Jonathan S Abel, and David P Berners. A hybrid reverberation

crossfading technique. In IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2010.

Sina Hafezi and Joshua D. Reiss. Autonomous multitrack equalization based on

masking reduction. Journal of the Audio Engineering Society, 63(5):312–323, 2015.

Anna Hagenblad. Aspects of the identification of Wiener models. PhD thesis,

Linköpings Universitet, 1999.

Stefan L Hahn. Hilbert transforms in signal processing, volume 2. Artech House

Boston, 1996.



bibliography 156

Philippe Hamel and Douglas Eck. Learning features from music audio with deep

belief networks. In 11th International Society for Music Information Retrieval Con-

ference (ISMIR), 2010.

Philippe Hamel, Matthew EP Davies, Kazuyoshi Yoshii, and Masataka Goto. Trans-

fer learning in MIR: Sharing learned latent representations for music audio

classification and similarity. In 14th International Society for Music Information

Retrieval Conference (ISMIR), 2013.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.

Elsevier, 2011.

Kun Han, Yuxuan Wang, DeLiang Wang, William S Woods, Ivo Merks, and Tao

Zhang. Learning spectral mapping for speech dereverberation and denoising.

IEEE Transactions on Audio, Speech and Language Processing, 23(6):982–992, 2015.

Yoonchang Han, Jaehun Kim, and Kyogu Lee. Deep convolutional neural net-

works for predominant instrument recognition in polyphonic music. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 25(1):208–221, 2016.

Aki Härmä, Matti Karjalainen, Lauri Savioja, Vesa Välimäki, Unto K Laine, and

Jyri Huopaniemi. Frequency-warped signal processing for audio applications.

Journal of the Audio Engineering Society, 48(11):1011–1031, 2000.

Scott H Hawley, Benjamin Colburn, and Stylianos I Mimilakis. SignalTrain: Pro-

filing audio compressors with deep neural networks. In 147th Audio Engineering

Society Convention, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In IEEE Conference on Computer Vision and Pattern

Recognition, 2016.

Thomas Hélie. On the use of volterra series for real-time simulations of weakly

nonlinear analog audio devices: Application to the moog ladder filter. In 9th

International Conference on Digital Audio Effects (DAFx-06), 2006.

Clifford A Henricksen. Unearthing the mysteries of the leslie cabinet. Recording

Engineer/Producer Magazine, 1981.

Jorge Herrera, Craig Hanson, and Jonathan S Abel. Discrete time emulation of the

leslie speaker. In 127th Audio Engineering Society Convention, 2009.



bibliography 157

Marcel Hilsamer and Stephan Herzog. A statistical approach to automated of-

fline dynamic processing in the audio mastering process. In 17th International

Conference on Digital Audio Effects (DAFx-14), 2014.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

Martin Holters and Julian D Parker. A combined model for a bucket brigade

device and its input and output filters. In 21st International Conference on Digital

Audio Effects (DAFx-17), 2018.

Martin Holters and Udo Zölzer. Physical modelling of a wah-wah effect pedal as a

case study for application of the nodal dk method to circuits with variable parts.

In 14th International Conference on Digital Audio Effects (DAFx-11), 2011.

Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, and Joel H Saltz. Neural net-

works with smooth adaptive activation functions for regression. arXiv preprint

arXiv:1608.06557, 2016.

Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, and Joel H Saltz. Convnets

with smooth adaptive activation functions for regression. In 20th International

Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2018.

Allen Huang and Raymond Wu. Deep learning for music. CoRR, abs / 1606.04930,

2016.

Eric J Humphrey and Juan P Bello. Rethinking automatic chord recognition with

convolutional neural networks. In 11th International Conference on Machine Learn-

ing and Applications, 2012.

Eric J Humphrey and Juan P Bello. From music audio to chord tablature: Teaching

deep convolutional networks to play guitar. In IEEE international conference on

acoustics, speech and signal processing (ICASSP), 2014.

Antti Huovilainen. Enhanced digital models for analog modulation effects. In 8th

International Conference on Digital Audio Effects (DAFx-05), 2005.

Leland B Jackson. Frequency-domain Steiglitz-McBride method for least-squares

IIR filter design, ARMA modeling, and periodogram smoothing. IEEE Signal

Processing Letters, 15:49–52, 2008.



bibliography 158

Hanna Järveläinen and Matti Karjalainen. Reverberation modeling using velvet

noise. In 30th Audio Engineering Society International Conference, 2007.

