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Knowledge Transfer in Object Recognition

Xu Lan

Abstract

Object recognition is a fundamental and long-standing problem in computer vision. Since
the latest resurgence of deep learning, thousands of techniques have been proposed and brought
to commercial products to facilitate people’s daily life. Although remarkable achievements in
object recognition have been witnessed, existing machine learning approaches remain far away
from human vision system, especially in learning new concepts and Knowledge Transfer (KT)
across scenarios. One main reason is that current learning approaches address isolated tasks
by independently training predefined models, without considering any knowledge learned from
previous tasks or models. In contrast, humans have an inherent ability to transfer the knowledge
acquired from earlier tasks or people to new scenarios. Therefore, to scaling object recognition
in realistic deployment, effective KT schemes are required.

This thesis studies several aspects of KT for scaling object recognition systems. Specifically,
to facilitate the KT process, several mechanisms on fine-grained and coarse-grained object recog-
nition tasks are analyzed and studied, including 1) cross-class KT on person re-identification (re-
id); 2) cross-domain KT on person re-identification; 3) cross-model KT on image classification;
4) cross-task KT on image classification. In summary, four types of knowledge transfer schemes
are discussed as follows:

Chapter 3 Cross-class KT in person re-identification, one of representative fine-grained ob-
ject recognition tasks, is firstly investigated. The nature of person identity classes for person
re-id are totally disjoint between training and testing (a zero-shot learning problem), resulting
in the highly demand of cross-class KT. To solve that, existing person re-id approaches aim
to derive a feature representation for pairwise similarity based matching and ranking, which is
able to generalise to test. However, current person re-id methods assume the provision of accu-
rately cropped person bounding boxes and each of them is in the same resolution, ignoring the
impact of the background noise and variant scale of images to cross-class KT. This is more sev-
ered in practice when person bounding boxes must be detected automatically given a very large
number of images and/or videos (un-constrained scene images) processed. To address these chal-
lenges, this chapter provides two novel approaches, aiming to promote cross-class KT and boost
re-id performance. 1) This chapter alleviates inaccurate person bounding box by developing a
joint learning deep model that optimises person re-id attention selection within any auto-detected
person bounding boxes by reinforcement learning of background clutter minimisation. Specif-
ically, this chapter formulates a novel unified re-id architecture called Identity DiscriminativE
Attention reinforcement Learning (IDEAL) to accurately select re-id attention in auto-detected
bounding boxes for optimising re-id performance. 2) This chapter addresses multi-scale prob-
lem by proposing a Cross-Level Semantic Alignment (CLSA) deep learning approach capable of
learning more discriminative identity feature representations in a unified end-to-end model. This
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is realised by exploiting the in-network feature pyramid structure of a deep neural network en-
hanced by a novel cross pyramid-level semantic alignment loss function. Extensive experiments
show the modelling advantages and performance superiority of both IDEAL and CLSA over the
state-of-the-art re-id methods on widely used benchmarking datasets.

Chapter 4 In this chapter, we address the problem of cross-domain KT in unsupervised
domain adaptation for person re-id. Specifically, this chapter considers cross-domain KT as
follows: 1) Unsupervised domain adaptation: “train once, run once” pattern, transferring knowl-
edge from source domain to specific target domain and the model is restricted to be applied
on target domain only; 2) Universal re-id: “train once, run everywhere” pattern, transferring
knowledge from source domain to any target domains, and therefore is capable of deploying any
domains of re-id task. This chapter firstly develops a novel Hierarchical Unsupervised Domain
Adaptation (HUDA) method for unsupervised domain adaptation for re-id. It can automatically
transfer labelled information of an existing dataset (a source domain) to an unlabelled target
domain for unsupervised person re-id. Specifically, HUDA is designed to model jointly global
distribution alignment and local instance alignment in a two-level hierarchy for discovering trans-
ferable source knowledge in unsupervised domain adaptation. Crucially, this approach aims to
overcome the under-constrained learning problem of existing unsupervised domain adaptation
methods, lacking of the local instance alignment constraint. The consequence is more effective
and cross-domain KT from the labelled source domain to the unlabelled target domain. This
chapter further addresses the limitation of “train once, run once ” for existing domain adapta-
tion person re-id approaches by presenting a novel “train once, run everywhere” pattern. This
conventional “train once, run once” pattern is unscalable to a large number of target domains
typically encountered in real-world deployments, due to the requirement of training a separate
model for each target domain as supervised learning methods. To mitigate this weakness, a novel
“Universal Model Learning” (UML) approach is formulated to enable domain-generic person
re-id using only limited training data of a “single” seed domain. Specifically, UML trains a uni-
versal re-id model to discriminate between a set of transformed person identity classes. Each of
such classes is formed by applying a variety of random appearance transformations to the images
of that class, where the transformations simulate camera viewing conditions of any domains for
making the model domain generic.

Chapter 5 The third problem considered in this thesis is cross-model KT in coarse-grained
object recognition. This chapter discusses knowledge distillation in image classification. Knowl-
edge distillation is an effective approach to transfer knowledge from a large teacher neural net-
work to a small student (target) network for satisfying the low-memory and fast running require-
ments. Whilst being able to create stronger target networks compared to the vanilla non-teacher
based learning strategy, this scheme needs to train additionally a large teacher model with expen-
sive computational cost and requires complex multi-stages training. This chapter firstly presents
a Self-Referenced Deep Learning (SRDL) strategy to accelerate the training process. Unlike
both vanilla optimisation and knowledge distillation, SRDL distils the knowledge discovered
by the in-training target model back to itself for regularising the subsequent learning procedure
therefore eliminating the need for training a large teacher model. Secondly, an On-the-fly Native
Ensemble (ONE) learning strategy for one-stage knowledge distillation is proposed to solve the
weakness of complex multi-stages training. Specifically, ONE only trains a single multi-branch
network while simultaneously establishing a strong teacher on-the-fly to enhance the learning of
target network.

Chapter 6 Forth, this thesis studies the cross-task KT in coarse-grained object recognition.
This chapter focuses on the few-shot classification problem, which aims to train models capable
of recognising new, previously unseen categories from the novel task by using only limited train-
ing samples. Existing metric learning approaches constitute a highly popular strategy, learning
discriminative representations such that images, containing different classes, are well separated
in an embedding space. The commonly held assumption that each class is summarised by a sin-
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gle, global representation (referred to as a prototype) that is then used as a reference to infer class
labels brings significant drawbacks. This formulation fails to capture the complex multi-modal
latent distributions that often exist in real-world problems, and yields models that are highly
sensitive to the prototype quality. To address these limitations, this chapter proposes a novel
Mixture of Prototypes (MP) approach that learns multi-modal class representations, and can be
integrated into existing metric based methods. MP models class prototypes as a group of feature
representations carefully designed to be highly diverse and maximise ensembling performance.
Furthermore, this thesis investigates the benefit of incorporating unlabelled data in cross-task
KT, and focuses on the problem of Semi-Supervised Few-shot Learning (SS-FSL). Recent SS-
FSL work has relied on popular Semi-Supervised Learning (SSL) concepts, involving iterative
pseudo-labelling, yet often yields models that are susceptible to error propagation and sensitive
to initialisation. To address this limitation, this chapter introduces a novel prototype-based ap-
proach (Fewmatch) for SS-FSL that exploits model Consistency Regularization (CR) in a robust
manner and promotes cross-task unlabelled data knowledge transfer. Fewmatch exploits unla-
belled data via Dynamic Prototype Refinement (DPR) approach, where novel class prototypes
are alternatively refined 1) explicitly, using unlabelled data with high confidence class predic-
tions and 2) implicitly, by model fine-tuning using a data selective model CR loss. DPR affords
CR convergence, with the explicit refinement providing an increasingly stronger initialisation
and alleviates the issue of error propagation, due to the application of CR.

Chapter 7 draws conclusions and suggests future works that extend the ideas and methods
developed in this thesis.
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Chapter 1

Introduction

The only source of knowledge is

experience

—— Albert Einstein

“Can machines think?” This is one of the famous questions asked by Alan Turing in 1950

and inspired generations of researchers to set the foundations for Artificial Intelligence (AI) and

other related sub-fields in computer science. Over the last few decades, it is endowed more spe-

cific and realistic meaning that whether the machine system has the capability of understanding

or addressing any intellectual tasks as a human being can [1], which is known as Artificial Gen-

eral Intelligence (AGI). To fulfill AGI, there are several traits that an intelligent system should

have, including common sense, knowledge transfer (transfer learning), conceptual understand-

ing, causality, etc. Among them, Demis Hassabis points out that the key to AGI lies in knowledge

transfer.

However, existing AI systems often independently solved these problems in isolation, with-

out exploring systems full generality and utilizing the previous acquired knowledge. As a result,

such system design becomes excessively brittle and usually fails when an unexpected circum-

stance appears. In contrast, when human beings encounter new scenarios, they firstly search

their memories for anything which matches a set of conditions and transfer the corresponding

knowledge to the current scenario.

To mirror the way of humans addressing the intellectual tasks, this thesis focuses on the prob-

lem of knowledge transfer in computer vision. In particular, this thesis studies knowledge transfer
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Figure 1.1: Illustration of object recognition. (a) Fine-grained object recognition, each of cate-

gories is visual similar. (b) Coarse-grained object recognition, each of categories is visual dis-

similar.

in object recognition, which is the primary and crucial task for computer vision. By means of ef-

fective knowledge transfer, we have the capacity to scale the existing object recognition systems

towards more realistic deployments.

1.1 Object Recognition

Object recognition is a general term to describe a collection of related computer vision tasks

that involve identifying objects in digital photographs [2]. It roughly contains both image clas-

sification (a task requiring an algorithm to determine what object classes are present in the im-

age) as well as object detection (a task requiring an algorithm to localize all objects present in

the image) [3]. Object recognition is a fundamental task in computer vision and has been an

active research area for several decades. According to the visual similarity of categories, the

object recognition could be summarized in two types: 1) coarse-grained object recognition 2)

fine-grained object recognition (Figure 1.1). The former deals with more general category recog-

nition, which category is the basic level, such as dog, car and house, while the latter aims to

distinguish subordinate-level categories within a general category, such as different species of

bird or different human identities. This task is extremely challenging due to high intra-class and

low inter-class variance.

Designing a scalable visual recognition system in more complex and realistic situations,
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Probe image Gallery Set… …

Figure 1.2: Illustration of person re-identification: recognizing an individual n diverse locations,

different times and over different non-overlapping camera views.

which surpasses human, is both academic and industry community desperate for. Despite deep

learning models, in particular, in the context of image classification, can reach super-human

performance on some benchmarks when trained on the large amounts of annotated data [4, 5],

these models still have a long way to matching humans behaviour when unexpected and novel

scenarios appear, due to lacking of the human knowledge transfer mechanism.

In this thesis, we discuss two representative sub-fields in object recognition: fine-grained per-

son re-identification and coarse-grained image classification, with the goal of scaling the existing

visual recognition system in more realistic scenarios.

1.1.1 Person Re-identification

Person re-identification (re-id) is one of the representative fine-grained object recognition tasks,

aiming at searching people across non-overlapping camera views distributed at different loca-

tions (gallery set) by matching person bounding box images in probe set [6] (Figure 1.2). Re-id

has become a fundamental technique for existing intelligent surveillance systems and plays a

critical role in ensuring public security and assisting people daily life. For example, the govern-

ment deploys re-id systems in closed-circuit television (CCTV) camera networks to fast locate

suspicious criminals, therefore protecting public order and civilian safety.

Although impressive achievements have been obtained by deep learning in visual recognition,

person re-id still remains a non-trivial and challenging task. This is due to the person identities

non-overlap between training and testing, requiring the high demand of cross-class knowledge
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Figure 1.3: Illustration of image classification by deep neural networks on ImageNet. [3].

transfer. However, the transferring process is very brittle to the several complicated factors such

as the variant scale of images (distances between the camera and the individual is uncontrolled),

noisy background, etc. Section 1.3.1 and 1.3.2 detail these challenges and provide effective

solutions to alleviate these weaknesses.

1.1.2 Image Classification

Image classification is a very challenging task, mainly due to a large amount of intra-class vari-

ability, arising from different lightings, occlusions, background and corruptions, etc. Recently,

deep convolutional neural networks have led to a series of breakthroughs for image classifica-

tion [5, 7, 8]. The core idea of deep learning is to discover multiple levels of representation

(Figure 1.3), with the hope that higher-level features encode abstract semantic information of the

data, which is expected to provide more invariance to the intra-class variability. To learn a pow-

erful representational feature, various deep nerual architectures are designed, including VGG [4],

Inception [9], ResNet [5], and DenseNet [10], etc.

While large capacity models often achieve competitive results, the expensive time cost, es-

pecially in real-time deployment, leads to obvious shortcomings in realistic. Besides, the well-

trained model still suffers from the intrinsic drawback of the machine learning model without

considering knowledge transfer, resulting in the limited generalization in new scenarios. In this

thesis, Section 1.3.3 and 1.3.4 detail these weaknesses and provide alternative solutions.

1.2 Knowledge Transfer

Knowledge Transfer (KT) refers to the learning paradigm in which an algorithm extracts knowl-

edge from one or more application scenarios to help boost the learning performance in the other
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scenario [11]. One of the basic transfer learning techniques in the deep learning context is fine-

tuning. Fine-tuning uses the pre-trained model which is trained on the large dataset i.e. ImageNet,

and re-trains it on the target task with a very low learning rate. However, recently Kaiming et

al. [12] argue pre-training such on ImageNet only speeds up convergence early in training, while

does not necessarily boost final target task accuracy. This indicates that simply fine-tuning is

not an effective KT strategy. The ineffectiveness of KT has obvious disadvantages including: 1)

The model is short of the generalization ability when a new scenario appears, yielding the model

often fails to recognize the novel object, due to ignoring the knowledge acquired from previous

learning processes. To address this issue, cross-“X” knowledge transfer is required. Given dif-

ferent contexts, X could be classes, domains or tasks, etc. 2) The extensibility of the model is

very limited. Supposing a new model is designed, we need to train it independently from scratch,

while the knowledge learned from the existing well-trained model is ignored. In many real-life

applications, deploying a very large capacity deep model is unrealistic, since these models are

often computationally expensive with millions of parameters [13, 5, 4]. Therefore, it might not

satisfy the real-time deployment requirement. However, training the low capacity model inde-

pendently is insufficient, as it lacks ability to capture the complex data distribution in the real

world scenarios, compared to large capacity models. In the last few years, researchers start to

investigate whether it is possible to transfer knowledge between different models to emulate the

human education systems, i.e. the student learns the knowledge from teachers. In summary, this

problem could be concluded in one of the special cases for cross-“X” knowledge transfer, where

“X” represents the deep learning model.

Recently, many researchers implicitly or explicitly point out the aforementioned issues. The

related technique or problem to cross-“X” knowledge transfer could be summarized as: 1) cross-

class knowledge transfer in person re-id; 2) cross-domain knowledge transfer in domain adap-

tation, 3) cross-model knowledge transfer in knowledge distillation, 4) cross-task knowledge

transfer in few shot classification. As the cross-class knowledge transfer is discussed in Section

1.1.1, the rest of cross-“X” knowledge is provided as follows.

1.2.1 Domain Adaptation

Domain Adaptation (DA) is an area related to the cross-domain knowledge transfer, in which

there is a domain shift or a distribution change between the source and target domain [15] (See

Figure 1.4). While most of the existing visual recognition systems assume the training and eval-
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Source Domain Target Domain

Knowledge Learning System

Figure 1.4: Some image examples from the ”Bike” and ”Laptop” categories in Amazon, and

Caltech-256 databases [14]. There is a data distribution change between Amazon and Caltech-

256 dataset. Cross-domain knowledge transfer is required. If the model is trained on the source

domain (i.e. Amazon) and aims to deploy on the target domain (i.e. Caltech-256).

uation share the same data distribution, real-world deployment often encounters the distribution

changes, known as the domain shift. In general, the domain shift might come from a set of

complex factors, including background clutter, intra-category variation, motion blur, and scene

illumination, etc. For example, in person re-id, data collected from Asian people is biased with

respect to the total human population. If the data is biased, then the re-id system will be likely to

make more mistakes to identify the people who are not from Asia. With the breakthrough on a

various types of visual recognition tasks offered by deep learning, researchers find the deep neu-

ral networks have the capacity to learn transferrable features across tasks, alleviating the domain

shift in DA. The basic idea is to add some regularization when source feature learning, aiming to

well generalize to the new domain. This challenge is further discussed in Section 1.3.2.

1.2.2 Knowledge Distillation

Deep neural networks have gained substantial success in many computer vision tasks [16, 4, 17,

5, 18, 19, 20, 21]. However, the performance advantages often come at the cost of training and

deploying resource-intensive networks with large depth and/or width [13, 5, 4]. This has given

rise to efforts in developing more compact models, such as parameter binarisation [22], filter

pruning [23], model compression [24], and knowledge distillation [25]. Among these existing

techniques, knowledge distillation [25] is a generic cross-model knowledge transfer approach

suitable to a wide variety of networks and applications. Knowledge distillation is an effective

approach to transferring knowledge from a teacher neural network to a student target network for



1.2. Knowledge Transfer 25

(b) knowledge distillation(a) Vanilla strategy 

Target 
Model

P L Teacher 
Model

P L Target 
Model

P L

P Model PredictionsL Labels TS Training Samples

TS TS TS

Legend

Figure 1.5: Illustration of two different deep network learning methods. (a) The vanilla training:

Optimise the target model from the supervision of training label for M epochs in one stage. (b)

The Knowledge Distillation training: Firstly learn a teacher model (the same architecture as the

target model, but it is well-trained in contrast to the target model) in a computationally intensive

manner; Then extract the learned knowledge from the teacher model; Lastly optimise the target

model by leveraging both the label data and the teacher’s knowledge for M epochs.

satisfying the low-memory and fast running requirements in practice use.

As a solution to this challenge, knowledge distillation first trains a deeper and/or wider

“teacher” network (or an ensemble model), then learns a smaller “student” network to imitate the

teacher’s classification probabilities [25] and/or feature representations [26, 27] (Figure 1.5 (b)).

This imposes additional information beyond conventional supervised learning signals (Figure 1.5

(a)), leading to a more discriminative student model than learning the target model without the

teacher’s knowledge. Whilst being able to create stronger target networks compared to the vanilla

non-teacher based learning strategy, this scheme needs to train additionally a large teacher model

with the expensive computational cost. To that end, this thesis details this challenge in Section

1.3.3.

1.2.3 Few Shot Learning

Deep neural network beats humans at classifying images from ImageNet [5]. At that point, one

could argue that computers become better than human when there is a large amount of annotated

data. However, this is not realistic to collect such large scale of the dataset, i.e. ImageNet,

for every task. Sometimes, there are only one or two labelled examples per category. In this

context, the deep model often experiences persistent failures and frustrations. This scenario is
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Figure 1.6: The illustration of FSL classification problem. The base category contains sufficient

labelled samples, while the model aims at generalizing well on novel category from query set in

new tasks with limited labelled samples available in the support set.

known as Few-Shot Learning (FSL). FSL aims to emulate human behaviour by teaching models

to recognise and handle unseen classes from the new task in data-limited regimes. This requires

highly cross-task knowledge transfer to enable the model to perform well on the new task.

For a few years now, the few-shot learning problem has drawn a lot of attention in the research

community. In the FSL, researchers often access a large scale training dataset with sufficient

annotated samples comprised base categories. The aim of FSL is obtaining a model which fast

adapts to the new task. Each of novel categories from the new task is associated with only a few

K labelled samples (e.g. ≤ 5 samples) compose the support set, while the remaining unlabelled

samples consist the query set are used for evaluation (see Figure 1.6). Despite existing FSL

approaches can boost cross-task knowledge transfer, there are still some common issues remained

and Section 1.3.4 discusses these drawbacks.

1.3 Challenges, Solutions and Assumptions

1.3.1 Cross-class Knowledge Transfer on Person Re-id

Person re-id is the fine-grained object recognition task and each of categories is very similar,

thus capturing discriminative features among visual similar classes is very essential. More im-

portantly, the nature of disjoint person identities between training and testing requires highly de-

sirable cross-class knowledge transfer, aiming to learn generalizable feature representation and

boost re-id performance. To facilitate the cross-class knowledge transfer and mitigate negative

influence of irrelevant factors, this thesis investigates two aspects in the context of person re-id

in Chapter 3: the background and multi-scale of images.
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Figure 1.7: Comparisons of person bounding boxes by manually cropping (MC), automatically detecting (AD),

and identity discriminative attention reinforcement learning (IDEAL). Often AD contains more background clutter

(a,d,e). Both AD and MC may suffer from occlusion (c), or a lack of identity discriminative attention selection (b).

• The background noise of person image box: Existing person re-id methods assume the

provision of accurately cropped bounding boxes (constrained scene) and little background

noise, e.g. by manually cropping. This is inconsistent with real-world application sce-

narios where person bounding boxes can only be extracted less accurately by automatic

person detection, given limited human labelling budget and vast volume of surveillance

video/image data. This inaccurately cropped bounding boxes, including noisy, increase

the difficulty to transfer knowledge from train to test, especially the identity of training

and testing is not overlapped. Therefore, post-detection bounding box refinement becomes

inevitable for optimising re-id matching, which however is ignored in the literature.

• Variant resolution of person bounding box: In parallel to post-detection bounding box re-

finement, some researchers further propose to contain person detection with person re-id

in a unified framework, resulting in a more realistic setting: person search. Person search

aims to find a probe person in a gallery of whole unconstrained scene images [28] (See

Figure 1.8 (a) ). It is an extended form of person re-identification (re-id) [6] by addition-

ally considering the requirement of automatically detecting people in the scene images

besides matching the identity classes. Unlike the conventional person re-id problem as-

suming the gallery images as either manually cropped or carefully filtered auto-detected

bounding boxes [29, 20, 30, 31, 32, 33, 34, 35, 36, 33], person search deals with raw un-

refined detections with many false cropping and unknown degrees of misalignment. This

yields a more challenging matching problem especially in the process of person re-id.

Moreover, auto-detected person boxes often vary more significantly in scale (resolution)

than the conventional person re-id benchmarks (Figure 1.8(b)), due to the inherent uncon-

trolled distances between persons and cameras (Figure 1.8(a)). To facilitate the feature
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Figure 1.8: Illustration of the intrinsic multi-scale matching challenge in person search. (a) Auto-

detected person bounding boxes vary significantly in scale. (b) The person scale distribution

of CUHK-SYSU (person search benchmark) covers a much wider range than manually refined

CUHK-03 (person re-id benchmark).

(knowledge) learned from training data successfully generalizing to test person matching,

it is therefore intrinsic to consider multi-scale feature learning for cross-class knowledge

transfer. However, this problem is currently under-studied in person search [28, 37, 38].

Solutions: This thesis provides solutions to address these two weaknesses. (1) To solve inaccu-

rately cropped bounding boxes challenge, this thesis uses deep reinforcement learning which is

a powerful technique that has been used in a wide range of application. In this work, we show

the effectiveness of optimising auto-detected person bounding boxes in a deep reinforcement

learning framework by aiming to automatically attend only re-id discriminative regions against

complex background clutter. Specifically, a novel architecture called Identity DiscriminativE

Attention reinforcement Learning (IDEAL) is formulated for accurate attention discovery in

the context of auto-detected bounding boxes, capable of achieving similar re-id performance as

compared to exhaustive manually labelling. (2) To alleviate the multi-scale matching problem,

a Cross-Level Semantic Alignment (CLSA) deep learning approach is proposed to addressing

the multi-scale matching challenge. This is based on learning an end-to-end in-network feature

pyramid representation with superior robustness in coping with variable scales of auto-detected

person bounding boxes.
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Assumptions. The above solution is based on the following assumptions:

1. Auto-detected bounding boxes are not optimised for re-id tasks due to potentially more

background clutter, occlusion, missing body part, and inaccurate bounding box alignment.

2. Attention selection is the need within poorer auto-detected bounding boxes as an integral

part of learning to optimise person re-id accuracy in a fully automated process.

3. A single-scale feature representation is unable to capture the discriminative information at

different scales which is useful to cross-class knowledge transfer in person identity match-

ing;

4. A pyramid representation allows to be “scale-invariant” (or “scale insensitive”) in the sense

that a scale change in matching images is counteracted by a scale shift within the feature

pyramid.

1.3.2 Cross-domain Knowledge Transfer on Person Re-id

This thesis studies cross-domain knowledge transfer in unsupervised domain adaptation for per-

son re-id in Chapter 4. In particular, two weaknesses of existing unsupervised domain adaptation

are addressed in this thesis.

• Cross-domain knowledge transfer is insufficient due to lacking local instance alignment:

Most existing re-id methods rely heavily on supervised learning [34, 39, 40, 29, 41, 42,

43, 44], assuming that the model training and test data are drawn from the same camera

network, i.e. the same domain. However, such trained models suffer from significant per-

formance degradation when deployed to the unseen target domain due to the domain shift

problem [45]. In reality, we often have no access to a large number of manually labelled

matching person image pairs for every camera pair as required by supervised learning

methods. Such large human labelling is both costly and not always available, due to a

large number of camera pairs in each surveillance domain. Existing supervised learning

methods have limited cross-domain usability. To overcome this limitation, a number of

approaches have been proposed, including (1) hand-crafting features [46, 47], (2) image

adaptation (synthesis) [48, 49, 50, 51], (3) feature adaptation [52, 53, 54, 55], (4) un-

supervised deep learning [56], and (5) a hybrid of feature adaptation and unsupervised
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learning [50, 57, 58]. This thesis focuses on the feature adaptation approach for unsuper-

vised cross-domain person re-id. The key idea is to align feature statistics between source

and target training data. By doing so, re-id discriminative knowledge from the labelled

source data can be transferred into the unlabelled target data. Existing feature adaptation

methods typically rely on cross-domain alignment of global feature distributions [53, 54].

This however suffers from an under-constrained optimisation problem, which lacks local

instance alignment constraints, yielding sub-optimal re-id models.

• Cross-domain knowledge transfer required extra target domain training samples and well-

trained models are only for the single domain deployment: Whilst significant performance

gains have been achieved on unlabelled target domains, existing unsupervised domain

adaptation (Figure 1.9(b)), unsupervised model learning (Figure 1.9(c)), or their combi-

nation, often take a “train once, run once” pattern. That is, a trained model by them is

effective only for the target domain that the model training is applied to. For every single

target domain deployment, a new model needs to be trained through the same optimisa-

tion process repeatedly. Such a domain-specific property reduces their practical value and

limits their scalability significantly, considering potentially a very large quantity of differ-

ent domains to be targeted in real-world applications. Besides, the extra unlabelled target

data is required to enable the adaptation. This results in extra cost for collecting these

unlabelled data.

Solutions: To solve the aforementioned weaknesses of knowledge transfer in unsupervised per-

son re-identification, this thesis offers solutions as follow: (1) This thesis solves the insufficient of

knowledge transfer by discovering transferable source knowledge at both the local instance and

global distribution levels. This idea leads to a Hierarchical Unsupervised Domain Adaptation

(HUDA) model. This is a non-trivial learning task due to the lack of direct correlations between

source and target person identities. To solve this problem, we formulate a new cross-domain

cross-class association learning algorithm.

(2) This thesis addresses the limitation of requiring extra target samples and narrow usage of

the trained model by considering a “train once, run everywhere” pattern. In contrast to all the

existing methods, the “train once, run everywhere” pattern considers a re-id model is trained by

using the labelled data from a single source domain, and frozen it for universal deployment at

any domains without further training and/or fine-tuning the model to any target domains (Figure
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Figure 1.9: Learning strategies for person re-id: (a) Supervised model learning on a large set of

cross-camera identity labelled training data per domain. Once trained, the model is deployed for

the same domain alone. (b) Unsupervised domain adaptation on labelled training data from a

source domain and unlabelled training data from the target domain. The adapted model is specific

for the target domain. (c) Unsupervised model learning on unlabelled training data of the target

domain. The trained model is specific for the target domain. (d) Universal model learning on

labelled training samples from a source domain. Once trained the model can be frozen forever

and applied for universal person re-id deployment at any target domains including the source

domain. (Source Domain: Market-1501 dataset [43]; Target 1 Domain: DukeMTMC dataset

[59]; Target N Domain: MSMT-17 dataset [41] )
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Figure 1.10: Universal person appearance transformations for training a single domain-generic

re-id model enabling universal deployments. Compared to existing methods typically focusing

on domain-specific model training (train once, run once), the proposed method allows for a

train once, run everywhere pattern therefore favourably suits the industrial scale large system

development without the need of training the system to every individual target domain as prior

of each deployment.

1.9(d)). To this end, this thesis proposes a Universal Model Learning (UML) method capable

of training a single model for domain generic person re-id deployment. UML trains a univer-

sally deployable re-id model one-off on transformed source training data, without the need of

using any target domain data for model learning and refinement. The image transformations

are designed to produce an extremely diverse training dataset (Figure 1.10) that simulates cam-

era viewing condition variations as completely as possible for different domains, i.e. domain

complete therefore domain generic. Viewing condition variations are simulated by randomly ap-

plying colour and contrast transformations to a labelled source person image. This image and

its transformed versions share the same identity label. By design, the re-id model trained on the

proposed augmented dataset is discriminative universally for any domains.

Assumptions. The proposed approach formulation is based on these assumptions :

1. Only considering global distribution in cross-domain knowledge transfer results in under-

constrained optimisation problem, yielding suboptimal re-id models.

2. A large proportion of primitive attributes can be shared across domains in re-id, i.e. over-

lapped in the distribution.
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3. Viewing condition variations are able to be simulated by randomly applying colour and

contrast transformations to a labelled source person image.

1.3.3 Cross-model Knowledge Transfer on Image Classification

This thesis discusses the cross-model knowledge transfer on image classification in Chapter 5.

In particular, knowledge distillation is studied as an example of cross-model knowledge transfer.

Two issues of existing knowledge distillation methods are discussed and corresponding solutions

are proposed.

• Cross-model knowledge transfer requires significant extra computational cost and large

memory (for a heavy teacher): Whilst being able to create stronger target networks com-

pared to the vanilla non-teacher based learning strategy, this scheme needs to train addi-

tionally a large teacher model with the expensive computational cost.

• Cross-model knowledge transfer requires complex multi-phase training procedure and

sing-phase training is sub-optimal due to lacking an appropriate teacher role: While

promising the student model quality improvement from aligning with a pre-trained teacher

model, this strategy requires a longer training process, in a more complex multi-phase

training procedure. These are commercially unattractive [60]. To simplify the distillation

training process as above, simultaneous distillation algorithms [33, 60] have been devel-

oped to perform knowledge online teaching in a one-phase training procedure. Instead of

pre-training a static teacher model, these methods train simultaneously a set of (typically

two) student models which learn from each other in a peer-teaching manner. This approach

merges the training processes of the teacher and student models, and uses the peer network

to provide the teaching knowledge. Beyond the original understanding of distillation that

requires the teacher model larger than the student, this online distilling strategy can im-

prove the performance of any-capacity models, leading to a more generically applicable

technique. Such a peer-teaching strategy sometimes even outperforms the teacher based

offline distillation. The plausible reason is that the large teacher model tends to overfit

the training data therefore leading to less extra knowledge on top of the manually labelled

annotations [60]. However, the existing online distillation methods have a number of draw-

backs: (1) Each peer-student model may only provide limited extra information, resulting

in suboptimal distillation; (2) Training multiple students causes a significant increase of
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computational cost and resource burdens; (3) They require asynchronous model updating

which has a notorious need of carefully ordering the operations of label prediction and

gradient back-propagation across networks. We consider that all the weaknesses are due

to the lack of an appropriate teacher role in the online distillation processing.

Solutions: To solve the aforementioned weaknesses, several approaches are developed as fol-

lows: (1) This thesis jointly solves both knowledge distillation for model compression and fast

optimisation in model learning using a unified deep learning strategy. To that end, a Self-

Referenced Deep Learning (SRDL) strategy is proposed that integrates the knowledge distil-

lation concept into a vanilla network learning procedure. Compared to knowledge distillation,

SRDL exploits different and available knowledge without the need for additionally training an

expensive teacher by self-discovering knowledge with the target model itself during training.

Specifically, SRDL begins with training the target network by a conventional supervised learning

objective as a vanilla strategy, then extracts self-discovered knowledge (inter-class correlations)

during model training, and continuously trains the model until convergence by satisfying two

losses concurrently: a conventional supervised learning loss, and an imitation loss that regulates

the classification probability predicted by the current (thus-far) model with the self-discovered

knowledge. By doing so, the network learns significantly better than learning from a conventional

supervised learning objective alone.

(2) This thesis provides a novel online knowledge distillation method that is not only more

efficient (lower training cost) but also more effective (higher model generalisation improvement)

as compared to previous alternative methods. In training, the proposed approach constructs a

multi-branch variant of a given target network by adding auxiliary branches, creates a native

ensemble teacher model from all branches on-the-fly, and learns simultaneously each branch

plus the teacher model subject to the same target label constraints. Each branch is trained with

two objective loss terms: a conventional softmax cross-entropy loss which matches with the

ground-truth label distributions, and a distillation loss which aligns to the teacher’s prediction

distributions. In test, we simply convert the trained multi-branch model back to the original

(single-branch) network architecture by removing the auxiliary branches, therefore not increas-

ing test-time cost. In doing so, we derive an On-the-Fly Native Ensemble (ONE) teacher based

simultaneous distillation training approach that not only eliminates the computationally expen-

sive need for pre-training the teacher model in an isolated stage as the offline counterparts, but
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also further improves the quality of online distillation.

Assumptions. The formulation of proposed solutions is based on the following assumptions :

1. The vanilla training strategy relies only on the supervision of per-sample label, but ignores

the discriminative knowledge incrementally discovered by the in-training model itself. It

may lead to sub-optimal optimisation.

2. A multi-branch single model is more efficient to train whilst achieving superior generali-

sation performance and avoiding asynchronous model update.

1.3.4 Cross-task Knowledge Transfer on Image Classification

In Chapter 6, this thesis focuses on cross-task knowledge transfer. Recently, Few Shot Learning

(FSL), especially in the context of image classification, attracts researchers attention, due to

FSL aims to emulate human ability to quickly recognize the object in the new task. To learn a

model which quickly adapts to the novel task, cross-task knowledge transfer is desire for FSL

community. Here, two weaknesses in cross-task knowledge transfer are investigated in the FSL

context.

• The single prototype assumption of cross-task knowledge transfer in FSL is sensitive and

unable to capture complex multi-modal class distribution (A class is represented as a set

of clusters). Existing FSL approaches fall into two main categories: (1) Metric learning

based methods [61, 62, 63, 64] learn a distance metric between a query image and a set

of annotated images such that the query image is closest to the annotated images of the

same class; (2) Meta-gradient learning based methods [65, 66, 67, 68] focus on teaching

a model to adapt quickly to new classes via a small number of regular gradient descent

iterations. This thesis focuses on metric learning based methods due to their simplicity,

flexibility and state of the art performance. The key idea of metric learning is to learn

deep embeddings of input samples that minimises a pre-defined distance metric between

samples of the same class. These methods typically rely on class prototypes, which are

used to classify the unlabelled images via a nearest neighbour strategy. Prototypes can

be defined as a global representation of a class that is calculated from the embedding of

a set of annotated support images. Despite significant improvements achieved by metric

learning approaches, existing metric based FSL approaches still suffer from an intrinsic

drawback due to the general assumption that each category can be summarised using a
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(a)

(b)

(b)

Figure 1.11: t-SNE visualization of feature embeddings from our baseline [69] for the support

(triangles) and query images in the miniImageNet test stage under the 5-way 1-shot setting. This

shows two drawbacks of single prototype metric learning methods: (a) the prototype can lack

representative power and be out of distribution (purple rectangle); (b) a single prototype cannot

accurately capture class multi-modal distributions (red ellipses).

single prototype. By only considering a uni-modal prototype per class, such methods are

unable to capture complex multi-modal class distributions that often exist in real-world

problems and fail to capture subtle differences between similar classes, as illustrated in

Figure 1.11. Additionally, the performance of such models is very sensitive to the proto-

type quality. These two limitations motivate us to learn richer prototype representations

that can capture latent data distributions accurately and enhance model robustness.

• Cross-task knowledge transfer fails to exploit the unlabelled data and alternative Semi-

Supervised Few-shot Learning (SS-FSL) solutions suffer from the error propagation. SS-

FSL investigates the benefit of incorporating unlabelled data in few-shot settings. Current

state of the art SS-FSL [70, 71] methods rely on popular SSL techniques such as label

propagation [72], that propagate label predictions to unlabelled data and self-training [73]

that repeatedly labels unlabelled data, based on confidence scores, and retrains with the
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additional pseudo-annotated data. An important drawback of such strategies is their re-

liance on iteratively extending the training set using pseudo-label predictions. Building

on pseudo-label decisions can propagate and amplify errors during training, yielding brit-

tle methods sensitive to model initialisation and noisy data. This problem is exacerbated

in few-shot scenarios, where available labelled data is highly limited and pseudo labels

therefore have respectively larger influence.

Solutions: To solve these challenges, this thesis considers two different aspects:

(1) This thesis addresses the sensitive of cross-task knowledge transfer and the inability to

capture complex multi-modal class by proposing a mixture of prototypes based metric learning

approach. Relying on multiple prototypes was considered in [74, 75], proposing multiple proto-

type representations as clusters and local descriptors. Their promising approaches suffered from

two important limitations: 1) prototypes were not optimised for diversity [74], limiting the ben-

efits of the multiple representations and 2) local descriptors were not regularized [75], yielding

prototypes of potential poor representative power due to the use of local inputs. Our key idea

is to learn a set of prototypes per class that are optimised to maximise individual (high repre-

sentative power) and ensembling performance (high inter-prototype variance). This is achieved

by computing a set of local and global class prototypes, which allows to focus on different re-

gions and image attributes. We regularize local prototypes with a) a soft attention gate to merge

prototype classification decisions, effectively allowing unreliable and non-discriminative proto-

types (image regions) to be ignored and b) a self-supervised task that regularizes the learning

process on local inputs, yielding robust and class-representative local prototypes. This approach

allows us to separate and generalise to new classes accurately due to the resulting richer repre-

sentations. Moreover, the increased robustness granted by our mixture of prototypes allows to

use an imprinted weights formulation [69] and maintain high performance, while alleviating the

requirement to retrain a model when new categories are available.

(2) In light of these limitations of explored unlabelled data, this thesis deviates from an it-

erative pseudo-labelling scheme and considers an alternative SSL strategy, relying instead on

the concept of Consistency Regularisation (CR) [76, 77, 78, 79]. The approach successfully

exploits unlabelled data without introducing pseudo-label requirements and outperforms pre-

existing state of the art methods. Applying CR to the SS-FSL setting is however non-trivial in

low-data regimes. The proposed two-stage approach draws on both the concepts of imprinted
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class prototypes [69] and CR [76, 79]. It comprises semi-supervised pre-training on base classes,

followed by Dynamic Prototype Refinement (DPR) on novel classes. The imprinted weights ap-

proach allows the learning of class prototype representations as model weights using standard

end-to-end training (vs. commonly used episode training) via the use of a cosine classifier. This

allows to seamlessly introduce a CR task in the base class training process, effectively leveraging

unlabelled data. The CR task borrows ideas from [79], and is formulated within a mean teacher

framework [76] using a weak-strong augmentation strategy, where the prediction of highly per-

turbed inputs must match those of the same, weakly perturbed, input image. This base class

training stage allows high quality initial prototypes to be directly inferred from labelled image

features, providing a robust initialisation for novel classes. The novel DPR stage exploits unla-

belled samples towards learning prototypes of higher quality. DPR approach alternates between

explicitly updating of prototypes using unlabelled samples that yield the most confident predic-

tions (i.e. nearest to their assigned class prototype), and implicitly fine-tuning the model with CR

on a second selection of unlabelled samples. Alternating between typically smaller, more conser-

vative updates (implicit refinement) and larger, often times more disruptive pseudo-label based

updates (explicit refinement), results in faster convergence for CR and often large performance

gains, whilst at the same time affording robustness to pseudo-labelling errors.

Assumptions. The proposed approach formulation is based on these assumptions :

1. Prototypes can be defined as a global representation of a class that is calculated from the

embedding of a set of annotated support images.

2. Only considering a uni-modal prototype per class in FSL, such methods are unable to

capture complex multi-modal class distributions that often exist in real-world problems

and fail to capture subtle differences between similar classes and the performance of such

models is very sensitive to the quality of the prototypes.

3. CR currently fails in the SS-FSL scenario due to 1) the slow convergence of CR tech-

niques [79], which is in conflict with FSL fast convergence requirements, in order to alle-

viate overfitting risks and 2) the poor reliability of teacher predictions in early stages when

trained on limited data.
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1.4 Contributions

The contributions made in this thesis are summarised below:

Chapter 3 considers the problem of optimising attention selection and multi-scale matching

within any auto-detected person bounding boxes in cross-class knowledge transfer for maximis-

ing performance on re-id tasks. To optimise attention selection scheme, this chapter formulates

a novel Identity DiscriminativE Attention reinforcement Learning (IDEAL) model for attention

selection post-detection given re-id discriminative constraints. Extensive experiments on two

large auto-detected datasets CUHK03 [80] and Market-1501 [43] demonstrate the advantages of

the proposed IDEAL model over a wide range of contemporary and state-of-the-art person re-id

methods.

Besides, this chapter addresses the multi-scale person search challenge by proposing a Cross-

Level Semantic Alignment (CLSA) deep learning approach capable of learning more discrimina-

tive identity feature representations in a unified end-to-end model. Extensive experiments show

the modelling advantages and performance superiority of CLSA over the state-of-the-art person

search and multi-scale matching methods on two large person search benchmarking datasets:

CUHK-SYSU and PRW.

Chapter 4 proposes a novel idea of exploring instance-wise localised source knowledge to en-

hance the cross-domain knowledge transfer for unsupervised person re-id. It addresses the limi-

tations of existing global feature distribution adaptation based methods for cross-domain knowl-

edge transfer. This chapter further formulates a Hierarchical Unsupervised Domain Adaptation

(HUDA) method. Extensive evaluations demonstrate the superiority of HUDA over a variety of

state-of-the-art models for unsupervised cross-domain person re-id on four benchmarks: Market-

1501 [43], DukeMTMC [59, 48], MSMT17 [41], and CUHK03 [40].

Furthermore, this chapter presents a “train once, run everywhere” pattern for general cross-

domain knowledge transfer for universal person re-identification. This is the first deep learning

attempt of universal person re-id. This chapter proposes a simple yet effective Universal Model

Learning (UML) approach for realising universal person re-id. Extensive evaluations demon-

strate the model training and performance superiority of UML over the state-of-the-art alter-

native methods on five person re-id benchmarks: Market-1501, DukeMTMC-reID, CUHK03,

MSMT17, and VIPeR.

Chapter 5 studies the expensive computation cost of acquiring knowledge to do cross-model
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knowledge transfer and addresses the drawback of multi-stages and multi-models in knowledge

distillation. This chapter investigates for the first time the problems of knowledge distillation

based model compression and fast optimisation in model training using a unified deep learning

approach, an under-studied problem although both problems have been studied independently in

the literature. Specifically, this chapter presents a stage-complete learning rate decay schedule

in order to maximise the quality of intermediate self-discovered knowledge and therefore avoids

the negative guidance to the subsequent second-stage model optimisation. Besides, this chapter

further introduces a random model restart scheme for the second-stage training with the purpose

of breaking the optimisation search space constraints tied to the self-referenced deep learning

process. Extensive comparative experiments are conducted on object categorisation tasks (CI-

FAR10/100 [81], Tiny ImageNet [82], and ImageNet [3]) and person instance identification tasks

(Market-1501 [43]).

To alleviate the weakness of the multi-stage and multi-model training required by the knowl-

edge distillation. This chapter proposes a novel online knowledge distillation method (ONE) that

is not only more efficient (lower training cost) but also more effective (higher model general-

isation improvement) as compared to previous alternative methods. Extensive experiments on

four benchmarks (CIFAR10/100, SVHN, and ImageNet) show that the proposed ONE distilla-

tion method enables to train more generalisable target models in a one-phase process than the

alternative strategies of offline learning a larger teacher network or simultaneously distilling peer

students, the previous state-of-the-art techniques for training small target models.

Chapter 6 discusses the cross-task knowledge transfer in few shot learning under the context

of image classification. This chapter presents a Mixture of Prototypes (MP) learning strategy

for metric-based FSL. A simple and generic approach that can easily be embedded in popular

metric learning based methods. Extensive experiments demonstrate the superiority of our method

compared to the state-of-art on two standard benchmarks: miniImageNet and tieredImageNet.

To further utilize and transfer the knowledge of the unlabelled data, this chapter presents

“Fewmatch”; a novel semi-supervised few-shot learning approach that alleviates the need for

iterative pseudo-labelling. This is the first approach exploiting the power of consistency regular-

isation in an SS-FSL context. This chapter further introduces the concept of dynamic prototype

refinement. By iteratively updating prototypes for novel categories, using both explicit feature

averaging and implicit fine-tuning through a two-level top-K selection scheme, Fewmatch is able
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to successfully leverage CR in a few-shot setting and are robust to error propagation inherent to

pseudo-labelling schemes. Extensive experiments demonstrate that we achieve state of the art

performance on two standard benchmarks.

1.5 Thesis outline

The remaining chapters of this thesis are organised as follows, with all chapters are structured in

Figure 1.12:

Chapter 2 provides a literature review of fine/coarse-grained object recognition by deep learning.

Furthermore, a set of existing cross-class/domain/model/task knowledge transfer approaches are

discussed, including knowledge distillation, domain adaption, few shot learning.

Chapter 3 investigates the inaccurate person bounding box and multi-scale challenge of cross-

class knowledge transfer for fine-grained person re-id. Specifically, to refine of inaccurate per-

son bounding box, this chapter proposed a novel Identity DiscriminativE Attention reinforce-

ment Learning (IDEAL) model for attention selection post-detection given re-id discriminative

constraints. Furthermore, this chapter discusses the multi-scale problem in both person re-id

and person search, proposing a Cross-Level Semantic Alignment (CLSA) model to address the

multi-scale matching challenge.

Chapter 4 tackles the insufficient cross-domain knowledge transfer in Unsupervised Domain

Adaptation and unscalable for practical large scale models. This thesis addresses this insufficient

knowledge transfer by discovering transferable source knowledge at both the local instance and

global distribution levels. This idea leads to a Hierarchical Unsupervised Domain Adaptation

(HUDA) model. To increase the usage and scalability of existing UDA methods on real-world

deployment. This chapter further proposes a “train once, run once” pattern by presenting a

Universal Model Learning (UML) method, enabling training a single model for domain generic

deployment.

Chapter 5 discusses extra computation cost and complex multi-phase training of cross-model

knowledge transfer for coarse-grained object recognition. Specifically, this chapter proposes two

alternative methods to solve the above limitations. (1) A Self-Referenced Deep Learning (SRDL)

strategy is proposed to combine the fast optimization in knowledge distillation to solve the large

training cost required by pre-trained teacher network. (2) This chapter designs an On-the-Fly

Native Ensemble (ONE) teacher based simultaneous distillation training approach that not only
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eliminates the computationally expensive need for pre-training the teacher model in an isolated

stage as the offline counterparts, but also further improves the quality of online distillation.

Chapter 6 provides the cross-task knowledge transfer in the few shot classification under super-

vise and semi-supervised context, respectively. For conventional supervised few shot learning,

this chapter proposes a generic Mixture of Prototypes (MP) learning strategy that can be embed-

ded in popular metric learning based methods and improve their performance. MP is tailored

to compute richer and more robust representations in contrast to conventional single prototype

approaches. To facilitate the knowledge transfer through unlabelled data, this chapter further

presents “Fewmatch”; a novel semi-supervised few-shot learning approach that alleviates the

need for iterative pseudo-labelling. The proposed prototype-based consistency regularization

model effectively leverages unlabelled samples in order to obtain reliable prototype-based pre-

dictions. Furthermore, this chapter introduces the concept of dynamic prototype refinement. By

iteratively updating prototypes for novel categories, using both explicit feature averaging and im-

plicit fine-tuning through a two-level top-K selection scheme, we are able to successfully leverage

CR in a few-shot setting and are robust to error propagation inherent to pseudo-labelling schemes

Chapter 7 offers the conclusion and suggests the future work related to this thesis content.
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Chapter 1

Chapter 2

Introduction

Literature Review

Knowledge Transfer Across-class in Person Re-identification

Chapter 3

Knowledge Transfer Across-domain in Person Re-identification

Chapter 4

Knowledge Transfer Across-model in Image Classification

Chapter 5

Knowledge Transfer Across-task in Image Classification

Chapter 6

Conclusion and 
Future Works

Chapter 7

Ø More Accurate Person Box:    IDEAL
Ø Multi-scale Feature Representation:    CLSA

Ø Consider Local Constrain: HUDA
Ø Deploy any domains: UML

Ø Reduce Training Cost: SRDL
Ø Sing-phase Train: ONE

Ø Mixture Prototype Assumption:   MP  
Ø Consider Unlabelled Data:   FewMatch

Figure 1.12: Summarisation and structure of all chapters.
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Chapter 2

Literature Review

In the long history of humankind (and

animal kind too) those who learned to

collaborate and improvise most

effectively have prevailed.

—— Charles Darwin

This chapter gives a rough summary on existing approaches about knowledge transfer in

object recognition which are closely related to this thesis. Section 2.1 discusses the develop-

ment of object recognition systems under the wave of deep learning. Specifically, the techniques

on the task of fine-grained person re-identification and coarse-grained image classification are

reviewed. Section 2.2 focuses on knowledge transfer mechanism of visual recognition in the

literature. Section 2.3 offers the preliminaries of deep learning for object recognition, includ-

ing essential mathematical formulation and widely used object function. Finally, this chapter

provides a summary of the literature review on Section 2.4.

2.1 Deep Learning for Object Recognition

2.1.1 Image Classification

Visual recognition, especially, image classification is one of the crucial tasks in computer vision

and it refers to distinguishing images in different categories based on their semantic meaning.

Despite the simplicity of definition, image classification has wide applications in reality such as
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face recognition, video understanding in surveillance system, traffic scene recognition in trans-

portation systems, content-based image retrieval and image classification in medicine industry.

In image classification, feature selection is an important aspect. Earlier work, including HOG

[83] and SIFT [84] have been widely used to extract features. However, such hand-engineered

features suffer from limited representation power and more importantly lack semantic and ab-

stract concept understanding, therefore having limited generality. In contrast, recently deep

convolutional neural network (CNN) architectures achieved superior performances due to their

strong feature representation ability and potential to capture high-level abstract features. CNN

networks often contain a set of sequentially connected linear convolution layers with non-linear

activated function followed and an additional fully connected layer for prediction in the last. The

stacking of multiple linear and non-linear processing units in a layer-wise fashion enables the

model to learn complex representations at different levels of abstraction. Consequently, in some

complex recognition tasks, i.e. ImageNet [3] consisting of one thousand image categories, deep

CNNs have shown substantial performance improvements over conventional hand-engineered

feature methods [83, 84].

A few years ago, researchers found the representational capacity of CNN can be increased

by designing more complex architecture when sufficient training data is available [16]. After

that, several attempts such as modification of processing units, parameter and hyper-parameter

optimization strategies, design patterns have applied to the deep CNN, aiming to increase CNN

capacity and representation power, which enables CNN scalable to large complex multi-classes

problems. The feature extracted from the CNN network rather than the hand-engineered became

prevalent after the exemplary performance of AlexNet on the ImageNet dataset in 2012 [16].

Following their work, Simonyan and Zisserman introduce the VGG net [4], with the principle

of a simple and homogenous topology. After that, inception block [9] is proposed with the core

idea which is a split, transform and merge. This is the first attempt to construct branches within

a layer, which allows the same level of features at different spatial scales. To enable convergence

and well-training of the extremely deeper network, skip connection is presented in ResNet [5],

resulting in more than 1000 layers of architecture. Afterwards, the concept of skip connection

is widely applied on most of the succeeding networks, such as Inception-ResNet [85], Wide

ResNet [13], ResNeXt [86], DenseNet [8], etc.

To reduce these onerous development costs in architecture engineering, Neural Architecture
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Search (NAS) approaches are proposed to search for the best architecture in a variety of tasks,

i.e. object recognition. The main goal of NAS is to produce a robust and well-performing neural

architecture by selecting and combining different basic components. Existing NAS methods can

be roughly divided into two categories 1) model structure type [87, 88, 89, 90, 91, 92]. 2) model

structure design by hyperparameter optimization (HPO) [93, 94, 95, 96, 97, 98].

While existing deep neural architectures found by either human design or NAS are able to

achieve super-human performance, most of them are trained independently without consider-

ing the cross-model knowledge transfer. This thesis provides solutions to alleviate this issue in

Section 5

2.1.2 Person Re-id and Search

Person re-identification (re-id) aims at searching people across non-overlapping camera views

distributed at different locations by matching person bounding box images [6]. The nature of

non-overlap person identities between training and testing requires highly demand of cross-class

knowledge transfer. This section gives the literature review on the direction of cross-class knowl-

edge transfer in re-id, and other related aspects such as cross-domain knowledge transfer are

provided in the next section.

Most existing re-id methods [99, 100, 101, 102, 103, 104, 35, 105, 80, 106, 107, 42, 108] fo-

cus on supervised learning of person identity-discriminative information. Representative learn-

ing algorithms include ranking by pairwise or list-wise constraints [107, 109, 105, 110], dis-

criminative subspace/distance metric learning [100, 101, 102, 104, 42, 108, 111], and deep

learning [112, 106, 80, 113, 29, 106, 114]. They typically require a large quantity of person

bounding boxes and inter-camera pairwise identity labels, which is prohibitively expensive to

collect manually. In parallel to supervised learning re-id methods, unsupervised learning meth-

ods have started to gain increasing potentials for eliminating the need for labelling large training

data [115, 116, 56, 117, 118]. Such methods rely on the reconstruction loss designs [115, 116]

or self-discovered cross camera label information by the in-training model for self-supervised

learning [56, 117, 118].

Existing re-id methods often assume the provided person bounding box is accurate and in the

same resolution. However, this is unrealistic in the real-world deployment and yields the negative

influence of cross-class knowledge transfer. To address these issues, there are several attempts,

including automatic detection, saliency and attention selection, person search and multi-scale
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match.

Automatic Detection in Re-id

In real-world re-id scenarios, automatic person detection [119] is essential for re-id to scale up to

large size data, e.g. re-id benchmarks CUHK03 [80] and Market-1501 [43]. Most existing re-id

test datasets (Table 2.1) are manually cropped, as in VIPeR [120] and iLIDS [121], thus they do

not fully address the re-id challenge in practice. However, auto-detected bounding boxes are not

optimised for re-id tasks, due to potentially more background clutter, occlusion, missing body

part, and inaccurate bounding box alignment (Figure 1.7). This is evident from that the rank-1

re-id rate on CUHK03 drops significantly from 61.6% on manually-cropped to 53.4% on auto-

detected bounding boxes by state-of-the-art hand-crafted models [122], that is, an 8.2% rank-1

drop; and from 75.3% on manually-cropped [29] to 68.1% on auto-detected [123] by state-of-

the-art deep learning models, that is, a 7.2% rank-1 drop. Moreover, currently reported “auto-

detected” re-id performances on both CUHK03 and Market-1501 have further benefited from

artifical human-in-the-loop cleaning process, which discarded “bad” detections with < 50% IOU

(intersection over union) overlap with corresponding manually cropped bounding boxes. Poorer

detection bounding boxes are considered as “distractors” in Market-1501 and not given re-id

labelled data for model learning. Recent works [80, 43, 124, 124] have started to use automatic

person detection for re-id benchmark training and test. Auto-detected person bounding boxes

contain more noisy background and occlusions with misaligned person cropping (Figure 1.7),

impeding discriminative re-id model learning.

There is very little attempt in the literature for solving this problem of attention selection

within auto-detected bounding boxes for optimising person re-id, except a related recent study on

joint learning of person detection and re-id [125]. The proposed approach IDEAL (Section 3.1)

however differs from that by operating on any third party detectors independently so to benefit

continuously from a wide range of detectors being rapidly developed by the wider community.

Other related possible strategies include local patch calibration for mitigating misalignment in

pairwise image matching [126, 127, 128, 123] and local saliency learning for region soft-selective

matching [129, 130, 126, 131]. These methods have shown to reduce the effects from viewpoint

and human pose change on re-id accuracy. However, all of them assume that person bounding

boxes are reasonably accurate.
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Saliency and Attention Selection in Re-ID

Most related re-id techniques are localised patch matching [127, 128, 123] and saliency detec-

tion [129, 130, 126, 131]. They are inherently unsuitable by design to cope with poorly detected

person images, due to their stringent requirement of tight bounding boxes around the whole per-

son. In contrast, the proposed IDEAL model (Section 3.1) is designed precisely to overcome

inaccurate bounding boxes therefore can potentially benefit all these existing methods.

Table 2.1: Person re-id datasets with/without auto-detection. MC: Manual Cropping; AD: Automatic Detection.

Dataset VIPeR [120] GRID [132] iLIDS [121] CAVIAR4ReID [47] CUHK03 [80] Market-1501 [43]

Year 2007 2009 2010 2011 2014 2015

Annotation MC MC MC MC MC+AD AD

Identities 632 250 119 72 1,360 1,501

Images 1,264 1,275 476 1,221 28,192 32,668

Person Search

Person search aims to find a probe person in a gallery of whole unconstrained scene images

[28]. It is an extended form of person re-id [6] by additionally considering the requirement of

automatically detecting people in the scene images besides matching the identity classes. Unlike

the conventional person re-id problem assuming the gallery images as either manually cropped

or carefully filtered auto-detected bounding boxes [29, 20, 30, 31, 32, 33, 34, 35, 36, 33], person

search deals with raw unrefined detections with many false cropping and unknown degrees of

misalignment. This yields a more challenging matching problem especially in the process of

person re-id.