Nicholas Jillings, Brecht De Man, David Moffat, and Joshua D Reiss. Web Audio

Evaluation Tool: A browser-based listening test environment. In 12th Sound and

Music Computing Conference, 2015.

Jean-Marc Jot and Antoine Chaigne. Digital delay networks for designing artificial

reverberators. In 90th Audio Engineering Society Convention, 1991.

Matti Karjalainen, Teemu Mäki-Patola, Aki Kanerva, and Antti Huovilainen. Vir-

tual air guitar. Journal of the Audio Engineering Society, 54(10):964–980, 2006.

Roope Kiiski, Fabián Esqueda, and Vesa Välimäki. Time-variant gray-box mod-

eling of a phaser pedal. In 19th International Conference on Digital Audio Effects

(DAFx-16), 2016.

Taejun Kim, Jongpil Lee, and Juhan Nam. Sample-level CNN architectures for

music auto-tagging using raw waveforms. In IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

3rd International Conference on Learning Representations (ICLR), 2015.

David M Koenig. Spectral analysis of musical sounds with emphasis on the piano. OUP

Oxford, 2014.

Filip Korzeniowski and Gerhard Widmer. Feature learning for chord recognition:

The deep chroma extractor. In 17th International Society for Music Information

Retrieval Conference (ISMIR), 2016.

Oliver Kröning, Kristjan Dempwolf, and Udo Zölzer. Analysis and simulation of

an analog guitar compressor. In 14th International Conference on Digital Audio

Effects (DAFx-11), 2011.

Walter Kuhl. The acoustical and technological properties of the reverberation plate.

E. B. U. Review, 49, 1958.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient

backprop. Neural networks: Tricks of the trade, pages 9–48, 2012.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng. Unsupervised feature

learning for audio classification using convolutional deep belief networks. In

Advances in neural information processing systems, pages 1096–1104, 2009.



bibliography 159

Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, and Juhan Nam. SampleCNN:

End-to-end deep convolutional neural networks using very small filters for mu-

sic classification. Applied Sciences, 8(1):150, 2018.

Keun Sup Lee, Nicholas J Bryan, and Jonathan S Abel. Approximating measured

reverberation using a hybrid fixed/switched convolution structure. In 13th In-

ternational Conference on Digital Audio Effects (DAFx-10), 2010.

Teck Yian Lim, Raymond A Yeh, Yijia Xu, Minh N Do, and Mark Hasegawa-

Johnson. Time-frequency networks for audio super-resolution. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.

Zheng Ma, Joshua D Reiss, and Dawn AA Black. Implementation of an intelligent

equalization tool using yule-walker for music mixing and mastering. In 134th

Audio Engineering Society Convention, 2013.

Zheng Ma, Brecht De Man, Pedro DL Pestana, Dawn AA Black, and Joshua D

Reiss. Intelligent multitrack dynamic range compression. Journal of the Audio

Engineering Society, 63(6):412–426, 2015.
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A
A U D I O R E P R E S E N TAT I O N S

In this section we define the audio representations and transformations that are

used throughout this thesis.

• Audio waveform: or raw audio, it consists of the amplitude values of a sampled

audio signal. These values are measured with dBFS, i.e. decibels relative to full

scale, where 0 dBFS corresponds to the highest amplitude level within a digital

system. It is common to represent the amplitude of the audio waveform in the

[−1,+1] range.

• Short-time Fourier Transform (STFT): is a time-frequency representation based

on the Discrete Fourier Transform (Gaydecki, 2004). It consists of slicing an au-

dio waveform x(n) into overlapping frames of equal length, multiplying each

segment by a window signal w(n) and computing the discrete Fourier Trans-

form on each segment. For a single frame this is described as follows.

X(ω) =

∞∑
−∞ x(n)w(n)e

−iωn (A.1)

Where X(ω) is the Fourier Transform and ω is the frequency in radians/sam-

ple. It is common to calculate the STFT with the Fast Fourier Transform (FFT)

algorithm, which reduces the computational cost. The spectrogram is computed

by plotting |X(ω)| as a function of time.

• Mel-Frequency Cepstral Coefficients (MFCCs): they consist of the amplitude

coefficients of the mel-frequency cepstrum. The latter is the Discrete Cosine

Transform (DCT) (Narasimha and Peterson, 1978) of the log mel-spectrogram.

The mel-spectrogram is a time-frequency representation based on a model of

human auditory perception. This differs from the STFT since the frequencies

are not linearly spaced, but compressed into mel-frequency bands (Stevens

et al., 1937). Mel-frequencies m can be calculated with the following equation

(O’shaughnessy, 1987), where f is the frequency in Hz.

m = 2595 log10(1+ f/700) (A.2)

The MFFCs can be computed with the following steps (Ganchev et al., 2005).
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- Compute the STFT of an audio signal.

- Compress the powers of the spectrum into mel-frequency bands using tri-

angular overlapping windows.

- Calculate the logarithm value of the energy at each mel-frequency band

and correspondingly compute the DCT.

- The MFCCs are the amplitudes of the resulting mel-frequency cepstrum.

• Gammatone Filter Bank: Similar to mel-frequency bands, it corresponds to

overlapping bandpass filters which simulate the motion of the basilar mem-

brane within the cochlea (Moore, 2012). This is achieved with linear filters

equally spaced on the Equivalent Rectangular Bandwidth (ERB) scale. The ERB

scale corresponds to a logarithmic filter bank where the centre frequencies are

equally spaced. The ERB scale approximates the bandwidths of the auditory fil-

ters of the cochlea and each bandwidth ERB can be estimated as follows (Smith

and Abel, 1999).

ERB(f) = 24.7(0.00437f+ 1) (A.3)

Each gammatone filter g(t) is described in the time-domain by the impulse

response of a gamma distribution and a sinusoidal tone (Patterson, 1986).

g(t) = αtn−1 cos(2πfct)e−2πfbt (A.4)

Where n is the order of the filter, fb and fc are the filter bandwidth and center

frequency, and α determines the amplitude.



B
A U D I O S A M P L E S

The audio samples of the experiments carried out in this thesis can be found at

the following links:

• Chapter 4 - CEQ: https://mchijmma.github.io/end-to-end-equalization/

• Chapter 5 - CAFX: https://mchijmma.github.io/modeling-nonlinear/

• Chapter 6 - CRAFX: https://mchijmma.github.io/modeling-time-varying/

• Chapter 7 - All models: https://mchijmma.github.io/DL-AFx/

• Chapter 8 - CSAFX: https://mchijmma.github.io/modeling-plate-spring-reverb/
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C
C O M P U TAT I O N A L C O M P L E X I T Y

The computational processing times were calculated with a Titan XP GPU and an

Intel Xeon E5-2620 CPU. We use input frames of size 4096 and sampled with a hop

size of 2048 samples and it corresponds to the time a model takes to process one

batch, i.e. the total number of frames within a 2-second audio sample. GPU and

CPU times are reported using the non real-time optimized python implementation.

Table C.1 shows the number of trainable parameters and processing times across

all the models. Table C.2 presents the versions of the python packages used through-

out this thesis.
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Table C.1: Number of parameters and processing times across various models.

model number of parameters GPU time (s) CPU time (s)

CEQ 561,473 0.0336 0.4811

CAFx 604,545 0.0842 1.2939

WaveNet 1,707,585 0.0508 1.0233

CRAFx 275,073 0.4066 2.8706

CWAFx 205,057 0.0724 2.9552

CSAFx 410,977 0.752 4.5681

Table C.2: python packages.

python package version

numpy 1.16.1

scipy 1.2.0

sacred 0.7.7

tensorflow-gpu 1.11.0

keras 2.2.4

librosa 0.6.0

sklearn 0.20.2

brian 1.4.4

json 2.0.9



D
A R C H I T E C T U R E S O F T H E P R O P O S E D M O D E L S

Table D.1: Layers across all models.

model adaptive front-end latent-space synthesis back-end

CEQ Conv1D, Conv1D-Local, max-pooling Dense-Local, Dense unpooling, ×, deConv1D

CAFx Conv1D, Conv1D-Local, max-pooling Dense-Local, Dense unpooling, ×, DNN-SAAF, deConv1D

CRAFx (time-distributed) Conv1D, Conv1D-Local, max-pooling Bi-LSTM unpooling, ×, DNN-SAAF, SE, +, deConv1D

CWAFx (time-distributed) Conv1D, Conv1D-Local, max-pooling WaveNet, Dense unpooling, ×, DNN-SAAF, SE, +, deConv1D

CSAFx (time-distributed) Conv1D, Conv1D-Local, max-pooling Bi-LSTM, SFIR unpooling, ∗, ×, DNN-SAAF, SE-LSTM, +, deConv1D
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