In the literature, there are only a handful of person search works [28, 37, 38]. Xiao et al. [28]

propose a joint detection and re-id deep learning model for seeking their complementary benefits.

Zheng et al. [37] study the effect of person detection on the identity matching performance. Liu

et al. [38] consider recursively search refinement to more accurately locate the target person in

the scene. While existing methods focus on detection enhancement, we show that by a state-

of-the-art deep learning object detector with small improvements, person localisation is not a

big limitation. Instead, the multi-scale matching problem turns out a more severe challenge in

person search (Section 3.2). In other words, solving the multi-scale problem is likely to bring

more performance gain than improving person detection (Figure 3.8(c)).
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Multi-scale Match in Re-identification

Given the manual construction nature of re-id datasets, the scale diversity of gallery images tends

to be restricted, compared to the person search benchmarks. It is simply harder for humans to ver-

ify and label the person identity of small bounding boxes, therefore leading to the selection and la-

belling bias towards large boxes (Figure 1.8(b)). Consequently, the intrinsic multi-scale matching

challenge is artificially suppressed in re-id benchmarks, hence losing the opportunity to test the

real-world model robustness. Existing re-id methods can mostly afford to ignore the problem of

multi-scale person bounding boxes in algorithm design. Whilst extensive efforts have be made to

solving the re-id problem [35, 40, 133, 134, 29, 20, 30, 43, 32, 135, 36, 136, 34, 56, 53, 137, 138],

there are only limited works considering multi-scale matching [137, 139]. Liu et al. [139] firstly

developed a multi-scale triplet deep architecture, aiming to learn a combination of different scale

features for given a person bounding box. which learns deep features of a pedestrian at different

scales. In particular the architecture integrates both shadow and deep networks, yielding low-

level and high-level appearance features from images, respectively. Chen et al. [137] proposed

multi-scale person features learning model by Convolutional Neural Networks (CNN), aiming

to jointly learn discriminative scale-specific features and maximise multi-scale feature fusion se-

lections in image pyramid inputs. Specifically, they formulate a novel Deep Pyramid Feature

Learning (DPFL) CNN architecture for multi-scale appearance feature fusion optimised by con-

current per-scale re-id identity losses and interactive cross-scale consensus regularisation.

Beyond all these existing methods, CLSA introduced in this thesis (Section 3.2) is designed

specifically to explore the in-network feature pyramid in deep learning for more effectively solv-

ing the under-studied multi-scale challenge in both person re-id and search.

2.2 Knowledge Transfer

2.2.1 Domain Adaptation

Domain adaptation is a field associated with cross-domain knowledge transfer. This scenario

arises when we aim at applying an algorithm trained in one or more source domain to a differ-

ent (but related) target domain. The most commonly used domain adaptation approaches can

be roughly classified into two categories [45]: 1) feature adaptation 2) image adaptation. The

former transfers the discriminative feature information learned from the labelled source training

data to the target feature space by distribution alignment. These methods often use discrete at-
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tribute labels for facilitating the information transition across domains due to their better domain

invariance property than low-level feature representations. On the contrary, the latter aims to

transfer the labelled source identity classes from the source domain to the target domain through

cross-domain conditional image generation in the appearance style and background context at the

pixel level. The synthetic images are then used to fine-tune the model towards the target domain.

The most typical feature adaptation methods can be found in [140, 141, 142, 143]. They

are usually motivated by minimizing the distribution discrepancy between the source and target

domain in the share feature space. Specifically, Tzeng et al. [140] and Long et al. [141, 14]

minimise Maximum Mean Discrepancy (MMD) metric to align the global distribution between

source and target. Another popular metric is in deep CORAL [142], they minimise the difference

of the feature covariance matrice between the source and target domain instead of MMD metric.

Image adaptation approaches based on generative adversarial methods [144, 145, 146] perform

similar distribution alignment in raw pixel space rather than feature space. They usually focus on

learning a generator network to translate source data to the “style” of a target domain.

Beyond the above mentioned Domain Adaptation (DA) approaches on the general image

classification task, this thesis focuses on DA in a more challenging person re-id tasks.

Unsupervised Domain Adaptation for Person Re-id

Most existing person re-id methods require supervised learning on a large labelled training

dataset [43, 137, 42, 34, 39, 44]. They assume that the training and test data are sampled from the

same domain and have limited cross-domain generalisation, therefore suffering the intrinsic do-

main gap problem. As a result, they have poor scalability to large scale re-id deployments in real-

world when a large labelled training set is unavailable. While reducing the labelling effort, semi-

supervised learning [147, 148] still needs some cross-camera pairwise labels which may not be

available inherently. A straightforward solution is to use unsupervised learning that exploits less

discriminative hand-crafted features. Besides, hand-crafted features [46, 47, 149, 116, 150, 52]

are largely domain-generic and suffer from significantly weaker re-id matching performance.

Recently, unsupervised domain adaptation (UDA) methods have demonstrated increasing sig-

nificance in solving cross-domain re-id deployments [49, 50, 41, 53, 54]. The existing UDA

models fall into two categories: (1) image adaptation (synthesis) [49, 50, 151, 152, 153], and

(2) feature adaptation [52, 154, 155, 53, 54]. The first approach is often built on Generative

Adversarial Networks (GANs) [156]. The main idea is to transform the labelled source domain
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images into the style of the unlabelled target domain while attempting to preserve the person

identity information. In doing so, the source class labels can be used for supervised learning

on the synthetic imagery. The second approach adopts a global feature distribution alignment

strategy. This assumes that the model discrimination is related to global feature distribution

statistics. Conceptually, both approaches are based on global data distribution alignment, with

the key difference in its data form (image pixels or feature dimensions). One of their common

weaknesses is that they all suffer from a highly under-constrained learning problem. That is,

both do not consider instance level alignment to enable explicit fine-grained source knowledge

adaptation. The proposed HUDA (Section 4.1) addresses this limitation by formulating a unified

model for simultaneous global (distribution alignment) and local (instance alignment) knowl-

edge transfer and adaptation across domains. Experiments show clearly the added benefits from

modelling both levels of knowledge adaptation in order to maximise cross-domain knowledge

transfer between the labelled source and the unlabelled target domains. In comparison to UDA,

unsupervised deep learning [56] provides an orthogonal strategy. It aims to self-mine re-id dis-

criminative information from the unlabelled training data in the target domain. This is typically

done by feature learning. analogous to the component of hybrid approach [50] involving unsu-

pervised feature learning of target training data. It is generally beneficial to model performance

by combining different strategies, for instance, integrating feature adaptation with image gener-

ation [50, 57] or unsupervised learning [58]. This thesis further evaluates HUDA integrated with

unsupervised learning.

Hybrid Learning Person Re-id.

Recently, some methods [57, 157] consider a hybrid of domain adaption and unsupervised learn-

ing approach. Their basic idea is exploiting the image synthesis/feature alignment to transfer

knowledge from source to target, while using unsupervised learning method on unlabelled target

data to constrain the re-id feature learning at the same time.

Universal Learning Person Re-id.

In this thesis, Section 4.2 presents a universal learning person re-id approach (UML), which dif-

fers dramatically from all the existing methods as discussed above. UML trains a single domain-

generic re-id model for universal deployments. This is in contrast to previous learning algorithms

usually producing domain-specific models using either labelled source and/or unlabelled target

domain training data. That being said, a separate model training is required for each target do-
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main deployment which neither is cost-effective and convenient nor always allowed for industrial

settings. The re-id model trained by UML can be immediately deployed to any domains where

no video and image data are observed to model optimisation. Such universal deployment prop-

erty is favourable and desired to practical system development. Moreover, the proposed image

transformation method is computationally efficient with flexible design due to no need for com-

plex model formulation and costly pixel synthesis model training. In comparison to hand-crafted

features [158, 46, 42, 47, 43], UML model has the extra capability for feature representation

learning and model optimisation as supervised and unsupervised learning counterparts, whilst si-

multaneously retaining the merits of domain universality as hand-crafted features. Besides, UML

learning method differs from and is more scalable than multi-target domain adaptation [159, 160]

where all target domains need to be seen to training. Conceptually, UML generalises the notion

of multi-target domain simultaneous adaptation since we make a model effective for all different

domains even without accessing any target domain data.

2.2.2 Knowledge Distillation

There are a number of attempts at transferring knowledge between varying-capacity networks [161,

25, 26, 27]. One of the potential directions is knowledge distillation. A representative work is

introduced by [25], and they successfully used the well trained large network to help to train the

small network by knowledge distillation. The rationale behind is taking advantage of extra su-

pervision provided by the teacher model during training the target model, beyond a conventional

supervised learning objective such as the cross-entropy loss subject to the training data labels.

The extra supervision is typically extracted from a pre-trained powerful teacher model in form of

class posterior probabilities [25], feature representations [26, 27], or inter-layer flow (the inner

product of feature maps) [162]. Recently, some theoretical analysis has been provided to relate

distillation to information learning theory for which a teacher provides privileged information

(e.g. sample explanation) to a student in order to facilitate fast learning [163, 164]. Zhang et al.

[165] exploited this idea for video based action recognition by considering the computationally

expensive optic flow as privileged information to enhance the learning of a less discriminative

motion vector model. This avoids the high cost of computing optic flow in model deployment

whilst computing cheaper motion vectors enables real-time performance.

In contrast to all the above existing works, this thesis provides Self-Reference Deep Learn-

ing (SRDL) in Section 5.1, aiming to eliminate the extra expensive teacher model training cost.
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To this end, SRDL uniquely explores self-discovered knowledge in target model training by

self-distillation, therefore more cost-effective. Concurrent with SRDL, Furlanello et al. [166] in-

dependently propose training the networks in generations, in which the next generation is jointly

guided by the standard one-hot classification labels and the knowledge learned in the previous

generation. However, the training budget of each generation is almost the same as the vanilla

strategy, leading to the total cost of this method several times more expensive than vanilla train-

ing.

Online Distillation

Earlier distillation methods often take an offline learning strategy, requiring at least two phases

of training. The more recently proposed deep mutual learning [33] overcomes this limitation by

conducting an online distillation in one-phase training between two peer student models. Anil

et al. [60] further extended this idea to accelerate the training of large scale distributed neural

networks. and show its promising on the industrial community.

However, the existing online distillation methods lack a strong “teacher” model which limits

the efficacy of knowledge discovery. As the offline counterpart, multiple nets are needed to be

trained therefore computationally expensive. This thesis overcomes both limitations in Section

5.2 by designing a new online distillation training algorithm characterised by simultaneously

learning a teacher on-the-fly (ONE) and the target network as well as performing batch-wise

knowledge transfer in a one-phase training procedure.

2.2.3 Few Shot Learning

Few shot learning (FSL) involves training a model towards emulating the human ability to per-

form a novel task well (e.g. recognise new categories) using only very few examples. Therefore,

the FSL task requires a high demand of cross-task knowledge transfer. Recent interest and ac-

tivity in FSL have resulted in a rapidly growing, rich body of work. Here, this section briefly

highlights the most relevant approaches in the context of classification to the thesis.

Supervised Few Shot Learning

Existing Supervised FSL approaches can be broadly divided into two categories: (1) Meta-

gradient learning; (2) Metric-learning;

Meta-gradient learning can be regarded as a first pillar of FSL approaches. Many recent works

train a meta-learner using the learning-to-learn paradigm [167, 168, 169, 68]. A popular strategy
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within this paradigm involves finding optimal network parameter initializations [65, 170, 171,

172, 66, 67] such that fine-tuning becomes fast and requires only a few weight updates.

Metric-learning based techniques constitute the second branch of FSL methods. A distance

metric between a query image and a set of labelled images is learned such that the query image

is closest to labelled images of the same class [173, 62, 61, 174, 63]. The crux of metric learning

involves learning a good proxy per class that is used to classify unlabelled images at test time,

typically with a nearest neighbour strategy. The common approach for defining the representative

class proxy involves using the average feature representation of a set of labelled images. Recent

parameter generating methods [64, 175] alternatively propose to generate proxies using classi-

fier weights. At training time, a cosine classifier is learned on top of feature extraction layers

and each column of classifier parameter weights can be regarded as a proxy for the respective

class. At test time, a new class proxy (new column of classifier weight parameters) is defined

by averaging the feature representation of support images, similar to previous metric learning

approaches. Inspired by the recent progress of self-supervised learning [176, 177, 178], the work

of [179] alternatively strengthens image level representations using self-supervision for auxiliary

task learning. The approach proves beneficial for learning generalizable feature representations

in single proxy models. Recent metric-learning FSL methods have proved highly successful,

however common drawbacks that remain are caused in part by the limitation of relying on a

single proxy representation per class (Figure 1.11).

In contrast to learning image level representations, recent work [75] presents evidence that

global image based measures may be too coarse to be effective in few-shot scenarios, where

samples are scarce. The authors instead propose to learn local descriptors for their image-to-

class measure. Allen et al. [74] alternatively propose Infinite Mixture Prototypes (IMP). The

IMP approach represents each class as a set of clusters (prototypes), each consisting of class im-

age representations. The strategy of increasing model capability beyond single proxy approaches

is similar in spirit to our approach. However, tackling class representation with the IMP clus-

tering strategy does not afford any mechanism to account for prototype diversity. Furthermore,

in contrast to IMP and [75], the proposed methods MP in Section 6.1 combines image level

representations with local descriptors and carefully regularise local proxy influence using self

supervision and attention in order to maximise proxy diversity and representative power. Finally,

MP is the sole approach that is designed in a generic way and can be integrated into pre-existing
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metric-based FSL methods.

Semi-supervised Few Shot Learning

Semi-supervised Learning (SSL) The objective of SSL is to use latent information, provided

by additional unlabeled data, towards improving the quality of decision boundaries with respect

to an underlying data distribution. Existing SSL methods generally fall into two categories: (1)

Pseudo-labelling and (2) Consistency Regularisation. Techniques in the former category iter-

atively assign pseudo labels to the unlabelled samples such that they can then be used with a

supervised loss. These include directly using the network class prediction [73] and graph-based

label propagation [72]. A number of SSL works build on the second category of Consistency

Regularisation [180, 77, 76], and have achieved impressive results. The crux of the idea of CR

is to encourage invariant (stable) predictions for a given sample under different perturbations

towards improving class decision boundaries. CR ideas were first explored in [180, 77] and ex-

tended in [76] where the authors propose a mean teacher framework, to perform CR between a

student and teacher model in a learning paradigm where models share the same architecture and

teacher parameters are updated as an exponential moving average of the student weights. Sev-

eral works such as ICT [181], Mixmatch [78] and Remixmatch [79] have then enabled sample

perturbations by creating variants of mixup samples [182] that can then be further perturbed. En-

couraged by the benefits that result from representing class information using prototypes [62, 69],

we take an alternative approach to CR in the context of SS-FSL and influence model prediction

by considering a measure of distance between unlabelled data and class prototypes.

Semi-Supervised Few-Shot Learning (SS-FSL) Existing SS-FSL approaches are based on the

pseudo-labelling strategy that was discussed in the context of SSL. Ren et al. [183] propose mask

soft K-means, based on the metric learning approach, ProtoNets [62]. The authors use a soft K-

means and iteratively assign pseudo labels to tune prototypes. More recently [70] propose a

Transductive Propagation Network (TPN) that propagates labels from unlabelled data through a

graph of samples and meta-learns key hyperparameters. Li et al. propose a Learning to Self-Train

(LST) approach [71] that is based on self-training and meta-learns a soft weighting network to

control the influence of pseudo labelled samples. and reduces label-noise during training. The

proposed approach Fewmatch (Section 6.2) to SS-FSL differs from the surveyed methods by

making use of CR (c.f . pseudo-labelling), and therefore alleviates the error propagation problem

that is common when pseudo labelling is employed [77]. Furthermore, previous SS-FSL pro-
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totypical work [183] only updates prototypes by averaging class representation. Alternatively,

Fewmatch iteratively and explicitly refines prototypes using both average feature representation

and implicit CR refinement. Experiments show that this enables more flexible feature adaptation

to novel tasks and respectively obtains more accurate class prototypes. Furthermore, Fewmatch

takes advantage of Imprinted weights [69] in order to provide per class prototypes. One of the

main advantages of this prototype-driven method is that it does not require the standard, restric-

tive episode training strategy that typically frames training as a sequence of artificially designed

few-shot learning tasks with consistent number of categories and labelled samples, and imposes

the same set-up at test time. This in theory affords us greater flexibility with the learning problem

definition, allows for consideration of more practical problem setups, and for easier combination

with techniques from other fields such as integration of auxiliary losses.

2.3 Preliminaries of Deep Learning for Object Recognition

This section revisits the vanilla deep model training object function for object recognition and

provides the essential mathematical formulations which lay the foundation of approaches pro-

vided in this thesis.

For supervised model learning, we assume n labelled training samples D = {(IIIi,yi)}n
i . Each

sample belongs to one of C classes yi ∈ Y = [1,2, · · · ,C], with the ground-truth label typically

represented as a one-hot vector. The objective is to learn a classification deep CNN model gen-

eralisable to unseen test data through a cost-effective training process.

We begin with reviewing the vanilla deep model training method (Figure 1.5(a)) before elab-

orating the proposed approaches in this thesis.

2.3.1 Vanilla Deep Model Training

For training a classification deep model, the softmax cross-entropy loss function is usually adopted.

Specifically, we predict the posterior probability of a labelled sample III over any class c via the

softmax criterion:

p(c|xxx,θθθ) = exp(zc)

∑
C
j=1 exp(z j)

, z j =WWW>j xxx, c ∈ Y (2.1)

where xxx refers to the embedded feature vector of III, WWW j the j-th class prediction function param-

eter, and θθθ the neural network model parameters.
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In some cases, we wish that the posterior prediction is not sharp for better transfer the knowl-

edge, thus a softened softmax operation is formulated as:

p̃(c|xxx,θθθ) = exp(zc/T )

∑
C
j=1 exp(z j/T )

, z j =WWW>j xxx, c ∈ Y (2.2)

where the tempreture parameters T controls the softening degree.

To train a multi-class classification model, we typically adopt the Cross-Entropy (CE) mea-

surement between the predicted and ground-truth label distributions on a labelled sample xxx (in a

mini-batch) as the objective loss function:

Lce =−
C

∑
c=1

δc,y log
(

p(c|xxx,θθθ)
)

(2.3)

where δc,y is Dirac delta which returns 1 if c is the ground-truth label, and 0 otherwise.

Discussion. For a model subject to the vanilla training (Figure 1.5(a)), the cross-entropy loss

is utilised to supervise the model parameters (e.g. by the stochastic gradient descent algorithm)

iteratively in a one-stage procedure. We name this vanilla strategy.

2.3.2 Kullback Leibler (KL) Divergence

In mathematical statistics, the Kullback–Leibler divergence[184] is a measure of the difference

between two probability distribution.

Let p = {p1, ..., p j, ..., pC} and q = {q1, ...,q j, ..,qC} are two probability distributions. That

is, both p j and q j sum up to 1, and p j > 0 and q j > 0 for any j ∈ {1, ...,C}. Specifically,

the Kullback-Leibler (KL) divergence of p from q, denoted as Lkl(p||q), which measures the

information lost when q is used to approximate p, is formulated as:

Lkl(p||q) =
C

∑
j=1

p(x) log
p(x)
q(x)

. (2.4)

2.4 Summary

The above sections have investigated and discussed most related work to this thesis. In particular,

the advanced techniques in fine-grained person re-id and coarse-grained image classification are

analysed. Besides, this chapter also discusses several aspects with respect to knowledge trans-

fer, including domain adaptation, knowledge distillation and few shot classification. Despite the

promising results achieved by current methods, there are still plenty of weaknesses to overcome

and large potential space to improve. Firstly, the inaccurate and multi-scale person bounding box
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challenge of person re-id and search are discussed. Besides, the lacking of the local constrain

in existing domain adaptation methods is analyzed in the context of cross-domain knowledge

transfer. Furthermore, the inefficient issue of knowledge distillation and expensive training cost

of recently approaches are investigated in the image classification task. At last, this thesis fo-

cuses on the limitation of ”single prototype assumption” in the current metric-based learning

FSL approaches. In the following chapters, several approaches are proposed to address the above

limitations.
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Chapter 3

Knowledge Transfer Across Classes in

Person Re-identification

Merely quantitative differences, beyond a

certain point, pass into qualitative

changes.

—— Karl Marx

This chapter focuses on cross-class knowledge transfer in person re-identification. As the

nature of disjoint person identities between training and testing, cross-class knowledge transfer

is in high demand. However, existing person re-id approaches often ignore the influence of

background noise and multi-scale of person bounding box to cross-class knowledge transfer,

yielding insufficient knowledge transfer. This is more severe in the practice, when the person

bounding box must be detected from unconstrained images (i.e., raw video frames), as discussed

in Section 1.3.1. To address these limitations, two methods are proposed as the following section:

1) Identity DiscriminativE Attention reinforcement Learning (IDEAL); 2) Cross-Level Semantic

Alignment (CLSA).

3.1 Identity DiscriminativE Attention reinforcement Learning (IDEAL)

3.1.1 Model Overview

This section aims to optimise auto-detected person bounding box images for improving cross-

class knowledge transfer in re-id matching. To this end, the Identity DiscriminativE Attention
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Figure 3.1: The IDEAL reinforcement learning attention selection model. (a) An identity discriminative learning

branch based on the deep Inception-V3 network optimised by a multi-classification softmax loss (orange arrows). (b)

An attention reinforcement learning branch designed as a deep Q-network optimised by re-id class label constraints

in the deep feature space from branch (a) (blue arrows). For model deployment, the trained attention branch (b)

computes the optimal attention regions for each probe and all the gallery images, extract the deep features from these

optimal attention regions in the multi-class re-id branch (a) and perform L2 distance matching (green arrows).

reinforcement Learning (IDEAL) model is formulated. The IDEAL has two sub-networks: (I)

A multi-class discrimination network D by deep learning from a training set of auto-detected

person bounding boxes (Figure 3.1(a)). This part is flexible with many options from existing

deep re-id networks and beyond [106, 114, 29, 122]. (II) A re-identification attention network

A by reinforcement learning recursively a salient sub-region with its deep feature representation

from D that can maximise identity-matching given re-id label constraints (Figure 3.1(b)). Next,

we formulate the attention network by reinforcement learning and how this attention network

cooperates with the multi-class discrimination network.

3.1.2 Re-ID Attention Selection Formulation

This thesis formulates the re-id attention selection as a reinforcement learning problem [185].

This allows to correlate directly the re-id attention selection process with the learning objective

of an “agent” by recursively rewarding or punishing the learning process. In essence, the aim

of model learning is to achieve an optimal identity attending action policy a = π(s) of an agent,

i.e. a mapping function, that projects a state observation s (model input) to an action prediction

a. This work exploits the Q-learning technique for learning the proposed IDEAL agent, due to

its sample efficiency advantage for a smaller set of actions [186, 187]. Formally, IDEAL aims
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(a) Input image (b) Attending actions (Each red dotted box represents the attention window after the action) 
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Figure 3.2: Identity discriminative attending actions are given by an attending scale variable on four directions

(left/right/top/bottom). Termination action means the stop of a recursive attending process.

to learn an optimal state-value function which measures the maximum sum of the current reward

(Rt) and all the future rewards (Rt+1,Rt+2, · · · ) discounted by a factor γ at each time step t:

Q∗(s,a) = max
π

E
[
Rt + γRt+1 + γ

2Rt+2 + · · · | st = s,at = a,π
]

(3.1)

Once Q∗(s,a) is learned, the optimal policy π∗(s) can be directly inferred by selecting the action

with the maximum Q∗(s,a) value in model deployment. More specifically, the reinforcement

learning agent interacts with each data sample in a sequential episode, which can be considered

as a Markov Decision Process (MDP) [188]. Therefore, IDEAL firstly design a specific MDP for

re-id discriminative attention selection, as described below.

3.1.3 Markov Decision Process for Re-ID Attention Selection

A MDP is designed for re-id attention selection in auto-detected bounding boxes. In particular,

IDEAL considers each input person bounding box image as a dynamic environment. An IDEAL

agent interacts with this dynamic environment to locate the optimal re-id attention window. To

guide this discriminative learning process, IDEAL further considers a reward that can encourage

those attending actions to improve re-id performance and maximise the cumulative future reward

in Eq (3.1). As such, actions, states, and rewards are designed as follows.

Actions: An action set A is defined to facilitate the IDEAL agent to determine the location and

size of an “attention window” (Figure 3.2). Specifically, an attending action a is defined by the

location shift direction (ad ∈{left, right, top, bottom}) and shift scale (ae ∈E). We also introduce

a termination action as a search process stopping signal. A consists of a total of (4× |E|+ 1)

actions. Formally, let the upper-left and bottom-right corner coordinates of the current attention

window and an updated attention window be [x1,y1,x2,y2] and [x′1,y
′
1,x
′
2,y
′
2] respectively, the
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action set A can then be defined as:

A = {x′1 = x1 +α∆x, x′2 = x2−α∆x, y′1 = y1 +α∆y, y′2 = y2−α∆y, T}, (3.2)

where α ∈ E, ∆x = x2− x1, ∆y = y2− y1, T = termination.

Computationally, each action except termination in A modifies the environment by cutting off

a horizontal or vertical stripe. IDEAL sets E = {5%,10%,20%} by cross-validation in experi-

ments, resulting in total 13 actions. Such a small attention action space with multi-scale changes

has three merits: (1) Only a small number of simple actions are contained, which allows more

efficient and stable agent training; (2) Fine-grained actions with small attention changes allow

the IDEAL agent sufficient freedoms to utilise small localised regions in auto-detected bounding

boxes for subtle identity matching. This enables more effective elimination of undesired back-

ground clutter whilst retaining identity discriminative information; (3) The termination action

enables the agent to be aware of the satisfactory condition met for attention selection and stops

further actions when optimised.

States: The state st of our MDP at time t is defined as the concatenation of the feature vector

xt ∈Rd (with d re-id feature dimension) of current attending window and an action history vector

ht ∈ R|E|×nstep (with nstep a pre-defined maximal action number per bounding box), i.e. st =

[xt ,ht ]. Specifically, at each time step, we first extract the feature vector xt of current attention

window by the trained re-id networkD. The action history vector ht is a binary vector for keeping

a track of all past actions, represented by a A-dimensional (13 actions) one-hot vector where the

corresponding action bit is encoded as one, all others as zeros.

Rewards: The reward function defines the agent task objective. In this context, this thesis there-

fore correlates directly the reward function R (Eq (3.1)) of the IDEAL agent’s attention behaviour

with the re-id matching criterion. Formally, at time step t, suppose the IDEAL agent observes

a person image It and then takes an action at = a ∈ A to attend the image region Ia
t . Given this

attention shift from It to Ia
t , its state st changes to st+1. We need to assess such a state change and

signify the agent if this action is encouraged or discouraged by an award or a punishment. To this

end, this thesis propose three reward function designs, inspired by pairwise constraint learning

principles established in generic information search and person re-id.

Notations From the labelled training data, IDEAL samples two other reference images w.r.t.

It : (1) A cross-view positive sample I+t sharing the same identity as It but not the camera view;
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(2) A same-view negative sample I−t sharing the camera view but not the identity as It . iDEAL

computes the features of all these images by D, denoted respectively as xt ,xa
t ,x

+
t , and x−t .

(I) Reward by Relative Comparison The first reward function Rt is based on relative comparison,

in spirit of the triplet loss for learning to rank [189]. It is formulated as:

Rt = Rrc(st ,a) =
(

fmatch(xa
t ,x
−
t )− fmatch(xa

t ,x
+
t )
)
−
(

fmatch(xt ,x−t )− fmatch(xt ,x+t )
)

(3.3)

where fmatch defines the re-id matching function. IDEAL uses the Euclidean distance metric

given the Inception-V3 deep features. Intuitively, this reward function commits (i) a positive

reward if the attended region becomes more-matched to the cross-view positive sample whilst

less-matched to the same-view negative sample, or (ii) a negative reward otherwise. When a

is the termination action, i.e. xa
t = xt , the reward value Rrc is set to zero. In this way, the

IDEAL agent is supervised to attend the regions subject to optimising jointly two tasks: (1)

being more discriminative and/or more salient for the target identity in an inter-view sense (cross-

view re-id), whilst (2) pulling the target identity further away from other identities in an intra-

view sense (discarding likely shared view-specific background clutter and occlusion therefore

focusing more on genuine person appearance). Importantly, this multi-task objective design

favourably allows appearance saliency learning to intelligently select the most informative parts

of certain appearance styles for enabling holistic clothing patten detection and ultimately more

discriminative re-id matching (e.g. Figure 1.7(b) and Figure 3.3(b)).

(II) Reward by Absolute Comparison The second reward function considers only the com-

patibility of a true matching pair, in the spirit of positive verification constraint learning [190].

Formally, this reward is defined as:

Rt = Rac(st ,a) =
(

fmatch(xt ,x+t )
)
−
(

fmatch(xa
t ,x

+
t )
)

(3.4)

The intuition is that, the cross-view matching score of two same-identity images depends on how

well irrelevant background clutter/occlusion is removed by the current action. That is, a good

attending action will increase a cross-view matching score, and vice verse.

(III) Reward by Ranking The third reward function concerns the true match ranking change

brought by the agent action, therefore simulating directly the re-id deployment rational [191].

Specifically, IDEAL designs a binary reward function according to whether the rank of true
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match x+t is improved when xt and xa
t are used as the probe separately, as:

Rt = Rr(st ,a) =

 +1, if Rank(x+t |xt)> Rank(x+t |xa
t )

−1, otherwise
(3.5)

where Rank(x+t |xt) (Rank(x+t |xa
t )) represents the rank of x+t in a gallery against the probe xt (xa

t ).

Therefore, Eq (3.5) gives support to those actions of leading to a higher rank for the true match,

which is precisely the re-id objective. In the implementation, the gallery was constructed by

randomly sampling ng (e.g. 600) cross-view training samples. The above three reward function

choices are evaluted and discussed in the experiments (Sec. 3.1.5).

3.1.4 Model Implementation, Training, and Deployment

Implementation and Training For the multi-class discrimination network D in the IDEAL

model, IDEAL deploys the Inception-V3 network [9], a generic image classification CNN model

[9]. It is trained from scratch by a softmax classification loss using person identity labels of

the training data. For the re-id attention network A in the IDEAL model, a neural network of

3 fully-connected layers (each with 1024 neurons) and a prediction layer were designed (Figure

3.1(b)). This implements the state-value function Eq (3.1). For optimising the sequential actions

for re-id attention selection, IDEAL utilises sthe ε-greedy learning algorithm [192] during model

training: The agent takes (1) a random action from the action set A with the probability ε , and

(2) the best action predicted by the agent with the probability 1− ε . IDEAL begin with ε = 1

and gradually decrease it by 0.15 every 1 training epoch until reaching 0.1. The purpose is to

balance model exploration and exploitation in the training stage so that local minimum can be

avoided. To further reduce the correlations between sequential observations, IDEAL employs

the experience replay strategy [192]. In particular, a fixed-sized memory pool M is created to

store the agent’s N past training sample (experiences) et = (st ,at ,Rt ,st+1) at each time step t, i.e.

M = {et−N+1, · · · ,et}. At iteration i, a mini-batch of training samples is selected randomly from

M to update the agent parameters θ by the loss function:

Li(θi) = E(st ,at ,Rt ,st+1)∼Uniform(M)

(
Rt + γ max

at+1
Q(st+1,at+1; θ̃i)−Q(st ,at ;θi)

)2
, (3.6)

where θ̃i are the parameters of an intermediate model for predicting training-time target values,

which are updated as θi at every ς iteration, but frozen at other times.

Deployment During model deployment, IDEAL applys the learned attention network A to all

test probe and gallery bounding boxes for extracting their attention window images. The deep
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features of these attention window images are used for person re-id matching by extracting the

2,048-D output from the last fully-connected layer of the discrimination network D. IDEAL

employs the L2 distance as the re-id matching metric.

3.1.5 Experiments

Datasets For evaluation, IDEAL used two large benchmarking re-id datasets generated by au-

tomatic person detection: CUHK03 [80], and Market-1501 [43] (details in Table 2.1). CUHK03

also provides an extra version of bounding boxes by human labelling therefore offers a like-to-

like comparison between the IDEAL attention selection and human manually cropped images.

Example images are shown in (a),(b) and (c) of Figure 1.7.

Evaluation Protocol We adopted the standard CUHK03 1260/100 training/test split [80] and

the standard Market-1501 training/test split (750/751) [43] for the single-query evaluation set-

ting. We used the cumulative matching characteristic (CMC) to measure re-id accuracy. For the

Market-1501 multi-query setting, we also used the recall measure of truth matches by mean Av-

erage Precision (mAP), i.e. computing the area under the Precision-Recall curve for each probe,

then calculating the mean of Average Precision over all probes.

Table 3.1: Comparing re-id performance. 1st/2nd best results are shown in red/blue. AD: Automatically Detected;

Dataset CUHK03(AD) [80] Market-1501(AD) [43] CUHK03(AD) [80] Market-1501(AD) [43]

Metric (%) R1 R5 R10 R20 R1 mAP R1 mAP R1 R5 R10 R20 R1 mAP R1 mAP

ITML [193] 5.1 17.7 28.3 - - - - - TMA [194] - - - - 47.9 22.3 - -

LMNN [195] 6.3 18.7 29.0 - - - - - HL [196] - - - - 59.5 - - -

KISSME [100] 11.7 33.3 48.0 - 40.5 19.0 - - HER [122] 60.8 87.0 95.2 97.7 - - - -

MFA [104] - - - - 45.7 18.2 - - FPNN [80] 19.9 - - - - - - -

kLFDA [104] - - - - 51.4 24.4 52.7 27.4 DCNN+ [113] 44.9 76.0 83.5 93.2 - - - -

BoW [43] 23.0 42.4 52.4 64.2 34.4 14.1 42.6 19.5 EDM [197] 52.0 - - - - - - -

XQDA [42] 46.3 78.9 83.5 93.2 43.8 22.2 54.1 28.4 SICI [114] 52.1 84.9 92.4 - - - - -

MLAPG [108] 51.2 83.6 92.1 96.9 - - - - SSDAL [198] - - - - 39.4 19.6 49.0 25.8

L1-Lap [199] 30.4 - - - - - - - S-LSTM [200] 57.3 80.1 88.3 - - - 61.6 35.3

NFST [111] 53.7 83.1 93.0 94.8 55.4 29.9 68.0 41.9 eSDC [126] 7.7 21.9 35.0 50.0 33.5 13.5 - -

LSSCDL [201] 51.2 80.8 89.6 - - - - - CAN [131] 63.1 82.9 88.2 93.3 48.2 24.4 - -

SCSP [202] - - - - 51.9 26.3 - - Gated S-CNN [123] 68.1 88.1 94.6 - 65.8 39.5 76.0 48.4

IDEAL 71.0 89.8 93.0 95.9 86.7 67.5 91.3 76.2

Implementation Details We implemented the proposed IDEAL method in the TensorFlow

framework [203]. We trained an Inception-V3 [9] multi-class identity discrimination network

D from scratch for each re-id dataset at a learning rate of 0.0002 by using the Adam optimiser
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[204]. The final FC layer output feature vector (2,048-D) together with the L2 distance metric

is used as our re-id matching model. All person bounding boxes were resized to 299× 299 in

pixel. We trained the D by 100,000 iterations. We optimised the IDEAL attention network A

by the Stochastic Gradient Descent algorithm [205] with the learning rate set to 0.00025. We

used the relative comparison based reward function (Eq (3.3)) by default. The experience replay

memory size M for reinforcement learning was 100,000. We fixed the discount factor γ to 0.8

(Eq (3.1)). We allowed a maximum of nstep = 5 action rounds for each episode in trainingA. The

intermediate regard prediction network was updated every ς = 100 iterations. We trained the A

by 10 epochs.

(c)

(a) (b)

MCAD IDEAL

(d) (e)

Figure 3.3: Qualitative evaluations of the IDEAL model: (a) Two examples of action sequence for attention selec-

tion given by action1 (Blue), action2 (Green), action3 (Yellow), action4 (Purple), action5 (Red); (b) Two examples

of cross-view IDEAL selection for re-id; (c) Seven examples of IDEAL selection given by 5, 3, 5, 5, 4, 2, and 2

action steps respectively; (d) A failure case when the original auto-detected (AD) bounding box contains two people,

manually cropped (MC) gives a more accurate box whilst IDEAL attention selection fails to reduce the distraction; (e)

Four examples of IDEAL selection on the Market-1501 “distractors” with significantly poorer auto-detected bounding

boxes when IDEAL shows greater effects.

Comparisons to the State-of-the-Arts We compared the IDEAL model against 24 different con-

temporary and the state-of-the-art re-id methods (Table 3.1). It is evident that IDEAL achieves

the best re-id performance, outperforming the strongest competitor Gated S-CNN [123] by 2.9%

(71.0-68.1) and 20.9% (86.7-65.8) in Rank-1 on CUHK03 and Market-1501 respectively. This

demonstrates a clear positive effect of IDEAL’s attention selection on person re-id performance

by filtering out bounding box misalignment and random background clutter in auto-detected per-

son images. To give more insight and visualise both the effect of IDEAL and also failure cases,

qualitative examples are shown in Figure 3.3.

Evaluations on Attention Selection We further compared in more details the IDEAL model
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Table 3.2: Comparing attention selection methods. SQ: Single Query; MQ: Multi-Query.
Dataset CUHK03 [80] Market-1501 [43]

Metric (%) R1 R5 R10 R20 R1(SQ) mAP(SQ) R1(MQ) mAP(MQ)

eSDC [126] 7.7 21.9 35.0 50.0 33.5 13.5 - -

CAN [131] 63.1 82.9 88.2 93.3 48.2 24.4 - -

Gated S-CNN [123] 68.1 88.1 94.6 - 65.8 39.5 76.0 48.4

No Attention 67.5 88.2 92.6 95.7 84.5 64.8 89.4 72.5

Random Attention 54.1 79.2 85.9 90.4 80.3 54.6 85.1 66.7

Centre Attention (95%) 66.1 86.7 91.1 94.9 84.1 64.2 88.6 69.4

Centre Attention (90%) 64.1 85.3 90.3 93.5 82.7 60.3 87.5 65.3

Centre Attention (80%) 51.9 76.0 83.0 89.0 74.7 48.5 83.4 57.6

Centre Attention (70%) 35.2 62.3 73.2 81.7 63.8 39.0 72.3 43.5

Centre Attention (50%) 16.7 38.8 49.5 62.5 39.9 18.5 46.3 23.9

IDEAL(Ranking) 70.3 89.1 92.7 95.4 86.2 66.3 90.8 74.3

IDEAL(AC) 69.1 88.4 92.1 95.0 85.3 65.5 87.5 72.3

IDEAL(RC) 71.0 89.8 93.0 95.9 86.7 67.5 91.3 76.2

against three state-of-the-art saliency/attention based re-id models (eSDC [126], CAN [131],

Gated S-CNN [123]), and two baseline attention methods (Random, Centre) using the Inception-

V3 re-id model (Table 3.2). For Random Attention, we attended randomly person bounding

boxes by a ratio (%) randomly selected from {95,90,80,70,50}. We repeated 10 times and

reported the mean results. For Centre Attention, we attended all person bounding boxes at centre

by one of the same 5 ratios above. It is evident that the IDEAL (Relative Comparison) model

is the best. The inferior re-id performance of eSDC, CAN and Gated S-CNN is due to their

strong assumption on accurate bounding boxes. Both Random and Centre Attention methods

do not work either with even poorer re-id accuracy than that with “No Attention” selection.

This demonstrates that optimal attention selection given by IDEAL is non-trivial. Among the

three attention reward functions, Absolute Comparison is the weakest, likely due to the lack of

reference comparison against false matches, i.e. no population-wise matching context in attention

learning. Ranking fares better, as it considers reference comparisons. The extra advantage of

Relative Comparison is due to the same-view negative comparison in Eq (3.3). This provides

a more reliable background clutter detection since same-view images are more likely to share

similar background patterns.

Auto-Detection+IDEAL vs. Manually Cropped Table 3.3 shows that auto-detection+IDEAL
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can perform similarly to that of manually cropped images in CUHK03 test1, e.g. 71.0% vs.

71.9% for Rank-1 score. This shows the potential of IDEAL in eliminating expensive manual

labelling of bounding boxes and for scaling up re-id to large data deployment.

Table 3.3: Auto-detection+IDEAL vs. manually cropped re-id on CUHK03.
Metric (%) R1 R5 R10 R20

Auto-Detected+IDEAL 71.0 89.8 93.0 95.9

Manually Cropped 71.9 90.4 94.5 97.1

Effect of Action Design We examined three action designs with different size scales. Table 3.4

shows that the most fine-grained design {5%,10%,20%} is the best. This suggests that the re-id

by appearance is subtle and small regions make a difference in discriminative matching.

Table 3.4: Attention action design evaluation. SQ: Single Query; MQ: Multi-Query.
Dataset CUHK03 [80] Market-1501 [43]

Metric (%) R1 R5 R10 R20 R1(SQ) mAP(SQ) R1 (MQ) mAP(MQ)

{5%, 10%, 20%} 71.0 89.8 93.0 95.9 86.7 67.5 91.3 76.2

{10%, 20%, 30%} 68.3 88.1 91.8 95.0 86.2 66.8 90.5 73.4

{10%, 20%, 50%} 67.6 87.5 91.4 93.9 85.3 65.6 88.8 72.1

3.2 Person search by multi-scale matching

3.2.1 Cross-Level Semantic Alignment for Person Search

This chapter further considers more realistic problem: person search, and focus on the negative

influence of multi-scale person bounding box to the cross-class knowledge transfer. We want

to establish a person search system capable of automatically detecting and matching persons in

unconstrained scenes with any probe person. With the arbitrary distances between people and

cameras in public space, person images are inherently captured at varying scales and resolu-

tions. This multi-scale matching challenge will influence the cross-class knowledge transfer To

overcome this problem, we formulate a Cross-Level Semantic Alignment (CLSA) deep learn-

ing approach. An overview of the CLSA is illustrated in Figure 3.4. The CLSA contains two

components: (1) Person detection which locates all person instances in the gallery scene images

for facilitating the subsequent identity matching. (2) Person re-identification which matches the

1The Market-1501 dataset provides no manually cropped person bounding boxes.



3.2. Person search by multi-scale matching 71

Person 
Detection

Re-ID net
with
CLSA

(b) Multi-Scale Auto-Detected       
Person Bounding Boxes

Uncontrained scene image 
frames

(c) Identity Matching by Multi-
Scale Feature Representation

(a) Person 
Detection

Figure 3.4: An overview of the proposed multi-scale learning person search framework. (a) Per-

son detection for cropping people from the whole scene images at (b) varying scales (resolutions).

(c) Person identity matching is then conducted by a re-id model.

probe image against a large number of arbitrary scale gallery person bounding boxes (the key

component of CLSA). We provide the component details below.

Person Detection

As a pre-processing step, person detection is important in order to achieve accurate search [28,

37]. We adopt the Faster-RCNN model [206] as the CLSA detection component, due to its

strong capability of detecting varying sized objects in unconstrained scenes. To further enhance

person detection performance and efficiency, we introduce a number of design improvement on

the original model. (1) Instead of using the conventional RoI (Region of Interest) pooling layer,

we crop and resize the region feature maps to 14×14 in pixel, and further max-pool them to

7×7 for gaining better efficiency [207]. (2) After pre-training the backbone ResNet-50 net on

ImageNet-1K, we fix the 1st building-block (the 1st 4 layers) in fine-tuning on the target person

search data. This allows to preserve the shared low-level features learned from larger sized source

data whilst simultaneously adapting the model to target data. (3) We keep and exploit all sized

proposals for reducing the mis-detection rate at extreme scales in uncontrolled scenes before the

Non-Maximum Suppression (NMS) operation. In deployment, we consider all detection boxes

scored above 0.5, rather than extracting a fixed number of boxes from each scene image [37].

This is because the gallery scene images may contain varying (unknown in priori) number of

people.



72 Chapter 3. Knowledge Transfer Across Classes in Person Re-identification

Multi-Scale Matching by Cross-Level Semantic Alignment

Given auto-detected person bounding boxes at arbitrary scales from the gallery scene images,

we aim to build a person identity search model robust for multi-scale matching. To this end, we

explore the seminal image/feature pyramid concept [208, 209, 84, 83]. Our motivation is that a

single-scale feature representation blurs salient and discriminative information at different scales

useful in person identity matching; And a pyramid representation allows to be “scale-invariant”

(more “scale insensitive”) in the sense that a scale change in matching images is counteracted by

a scale shift within the feature pyramid.

Build-In Feature Pyramid We investigate the multi-scale feature representation learning in

deep Convolutional Neural Network (CNN) to exploit the built-in feature pyramid structure

formed on a single input image scale. Although CNN features have shown to be more robust

to variance in image scale, pyramids are still effective in seeking more accurate detection and

recognition results [210].

For the CNN architecture, we adopt the state-of-the-art ResNet-50 [5] as the backbone net-

work (Figure 3.5) of the identity matching component. In this study, we particularly leverage the

feature pyramid hierarchy with low-to-high levels of semantics from bottom to top layers, auto-

matically established in model learning optimisation [211]. Given the block-wise net structure

in ResNet-50, we build a computationally efficient K-levels feature pyramid using the last conv

layer of top-K (K=3 in our experiments) blocks. The deepest layer of each block is supposed to

have the most semantic features.

Nonetheless, it is not straightforward to exploit the ResNet-50 feature hierarchy. This is

because the build-in pyramid has large semantic gaps across levels due to the distinct depths

of layers. The features from lower layers are less discriminative for person matching therefore

likely hurt the overall representational capacity if applied jointly with those from higher layers.

Cross-Level Semantic Alignment To address the aforementioned problems, we improve the

in-network feature pyramid by introducing a Cross-Level Semantic Alignment (CLSA) learning

mechanism. The aim is to achieve a feature pyramid with all levels encoding the desired high-

level person identity semantics. Formally, to train our person identity matching model, we adopt

the softmax Cross-Entropy (CE) loss function to optimise an identity classification task. The CE

loss on a training person bounding box (III,y) according Eq (2.1) and (2.3) is computed as:

Lce =−log
( exp(WWW>y xxx)

∑
|Y|
i=1 exp(WWW>i xxx)

)
(3.7)
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Figure 3.5: An overview of the proposed Cross-Level Semantic Alignment (CLSA) approach in

a ResNet-50 based implementation.
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where xxx specifies the feature vector of III by the last layer, Y the training identity class space, and

WWW y the y-th (y ∈ Y) class prediction function parameters.

In our case, xxx is the top pyramid level, also denoted as xxxK . For anyone of the top-K ResNet

blocks, we obtain xxx by applying an average pooling layer and a FC layer on the output feature

maps (Figure 3.5 (b)). Consider the different feature scale distributions across layers [212], we

further normalise xxx by batch normalisation and ReLU non-linearity. In this way, we compute the

feature representations for all K pyramid layers {xxx1, · · · ,xxxK}.

Recall that we aim to render all levels of feature representations identity semantic. To this

end, we first project each of these features {xxx1, · · · ,xxxK} by a FC layer into the identity semantic

space with the same dimension as Y . The resulted semantic class probability vectors are denoted

as {ppp1, · · · , pppK} with pppk=[pk
1, · · · , pk

|Y|], k ∈ {1, · · · ,K}. To transfer the strongest semantics from

the top (K-th) pyramid level to a lower (s-th) level, we introduce a Kullback-Leibler divergence

(Eq (2.4)) based Cross-Level Semantic Alignment (CLSA) loss formulation inspired by knowl-

edge distillation [25]:

Lclsa(s) =
|Y|

∑
j=1

p̃K
j log

p̃K
j

p̃s
j
. (3.8)

where p̃k
j is a softened per-class prediction semantic score obtained by

p̃k
j =

exp(pk
j/T )

∑
|Y|
j=1 exp(pk

j/T )
, (3.9)

where the temperature parameter T controls the softening degree (higher values meaning more

softened predictions). We set T=3 following the suggestion in [25]. To enable end-to-end deep

learning, we add this CLSA loss on top of the conventional CE loss (Eq (3.7)):

L= Lce +T 2
K−1

∑
s=1
Lclsa(s) (3.10)

where T 2 serves as a weighting parameter between the two loss terms.

Identity Matching by CLSA Feature Pyramid In deployment, we first compute a CLSA fea-

ture pyramid by forward propagating any given person bounding box image. We then concatenate

the feature vectors of all pyramid levels as the final representation for person re-id matching.

Remarks The CLSA is similar in spirit to a few person re-id matching methods [137, 139].

However, these methods adopt the image pyramid scheme, in contrast to the CLSA leveraging

the in-network feature pyramid on a single image scale therefore more efficient. The FPN model

[210] also exploits the build-in pyramid. The CLSA differs from FPN in a number of fundamen-

tal ways: (1) FPN focuses on object detection and segmentation, whilst CLSA aims to address
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Probe Gallery

(b)

(a)

Figure 3.6: Example probe person and unconstrained scene images on (a) CUHK-SYSU [28]

and (b) PRW [37]. Green bounding box: the ground truth probe person in the scene. 3: Contain

the probe person. 7: Not contain the probe person.

fine-grained identity recognition and matching. (2) FPN additionally performs feature map un-

sampling hence less efficient than CLSA. (3) CLSA performs semantic alignment and transfer in

the low-dimensional class space, in comparison to more expensive FPN’s feature alignment. We

will evaluate and compare these multi-scale learning methods against CLSA in our experiments

(Table 3.8).

3.2.2 Experiments

Datasets To evaluate the CLSA, we selected two person search benchmarks: CUHK-SYSU

[28] and PRW [37]. We adopted the standard evaluation setting as summarised in Table 3.5. In

particular, the CUHK-SYSU dataset contains 18,184 scene images, 8,432 labelled person IDs,

and 96,143 annotated person bounding boxes. Each probe person appears in two or more scene

gallery images captured from different locations. The training set has 11,206 images and 5,532

probe persons. Within the testing set, the probe set includes 2,900 person bounding boxes and

the gallery contains a total of 6,978 whole scene images. The PRW dataset provides a total of

11,816 video frames and 43,110 person bounding boxes. The training set has 482 different IDs

from 5,704 frames. The testing set contains 2,057 probe people along with a gallery of 6,112

scene images. In terms of bounding box scale, CUHK-SYSU and PRW range from 37×13 to

793×297, and 58×21 to 777×574, respectively. This shows the two person search datasets

present the intrinsic multi-scale challenge. Example images are shown in Figure 3.6.
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Performance Metrics For person detection, a person box is considered as correct if overlap-

ping with the ground truth over 50% [28, 37]. For person identity matching or re-id, we adopted

the Cumulative Matching Characteristic (CMC) and mean Average Precision (mAP). The CMC

is computed on each individual rank k as the probe cumulative percentage of truth matches ap-

pearing at ranks ≤k. The mAP measures the recall of multiple truth matches, computed by first

computing the area under the Precision-Recall curve for each probe, then calculating the mean

of Average Precision over all probes [43].

Table 3.5: Evaluation setting, data statistics, and person bounding box scale of the CUHK-SYSU

and PRW benchmarks. Bbox: Bounding box.

Dataset Images Bboxes IDs Bbox Scale
ID Split Bbox Split

Train Test Train Test

CUHK-SYSU[28] 18,184 96,143 8,432 37×13∼793×297 5,532 2,900 55,272 40,871

PRW[37] 11,816 43,110 932 58×21∼777×574 482 450 18,048 25,062

Implementation Details We adopted the Pytorch framework [213] to conduct all the following

experiments. For training the person detector component, we adopted the SGD algorithm with

the momentum set to 0.9, the weight decay to 0.0001, the iteration to 110,000, and the batch

size to 256. We initialised the learning rate at 0.001, with a decay factor of 10 at every 30,000

iterations. For training the identity matching component, we used both annotated and detected

(over 50% Intersection over Union (IoU) with the annotated and sharing the identity labels) boxes

as [37]. We set the momentum to 0.9, the weight decay to 0.00001, the batch size to 64, and the

epoch to 100. The initial learning rate was set at 0.01, and decayed by 10 at every 40 epochs.

All person bounding boxes were resized to 256×128 pixels. To construct the in-network feature

pyramid, we utilised the top 3 (Res3x, Res4x, Res5x) blocks in our final model implementation,

i.e. K =3 in Eq (3.10). We also evaluated other pyramid constructing ways in the component

analysis (Table 3.2.2).

Comparisons to State-Of-The-Art Person Search Methods

We compared the proposed CLSA method with two groups of existing person search approaches:

(1) Three most recent state-of-the-art methods (NPSM [38], OIM [28], CWS [37]); and (2) Five

popular person detectors (DPM [119], ACF [214], CCF [215], LDCF [216], and R-CNN [217])

with hand-crafted (BoW [43], LOMO [42], DenseSIFT-ColorHist (DSIFT) [218]) or deep learn-
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Figure 3.7: Model scalability evaluation over different gallery search sizes on CUHK-SYSU.

ing (IDNet [28]) features based re-id metric learning methods (KISSME [219], XQDA [42]).

Evaluation on CUHK-SYSU Table 3.6 reports the person search performance on CUHK-SYSU

with the standard gallery size of 100 scene images. It is clear that the CLSA significantly out-

performs all other competitors. For instance, the CLSA surpasses the top-2 alternative models

NPSM and OIM (both are end-to-end deep learning models) by 7.3% (88.5-81.2) and 9.8% (88.5-

78.7) in Rank-1, 9.3% (87.2-77.9) and 11.7% (87.2-75.5) in mAP, respectively. The performance

margin of CLSA against other non-deep-learning methods is even larger, due to that these mod-

els rely on less discriminative hand-crafted features without the modelling advantage of jointly

learning stronger representation and matching metric model. This shows the overall performance

superiority of the CLSA over current state-of-the-art methods, thanks to the joint contributions

of improved person detection model (see more details below) and the proposed multi-scale deep

feature representation learning mechanism.

To evaluate the model efficiency, we conducted a person search test among 100 gallery im-

ages on CUHK-SYSU. We deployed a desktop with a Nvidia Titan X GPU. Applying CLSA,

OIM, and NPSM takes 1.2, 0.8, and 120 seconds, respectively. This indicates that the perfor-

mance advantages of our CLSA do not sacrifice the model efficiency.

To test the model performance scalability, we further evaluated top-3 methods under varying

gallery sizes in the range from 100 to 4,000 (the whole test gallery set). We observed in Figure

3.7 that all methods degrade the performance given larger gallery search pools. When increas-

ing the gallery size from 100 to 4,000, the mAP performance of NPSM drops from 77.9% to

53.0%, i.e. -24.9% degradation (no reported Rank-1 results). In comparison, the CLSA is more

robust against the gallery size, with mAP/Rank-1 drop at -9.7% (77.5-87.2) and -9.1% (79.4-

88.5). This is primarily because more distracting people are involved in the identity matching
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Table 3.6: Evaluation on CUHK-SYSU. Gallery size: 100 scene images. The best and second-

best results are in red and blue.

Method Rank-1 (%) mAP (%)

ACF[214]+DSIFT[218]+Euclidean 25.9 21.7

ACF[214]+DSIFT[218]+KISSME[219] 38.1 32.3

ACF[214]+LOMO[42]+XQDA[42] 63.1 55.5

CCF[215] +DSIFT[218]+Euclidean 11.7 11.3

CCF[215]+DSIFT[218]+KISSME[219] 13.9 13.4

CCF[215]+LOMO[42]+XQDA[42] 46.4 41.2

CCF[215]+IDNet[28] 57.1 50.9

CNN[206]+DSIFT[218]+Euclidean 39.4 34.5

CNN[206]+DSIFT[218]+KISSME[219] 53.6 47.8

CNN[206]+LOMO[42]+XQDA[42] 74.1 68.9

CNN[206]+IDNet[28] 74.8 68.6

OIM[28] 78.7 75.5

NPSM[38] 81.2 77.9

CLSA 88.5 87.2

process, presenting more challenging tasks. Importantly, the performance gain of CLSA over

other competitors becomes even higher at larger search scales, desirable in real-world applica-

tions. This indicates the superior deployment scalability and robustness of CLSA over existing

methods in tackling a large scale person search problem, further showing the importance of solv-

ing the previously ignored multi-scale matching challenge given auto-detected noisy bounding

boxes in person search.

Evaluation on PRW We further evaluated the CLSA against 11 existing competitors on the

PRW dataset under the benchmarking setting with 11,816 gallery scene images. Overall, we ob-

served similar performance comparisons with the state-of-the-art methods as on CUHK-SYSU.

In particular, the CLSA is still the best person search performer with significant accuracy margins

over other alternative methods, surpassing the second-best model NPSM by 11.9% (65.0-53.1)

and 14.5% (38.7-24.2) in Rank-1 and mAP, respectively. This consistently suggests the model

design advantages of CLSA over existing person search methods in a different video surveillance
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Table 3.7: Evaluation on PRW. The best and second-best results are in red and blue.

Method Rank-1 (%) mAP (%)

ACF-Alex[214]+LOMO[42]+XQDA[42] 30.6 10.3

ACF-Alex[214]+IDEdet[37] 43.6 17.5

ACF-Alex[214]+IDEdet[37] +CWS [37] 45.2 17.8

DPM-Alex[119]+LOMO[42]+XQDA[42] 34.1 13.0

DPM-Alex[119]+IDEdet[37] 47.4 20.3

DPM-Alex[119]+IDEdet[37]+CWS[37] 48.3 20.5

LDCF[216]+LOMO[42]+XQDA[42] 31.1 11.0

LDCF[216]+IDEdet[37] 44.6 18.3

LDCF[216]+IDEdet[37] +CWS[37] 45.5 18.3

OIM[28] 49.9 21.3

NPSM[38] 53.1 24.2

CLSA 65.0 38.7

scenario.

Comparisons to Alternative Multi-Scale Learning Methods

Apart from existing person search methods, we further evaluated the effectiveness of CLSA by

comparing with the in-network feature pyramid (baseline) and four state-of-the-art multi-scale

deep learning approaches including DeepMu [220], MST [221], DPFL [137], and FPN [210] on

the CUHK-SYSU benchmark. We used the standard 100 sized gallery setting in this test. For all

compared methods, we utilised the same person detection model and the same backbone identity

matching network (except DeepMu [220] that exploits a specially proposed CNN architecture)

as the CLSA for fair comparison.

Table 3.8 shows that the proposed CLSA is more effective than other multi-scale learning

algorithms in person search. In particular, we have these observations: (1) The in-network fea-

ture pyramid decreases the overall performance as compared to using the standard ResNet-50

features (no pyramid) by a margin of 1.4% (82.5-81.1) in Rank-1 and 1.4% (81.6-80.2) in mAP.

This verifies our hypothesis that directly applying the CNN feature hierarchy may harm the model

performance due to the intrinsic semantic discrepancy across different pyramid levels. (2) CLSA

improves the baseline in-network feature pyramid by a gain of 7.4% (88.5-81.1) in Rank-1 and
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Table 3.8: Evaluating different multi-scale deep learning methods on CUHK-SYSU in the stan-

dard 100 sized gallery setting. FLOPs: FLoating point OPerations.

Method Rank-1 (%) mAP (%) FLOPs (×109)

ResNet-50 82.5 81.6 2.678

In-Network Pyramid 81.1 80.2 2.678

DeepMu [220] 78.3 75.8 -

MST [221] 82.7 81.9 8.034

DPFL [137] 84.7 83.8 5.400

FPN [210] 85.5 85.0 4.519

CLSA 88.5 87.2 2.680

7.0% (87.2-80.2) in mAP. This indicates the exact effectiveness of the proposed cross-level se-

mantic alignment mechanism in enhancing the person identity matching capability of the CNN

feature representation in an end-to-end learning manner. (3) Three ResNet-50 based competitors

all bring about person search performance improvement although less significant than the CLSA.

This collectively suggests the importance of addressing the multi-scale matching problem in per-

son search. (4) For model computational efficiency in FLOPs (FLoating point OPerations) per

bounding box, CLSA has the least (a marginal) cost increase compared to other state-of-the-art

multi-scale learning methods. This shows the superior cost-effectiveness of CLSA over alterna-

tive methods in addition to its accuracy advantages.

Further Analysis and Discussions

Effect of Person Detection We analysed the effect of person detection on the person search

performance using the CUHK-SYSU benchmark. We started with the three customised compo-

nents of Faster-RCNN (Sec 3.2.1). Table 3.9 shows that: (1) The region proposal resizing and

max-pool operation does not hurt the model performance. In effect, this is a replacement of ROI

pooling. In the context of an average pooling to 1×1 feature map followed, such a design remains

the capability of detecting small objects therefore imposing no negative effect. (2) Freezing the

first block’s parameters in fine-tuning detector helps due to the commonality of source and tar-

get domain data in low-level feature patterns. (3) Using all sized proposals improves the result.

It is worthy noting this does not reduce the model efficiency, because only top 256 boxes per

image are remained after the Non-Maximum Suppression operation, similar to the conventional
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Table 3.9: Detection model component analysis on CUHK-SYSU.
Full No resize&max-pool Not fix 1st block Not all sized proposals

Metric (%) Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CLSA 88.5 87.2 88.3 87.3 87.7 86.8 87.9 86.9
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Figure 3.8: Evaluation of person detection on CUHK-SYSU in the standard 100 sized gallery

setting. (a) Person detection precision-recall performance. (b) The person search performance

of the CLSA based on auto-detected or ground-truth person bounding box images. (c) Person

detection versus multi-scale learning on the effect of person search performance.

case of selecting larger proposals. There are an average of 6.04 bounding boxes per image on

CUHK-SYSU.

We then evaluated the holistic person detection performance with comparison to other two

detection models (ACF [214] and CCF [215]). For person detection, it is shown in Figure 3.8 (a)

that the precision performance of both ACF and CCF drops quickly when increasing the recall

rate, whilst our improved Faster-RCNN remains more stable. This shows the effectiveness of

deep learning detectors along additional model improvement from our CLSA. This is consistent

with the results in Table 3.6 and Table 3.7 that the CLSA outperforms ACF or CCF based methods

by 20+% in both rank-1 and mAP.

We further tested the person search effect of our detection model by comparing with the

results based on ground-truth bounding boxes. It is found in Figure 3.8 (b) with perfect person

detection, the CLSA gives only a gain of 0.9% (88.1-87.2) in mAP and 1.5% (90.0-88.5) in Rank-

1. This indicates that the person detection component is not necessarily a major performance

bottleneck in person search, thanks to modern object detection models. On the other hand, Table

3.8 also shows that addressing the multi-scale challenge is more critical for the overall model
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Table 3.10: Effect of in-network feature pyramid construction on CUHK-SYSU.

Blocks Selection 5-4 5-4-3 5-4-3-2

Rank-1 (%) 87.3 88.5 85.3

mAP (%) 86.2 87.2 84.3

Table 3.11: Effect of temperature softness (Eq. (3.9)) on CUHK-SYSU.

Temperature T 1 3 5 7

Rank-1 (%) 88.3 88.5 88.3 88.1

mAP (%) 87.0 87.2 87.3 86.9

performance on person search, e.g. CLSA brings a performance boost of 6.0% (88.5-82.5%) in

Rank-1 and 5.6% (87.2-81.6) in mAP over the baseline network ResNet-50.

Effect of Feature Pyramid We evaluated the performance effect of feature pyramid of CLSA on

CUHK-SYSU. Recall that the in-network feature pyramid construction is based on the selection

of ResNet blocks (see Sec. 3.2.1 and Figure 3.5). We tested three block selection schemes: 5-4,

5-4-3 (used in the final CLSA solution), and 5-4-3-2. Table 3.10 shows that a three-level pyramid

is the optimal. It also suggests that performing semantic alignment directly with elementary

features such as those extracted from the Res2X block may degrade the overall representation

benefit in the pyramid, due to the hard-to-bridge semantic gap.

Effect of Temperature Softness We evaluated the impact of the temperature parameter setting

in Eq. (3.9) in the range from 1 to 7. Table 3.11 shows that this parameter is not sensitive with

the best value as 3.

Evaluating Person Re-ID and Object Classification We evaluated the effect of CLSA on per-

son re-id (Market1501 [43], CUHK03 [40]) and object image classification (CIFAR100 [81]), in

comparison to ResNet-50. Table 3.12 shows the positive performance gains of our CLSA method

on both tasks. For example, the CLSA improves person re-id by 3.5%(88.9-85.4) in Rank-1 and

4.5% (73.1-68.6) in mAP on Market-1501. This gain is smaller than that on the same source

video based PRW (see Table 3.7), due to the potential reason that person bounding boxes of

Market-1501 have been manually processed with limited and artificial scale variations. More-

over, our method also benefits the CIFAR object classification with a 1.5% (76.2-74.7) top-1 rate

gain. These observations suggest the consistent and problem-general advantages of our model in

addition to person search in unconstrained scene images.
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Table 3.12: Evaluating the CLSA on re-id and object classification benchmarks.

Dataset Market-1501 [43] CUHK03 [40] Dataset CIFAR100 [81]

Metric (%) Rank-1 mAP Rank-1 mAP Metric (%) Top-1 rate

ResNet-50 85.4 68.6 48.8 47.5 ResNet-110 74.7

CLSA 88.9 73.1 52.3 50.9 CLSA 76.2

3.3 Summary

The chapter investigates the weakness of cross-class knowledge transfer in person re-id. Specifi-

cally, the negative influence of background noise and multi-scale person bounding box to knowl-

edge transfer are discussed. To solve the issue of background noise, we present an Identity

DiscriminativE Attention reinforcement Learning (IDEAL) model for optimising re-id attention

selection in auto-detected bounding boxes. This improves notably person re-id accuracy in a fully

automated process required in practical deployments. The IDEAL model is formulated as a uni-

fied framework of discriminative identity learning by a deep multi-class discrimination network

and attention reinforcement learning by a deep Q-network. This achieves jointly optimal iden-

tity sensitive attention selection and re-id matching performance by a reward function subject to

identity label pairwise constraints. Extensive comparative evaluations on two auto-detected re-id

benchmarks show clearly the advantages and superiority of this IDEAL model in coping with

bounding box misalignment and background clutter removal when compared to the state-of-the-

art saliency/attention based re-id models. Moreover, this IDEAL automatic attention selection

mechanism comes near to be equal to human manual labelling of person bounding boxes on re-id

accuracy, therefore showing great potential for scaling up automatic re-id to large data deploy-

ment. Besides, to alleviate the issue of multi-scale person bounding box to cross-class knowledge

transfer, this chapter further proposes an end-to-end CLSA deep learning method by constructing

an in-network feature pyramid structural representation and enhancing its representational power

with a semantic alignment learning loss function. This is designed specially to make all feature

pyramidal levels identity discriminative therefore leading to a more effective hierarchical repre-

sentation for matching person images with large and unconstrained scale variations. Extensive

comparative evaluations have been conducted on two large person search benchmarking datasets

CUHK-SYSU and PRW. The results validate the performance superiority and advantages of the

proposed CLSA model over a variety of state-of-the-art person search, person re-id and multi-
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scale learning methods. We also provide comprehensive in-depth CLSA component evaluation

and analysis to give the insights on model performance gain and design considerations. In addi-

tion, we further validate the more general performance advantages of the CLSA method on the

person re-identification and object categorisation tasks.
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Chapter 4

Knowledge Transfer Across Domains in Person

Re-identification

All knowledge is connected to all other

knowledge. The fun is in making the

connections.

—— Arthur C. Aufderheide

This chapter explores the cross-domain knowledge transfer in person re-identification. Specif-

ically, two scenarios are discussed. First of all, unsupervised domain adaptation for person re-id

is investigated. A novel Hierarchical Unsupervised Domain Adaptation (HUDA) is proposed

to promote the effectiveness of cross-domain knowledge transfer. In particular, HUDA is de-

signed to strengthen the local instance alignment, which is ignored by existing work. Second,

this chapter provides a novel universal re-id approach to enable the trained model to deploy any

target domains, addressing the weakness of the cross-domain knowledge transfer can only be

performed well in the single target domain deployment.

4.1 Unsupervised Person Re-id for Domain Adaptation

4.1.1 Unsupervised Hierarchical Adaptation

Problem statement. For unsupervised cross-domain person re-id, we have a supervised (la-

belled) source dataset (domain) Ds = {IIIs
i ,y

s
i}Ks

i=1, consisting of Ks person bounding box images

IIIs
i each with the corresponding identity label ys

i ∈ Y = {1, · · · ,Ks
id}, i.e. a total of Ks

id different
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persons in the source domain. Meanwhile, we assume a set Dt = {IIIt
i}Kt

i=1 of Kt unsupervised

(unlabelled) training data randomly sampled from the target domain with unknown and non-

overlapping identity labels. Using Dt is for model domain adaptation. The goal is to learn a

feature representation optimal for the unlabelled target domain ID class discrimination by trans-

ferring the identity discriminative information learned from a labelled source domain.

Approach overview. We present a Hierarchical Unsupervised Domain Adaptation (HUDA)

model. It can jointly perform global feature distribution alignment and local instance alignment

between the source and target domains by end-to-end deep learning. This is uniquely charac-

terised by more fine-grained knowledge transfer during unsupervised domain adaptation. This

is crucial for person re-id since a key objective is to capture subtle discrimination of different

persons with high appearance similarity. Aligning only global distributions across domains is

insufficient due to being highly under-constrained. With a joint modelling, fine-grained instance

alignment enriches global distribution alignment. An overview of HUDA is depicted in Figure

4.1.

Person Re-Identification Model

To build a re-id model θθθ
tar (Figure 4.1(c1,c2)), we use ResNet-50 [5] as backbone. Given labelled

source training data Ds, we train the model by a discriminative loss function Lre-id = Lce +

λtriLtri where Lce and Ltri denote the softmax Cross Entropy loss (Eq (3.7)) and the triplet loss,

respectively. We empirically set the weight parameter λtri = 0.3.

Discussion. A trained re-id model by the above formulation is suitable only for the source domain

deployment, therefore having limited generalisation. To adapt the model to an independent target

domain, we perform unsupervised domain adaptation by a HUDA model. In HUDA, unlabelled

target domain data are used as a bridge for transferring source domain knowledge. Our model

consists of two parts: (1) global distribution alignment, and (2) local instance alignment.

Global Distribution Alignment

The Global Distribution Alignment (GDA) component of HUDA aims to adapt holistic statistical

information between the source and target domains (Figure 4.1(d)). Due to the disjoint nature of

source and target identity classes (i.e. an open-set recognition setting), GDA seems improper and

has been shown to be ineffective for generic open-set object classification [222, 223]. Nonethe-

less, person re-id is rather different from generic object recognition, since it is a fine-grained

matching problem.
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Figure 4.1: Overview of Hierarchical Unsupervised Domain Adaptation (HUDA). Given (a)

supervised source domain and (b) unlabelled target training person imagery data, we aim to

learn (c1, c2) a re-id model generalisable to the target domain. To this end, the proposed HUDA

model jointly conducts (d) Global Distribution Alignment (GDA) and (e) Local Instance Align-

ment (LIA) in an end-to-end network learning architecture subject to (f) source re-id supervi-

sion. Cross-domain adaptation by the GDA alone is highly under-constrained. We address this

by introducing the LIA for more fine-grained unsupervised domain adaptation with the stronger

constraint. In re-id, there is often no identity class overlap between the source and target do-

mains. Motivated by our primitive attribute viewpoint, we leverage cross-class association to

discover and exploit reliably transferable knowledge for domain adaptation. This is achieved

by the proposed LIA through incrementally building (g1, g2) a knowledge memory network to

cumulatively memorise the past learned knowledge throughout training and simultaneously of-

fer target domain instance-specific local knowledge for high quality adaptation from the labelled

source domain to the unlabelled target domain. To further improve the knowledge quality, we

introduce (h) a feature standardisation layer to accelerate the model training and (i) a knowledge

selection mechanism for more reliable domain adaptation.
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A counter-intuitive phenomenon in re-id. Essentially, person re-id aims to derive a feature

representation for pairwise similarity based matching and ranking. The training and testing

person identity classes are totally disjoint. Such cross-class (i.e. open-set recognition) nature

between training and testing is universal and intrinsic to the problem. Consider that the learn-

ing target is for optimal pairwise matching, early deep re-id models reasonably use pairwise

loss functions (including the triplet ranking loss involving positive and negative pairs) for model

training [40, 224, 31]. Subsequent works empirically find that the softmax Cross-Entropy (CE)

loss, which is commonly used for training closed-set multi-class classification models, is simi-

larly effective, even without the complexity of pairing samples [29]. This selection (presumably

occasional) is actually not as intuitive as the pairwise counterparts, because the CE loss is con-

ventionally considered effective only for closed-set recognition [225], so it would have been

“ineffective” for cross-class learning as re-id. That being said, this traditional wisdom is against

the wide practices. Interestingly, this counter-intuitive phenomenon lacks proper interpretation

in the literature.

The essence to cross-class recognition in re-id. We provide an explanation to the above phe-

nomenon as follows. By learning re-id feature representation for pairwise similarity matching,

we consider the fundamental key is to derive a set of primitive patterns (attributes) which are for-

mally composited of individual feature dimensions or some dimension combinations. They are

useful to distinguish different person appearance and largely independent of any person identity

classes including training classes. That is, these primitive attributes can describe arbitrary person

appearance due to their massive combination space, which is the essence for them to possess

cross-class recognition capability. Therefore, the essential learning objective is to obtain such

a set of class independent primitive attributes, rather than a pairwise similarity matching func-

tion (previous understanding). Consequently, it is not necessarily to limit the learning objective

to pairwise loss functions; The CE loss function can be similarly effective since the learning

of classifiers also results in a set of primitive attributes optimal for multi-class discrimination.

These loss functions are functionally similar in this primitive attribute viewpoint. This naturally

interprets the mysterious efficacy of the CE loss for re-id.

Cross-domain in re-id. Unlike the generic object class classification with distinct appearance

difference [223, 222], person re-id handles uniquely fine-grained identity discrimination with

similar holistic person appearance. This suggests that a large proportion of primitive attributes
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can be shared across domains, i.e. overlapped in the distribution. Specifically, the feature rep-

resentations contain more primitive attributes shared over domains. Together with cross-class

interpretation, GDA navigates cross-domain person re-id learning.

GDA formulation. Due to highly complex distributions of visually ambiguous and diverse re-

id image data, it is difficult to select a suitable parametric model for such a distribution. We

adopt a non-parametric representation to characterising re-id visual data statistics. In particular,

we exploit the Maximum Mean Discrepancy (MMD) [226] to measure the feature dissimilarity

between the source and target domains for distribution alignment:

Lmmd2 = ||
1
ns

ns

∑
i=1

φ( fff s,i)−
1
nt

nt

∑
j=1

φ( fff t, j)||2H (4.1)

where fff s ∈ Rns×d and fff t ∈ Rnt×d specify the feature vectors of ns source and nt target images

in each mini-batch, and d is the feature dimension. We further enforce non-linearity by using a

mapping function φ(·) to project the feature samples into a Reproducing Kernel Hilbert Space

(RKHS)H [227]. By the kernel trick, we design the GDA loss by reformulating Eq (4.1) as:
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∑
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(4.2)

We adopt the common Gaussian kernel function:

k( fff s,i, fff t, j) = exp
(
−
|| fff s,i− fff t, j||22

2σ2

)
(4.3)

where σ is the kernel bandwidth. To reduce the selection bias and enable to automatically identify

an optimal kernel, we deploy a predefined set of kernels with σ ∈ {1,5,10}.

Local Instance Alignment

To enrich GDA based cross-domain adaptation by cross-class discriminative learning necessary

for person re-id, we further introduce Local Instance Alignment (LIA) to explore instance level

fine-grained discriminative learning (Figure 4.1(e)). Specifically, we want to progressively dis-

cover and adapt reliably transferable source information specific to individual target samples

during training. The key idea is learning to associate target samples with visually similar source

data for guiding cross-domain knowledge transfer. The intuition is that, re-id of target instances

can benefit (“borrow” information) from a model discriminatively trained by labelled source in-

stances if the target and source instances are visually aligned (similar).
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The association in LIA is often across identity classes between domains. Inspired by our

primitive attribute viewpoint, we classify the target person images into the source identity classes.

Specifically, given an unlabelled target person image sample IIIt , we predict a class probability

vector for it in the source domain class-label space:

ppp(IIIt) = {p(1|IIIt), p(2|IIIt), · · · , p(Ks
id|IIIt)} (4.4)

This classification indicates how visually similar a target person image is measured against all

the source classes. It encodes the cross-domain transferable knowledge we aim to extract for

unsupervised domain adaptation.

Source Knowledge Discovery

In a unified design, the source and target domain model learning shares a single network trained

simultaneously. A faster training on the source data is essential for ensuring the knowledge

quality. Consider deep learning using mini-batches of training samples as a stochastic learning

process, the feature distribution changes per batch. This may complicate and slow down the un-

supervised domain adaptation process, because the model needs to repeatedly and continuously

adapt to new distributions throughout the training process.

Feature standardisation. To address the above problem, we enforce that the model always

outputs the feature representations in a fixed distribution. Specifically, we standardise the re-id

feature representations (the average pooling of the last conv layer of ResNet-50). This performs a

per-dimension normalisation on the per-batch feature vectors from both domains (Figure 4.1(h)),

as follows:

f̂ff =
fff −E[ fff ]√
V[ fff ]+ ε

(4.5)

where E[·] and V[·] denote the per-dimension expectation and variance of feature values per

batch. The small constant ε > 0 is for ensuring numerical stability. Given this, we use the

standardised features f̂ff for re-id deployment in test.

Remarks. Feature standardisation has been used elsewhere, e.g. Sparsifying Features [228],

and Batch Normalisation (BN) [229]. In this study, we investigate its potential for unsupervised

domain adaptation in person re-id. The key differences are: Compared to BN that introduces two

extra free parameters for scaling and shift in order to preserve the identity transform respectively,

our method does not have such requirements. BN is used to normalise the layer inputs, whereas

our model is applied to the model output. In contrast to [228], our method does not improve the
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feature sparsity nor constrain the internal layer outputs.

Knowledge memory network. To project a target instance into the source identity class space,

a straightforward way is to apply the current up-to-date deep model. However, this is not ideal.

The reason is as follows. In stochastic deep learning, the in-training model updates at each

iteration. This may cause the model performance to temporally deteriorate on samples of the

past mini-batches, due to the nature of catastrophic forgetting [230]. As target domain samples

are randomly sampled, it is possible that the up-to-date model has degraded in recent updates

when assessing some target samples of the current batch.

To further improve the knowledge quality, we propose to incrementally memorise the source

information learned per mini-batch during training. In particular, we establish a knowledge mem-

ory network (Figure 4.1(g1,g2)) θθθ
mem in identical architecture as the target model, and we exploit

it to obtain the knowledge in the form of class posterior probability. Formally, this knowledge

memory network θθθ
mem is updated along with the target model θθθ

tar at each iteration τ by expo-

nential moving average as:

θθθ
mem
τ = αθθθ

mem
τ−1 +(1−α)θθθ tar

τ (4.6)

where α is the smoothing coefficient hyper-parameter. We set α = 0.99 empirically. In doing

so, the discriminative information derived from each mini-batch is absorbed and memorised into

θθθ
mem, so that the memory model serves as a stronger knowledge extractor as compared to the

up-to-date target model. That is, in mini-batch training we exploit the θθθ
mem
τ as the replacement

of θθθ
tar
τ to obtain the posterior probability vector (Eq (4.4)) for each unlabelled target sample in

the source domain class space.

Remarks. The proposed memory network is inspired by the neuron memory mechanism [231].

This is due to that the memorising capacity of deep networks is often incomplete and limited

in representing knowledge experienced in the past learning iterations. However, unlike [231],

our method uses a network for memory organisation without the need for extra components to

customise the network structure and designing particular knowledge representations for access

operations. Algorithmically, building our memory network is similar to the notion of mean-

teacher in semi-supervised learning [76], but the two address different goals. Our method seeks a

reliable cross-class knowledge extraction in training. In contrast, mean-teacher aims to improve

label prediction on unlabelled data from the same domain in a closed-set classification setting.
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Source Knowledge Transfer

The aim of source knowledge transfer is to enhance the generalisation of the target model θθθ
tar

in the target domain. To this end, we consider the richer memorised knowledge in the memory

network that is relevant to target domain samples. However, the underlying transferable knowl-

edge between source and target domains is unknown a priori. It is sub-optimal to blindly transfer

all memory knowledge with all target samples. To address this, we design a knowledge selection

mechanism (Figure 4.1(i)) for more reliable adaptation on individual samples.

Knowledge selection. In unsupervised cross-domain re-id, not all target person images can be

associated with some source identity classes with high confidence. This is due to the cross-

class nature between independent domains with entirely different person classes. Given that

source knowledge is expressed in a probability form, one intuitive way to measure the knowledge

transferability and reliability is to use the maximum likelihood:

ML(IIIt) = max({p(1|IIIt), p(2|IIIt), · · · , p(Ks
id|III

t)}) (4.7)

With this, we can then deploy a thresholding strategy for knowledge selection by choosing those

target samples satisfying that the correspondingML(IIIt) exceeds a pre-defined threshold u. We

denote the selected target samples as ĨIIt . In cross-class context, it is often that mostML(IIIt) val-

ues are not high. Hence, a mild threshold value is preferred to ensure sufficient source-target as-

sociations. Too small threshold values, on the other hand, may lead to adapting non-transferable

knowledge with negative effects. We empirically find that setting u = 0.3 is satisfactory.

Knowledge transfer. Once we have the selected knowledge, the next is to transfer it into the

target model, i.e. knowledge domain adaptation. To accomplish this, we align the knowledge

memory model and the target model in their predictions of selected target samples ĨIIt by exploiting

the Kullback-Leibler (KL) divergence (Eq (2.4)) written as:

Llia =
Ks

id

∑
j=1

p( j|ĨIIt
,θθθ mem) log

p( j|ĨIIt
,θθθ mem)

p( j|ĨIIt
,θθθ tar)

(4.8)

Overall Model Loss Formulation

Given the re-id and HUDA loss functions, we obtain the final objective function for model train-

ing as:

L= Lre-id +λgdaLgda +λliaLlia (4.9)

where λgda and λlia are the relative importance parameters. We set λgda = 1 and λlia = 1 in our

experiments. The whole model can be trained end-to-end subject to the loss function of Eq. (4.9)
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(a) (b)

(d)(c)

Figure 4.2: Example person images from (a) Market-1501, (b) DukeMTMC, (c) CUHK03, (d)

MSMT-17.

by the stochastic gradient descent algorithm.

4.1.2 Experiments

Datasets. For evaluation, We used four person re-id benchmarks with distinct camera viewing

conditions. (Figure 4.2). The Market-1501 [43] contains 32,668 images of 1,501 identities (ID)

captured by 6 cameras. We used the standard 751/750 train/test ID split. The DukeMTMC

[48, 59] consists of 36,411 labelled images of 1,404 IDs from 8 camera views. We adopted the

same 702/702 ID split as [48]. The CUHK03 [40] provides 14,096 images of 1,467 IDs from 6

camera views. We used the detected images as the source as [50]. The MSMT-17 [41] is a largest

person re-ID benchmark thus far. contains 126,411 person images from 4,101 IDs captured from

15 camera views. We adopted the standard 1041/3060 train/test ID split.

Performance metrics. We adopted the Cumulative Matching Characteristic (CMC) and mean

Average Precision (mAP) as the model performance measurements.

Model parameter setting. In this context, no target domain supervision is available for hyper-

parameter cross-validation. We hence used a single set of empirical parameter setting for HUDA

(including λtri for Lre-id, α in Eq (4.6), u for Eq (4.7), λgda and λlia in Eq (4.9)) in all the experi-

ments.

Implementation details. The backbone ResNet-50 was pre-trained on ImageNet. To train a

re-id model, we deployed SGD with the momentum set to 0.9, the weight decay to 0.0005,

and the mini-batch size of 64 (32 source plus 32 target samples), the epoch number to 60. All

input images were resized to 256×128 and subtracted by ImageNet mean. We applied data
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augmentation for the target and memory networks independently in training, including random

cropping, random flipping, and colour jitter. In test time, we used the Euclidean distance as the

re-id matching metric.

Comparisons to the State-of-the-Art Methods

For a fine-grained evaluation, we compared five types of existing methods: (a) two hand-crafted

feature models, (LOMO [42], BoW [43]); (b) three image adaptation models (PTGAN [41],

SPGAN+LMP [49], ATNet [51]), (c) six feature adaptation models (UMDL [52], CAMEL [155],

PUL [232], TJ-AIDL [53], MMFA [54], MAR [55]), (d) one unsupervised deep learning method

(TAUDL [56]), (e) three hybrid methods (HHL [50], ECN [57], PAUL [58]). We evaluated

three transfer scales in terms of the source data size: (1) large: MSMT17⇒Market, (2) medium:

Market1501⇔DukeMTMC, (3) small: CUHK03⇒Market.

Table 4.1: Results on Market-1501⇔DukeMTMC.

Source→Target Duke→Market Market→ Duke

Metric (%) R1 R5 R10 mAP R1 R5 R10 mAP

LOMO [42] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8

BOW [43] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3

PTGAN [41] 38.6 - 66.1 - 27.4 - 50.7 -

SPGAN+LMP [49] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2

ATNet[51] 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9

TAUDL [56] 63.7 - - 41.2 61.7 - - 43.5

UMDL [52] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3

CAMEL [155] 54.5 - - 26.3 - - - -

PUL [232] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

TJ-AIDL [53] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

MMFA [54] 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7

HUDA(Ours) 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2

HHL[50] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

ECN [57] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4

HUDA+TAUDL 78.8 90.2 93.4 57.6 70.4 82.5 86.2 51.2
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Evaluation on DukeMTMC⇔Market-1501. Table 4.1 shows the comparisons between HUDA

and 13 state-of-the-art methods. We have the following observations. (1) Hand-crafted feature

methods [42, 43] produce the poorest performance, due to weak representations. (2) Image

adaptation methods [41, 49, 50] yield fairly strong re-id rates. (3) Interestingly, the unsuper-

vised tracklet re-id method [56] achieves competitive performance without using any labelled

source data. (4) For the feature adaptation models, HUDA outperforms all the competitors

[52, 155, 232, 53, 54]. This suggests strongly the modelling superiority of our method over

the state-of-the-art models. (5) For like-to-like comparisons with hybrid methods, we combined

HUDA with TAUDL in a two-stage process – using HUDA for model pre-training then TAUDL

for unsupervised target data learning. This hybrid model, called HUDA+TAUDL, achieves the

best results as compared to HHL and ECN.

Table 4.2: Results on MSMT17/CUHK03⇒Market-1501.

S→T MSMT→Market S→T CUHK→Market

Metric(%) R1 R5 R10 mAP Metric(%) R1 R5 R10 mAP

MAR 67.7 81.9 - 40.0 HHL[50] 42.7 57.5 64.2 23.1

PAUL [58] 68.5 82.4 87.4 40.1 SPGAN [49] 42.3 - - 19.0

HUDA 72.3 85.2 89.2 42.4 HUDA 49.7 62.8 67.7 27.9

Evaluation on MSMT17/CUHK03⇒Market-1501. We further tested the domain adaptation

with large and small scale transfer. Table 4.2 compares the performance of HUDA to 4 state-of-

the-art alternative methods with reported re-id results. Overall, we have similar observation as

above. For MSMT17⇒Market-1501, as a feature adaptation method, HUDA even surpasses the

hybrid competitor PAUL. In the case of small scale transfer on CUHK03⇒Market-1501, HUDA

consistently outperforms all strong competitors. This test validates the superiority of HUDA in

varying cross-domain adaptation scenarios.

Further Analysis and Discussions

We conducted a series of component analysis for HUDA using DukeMTMC⇔Market-1501.

HUDA design. We tested the significance of HUDA and its components (GDA and LIA). Table

4.3 shows that: (1) Without HUDA, the model suffers clearly the domain gap, e.g. large per-

formance drop. (2) GDA Only gives significant performance boost. This validates our primitive
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Table 4.3: HUDA design analysis. GDA: Global Distribution Alignment. LIA: Local Instance

Alignment.

Source→Target Duke→Market Market→Duke

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP

w/o HUDA 55.2 74.3 81.3 27.1 41.8 57.6 63.2 22.3

GDA Only 61.8 77.9 83.6 32.4 46.8 62.6 68.8 26.5

LIA Only 61.9 78.3 83.8 32.9 44.3 59.4 65.5 24.1

Full HUDA 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2

attribute interpretation . (3) LIA Only also yields similar re-id rate gain. This verifies the idea

of our local alignment and the proposed design. (3) When GDA and LIA are jointly exploited

(i.e. full HUDA), model performance is further increased. This validates good complementary

of GDA and LIA, as well as our motivation of integrating them into a single formulation.

Cross-class association between domains. Recall that we classify the unlabelled target person

images into the source identity class space in a cross-class manner. This aims to associate target

persons with visually similar source people in the LIA process (see Figure 4.4). We examined

the effectiveness of this association. Specifically, we measured the proportion of target person

images highly associated to any source identity classes with the maximum likelihood above the

threshold u. We tracked this measurement with and without the LIA. We observed from Figure

4.3 that, the proposed association scheme significantly improves the cross-domain alignment at

the fine-grained instance level. LIA makes the most target persons associated to the relevant

source identities with similar appearance. This indicates that GDA is under-constrained. Not

every target sample can be associated with a visually similar source identity by HUDA. This is

reasonable due to the independent nature between source and target domains. The rising associ-

ation rate of HUDA without LIA in the beginning of training is due to inaccurate predictions by

the immature in-training model.

Feature standardisation. We evaluated the effect of feature standardisation (FS) on unsuper-

vised domain adaptation with and without HUDA. Table 4.4 shows that FS is significant for ef-

fective cross-domain knowledge transfer in HUDA context, validating our design consideration.

This is because, the cross-domain association becomes reliable and effective for unsupervised

domain adaptation, only when the model learns sufficiently discriminative information from the
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Figure 4.3: The proportion of target training samples that is highly associated with source classes

during model training.

source labels. Besides, FS slightly helps the baseline without HUDA, suggesting a generic use-

fulness. We further tested the impact of FS on the model performance convergence on the source

domain data. We chose the memory network that is used for knowledge extraction. Figure 4.5

shows that FS is clearly beneficial for accelerating the model learning speed on the source la-

belled data.
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(a)

(c)

Duke Duke Market Duke MarketMarket Duke Market Duke Market

Duke Market Duke Market

Duke MarketDuke Market

Duke Market

(b)

Duke MarketMarketDuke

Figure 4.4: Association of target DukeMTMC persons to source Market-1501 identity classes.

(a) The pairs of source and target persons extracted automatically by cross-domain cross-class

association. The associated persons show strong visual similarities. (b) The target person images

associated to a source person have either the same identity (when in the same domain) or similar

visual appearance (when cross-domain). (c) Cross-domain associations can be distracted by

background clutters.
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Table 4.4: Examination of feature standardisation (FS).

Source→Target Duke→Market Market→Duke

Model FS R1 R5 R10 mAP R1 R5 R10 mAP

w/o HUDA 7 55.2 74.3 81.3 27.1 41.8 57.6 63.2 22.3

w/o HUDA 3 56.9 74.2 80.1 28.4 42.1 57.9 63.3 22.5

HUDA 7 61.5 77.2 82.9 32.3 44.5 57.6 64.0 24.6

HUDA 3 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2

Table 4.5: Examination of knowledge selection (KS).

Source→Target Duke→Market Market→Duke

KS R1 R5 R10 mAP R1 R5 R10 mAP

7 65.5 79.1 84.7 34.7 48.3 63.5 67.9 27.5

3 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2
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Figure 4.6: Effect of controlling the knowledge reliability in cross-domain transfer in (left)

Rank-1 and (right) mAP rates.

Knowledge selection. We tested the performance benefit from knowledge selection (KS). The

KS is controlled by setting a threshold u on the maximum likelihood in the source class space

(Eq (4.7)). We compared the re-id accuracy rates on the target domain with and without the
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Figure 4.5: Effect of the feature standardisation (FS) to the model convergence on the source

domain data.

thresholding based (u) selection. Table 4.5 and Figure 4.6 support the significance of knowledge

selection for more reliable unsupervised domain adaptation. The optimal selections lie in the

range of [0.1,0.4], validating our consideration that a mild threshold value u would be used.

Note that not the entire (u=0) source knowledge are equally relevant and reliably transferable

to the target domain. Adapting unsuitable source information can hurt the model generalisation.

Besides, the performance is clearly inferior when no local knowledge adaptation is considered

(u=1), validating our modelling motivation.

Table 4.6: Domain adaptation (DA) effects on the source domain.

Dataset Market Duke

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP

Before DA 86.6 94.7 97.0 67.5 77.4 88.5 91.7 59.5

SPGAN[49] 59.9 78.7 84.5 34.3 53.9 70.9 76.5 32.4

HUDA 87.0 95.0 97.1 67.8 77.1 87.9 91.4 59.3
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Source domain performance. Unlike the image adaptation methods [49], HUDA avoids the

need for re-id model fine-tuning for target domain. This helps maintain the model performance

on the source domain. Table 4.6 shows that HUDA can preserve well model performance on

the source data after domain adaptation. In contrast, SPGAN suffers significantly due to losing

much of original discrimination ability in fine-tuning.

4.2 Universal Person Re-id

4.2.1 Domain-generic Image Transformation

To train a universal person re-id model, we assume a labelled source training dataset (i.e. a source

domain) I = {IIIi,yi}N
i=1, consisting of N person bounding box images IIIi each annotated with a

person identity class label yi ∈ {1, · · · ,Nid}, It contains a total of Nid different person identities.

We propose to transform this source training set D so as to cover the camera viewing conditions of

arbitrary domains. Formally, we define a set of transformations {Mttt}, ttt ∈ T where ttt defines the

transformation parameter vector and T represents the transformation space. Each transformation

Mttt is composited of several primitive transformations. Considering the variations of person

appearance at typical surveillance scenes are largely due to illumination (lighting), we establish

a space of linear transformations with regard to pixel colour and contrast. Note, the approach is

flexible to adopt other transformations if needed.

We consider the colour transformations in the HSV representation space [233]. Each colour

has three fundamental attributes (Figure 4.7): (a) Hue: Colour such as red, orange, yellow, and so

forth. It depends on the wavelength of light reflected and/or produced. (b) Saturation (Chroma):

The brilliance of a hue, i.e. how pure (intense) a hue is. More saturated a hue is, brighter

it appears. (c) Lightness (Value): The lightness or darkness of a hue. Adding white (black)

makes the colour lighter (darker). Note, the effect of lightness is relative to other values in a

composition.

Specifically, for hue transformation we convert the image into HSV and add the correspond-

ing parameter to the original value on the hue dimension. Afterwards, the image is converted

back. For the other factors (including contrast), we perform the transformation by linear interpo-

lation and extrapolation [235]. For restricting the transformations to perceptually sensible scope,

we define the variation range as: hue in [-18, 18] (cyclical), saturation in [0.6, 1.4], lightness in

[0.6, 1.4], and contrast in [0.6, 1.4]. For saturation/lightness/contrast, the value of “1” means no
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Figure 4.7: Illustration of Munsell colour system in three dimensions: Hue, Saturation, Light-

ness. This graph is adopted from [234]. Best viewed in colour.

transformation, and for hue “0” means no transformation.

To form a single colour-contrast transformation, we sample a parameter value for each factor

and concatenate them into a vector ttt. We consider an online image transformation strategy for

stochastic deep learning. This avoids the need for saving and managing a large quantity of

transformed images. In a training iteration, given a source image IIIi, we randomly sample a

parameter vector ttt i and apply the corresponding transformationMttt i to it. As such, we obtain a

transformed variant:

Di = IIIiMttt i . (4.10)

By repeating the transformation on each and every person image of a training mini-batch,

we form domain generic universal training samples {Di} for model training on-the-fly. We show

examples of transformed person images in Figure 4.8. Perceptually, such transformations leave

the original identity class information of person images intact, facilitating the re-id discriminative

model optimisation.
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Original Lightness ContrastSaturationHue Combination

Figure 4.8: Example transformations in Hue, Saturation (Chroma), Lightness (Value), Contrast,

and their random combinations.

Person Re-Identification Model

For person re-id model, we use ResNet-50 [5] as the backbone network. To enable fine-grained

part-level discriminative learning, we adopt the PCB design [236]. Instead of the whole image,

PCB uses average pooling on local regions and applies a separate re-id loss supervision on each

individual region independently and concurrently. In addition, we add a parallel global branch

for discriminative learning of the whole images. We apply label smoothing for mitigating model

overfitting. For model training, we adopt the softmax Cross Entropy loss as the objective func-

tion:

Lce =−
Nid

∑
k=1

m

∑
j=1

δk,y

(
log
(

p j(k|IIIi)
)
+ log

(
p(k|IIIi)

))
(4.11)

where δk,y is the Dirac delta returning 1 if k is the ground-truth class label y, otherwise 0. p j and

p denotes the class posterior probability of the j-th local region and the whole image, estimated

by the current network. m indicates the total number of local regions. We set m = 6 in our

experiments the same as [236].

In test, we concatenate all the local regional and global features as the final re-id representa-

tion. We adopt the Euclidean distance metric for re-id matching and ranking.

Remarks

Compared to the previous data augmentation approaches [16, 3], our method differently focuses

on training a universal model for any domain generalisation, other than enriching domain-specific

training data variety and learning a better model for that domain alone. In particular, we uniquely

consider training data transformations that simulate the person appearance distributions and char-

acteristics of arbitrary unseen domains. Such data augmentation is not necessarily beneficial

for the labelled training data domain. As the conventional wisdom suggests that colour is a

key unique evidence of identity, the data augmentation strategy used in existing re-id methods

[34, 236, 237, 238, 239, 240] usually excludes colour transformation. Nonetheless, we instead

show that colour transformation is very useful for domain-generic person re-id.
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Table 4.7: Universal learning vs. unsupervised learning.
Method Market-1501 Duke MSMT17 CUHK03 VIPeR

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

LOMO [42] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8 - - - - 0.6 1.9 3.6 0.7 - - -

BOW [43] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3 - - - - 2.1 4.6 7.0 1.9 - - -

ISR [116] 40.3 - - 14.3 - - - - - - - - - - - - 27.0 49.8 61.2

Dic [115] 50.2 - - 22.7 - - - - - - - - - - - - 29.6 54.8 64.8

TAUDL [56] 63.7 - - 41.2 61.7 - - 43.5 28.4 - - 12.5 - - - - - - -

BUC [117] 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5 - - - - - - - - - - -

UML(MSMT17) 68.2 83.1 87.6 37.0 60.9 83.0 87.5 37.0 - - - - 12.6 25.4 33.4 13.4 36.4 57.9 67.4

UML(Duke) 66.1 81.6 86.3 35.5 - - - - 35.5 48.2 53.7 12.2 10.7 21.9 27.5 10.5 35.4 54.1 62.3

Supervised Learning 90.4 96.5 97.8 73.5 81.5 90.8 93.1 65.9 73.3 84.8 88.1 44.1 40.8 62.7 73.6 40.4 39.2 65.8 77.5

Table 4.8: Dataset statistics and evaluation setting.

Dataset
Train Test

# ID # Image # ID # Image

VIPeR [158] 316 632 316 632

CUHK03 [40] 767 7,368 700 6,728

Market-1501 [43] 751 12,936 750 19,732

DukeMTMC [48] 702 16,522 702 18,889

MSMT17 [41] 1,041 32,621 3,060 93,820

The closest works to our method are image synthesis based unsupervised domain adapta-

tion re-id models [151, 152, 50, 48, 49, 153]. All of them aim to transfer the labelled source

person identity information to unlabelled target domains. However, these existing methods are

domain-specific, and often need a complex model training for every single target domain. This

“train once, run once” strategy is less usable and more costly to real-world system development.

In contrast, our method needs neither domain-specific training nor difficult model optimisation

(such as GANs [156]). We take a “train once, run everywhere” strategy based on simple and

domain-generic image transformations. Our method uses flexibly off-the-shelf supervised learn-

ing re-id methods therefore can benefit continuously from a wide range of increasingly advanced

learning algorithms developed by the wider community.
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Table 4.9: Universal learning vs. unsupervised domain adaptation. *: Using more labelled

source training data. †: Using additionally person attribute labels. UML uses the source data as

the source training samples for fair comparison.

Source→Target Duke→Market Market→Duke CUHK03→Market CUHK03→Duke

Metric (%) R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP

UMDL† [52] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3 - - - - - - - -

PUL [232] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4 41.9 57.3 64.3 18.0 23.0 34.0 39.5 12.0

CAMEL* [155] 54.5 - - 26.3 - - - - - - - - - - - -

TJ-AIDL† [53] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0 - - - - - - - -

MMFA† [54] 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7 - - - - - - - -

DECAMEL* [154] 60.2 - - 32.4 - - - - - - - - - - -

PTGAN [41] 38.6 - 66.1 - 27.4 - 50.7 - 31.5 - 60.2 - 17.6 - 38.5 -

PoseNorm [152] - - - - 29.9 - 51.6 15.8 - - - - - - - -

SPGAN [49] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3 42.3 - - 19.0 - - - -

SyRI* [151] 65.7 - - - - - - - - - - - - - - -

CR-GAN[153] 59.6 - - 29.6 52.2 - - 30.0 58.5 75.8 81.9 30.4 46.5 61.6 67.0 26.9

HHL [50] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2 56.8 74.7 81.4 29.8 42.7 57.5 64.2 23.1

UML(Source) 66.1 81.6 86.3 35.5 46.3 61.2 66.8 26.7 58.7 76.5 82.6 31.1 42.8 57.8 64.3 23.2

Supervised Learning 90.4 96.5 97.8 73.5 81.5 90.8 93.1 65.9 90.4 96.5 97.8 73.5 81.5 90.8 93.1 65.9

4.2.2 Experiment

Datasets. We used five popular person re-id benchmarks in the standard train/test evaluation

protocols. The statistics of these datasets are summarised in Table 4.8.

Performance metrics. We adopted the Cumulative Matching Characteristic (CMC) and mean

Average Precision (mAP) as the model performance measurements.

Implementation details. To train a universal re-id model, we pre-trained the model on ImageNet

and used the SGD algorithm with the momentum set to 0.9, the weight decay to 0.0005, and the

mini-batch size of 32. We trained the model for totally 60 epochs, with the learning rate of 0.001

in the first 40 epochs, and the decay learning rate as 10 in the last 20 epochs. All input images

were resized to 384×128 in pixel and subtracted by the ImageNet mean. On top of the proposed

transformation strategy, we applied random cropping and flipping during training.
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Universal Learning vs. Unsupervised Learning

We compared our UML with two hand-crafted feature models, (LOMO [42], BoW [43]), two

dictionary learning models (ISR [116], Dic [115]), and two unsupervised deep learning methods

(TAUDL [56], BUC [117]). In this test, we used MSMT17 and DukeMTMC-reID as the source

training data, individually. Table 4.7 compares the performance of these methods. We have the

following findings.

(1) Hand-crafted feature methods [42, 43] give the worst performance. This is due to weak

representation without the ability to extract data relevant features. Also, they cannot optimise the

matching metrics.

(2) Dictionary learning methods [116, 115] improve the performance by using reconstruction

loss functions. However, their capability is limited by the input hand-crafted feature representa-

tions.

(3) More recent unsupervised learning models [56, 117] further push the performance en-

velope. In addition to per-domain model training requirement, these methods often come with

some extra model parameters which are likely to be data sensitive. Typically, careful parameter

tuning and costly model training are required in order to achieve competitive results. This is not

favourable particularly for unsupervised learning where no labelled validation data available for

hyper-parameter cross-validation and optimisation for the target domain.

(4) The proposed UML method matches or surpasses the performance of best competitors

[56, 117] without training the model to the target domains. This suggests stronger domain gen-

eralisation and practical advantages of our method for the industrial adoption due to the “train

once, run everywhere” merit. In reality, model training is costly in both budget and time. This

therefore suggests an economical advantages and deployment-friendly superiority of our method

over the strongest competitors in practice.

(5) Using MSMT17 as source leads to slightly better results as compared to using DukeMTMC.

This is reasonable since MSMT17 offers more identities and images.

(6) Compared to supervised learning, unsupervised and universal learning models are clearly

outperformed. This indicates a large room for further algorithm innovation.

Universal Learning vs. Domain Adaptation

We compared UML with state-of-the-art unsupervised domain adaptation re-id models, including

6 image synthesis models (PTGAN [41], PoseNorm [152], SyRI [151], SPGAN [49], HHL [50],
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Table 4.10: Universal learning vs. hybrid strategy.

Method Market-1501 MSMT17

Metric (%) R1 R5 R10 mAP R1 R5 R10 mAP

ECN [57] 75.187.691.6 43.0 30.241.546.8 10.2

CASCL[157] 64.780.285.6 35.6 - - - -

CR-GAN+TAUDL[153] 77.789.792.7 54.0 - - - -

UML+TAUDL 78.589.992.9 55.7 38.152.655.7 14.5

CR-GAN [153]) and 6 feature alignment models (UMDL [52] CAMEL [155], PUL [232], TJ-

AIDL [53], MMFA [54], DECAMEL [154]).

Table 4.9 shows that:

(1) UML is the best performer among all the competitors. Importantly, unlike previous ap-

proaches for domain-specific model training, our method needs only one time of domain-agnostic

model training. Moreover, we do not require access the large number of unlabelled target data.

This uniquely enables universal person re-id deployments.

(2) Feature alignment methods have obtained increasingly higher performance. It is worth

noting that most feature learning methods such as DECAMEL unfairly benefit from extra labelled

source data.

(3) Compared to feature alignment, image synthesis methods have started to achieve rela-

tively superior cross-domain re-id accuracy. It is especially so considering that less label super-

vision is used (except SyRI).

(4) Both unsupervised domain adaptation and universal learning are significantly outper-

formed by the less scalable supervised learning, suggesting the necessity of devoting further

more research efforts and endeavour for scaling state-of-the-art re-id methods.

Universal Learning vs. Hybrid Strategy

We compared UML with three state-of-the-art hybrid methods that combine unsupervised do-

main adaptation and unsupervised learning: ECN [57], CASCL [157], and CR-GAN [153] +

TAUDL [56]. For a fair comparison, we combine UML with TAUDL [56] to exploit unlabelled

target data. We tested the setting of Duke→Market/MSMT17. Table 4.10 shows UML+TAUDL

is the best performer, suggesting the efficacy of our method in a hybrid learning scenario.
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Table 4.11: Effect of Domain-generic image transformations (DIT). (source domain: Duke)

Source
Market Duke MSMT17 CUHK03 VIPeR

R1 R5 R10 mAP R1 R5 R10mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

Duke 57.0 73.9 80.2 30.1 83.591.894.3 70.0 24.2 34.9 40.3 8.1 8.4 18.2 25.1 8.6 28.2 46.8 57.6

Duke+DIT 66.1 81.6 86.3 35.5 81.590.893.1 65.9 35.5 48.2 53.7 12.2 10.7 21.9 27.5 10.5 35.4 54.1 62.3

Gain(absolute) +9.1 +7.7 +6.1 +5.4 -2.0 -1.0 -1.2 -4.1 +11.3+13.3+13.4 +4.1 +2.3 +3.7 +2.4 +1.9 +7.2 +7.3 +4.7

Gain(relative) +16.0+10.4+7.6+17.9 -2.4 -1.1 -1.3 -5.9 +46.7+38.1+33.3+50.6 +27.4+20.3+9.6+22.1 +25.5+15.6+8.2

Table 4.12: Effect of individual image transformations: Hue, Saturation, Lightness, and

Contrast. (source domain: Duke)

Source
Market Duke MSMT17 CUHK03 VIPeR

R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

Duke 57.0 73.9 80.2 30.1 83.5 91.8 94.3 70.0 24.2 34.9 40.3 8.1 8.4 18.2 25.1 8.6 28.2 46.8 57.6

Duke+H 62.5 78.4 83.6 32.2 82.0 91.2 94.0 68.2 26.3 37.3 42.7 8.6 8.6 17.8 22.9 8.3 30.7 48.7 57.0

Duke+S 60.3 76.8 82.4 31.8 82.3 91.2 94.2 68.7 26.5 37.6 42.7 8.9 8.8 18.8 25.6 9.0 29.4 46.2 55.1

Duke+L 59.6 75.2 80.9 31.1 82.4 91.4 94.1 68.5 27.1 38.2 43.5 9.2 10.6 20.6 26.6 10.4 34.5 53.2 59.5

Duke+C 59.4 74.3 81.1 30.7 83.4 91.6 94.1 69.0 29.8 41.7 47.3 10.1 10.1 20.0 26.0 10.1 33.5 52.2 62.7

Duke+All 66.1 81.6 86.3 35.5 81.5 90.8 93.1 65.9 35.5 48.2 53.7 12.2 10.7 21.9 27.5 10.5 35.4 54.1 62.3

Further Analysis and Discussions

Effect of domain-generic image transformations. We evaluated the effect of the proposed

domain-generic image transformations. To this end, we compared the results without using our

transformations on training data. We tested DukeMTMC-reID as the source domain. Table 4.11

shows that the proposed image transformation is consistently beneficial for improving the model

performance on diverse target domains with very different camera viewing conditions. Both the

absolute and relative performance gains are significant in most cases. As we aim for a domain-

generic universal person re-id, the performance may be inferior to domain-specific models. To

examine this, we compared UML with the supervised learning model (see the part with grey

background). We indeed observe a performance drop but importantly insignificant, as humans

tend to forget some old knowledge marginally whilst acquiring new knowledge over time. This

means that our model can be similarly effective for the source domain as the supervised learning

method. In contrast, image synthesis methods often suffer dramatic performance degradation

on the source domain after adaptation, i.e., the notorious catastrophic forgetting problem [241].

For example, SPGAN [49] experiences a Rank-1 drop of 16.4% (83.5%-67.1%) on the source
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Table 4.13: SPGAN on top of UML.

Source Method
Market

R1 R5 R10 mAP

Duke
UML 66.1 81.6 86.3 35.5

UML+SPGAN 65.5 81.2 85.8 35.2

DukeMTMC-reID.

Types of image transformations. We examined the contribution of every individual image

transformation: Hue, Saturation, Lightness, and Contrast. Table 4.12 shows that the performance

benefits by individual transformations vary with test domains. This is reasonable due to the

difference in the viewing condition characteristics of distinct domains which typically present

no regularity. This also indicates the necessity of exploiting all the image transformations for

tackling the domain heterogeneity during deployment at scale.

Domain universality. We quantified how well the UML model is generic and universal to var-

ious domains in the sense of being robust to transformations. We used the UML model trained

with DukeMTMC-reID as the source domain, and tested its universality degree on transformed

Market-1501 images. We selected randomly 1,000 Market-1501 source (original) images and ap-

plied individual transformations to each of them. Composited transformations were not used for

simplified and dedicated analysis. Such transformations imitate the cross-domain person appear-

ance variations. As a comparison, we tested a baseline model trained without using our image

transformations.

We considered two measures of domain universality: (1) Feature level invariance, and (2)

Prediction level invariance. The former is obtained by computing the Euclidean distance of the

features of the transformed images against that of the original images all extracted by the UML

model. The latter instead is quantified by the Euclidean distance between their classification pre-

diction vectors. Figure 4.9 shows that UML enables to learn significantly invariant features w.r.t.

image transformations therefore more robust re-id deployment across heterogeneous domains.

This is consistent with the observations made in Tables 4.9 and 4.11.

Comparison to state-of-the-art image synthesis. As an image generation method, we specially

compared our UML with the state-of-the-art image synthesis model SPGAN [49]. We did not se-

lect HHL [50] since it is a hybrid of image synthesis and cross-domain feature learning. We have
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Figure 4.9: Domain universality analysis. source/test domain: DukeMTMC/Market. F=Feature,

P=Prediction, H=Hue, S=Saturation, L=Lightness, C=Contrast.
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Figure 4.10: Visual comparison on DukeMTMC-reID.
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already compared the quantitative results in Table 4.9, and showed that SPGAN is inferior. This

is intuitively reasonable as observed from their visual comparison in Figure 4.10. Specifically,

UML generates much more diverse images than SPGAN in a computationally more efficient and

domain generic manner. On the contrary, SPGAN requires computationally expensive domain-

specific model training along with tedious hyper-parameter tuning. By only altering the colour

and contrast properties, UML can well preserve the person identity class information without the

need for designing identity preserving loss function. The colour of clothing and/or associations

may clearly changes w.r.t. the original source images, but all other identity information includ-

ing person physical and biometric characteristics remain. This is partly against the conventional

understanding that clothing colour plays the dominant role in person re-id therefore their varia-

tion of the same person identity class may hurt the model generalisation [6]. Our investigation

and finding uniquely challenge this classical wisdom and validate the importance of otherwise

appearance information to person re-id. This inspires future novel ideas especially for image

synthesis modelling. Functionally, SPGAN images can be considered as part of UML images.

To demonstrate this, we tested the complementary effect of SPGAN on top of UML. The results

in Table 4.13 show that very limited effect can be resulted from adding SPGAN images to the

training set. This also justifies the superior performance of UML since acquisition of large scale

training data is one of the key elements for better model generalisation capability.
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Figure 4.11: Effect of source (DukeMTMC) identity number.

source identity number. We tested the effect of source identity number on model performance.

We used DukeMTMC as source training set and varied the identity number between 100 and 702.

Figure 4.11 shows that more source classes generally lead to better performance as expected.
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Surprisingly, our method is able to perform well using as few as 100 person classes ( 1
7 of the

standard training size). This validates the efficacy of our model in case of limited source data.

4.3 Summary

This chapter discusses the cross-domain knowledge transfer for person re-identification. Section

4.1 presents a novel Hierarchical Unsupervised Domain Adaptation (HUDA) person re-id model

for more discriminative domain adaptation from a labelled source domain to an unlabelled target

domain. HUDA is designed for simultaneous global distribution alignment and local instance

alignment. It addresses the limitations of existing unsupervised domain adaptation re-id models

where only global distribution alignment is considered. Extensive evaluations validate the ad-

vantages of HUDA over state-of-the-art models. Besides, this chapter discusses a novel universal

re-id problems. Section 4.2 presents a Universal Model Learning (UML) for domain-generic

universal person re-id in a “train once, run everywhere” pattern. This differs from all the exist-

ing state-of-the-art supervised and unsupervised learning (including domain adaptation) methods

typically taking a “train once, run once” pattern, suffering from per-domain repeated model train-

ing as well as the corresponding various costs and limitations. Our method therefore opens up

a direction taking intelligent learning algorithms closer to industrial-level applications, although

the current performance achieved is still inferior to that of supervised learning counterparts. As

a training image generation method, our method is readily able to integrate any off-the-shelf su-

pervised learning algorithms without extra complexity and obstacle of hyper-parameter tuning

and model optimisation as required by image synthesis methods. We have conducted extensively

comparative experiments for unsupervised person re-id in the unlabelled target domain using five

public benchmarks, and demonstrated the performance superiority and modelling advantages of

UML over the state-of-the-art alternative methods in both unsupervised model learning and un-

supervised domain adaptation settings.
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Chapter 5

Knowledge Transfer Across Models in

Image Classification

If you have knowledge, let others light

their candles in it.

—— Margaret Fuller

This chapter focuses on cross-model knowledge transfer, in particular, knowledge transfer

on image classification is studied. To alleviate the expensive cost of the teacher model training

and complex multi-stages scheme in knowledge transfer, this chapter investigates two different

techniques: (1) Self-Referenced Deep Training (SRDT) and (2) Knowledge Distillation by On-

the-fly Native Ensemble (ONE) approaches. The former focuses on resource-limited scenarios,

while the latter performs well on reducing the complex training stages in cross-model knowledge

transfer.

5.1 Self-Referenced Deep Training

In this work, we formulate a novel deep learning approach that improves the model generalisation

capability through employing self-discovered knowledge as additional supervision signal with

marginal extra computational cost and hence not hurting the computing scalability. We call this

strategy Self-Referenced Deep Learning (SRDL), in contrast to Vanilla Deep Model training in

Section 2.3.1.
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5.1.1 Self-Referenced Deep Learning

SRDL Overview. The proposed SRDL approach is a knowledge referenced end-to-end deep

model training strategy. The overview of our SRDL approach is depicted in Figure 5.1. This is

realised through reformulating the vanilla training process into two equal-sized stages:

1. In the first stage (Figure 5.1(i)), SRDL learns the target model as a vanilla algorithm with

a conventional supervised learning objective, while tries to induce reliable knowledge.

2. In the second stage (Figure 5.1(ii)), SRDL continues to train the model by a conventional

supervised loss and a self-discovered knowledge guided imitation loss concurrently.

For model training, SRDL consumes the same number of epochs as the vanilla counter-

part. The extra marginal cost is due to self-discovered knowledge extraction (see Evaluation

Metrics in Sec 5.1.2). Consequently, SRDL allows to benefit model generalisation as knowl-

edge distillation at faster optimisation speed. Once the target model is trained, it is deployed to

the test data same as the vanilla method.

(I) First Stage Learning. In the first stage of SRDL, we train the deep model θθθ by the cross-

entropy loss Eq (2.3). Model training is often guided by a learning rate decay schedule such as

the step-decay function [5, 8]:

εt = ε0× fstep(t,M), t ∈ [1, · · · ,M] (5.1)

where εt denotes the learning rate at the t-th epoch (initialised as ε0, in total M epochs), and

fstep(t,M) the step-decay function. The learning rate decay aims to encourage the model to con-

verge to a satisfactory local minimum without random oscillation in loss reduction during model

training. However, if applying the conventional step-decay scheme throughout the optimisation

process, SRDL may result in premature knowledge during training. This is because, the model

still resides in an unstable local minimum due to that the learning rate drop is not sufficiently

quick [242].

To overcome this problem, we propose to deploy an individual and complete step-decay

schedule for both first and second stages of SRDL (Figure 5.1(c)), subject to the condition of

remaining the same training epochs (cost). Formally, this schedule is expressed as:

εt = ε0× fstep(t,0.5M) (5.2)

The intuition is that, the in-training model can be temporarily pushed towards a reasonably stable

local minimum within the same number of (e.g. 0.5M) epochs to achieve a more-ready state
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Figure 5.1: Overview of the proposed Self-Referenced Deep Learning (SRDL). The SRDL strat-

egy consists of two stages training: First stage: We train the target model by a cross-entropy loss

(Eq (2.3)) with (a) the available label supervision for half epochs, whilst learning to (b) extract

discriminative intermediate knowledge concurrently (Eq (2.2)). To maximise the quality of self-

discovered knowledge, we introduce (c) a pass-complete learning rate decay schedule (Eq (5.2)).

Second stage: we continuously optimise the target model for the other half epochs by the joint

supervision (Eq (5.3)) of both (d) the label data and (e) self-discovered intermediate knowledge

in an end-to-end manner. We (f) randomly restart the model for the second stage to break the

optimisation search space constraint from self-referenced deep learning mechanism.

therefore help ensure the quality of self-discovered knowledge. We call this a stage-complete

learning rate step-decay schedule (Figure 5.2). Our evaluations verify the significance of this

design while guaranteeing the goodness of the self-referenced knowledge (see Table 5.4).

At the end of the first stage of SRDL with a “half-trained” model (denoted as θθθ
∗), we extract

the self-discovered knowledge in the form of per-sample class probability prediction (Figure

5.1(b)). Formally, we compute the class probability p̃( j|xxx,θθθ) for each training sample xxx by a

softened softmax operation as Eq (2.2): We set T=3 in our experiments as suggested in [25].

(II) Second Stage Learning. To improve the generalisation performance of the model, we use

the self-discovered knowledge to provide training experience at second stage model learning in

SRDL. We quantify the imitation of the current model softened class prediction p̃( j|xxx,θθθ) to the

knowledge p̃( j|xxx,θθθ∗) with Kullback Leibler (KL) divergence (Figure 5.1(e)) by Eq (2.4).

The overall loss function for the second stage in SRDL is:

L= Lce +T 2 ∗Rkl (5.3)



116 Chapter 5. Knowledge Transfer Across Models in Image Classification

0 50 100 150 200
Epochs

D
ec

ay
 R

at
e

0.5

1
SRDL Learning Rate (Eq (4)) Vanilla Learning Rate (Eq (3))

Figure 5.2: Illustration of a vanilla learning rate step-decay function and the proposed stage-

complete learning rate step-decay schedule.

with the squared softening-temperature (Eq (2.2)) as the balance weight. The gradient magni-

tudes produced by the soft targets p̃ are scaled by 1
T 2 , so we multiply the distillation loss term by

a factor T 2 to ensure that the relative contributions of ground-truth and teacher probability dis-

tributions remains. In doing so, the network model learns to both predict the correct class label

(cross-entropy loss Lce) and align the class probability of previous training experience (imitation

loss Rkl) concurrently.

Random Model Restart. A key difference between SRDL and knowledge distillation is that

SRDL enables a model to learn from its own (previously revealed) knowledge through training

experience rather than from an independent teacher’s knowledge. This self-discovered knowl-

edge is represented in the “half-trained” model parameters θθθ
∗. If we further train the model at

the second stage from θθθ
∗ by Eq (5.3), the learning may become less explorable for better local or

global minimum due to the stacking effect of the imitation loss and the model parameter status.

Therefore, we start the second stage training with randomly initialised model parameters.

This scheme is based on three considerations: (1) A large proportion of the knowledge

learned in the first stage has been extracted and used in the second stage. (2) The same training

data will be used. (3) Random initialisation offers another opportunity for the model to converge

to a better local minimum. Our experiment validates the effectiveness of this random restart

scheme (see Table 5.5 in Sec 5.1.2).

SRDL model training is summarised in Alg 1. In our experiments, a SRDL trained model is

tested against both the vanilla model training strategy and the knowledge distillation method.
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Algorithm 1 Self-Referenced Deep Learning
1: Input: Labelled training data D; Training epochs M;

2: Output: Trained CNN model θθθ ;

3: (I) First stage learning

4: Initialisation: t=1; Random model θθθ initialisation;

5: while t ≤ 0.5∗M do

6: (i) Update the learning rate εt (Eq (5.2));

7: (ii) Update θθθ by cross-entropy loss (Eq (2.3));

8: end

9: Knowledge Extraction Induce per-sample class probability predictions (Eq (2.2));

10: (II) Second stage learning

11: Initialisation: t=1; Random model θθθ restart;

12: while t ≤ 0.5∗M do

13: (i) Update the learning rate εt (Eq (5.2));

14: (ii) Update θθθ by soft-feedback referenced loss (Eq (5.3));

15: end

5.1.2 Experiments

Experimental Setup

Datasets. For experimental evaluations, we use four benchmarking datasets including both

coarse-grained object classification and fine-grained person instance identification Specifically,

the CIFAR10 and CIFAR100 [81] datasets contain 32×32 sized natural images from 10 and

100 object classes. Both adopt a 50,000/10,000 train/test image split. The Tiny ImageNet [82]

consists of 110,000 64×64 images from 200 object classes. We adopt the standard 100,000/

1,000 train/val setting. The ImageNet [16] is a large scale 1,000-class object image classification

benchmark, providing 1.2 million images for training, and 50,000 images for validation. The

Market-1501 [43] is a person re-identification dataset. Different from image classification as

tested in the above four datasets, person re-identification is a more fine-grained recognition prob-

lem of matching person instance across non-overlapping camera views. It is a more challenging

task due to the inherent zero-shot learning knowledge transfer from seen classes (identities) to

unseen classes in deployments, i.e. no overlap between training and test classes. Market-1501

has 32,668 images of 1,501 different identities (ID) captured by six outdoor cameras. We use
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the standard 751/750 train/test ID split. Following [243, 20], we train the network by the cross-

entropy loss (Eq (2.3)) and use the feature layer’s output as the representation of person bounding

box images for test by the Euclidean distance metric.

Performance Metrics. For performance measurement, we adopt the top-1 classification accu-

racy for image classification, the standard Cumulative Matching Characteristic (CMC) accuracy

(Rank-n rates) and mean Average Precision (mAP) for person instance recognition (re-id). The

CMC is computed for each individual rank k as the cumulative percentage of the truth matches

for probes returned at ranks ≤ k. And the Rank-1 rate is often considered as the most important

performance indicator of an algorithm’s efficacy. The mAP is to measure the recall of multi-

ple truth matches, computed by first computing the area under the Precision-Recall curve for

each probe, then calculating the mean of Average Precision over all probes. We measure the

model optimisation complexity with the FLoating-point OPerations (FLOPs): Forward-FLOPs

* Epochs * Training-Set-Size.

Neural Networks. We use 7 networks in our experiments: one typical student net, ResNet-

32 [5]; two typical teacher nets, ResNet-110 [5] and Wide ResNet WRN-28-10 [13]; and four

varying sized nets, ResNet-50, DenseNet-121, DenseNet-201 and DenseNet-BC (L=190, k=40)

[8].

Implementation Details. For all three image classification datasets, we use SGD with Nesterov

momentum and set the mini-batch size to 128, the initial learning rate to 0.1, the weight decay to

0.0002, and the momentum to 0.9. For Market-1501, we use the same SGD but with the mini-

batch size of 32. We assign sufficient epochs to all models to ensure convergence. On CIFAR

datasets, the training budget is 300 epochs for DenseNet, and 200 epochs for ResNet and Wide

ResNet models, same as [244]. We set 150/120 epochs on Tiny ImageNet/Market-1501 for all

models. All model optimisation methods take the same epochs to train the target networks. We

adopt a common learning rate decay schedule [244]: the learning rate drops by 0.1 at the 50% and

75% epochs. The data augmentation includes horizontal flipping and randomly cropping from

images padded by 4 pixels on each side with missing pixels filled by original image reflections

[5]. We report the average performance of 5 independent runs for each experiment.

Comparison with the Vanilla Learning Strategy

We compared the image classification performance between SRDL and the vanilla optimisation

strategy. We make the following observations from Table 5.1:
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Table 5.1: Comparison between SRDL and the vanilla learning strategy on image classification.

Metric: Accuracy (Acc) Rate (%). “Gain”: the performance gain by SRDL over vanilla. TrCost:

Model training cost in unit of 1016 FLOPs, lower is better. M: Million. The first/second best

results are in red/blue.

Dataset
# Param

CIFAR10 CIFAR100 Tiny ImageNet

Metrics Acc TrCost Acc TrCost Acc TrCost

ResNet-32+vanilla

0.5M

92.53 0.08 69.02 0.08 53.33 0.32

ResNet-32+SRDL 93.12 0.08 71.63 0.08 55.53 0.32

Gain (SRDL-vanilla) +0.59 0 +2.61 0 +2.20 0

WRN-28-10+vanilla

36.5M

94.98 12.62 78.32 12.62 58.38 50.48

WRN-28-10+SRDL 95.41 12.62 79.38 12.62 60.80 50.48

Gain (SRDL-vanilla) +0.43 0 +1.06 0 +2.42 0

DenseNet-BC+vanilla

25.6M

96.68 10.24 82.83 10.24 62.88 40.96

DenseNet-BC+SRDL 96.87 10.24 83.59 10.24 64.19 40.96

Gain (SRDL-vanilla) +0.19 0 +0.76 0 +1.31 0

1. All three networks ResNet-32, WRN-28-10, and DenseNet-BC improve the classification

performance when trained by the proposed SRDL. For example, ResNet-32 achieves an

accuracy gain of 0.59% on CIFAR10, of 2.61% on CIFAR100, and of 2.20% on Tiny

ImageNet. This suggests the applicability of SRDL to standard varying-capacity network

architectures.

2. SRDL achieves superior model generalisation performance with nearly zero extra model

training cost1.

3. Smaller network (ResNet-32) with fewer parameters generally benefits more from SRDL

in model generalisation performance, making our method more attractive to resource-

limited applications. Hence, our SRDL addresses the notorious hard-to-train problem in

small networks to some degree [26].

Results on ImageNet. We test the large scale ImageNet with DenseNet201 and obtain the

1The computational cost of knowledge extraction required by both SRDL and Knowledge Distillation
[25] is marginal (less than 0.67% model training cost) and hence omitted for analysis convenience.
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Top-1/5 rates 77.20%/94.57% by the vanilla vs 77.72%/94.89% by our SRDL. This suggests that

SRDL generalises to large scale object classification settings.

Comparison with Knowledge Distillation

We compared our SRDL with the closely related Knowledge Distillation (KD) method [25].

With KD, we take ResNet-32 as the target model, WRN-28-10 and ResNet-110 as the pre-trained

teacher models to produce the per-sample class probability targets (i.e. the teacher’s knowledge)

for the student. From Table 5.2 we draw these observations:

Table 5.2: Comparison between SRDL and Knowledge Distillation (KD) on image classifica-

tion. Metric: Accuracy (Acc) Rate (%). TrCost: Model training cost in unit of 1016 FLOPs,

lower is better. Number in bracket: model parameter size. The first/second best results are in

red/blue.

Target Net Method Teacher Net
CIFAR10 CIFAR100 Tiny ImageNet

Acc TrCost Acc TrCost Acc TrCost

ResNet-32

Vanilla N/A 92.53 0.08 69.02 0.08 53.33 0.32

KD
WRN-28-10 (36.5M) 92.83 12.70 72.58 12.70 56.80 50.80

ResNet-110 (1.7M) 92.75 0.30 71.17 0.30 55.06 1.20

(0.5M) SRDL N/A 93.12 0.08 71.63 0.08 55.53 0.32

1. KD is indeed effective to improve small model generalisation compared to the vanilla

optimisation, particularly when using a more powerful teacher (WRN-28-10). However,

this is at the price of extra 157× (12.70/0.08-1 or 50.80/0.32-1) model training cost. When

using ResNet-110 as the teacher in KD, the performance gain is less significant.

2. SRDL approaches the performance of KD(WRN-28-10) on CIFAR100 and Tiny Ima-

geNet, whilst surpasses it on CIFAR10. This implies that while small model is inferior

to KD in self-discovering knowledge among a large number of classes, it seems to be

superior for small scale tasks with fewer classes.

3. SRDL consistently outperforms KD(ResNet-110) in both model performance and training

cost, indicating that KD is not necessarily superior than SRDL in enhancing small model

generalisation (teacher dependent). This may be partly due to the overfitting of a stronger
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teacher model (e.g. ResNet-110) which leads to less extra supervision information. To test

this, we calculated the average cross entropy loss of the final epoch. We observed 0.0087

(ResNet-110) vs 0.1637 (ResNet-32), which is consistent with our hypothesis.

Table 5.3: Evaluation of person re-id (instance recognition) on Market-1501. The first/second

best results are in red/blue.

Query Type Single-Query Multi-Query

Metrics (%) Rank-1 mAP Rank-1 mAP

SCS [202] 51.9 26.3 - -

G-SCNN [245] 65.8 39.5 76.0 48.4

HPN [246] 76.9 - - -

MSCAN [247] 80.3 57.5 86.8 66.7

JLML [20] 85.1 65.5 89.7 74.5

SVDNet [243] 82.3 62.1 - -

PDC [248] 84.1 63.4 - -

TriNet [31] 84.9 69.1 90.5 76.4

IDEAL [32] 86.7 67.5 91.3 76.2

DPFL [138] 88.6 72.6 92.2 80.4

BraidNet-CS+SRL [36] 83.7 69.5 - -

DaRe [249] 86.4 69.3 - -

ResNet-50+vanilla 87.5 69.9 91.4 78.5

ResNet-50+SRDL 89.3 73.5 93.1 81.5

Gain (SRDL-vanilla) +1.8 +3.6 +1.7 +3.0

DenseNet-121+vanilla 90.1 74.0 93.6 81.7

DenseNet-121+SRDL 91.7 76.8 94.2 83.5

Gain (SRDL-vanilla) +1.6 +2.8 +0.6 +1.8

Evaluation on Person Instance Recognition

In person re-identification (re-id) experiment, we compared SRDL with the vanilla model learn-

ing strategy using the same CNN nets, and also compared with ten recent the state-of-the-art re-id
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methods. Two different networks are tested: ResNet-50 (25.1M parameters) and DenseNet-121

(7.7M parameters). Table 5.3 shows that:

1. All CNN models benefit from SRDL on the person re-id task, boosting the re-id perfor-

mance for both single-query and multi-query settings.

2. SRDL trained CNNs show superior re-id performance over most state-of-the-art methods.

In particular, SRDL trained DenseNet-121 achieves the best re-id matching rates among

all the competitors.

Note that, this performance gain is obtained from a general-purpose network without apply-

ing any specialised person re-id model training “bells and whistles”. This is in strong contrast to

existing deep re-id methods [245, 248, 247, 246] where specially designed network architectures

with complex training process are required in order to achieve the reported results.

Component Analysis and Discussion

We further conducted SRDL component analysis using ResNet-32 on CIFAR100.

Stage-Complete Schedule. Table 5.4 compares our stage-complete learning rate decay sched-

ule with the conventional stage-incomplete counterpart. It is evident that without the proposed

schedule, self-referenced learning can be highly misleading due to unreliable knowledge ex-

tracted from the “half-trained” model. This validates the aforementioned model optimisation

behaviour consideration (see the discussion underneath Eq (5.2)).

Table 5.4: Stage-complete schedule.

Decay Strategy Accuracy (%)

Stage-Incomplete 58.11

Stage-Complete 71.63

Random Model Restart. Table 5.5 shows that model random restart for the second stage train-

ing in SRDL brings 1.90% (71.63%-69.73%) accuracy gain. This verifies our design motivation

that the discriminative knowledge is well preserved in the training data and self-discovered corre-

lation; Hence, random model initialisation for the second stage training of SRDL enables to break

the optimisation search space constraint without losing the available information, and eventually

improving the model generalisation capability.
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Table 5.5: Random model restart.

Random Restart Accuracy (%)

7 69.73

3 71.63

Model Ensemble. Table 5.10 shows that the ensemble of “half-trained” and final models can

further boost the performance by 0.70% (72.33%-71.63%) with more (double) deployment cost.

This suggests that the two models induced sequentially during training are partially complemen-

tary, which gives rise to model ensembling diversity and results in model performance boost.

Besides, we also tested an ensemble of two randomly initialised networks each trained by the

vanilla learning strategy for M/2 epochs, obtaining the Top-1 rate 72.02% vs 72.33% by SRDL.

This shows that our SRDL ensemble outperforms the vanilla counterpart.

Table 5.6: Model ensemble.

Model Ensemble Accuracy (%)

7 71.63

3 72.33

Model Generalisation Analysis. As shown in [250], model generalisation is concerned with

the width of a local optimum. We thus examined the solutions θθθ v and θθθ s discovered by the

vanilla and SRDL training algorithms, respectively. We added small perturbations as θθθ∗(d,vvv) =

θθθ∗+ d · vvv, ∗ ∈ {v,s} where vvv is a uniform distributed direction vector with a unit length, and

d ∈ [0,5] controls the change magnitude. The loss is quantified by the cross-entropy measurement

between the predicted and ground-truth labels. Figure 5.3 shows the robustness of each solution

against the parameter perturbation, indicating the width of local optima as θθθ v < θθθ s. This suggests

that our SRDL finds a wider local minimum than the vanilla therefore more likely to generalise

better.
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Figure 5.3: The width analysis of solution local optima.

5.2 Knowledge Distillation by On-the-Fly Native Ensemble

In this section, we propose a Knowledge Distillation by On-the-Fly Native Ensemble (ONE)

model to improve the deep network optimization by online distillation. Compare to the pro-

posed SRDL in Section 5.1, ONE is a one stage training procedure with a large capacity teacher

network.

5.2.1 Methodology

We formulate an online distillation training method based on a concept of On-the-fly Native

Ensemble (ONE). For understanding convenience, we take ResNet-110 [5] as an example. It is

straightforward to apply ONE to other network architectures. For model training, we often have

access to n labelled training samples D = {(xxxi,yi)}n
i with each belonging to one of C classes

yi ∈ Y = {1,2, · · · ,C}. The network θθθ outputs a probabilistic class posterior p(c|xxx,θθθ) for a

sample xxx over a class c by Eq (2.1):

To train a multi-class classification model, we typically adopt the Cross-Entropy (CE) mea-

surement Lce (Eq (2.3)) between the predicted and ground-truth label distributions as the objec-

tive loss function. With the CE loss, the network is trained to predict the correct class label in

a principle of maximum likelihood. To further enhance the model generalisation, we concur-

rently distil extra knowledge from an on-the-fly native ensemble (ONE) teacher to each branch

in training.

On-the-Fly Native Ensemble. An overview of the ONE architecture is depicted in Figure 5.4.

The ONE consists of two components: (1) m auxiliary branches with the same configuration

(Res4X block and an individual classifier), each of which serves as an independent classifica-
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Figure 5.4: Overview of online distillation training of ResNet-110 by the proposed On-the-fly

Native Ensemble (ONE). With ONE, we start by reconfiguring the target network by adding m

auxiliary branches on shared low-level layers. All branches together with shared layers make

individual models, all of which are then used to construct a stronger teacher model. During the

mini-batch training process, we employ the teacher to assemble knowledge of branch models

on-the-fly, which is in turn distilled back to all branches to enhance the model learning in a

closed-loop form. In test, auxiliary branches are discarded or kept according to the deployment

efficiency requirement.

tion model with shared low-level stages/layers. This is because low-level features are largely

shared across different network instances and sharing them allows to reduce the training cost. (2)

A gating component which learns to ensemble all (m+1) branches to build a stronger teacher

model. It is constructed by one fully connected (FC) layer followed by batch normalisation,

ReLU activation, and softmax, using the same input features as the branches.

Our ONE method is established based on a multi-branch design specially for model training

with several merits: (1) Enable the possibility of creating a strong teacher model without training

a set of networks at a high computational cost; (2) Introduce a multi-branch simultaneous learning

regularisation which benefits model generalisation (Figure 5.6(a)); (3) Avoid the tedious need for

asynchronous update between multiple networks.

Under the reconfiguration of network, we add a separate CE loss Li
ce to each branch which

simultaneously learns to predict the same ground-truth class label of a training sample. While

sharing the most layers, each branch can be considered as an independent multi-class classifier



126 Chapter 5. Knowledge Transfer Across Models in Image Classification

in that all of them independently learn high-level semantic representations. Consequently, taking

the ensemble of all branches (classifiers) can make a stronger teacher model. One common way

of ensembling models is to average individual predictions. This may ignore the diversity and

importance variety of the member models of an ensemble. We therefore learn to ensemble by a

gating component as:

zzze =
m

∑
i=0

gi · zzzi (5.4)

where gi is the importance score of the i-th branch’s logits zzzi, and zzze is the logits of the ONE

teacher. In particular, we denote the original branch as i = 0 for indexing convenience. We train

the ONE teacher model with the CE loss Le
ce (Eq (2.3)) the same as the branches.

Knowledge Distillation. Given the teacher’s logits of each training sample, we distil this

knowledge back into all branches in a closed-loop form. For facilitating knowledge transfer, we

compute soft probability distributions at a temperature of T for individual branches p̃i(c|xxx,θθθ i)

and the ONE teacher p̃e(c|xxx,θθθ e) as Eq (2.2), where i denotes the branch index, i=0, · · · ,m, θθθ
i

and θθθ
e the parameters of the branch and teacher models respectively. Higher values of T lead to

more softened distributions.

To quantify the alignment between individual branches and the teacher in their predictions,

we use the Kullback Leibler divergence (Eq (2.4)) from branches to the teacher written as:

Lkl =
m

∑
i=0

C

∑
j=1

p̃e( j|xxx,θθθ e) log
p̃e( j|xxx,θθθ e)

p̃i( j|xxx,θθθ i)
. (5.5)

Overall Loss Function. We obtain the overall loss function for online distillation training by

the proposed ONE as:

L=
m

∑
i=0
Li

ce +Le
ce +T 2 ∗Lkl (5.6)

where Li
ce and Le

ce are the conventional CE loss terms associated with the i-th branch and the

ONE teacher, respectively. The gradient magnitudes produced by the soft targets p̃ are scaled by

1
T 2 , so we multiply the distillation loss term by a factor T 2 to ensure that the relative contributions

of ground-truth and teacher probability distributions remain roughly unchanged. Note, the entire

ONE objective function of ONE is not an ensemble learning since (1) these loss functions cor-

responding to the models with different roles, and (2) the conventional ensemble learning often

takes independent training of member models.

Model Training and Deployment. The model optimisation and deployment details are sum-

marised in Alg 2. Unlike the two-phase offline distillation training, the target network and the
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Algorithm 2 Knowledge Distillation by On-the-Fly Native Ensemble
1: Input: Labelled training data D; Training epoch number τ; Auxiliary branch number m;

2: Output: Trained target CNN model θθθ
0, and auxiliary models {θθθ i}m

i=1;

3: /* Training */

4: Initialisation: t=1; Randomly initialise {θθθ i}m
i=0;

5: while t ≤ τ do

6: Compute predictions of all individual branches {pi}m
i=0 (Eq (2.1));

7: Compute the teacher logits (Eq (5.4));

8: Compute the soft targets of all the branch and teacher models (Eq (2.2));

9: Distil knowledge from the teacher back to all the branch models (Eq (5.5));

10: Compute the final ONE loss function (Eq (5.6));

11: Update the model parameters {θθθ i}m
i=0 by a SGD algorithm.

12: end

13: /* Testing */

14: Single model deployment: Use θθθ
0;

15: Ensemble deployment (ONE-E): Use {θθθ i}m
i=0.
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ONE teacher are trained simultaneously and collaboratively, with the knowledge distillation from

the teacher to the target being conducted in each mini-batch and throughout the whole training

procedure. Since there is one multi-branch network rather than multiple networks, we only need

to carry out the same stochastic gradient descent through (m + 1) branches, and training the

whole network until converging, as the standard single-model incremental batch-wise training.

There is no complexity of asynchronously updating among different networks which is required

in deep mutual learning [33].

Once the model is trained, we simply remove all the auxiliary branches and obtain the original

network architecture for deployment. Hence, our ONE method does not increase the test-time

cost. However, if there is less constraint on the computation budget and the model performance

is more important, we can deploy it as an ensemble model with all trained branches, denoted as

“ONE-E”.

5.2.2 Experiments

Datasets. We used four multi-class categorisation benchmark datasets in our evaluations (Figure

5.5). Three of them, including CIFAR10, CIFAR100, ImageNet are detailed in Section 5.1.1. We

provide an additional SVHN dataset for the evaluation. The Street View House Numbers (SVHN)

dataset consists of 73,257/26,032 standard training/text images and an extra set of 531,131 train-

ing images. We used all the training data without using data augmentation as [10].

(c)(b)(a)

Figure 5.5: Example images from (a) CIFAR, (b) SVHN, and (c) ImageNet.

Performance Metrics. We adopted the common top-n (n=1, 5) classification error rate. To

measure the computational cost of model training and test, we used the criterion of floating point

operations (FLOPs). For any network trained by ONE, we reported the average performance of

all branch outputs with standard deviation.

Experiment Setup. We implemented all networks and model training procedures in Pytorch. For

all datasets, we adopted the same experimental settings as [251, 86] for making fair comparisons.
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Table 5.7: Evaluation of our ONE method on CIFAR and SVHN. Metric: Error rate (%).

Method CIFAR10 CIFAR100 SVHN Params

ResNet-32 [5] 6.93 31.18 2.11 0.5M

ResNet-32 + ONE 5.99±0.05 26.61±0.06 1.83±0.05 0.5M

ResNet-110 [5] 5.56 25.33 2.00 1.7M

ResNet-110 + ONE 5.17±0.07 21.62±0.26 1.76±0.07 1.7M

ResNeXt-29(8×64d) [86] 3.69 17.77 1.83 34.4M

ResNeXt-29(8×64d) + ONE 3.45±0.04 16.07±0.08 1.70±0.03 34.4M

DenseNet-BC(L=190, k=40) [8] 3.32 17.53 1.73 25.6M

DenseNet-BC(L=190, k=40) + ONE 3.13±0.07 16.35±0.05 1.63±0.05 25.6M

We used the SGD with Nesterov momentum and set the momentum to 0.9. We deployed a

standard learning rate schedule that drops from 0.1 to 0.01 at 50% training and to 0.001 at 75%.

For the training budget, we set 300/40/90 epochs for CIFAR/SVHN/ImageNet, respectively. We

adopted a 3-branch ONE (m= 2) design unless stated otherwise. We separated the last block

of each backbone net from the parameter sharing (except on ImageNet we separated the last

2 blocks to give more learning capacity to branches) without extra structural optimisation (see

ResNet-110 for example in Figure 5.4). Following [25], we set T = 3 in all the experiments.

Cross-validation of this parameter T may give better performance but at the cost of extra model

tuning.

Evaluation of On-the-Fly Native Ensemble

Results on CIFAR and SVHN. Table 5.7 compares top-1 error rate performances of four

varying-capacity state-of-the-art network models trained by the conventional and our ONE learn-

ing algorithms. We have these observations: (1) All different networks benefit from the ONE

training algorithm, particularly with small models achieving larger performance gains. This sug-

gests a generic superiority of our method for online knowledge distillation from the on-the-fly

teacher to the target student model. (2) All individual branches have similar performances, in-

dicating that they have made sufficient agreement and exchanged respective knowledge to each

other well through the proposed ONE teacher model during training.

Results on ImageNet. Table 5.8 shows the comparative performances on the 1000-classes

ImageNet. It is shown that the proposed ONE learning algorithm again yields more effective
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Table 5.8: Evaluation of our ONE method on ImageNet. Metric: Error rate (%).

Method Top-1 Top-5

ResNet-18 [5] 30.48 10.98

ResNet-18 + ONE 29.45±0.23 10.41±0.12

ResNeXt-50 [86] 22.62 6.29

ResNeXt-50 + ONE 21.85±0.07 5.90±0.05

SeNet-ResNet-18 [252] 29.85 10.72

SeNet-ResNet-18 + ONE 29.02±0.17 10.13±0.12

Table 5.9: Comparison with knowledge distillation methods on CIFAR100. “*”: Reported

results. TrCost/TeCost: Training/test cost, in unit of 108 FLOPs. Red/Blue: Best and second

best results.

Target Network ResNet-32 ResNet-110

Metric Error (%) TrCost TeCost Error (%) TrCost TeCost

KD [25] 28.83 6.43 1.38 N/A N/A N/A

DML [33] 29.03±0.22∗ 2.76 1.38 24.10±0.72 10.10 5.05

ONE 26.61±0.06 2.28 1.38 21.62±0.26 8.29 5.05

training and more generalisable models in comparison to the vanilla SGD. This indicates that our

method is generically applicable in large scale image classification settings.

Comparison with Distillation Methods

We compared our ONE method with two representative distillation methods: Knowledge Distil-

lation (KD) [25] and Deep Mutual Learning (DML) [33]. For the offline competitor KD, we used

a large network ResNet-110 as the teacher and a small network ResNet-32 as the student. For

the online methods DML and ONE, we evaluated their performances using either ResNet-32 or

ResNet-110 as the target student model. We observed from Table 5.9 that: (1) ONE outperforms

both KD (offline) and DML (online) distillation methods in error rate, validating the performance

advantages of our method over alternative algorithms when applied to different CNN models. (2)

ONE takes the least model training cost and the same test cost as others, therefore giving the

most cost-effective solution.
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Table 5.10: Comparison with ensembling methods on CIFAR100. “*”: Reported results. Tr-

Cost/TeCost: Training/test cost, in unit of 108 FLOPs. Red/Blue: Best and second best results.

Network ResNet-32 ResNet-110

Metric Error (%) TrCost TeCost Error (%) TrCost TeCost

Snopshot Ensemble [244] 27.12 1.38 6.90 23.09∗ 5.05 25.25

2-Net Ensemble 26.75 2.76 2.76 22.47 10.10 10.10

3-Net Ensemble 25.14 4.14 4.14 21.25 15.15 15.15

ONE-E 24.63 2.28 2.28 21.03 8.29 8.29

ONE 26.61 2.28 1.38 21.62 8.29 5.05

Comparison with Ensembling Methods

Table 5.10 compares the performances of our multi-branch (3 branches) based model ONE-E

and standard ensembling methods. It is shown that ONE-E yields not only the best test error but

also enables most efficient deployment with the lowest test cost. These advantages are achieved

at the second lowest training cost. Whilst Snapshot Ensemble takes the least training cost, its

generalisation capability is unsatisfied with a notorious drawback of much higher deployment

cost.

It is worth noting that ONE (without branch ensemble) already outperforms comprehensively

a 2-Net Ensemble in terms of error rate, training and test cost. Comparing a 3-Net Ensemble,

ONE approaches the generalisation capability whilst having larger model training and test effi-

ciency advantages.

Table 5.11: Model component analysis on CIFAR100. Network: ResNet-110.

Configuration Full W/O Online Distillation W/O Sharing Layers W/O Gating

ONE 21.62±0.26 24.73±0.20 22.45±0.52 22.26±0.23

ONE-E 21.03 21.84 20.57 21.79

Model Component Analysis

Table 5.11 shows the benefits of individual ONE components on CIFAR100 using ResNet-110.

We have these observations: (1) Without online distillation, the target network suffers a per-

formance drop of 3.11% (24.73-21.62) in test error rate. This performance drop validates the

efficacy and quality of the ONE teacher in terms of performance superiority over individual

branch models. This can be more clearly seen in Figure 5.6 that the ONE teacher fits better to
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Table 5.12: Benefit of adding branches to ONE on CIFAR100. Network: ResNet-32.

Branch # 1 2 3 4 5

Error (%) 31.18 27.38 26.68 26.58 26.52

training data and generalises better to test data. Due to the closed-loop design, the ONE teacher

also mutually benefits from distillation, reducing its error rate from 21.84% to 21.03%. With

distillation, the target model effectively approaches the ONE teacher (Figure 5.6(a) vs 5.6(b)) on

both training and test error performance, indicating the success of teacher knowledge transfer.

Interestingly, even without distillation, ONE still achieves better generalisation than the vanilla

algorithm. This suggests that our multi-branch design brings some positive regularisation effect

by concurrently and jointly learning the shared low-level layers subject to more diverse high-level

representation knowledge. (2) Without sharing the low-level layers not only increases the train-

ing cost (83% increase), but also leads to weaker performance (0.83% error rate increase). The

plausible reason is a lack of multi-branch regularisation effect as indicated in Figure 5.6(a). (3)

Using average ensemble of branches without gating (Eq (5.4)) causes a performance decrease

of 0.64%(22.26-21.62). This suggests the benefit of adaptively exploiting the branch diversity in

forming the ONE teacher.

The main experiments use 3 branches in ONE. Table 5.12 shows that ONE scales well with

more branches and the ResNet-32 model generalisation improves on CIFAR100 with the num-

ber of branches added during training hence its performance advantage over the independently

trained network (31.18% error rate).
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Figure 5.6: Effect of online distillation. Network: ResNet-110.
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Model Generalisation Analysis

We aim to give insights on why an ONE trained network yields a better generalisation capability.

A few previous studies [250] demonstrate that the width of a local optimum is related to the

model generalisation. A general understanding is that, the surfaces of training and test error

largely mirror to each other and it is favourable to converge the models to broader optima in

training. As such, a trained model remains approximately optimal even under small perturbations

at test time. Next, we exploited this criterion to examine the quality of model solutions θθθ v, θθθ m,

θθθ o discovered by the vanilla, DML and ONE training algorithms respectively. This analysis was

conducted on CIFAR100 using ResNet-110.

(a) Robustness on training data
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Figure 5.7: Robustness test of ResNet-110 solutions found by ONE, DML, and vanilla training

algorithms on CIFAR100. Each curve corresponds to a specific perturbation direction vvv.

Specifically, to test the width of local optimum, we added small perturbations to the solutions

as θθθ∗(d,vvv)=θθθ∗+d · vvv, ∗∈{v,m,o} where vvv is a uniform distributed direction vector with a unit

length, and d∈[0,5] controls the change magnitude. At each magnitude scale, we further sampled

randomly 5 different direction vectors to disturb the solutions. We then tested the robustness of

all perturbed models in training and test error rates. The training error was quantified as the

cross-entropy measurement between the predicted and ground-truth label distributions.

We observed in Figure 5.7 that: (1) The robustness of each solution against parameter per-

turbation appears to indicate the width of local optima as: θθθ v <θθθ m <θθθ o. That is, ONE seems

to find the widest local minimum among the three therefore more likely to generalise better than

others.

(2) Comparing with DML, vanilla and ONE found deeper local optima with lower training
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errors. This indicates that DML may probably get stuck in training, therefore scarifying the

vanilla’s exploring capability for more generalisable solutions to exchange the ability of identi-

fying wider optima. In contrast, our method further improves the capability of identifying wider

minima over DML whilst maintaining the original exploring quality.

Variance Analysis on ONE’s Branches

We analysed the variance of ONE’s branches over the training epochs in comparison to the con-

ventional ensemble method. We used ResNet-32 as the base net and tested CIFAR100. We

quantified the model variance by the average prediction differences on training samples between

every two models/branches in Euclidean space. Figure 5.8 shows that a 3-Net Ensemble in-

volves larger inter-model variances than ONE with 3 branches throughout the training process.
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Figure 5.8: Model variance during

training.

This means that the branches of ONE have higher cor-

relations, due to the proposed learning constraint from

the distillation loss that enforces them align to the same

teacher prediction, which probably hurts the ensem-

ble performance. However, in the mean generalisa-

tion capability (another fundamental aspect in ensem-

ble learning), ONE’s branches (the average error rate

26.61±0.06%) are much superior to individual models

of a conventional ensemble (31.07±0.41%), leading to

a stronger ensembling performance.

5.3 Summary

This chapter focuses on the cross-model knowledge transfer on image classification. To solve

the expensive cost of training teacher model and multi-stage process for knowledge distillation,

two methods are proposed. First, a novel Self-Referenced Deep Learning (SRDL) strategy is

proposed for improving deep network model learning by exploiting self-discovered knowledge

in a two-stage training procedure. SRDL can train more discriminative small and large networks

with little extra computational cost. This differs from conventional knowledge distillation which

requires a separate pre-trained large teacher model with huge extra computational and model

training time cost. Conceptually, SRDL is a principled combination of vanilla model optimi-

sation and existing knowledge distillation, with an attractive trade-off between model general-
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isation and model training complexity. Extensive experiments show that a variety of standard

deep networks can all benefit from SRDL on both coarse-grained object categorisation tasks (im-

age classification) and fine-grained person instance identification tasks (person re-identification).

Significantly, smaller networks benefit from more performance gains, making SRDL specially

good for low-memory and fast execution applications. The further component analysis gives in-

sights to the SRDL’s model design considerations. Second, a novel On-the-fly Native Ensemble

(ONE) strategy is proposed for improving deep network learning through online knowledge dis-

tillation in a one-stage training procedure. With ONE, we can more discriminatively learn both

small and large networks with less computational cost, beyond the conventional offline alterna-

tives that are typically formulated to learn better small models alone. Our method is also superior

over existing online counterparts due to the unique capability of constructing a high-capacity on-

line teacher to more effectively mine knowledge from the training data and supervise the target

network concurrently. Extensive experiments on four image classification benchmarks show that

a variety of deep networks can all benefit from the ONE approach. Significantly, smaller net-

works obtain more performance gains, making our method specially good for low-memory and

fast execution scenarios.
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Chapter 6

Knowledge Transfer Across Tasks in Image Classification

Often, we are too slow to recognize how

much and in what ways we can assist

each other through sharing expertise and

knowledge.

—— Owen Arthur

This chapter discusses the knowledge transfer across tasks in image classification. Specifi-

cally, few shot classification tasks are investigated. The knowledge transfer process across the

task is through the prototype, which is the global representation of the category. To address the

drawbacks associated with the common practice of employing a single prototype per class, this

chapter proposes a mixture prototype framework for metric based approach. Furthermore, this

chapter also considers the influence of unlabelld samples to the cross-task knowledge transfer by

developing a novel fewmatch methods.

6.1 Learning Diverse and Representative Prototype Mixtures for

Few-shot Classification

6.1.1 Methodology

Let us consider a training dataset Dbase with annotated samples Xb = {xxx1, . . . ,xxxn} and their corre-

sponding labels Yb = {y1, ...,yn}, comprising Cb base categories. Our test dataset Dnovel contains

Cn novel classes, each of which is associated with only a few labelled samples (e.g. ≤ 5 samples),

while the remaining unlabelled samples are used for evaluation. The goal of few-shot classifica-
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tion is to learn a classifier on Dbase that can generalise well to the Cn novel classes based on the

limited labelled samples from Cn novel categories. Specifically, these labelled samples consti-

tute the support set Sn with Kn annotated samples per class, while the unlabelled samples form

the query set Qn on which the model is evaluated. This is also referred to as a Cn-way Kn-shot

classification problem. A large set of FSL methods also use the concept of episode training,

sampling subsets of support Sb and query Qb sets from Dbase in order to mimic the support-query

test scenario.

We propose a generic mixture of prototypes strategy that can be integrated with metric-

learning based methods. An overview of the proposed method is provided in Figure 6.1 where we

provide integration of our method with imprinted weights FSL method [69] as an example. Our

approach focuses on learning high quality prototypes and maximally leveraging the use of multi-

ple class-specific representations. We augment a global image feature representation with a set of

N local representations focusing on distinct regions through the use of local and global average

pooling. These representations, computed on the support set, constitute the class prototypes that

are subsequently used to classify unlabelled examples using the cosine distance. This enables the

exploitation of high-granularity local descriptors without sacrificing global information. We find

that prototypes, obtained from local image input, may be of poor quality if they focus on ambigu-

ous or irrelevant image regions (e.g. background). We address this issue using a self-supervised

rotation loss to learn robust features, and a soft attention gate to combine prototype classification

decisions.

Mixture of prototypes formulation

Metric-based FSL methods focus on learning strong feature representations θ f , which regroup

images of the same class and separates different classes with respect to a pre-defined distance

metric γ(·). Depending on the method considered, a prototype pc associated with class c, can be

defined during training as either (a) the average representation of support set images Sc (episodic

training methods [62]) or (b) the cth column of classifier weights trained via standard backpropa-

gation on the base dataset [69]. At test time, all methods employ option (a). Unlabelled images x

are then classified based on their embedding distance to the different class prototypes γ(x, pc). A

large body of work has focused on developing better training strategies and architectures, includ-

ing nearest-neighbour based episode training [62, 61, 63] and training a cosine classifier on the

whole base dataset [69]. Nonetheless, very few works have attempted to alleviate the inherent
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Figure 6.1: An overview of the proposed MP model with the imprinted weights implementation.

Given a set of training samples from the base categories, we learn a set of diverse feature rep-

resentations via global and local pooling, each of which is associated with a trainable classifier.

Classification decisions are made based on the scaled cosine distance between the normalized

input embeddings and the columns of the classifier weight matrices Wi such that each column of

Wi constitutes a trainable class prototype. Local prototype representations are optimised using

a self-supervised rotation loss associated with a rotation specific embedding network, and a soft

attention gate selects the highest quality prototypes to obtain an ensemble classification decision.

At test time, prototypes for new classes are computed by averaging representations over the sup-

port set and imprinted in the trained classifiers, effectively allowing to test new classes without

retraining.

bias and limitations linked to the use of a single representation.

Our objective is to learn a richer category representation using a mixture of prototypes to

accurately represent the variability within one class. We propose to decompose the support set

representation into a set of N+1 prototype representations {pn
c}, n ∈ [1, . . . ,N+1] each of which

will make individual distance based class assignments. We carefully design our model so as to

maximally leverage multiple prototypes through the use of both local and global model compo-

nent considerations: enforcing high variance, employing an auxiliary task using image rotation

to increase robustness to local inputs and improve local spatial reasoning and a soft attention gate

to increase the influence of reliable prototype predictions.
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Learning highly diverse prototypes

An important criterion for the design of our mixture of prototypes is to maximise the variance

between prototypes so as to minimise redundancy between the representations. To this end, we

propose a local and global prototype learning method. Considering an annotated image xxxb from

the training dataset Dbase, we denote θ f (xxxb) as its representation, where θ f (xb)∈ F̂×Ŵ×Ĥ, and

F̂ , Ŵ , Ĥ are the feature vector channel, width and height respectively. Instead of simply using

the whole image for average pooling, we firstly use average pooling on N disjoint local regions

which are obtained by uniformly partitioning the image feature representation along its height

H, width W or both such that the nth local prototype will focus on a specific region Rn of the

input image. The number of prototypes, defined by height and / or width partitioning, constitutes

a hyperparameter.

By designing local prototypes that focus on disjoint parts of the image, we force prototypes

to provide complementary information and limit redundancy. However relying solely on fine-

grained, local representations would disregard global, high level information that can also provide

highly useful cues. As a result, we combine our set of local prototype representations pn,n ∈

[1, . . . ,N] with a global prototype pN+1 that considers the whole image, computed in parallel

by global average pooling of θ f (xxxb). This combination of local and global descriptors enables

computation of a set of diverse class prototypes that focus on different aspects of the image.

However, a naı̈ve use of multiple local descriptors results in two important problems that can

limit the performance of multi-prototype strategies. Firstly, learning accurate embeddings and

classifiers using local prototypes can be challenging and obtains subpar performance, due to

the potential ambiguity associated with partial image inputs. Secondly, local prototypes may

focus on non-discriminative image regions and therefore provide no relevant information, hurting

overall performance. We address these shortcomings as following section.

Regularising local prototypes with self-supervision

Recent advances in unsupervised and semi-supervised learning have demonstrated the advantage

of self-supervision to regularise model training and learn stronger feature representations [176].

Training classifiers using local image information provides a scenario with an analogous chal-

lenge, where local information can be ambiguous or may not even contain the class of interest.

This potentially unreliable signal hurts model training and may yield sub-optimal prototype rep-

resentations. Integration of a self-supervised auxiliary task allows the learning of more robust
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features, and therefore prototypes, by extracting features suitable for multiple high level tasks.

This effectively allows to optimise the local prototypes’ representative power. Self-supervision

has recently been applied successfully in the single prototype few-shot learning scenario [253]

in the form of rotation and jigsaw puzzle tasks.

In our scenario, we consider an auxiliary rotation task suitable, as rigid rotation retains spa-

tial contiguity and image properties helpful to our main task, unlike other common alternatives

e.g. jigsaw puzzle tasks. Formally, given an image xb from Db, we produce four rigidly trans-

formed images by rotating xb by r degrees, where r ∈ {0◦,90◦,180◦,270◦}. We formulate the

auxiliary rotation task as a four class classification problem, where the objective is to correctly

recognize rotation r. This is achieved by training a linear classifier Wr after passing image local

embeddings θ f (xb
i )n,n ∈ [1, . . . ,N] and global embedding θ f (xb

i )N+1 through a 1×1 convolution

layer. This additional convolutional layer adapts the feature vector θ f (xb
i ) to the rotation task and

additionally implicitly discourages conflict with the main classification task. The rotation branch

is finally trained using a standard softmax cross-entropy loss:

Lrotate =−
∑

N+1
i=1 ∑

4
c=1 δc,y log

(
ρc
(
Φ(θ f (xxx)i

))
N+1

, (6.1)

where Φ is the rotation embedding function, ρc is the rotation prediction score and δc,y is the

Dirac delta function.

Ensembling prototype predictions with attention

Recall that local prototype classification task utility will vary; we propose to learn this and weight

prototype ensembles using attention. For a given input image x, prototype-specific classification

scores fn(x) are associated to image region Rn, and are computed as the normalised distance

between the embedding of θ f (x)n and prototypes pn of all CN classes:

f c
n (x) =

exp
((

pc
n,θ f (xxx)n

))
∑

CN
j=1 exp

((
p j

n,θ f (xxx)n
)) (6.2)

where f c
n and pc

n are, respectively, the classification score and prototype associated with class c.

A straightforward strategy would involve averaging all prototype decisions to obtain an en-

semble global score. However, such a strategy is at risk of being significantly affected by un-

informative local prototypes focusing on non-discriminative regions, as discussed in Sec. 6.1.1.

We alternatively choose to integrate a soft attention gate, thus modulating the combination of

prototype decisions and affording attenuation of the signal propagated by low quality prototypes.
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We design the soft attention gate G as a single softmax and fully connected layer, taking

as input the global image representation θ f (x), reshaped into a vector. The attention weight

of each prototype α={αn} can then be calculated as α = G(θ f (x))+1. To mitigate potential

errors induced by noisy or difficult examples, we follow [254] and combine our gate with a

residual connection, yielding more robust performance to inaccurate attention weights. Finally,

classification scores for image x are computed as:

f (x) =
∑

N+1
n=1 αn fn(x)

N +1
(6.3)

The model’s classification branch can then be trained using the predictions and standard metric

learning strategies.

Mixture of prototypes with imprinted weights

Our mixture of prototypes model provides a general formulation that can easily be integrated in

conjunction with popular metric-based few-shot learning models. To exemplify, we investigate

implementation with the imprinted weights model of [69]. We note that other popular episode

training strategies [61, 62] also constitute valid options. The imprinted weights approach trains

a classifier on the whole set of base classes Cb. The architecture comprises a feature extraction

network θ f , followed by a classifier consisting of fully connected layer without bias W ∈ F×Cb,

where F is the output dimension of θ f . The key idea is to learn W such that the cosine distance

between wc (the cth column of W ) and the embedding θ f (xc) of input images of class c is minimal.

Thus, wc can be seen as the prototype of the cth category in the base set. The objective function

aims to minimise the cosine distance between images and their corresponding prototype.

The imprinted weights model provides two main advantages. Firstly, due to the training

strategy, each row of the classifier matrix W constitutes a prototype, allowing new categories to

easily be imprinted in W using the support set prototype. This alleviates the need to retrain or

fine-tune a model when new categories are available or when the number of shots is changed,

yielding a highly efficient model with continual learning ability. Second, the classifier training

approach does not require a cumbersome episodic training process. However, the imprinting

strategy makes the model highly sensitive to prototype quality and easily fails in the single pro-

totype scenario. Our approach focuses on strong multi-modal representations and allows full

exploitation of the benefits of this model while maintaining robust performance. In this context,

we can integrate our mixture of prototypes approach in a very natural way, associating each of

the N local and single global feature vectors with a different classifier. Classification decisions
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are computed by evaluating the cosine distance between an input image and each column of a

given classifier matrix, where a column corresponds to a class. As such, classifier weights are

learned to minimise the distance between embeddings and prototypes (classifier columns) of the

same class. As each classifier focuses on different feature regions, we are able to automatically

learn our N+1 diverse local prototypes (and global prototype) as columns of each classifier ma-

trix, W1,W2, ...,WN+1. Specifically, for a given classifier Wi, the classification score of sample x

for class c is computed as:

f c
i
(
x
)
=

exp
(

γ
(
wT

ic,θ f (xxx)i
))

∑
Cb
j=1 exp

(
γ
(
wT

i j,θ f (xxx)i
)) (6.4)

where wi j is the jth column of weight matrix Wi and corresponds to prototype pi j associated with

region Ri and class j. The scaled cosine similarity is defined as γ
(
wT

j ,θ f (xxx)
)
=swT

i
(
θ f (xxx)

)
. Both

Wi and θ f (xxx) are normalized using the L2 norm, and s is a trainable scalar, introduced in [69] to

avoid the risk that the cosine distance yields distributions that lack discriminative power. Then,

the classification loss function is calculated as follows:

Lce =−
∑

Cb
c=1 δc,y log f c(x)+∑

N+1
n=1 ∑

Cb
c=1 δc,y log f c

n (x)
N +2

(6.5)

where f c is computed from all f c
i using Eq (6.3) and δc,y is the Dirac delta function. We purpose-

fully retain a summation of individual log f c
i (x) terms in Eq (6.5) to ensure that each prototype

is pushed to possess discriminative class information. The whole model can then be trained

end-to-end using the objective function L= Lce +Lrotate.

At test time, given a new category j from Dnovel with support dataset S={xxxs
1,y

s
1, . . . ,xxx

s
n,y

s
n},

we can compute a new set of prototypes as:

p∗n j =
1
|S j| ∑

xxxs
iii∈S j

θ f (xxxs
iii)n,∀n ∈ [1, . . . ,N +1] (6.6)

where S j contains all annotated samples in the jth category. By imprinting classifier W ∗n with

w∗n j = p∗n j and repeating the process for any new category, we are able to recognise new classes

without retraining the model. By concatenating Wn and W ∗n , we are able to test on all Cn +Cb

categories.
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Table 6.1: The mean accuracies of the 5-way 1-shot and 5-shot tasks on the miniImageNet and

tieredImageNet. Multi-prototype methods are highlighted in gray. M: Metric, G: Gradient. †:

Results on tieredImageNet as reported in [255] (Red/Blue: Best and second best results on

4Conv or ResNet/WRN-28-10 backbones.)

Model Backbone Type
miniImagenet tieredImagenet

1-shot 5-shot 1-shot 5-shot

Baseline++[256] 4Conv M 48.24 ±0.75 66.43 ±0.63 - -

MatchingNet [61] 4Conv M 43.56 ±0.84 55.31 ±0.73 - -

ProtoNet† [62] 4Conv M 49.42 ±0.78 68.20 ±0.66 53.31 ±0.89 72.69 ±0.74

RelationNet † [63] 4Conv M 50.44 ±0.82 65.32 ±0.70 54.48 ±0.95 71.32 ±0.78

IMP [74] 4Conv M 49.20 ±0.70 64.70 ±0.70 - -

DN4 [75] 4Conv M 51.24 ±0.74 71.02 ±0.64 - -

DYNAMIC-FSL† [175] 4Conv M 56.20 ±0.86 73.00 ±0.64 50.90 ±0.46 66.69±0.36

MAML [65]† 4Conv G 48.07 ±1.75 63.15 ±0.91 51.67 ±1.81 70.30 ±1.75

iMAML HF [67] 4Conv G 49.30 ±1.88 - - -

LCC [167] 4Conv G 54.60 ±0.40 71.10 ±0.40 - -

Ours 4Conv M 57.13 ±0.78 74.25 ±0.62 62.96 ±0.91 79.13 ±0.63

TADAM [257] ResNet-12 M 58.50 ±0.30 76.70 ±0.30 - -

DC [258] ResNet-12 M 62.53 ±0.19 78.95 ±0.13 - -

TapNet [259] ResNet-12 M 61.65 ±0.15 76.36 ±0.10 63.08 ±0.15 80.26±0.12

ECMSFMT[260] ResNet-12 M 59.00 77.46 63.99 81.97

CTM [255] ResNet-18 M 62.05 ±0.55 78.63 ±0.06 64.78 ±0.11 81.05 ±0.52

wDAE-GNN [261] WRN-28-10 M 62.96 ±0.15 78.85 ±0.10 - -

PPA [64] WRN-28-10 M 59.60 ±0.41 73.74 ±0.19 - -

CCrot[179] WRN-28-10 M 62.93 ±0.45 79.87 ±0.33 70.53 ±0.51 84.98 ±0.36

CAML [262] ResNet-12 G 59.23 ±0.99 72.35 ±0.18 - -

MTL [168] ResNet-12 G 61.20 ±1.80 75.50 ±0.80 - -

MetaOptNet-SVM [169] ResNet-12 G 62.64 ±0.61 78.63 ±0.46 65.99 ±0.72 81.56 ±0.53

LEO [68] WRN-28-10 G 61.76 ±0.08 77.59 ±0.12 66.33 ±0.05 81.44 ±0.09

Ours ResNet-12 M 66.17±0.75 82.40±0.57 71.95±0.92 86.74±0.61
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6.1.2 Experiments

Experimental Set-up

We evaluated our model on two popular FSL benchmarks: miniImageNet and tieredImageNet.

miniImageNet [61] is a subset of the ImageNet ILSCVRC-12 [3] dataset, consisting of 60000

images uniformly distributed over 100 classes. We use the standard 64/16/20 classes split for

train / val / test as proposed in [263]. tieredImageNet [183] is another subset of ILSVRC-2012,

specifically designed to increase the semantic dissimilarity between the different category splits.

It contains 608 classes consisting of 34 high-level categories. These are divided into 20/6/8

coarse categories for train / val / test splits with 351, 97 and 160 classes, respectively. To generate

validation and test episodes, we follow the strategy adopted in [175]. We randomly sample Cn

classes from the validation or test set and we sample Kn labelled images from each class as

support images, and 15 images as query images. We report the mean accuracy of 600 randomly

generated test episodes with 95% confidence intervals.

The method was implemented using PyTorch [264]. We use ResNet-12 [257] as the back-

bone architecture for the embedding network due to its strong performance. We use the training

protocol and parameters described in [169, 175]: our model is optimised using SGD with mo-

mentum set to 0.9, weight decay to 0.0005, mini-batch size to 256, and 60 epochs. All input

images were resized to 84×84. The learning rate was initialised to 0.1, and updated to 0.006,

0.0012, and 0.00024 at epochs 20, 40 and 50, respectively. Following [169], we use DropBlock

regularization [265]. We initialized the trainable scalar s to 10, and used five local prototypes

along the height dimension and one global prototype. Our baseline in subsequent experiments

constitutes the single prototype imprinted weights model with identical common training param-

eters. Ablation experiments are carried out on the 5-way 1 shot scenario on miniImageNet unless

specified otherwise.

Comparison to State-of-the-Art Methods

Table 6.1 shows a comparison between our method and state of the art approaches, including

(a) 15 metric based models and (b) 7 meta-gradient based approaches. To decouple the influ-

ence of the method from the embedding backbone on the obtained results, we indicate which

backbone network is used by each method and report our performance using ResNet-12 and

4Conv backbones. Based on Table 6.1, we observe the following: (1) metric learning and

meta-gradient based approaches have similar performance, with wDAE-GNN, CCrot (metric
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Table 6.2: Classification accuracy on miniImageNet of standard FSL methods with and without

our MP approach.

MODEL
METRIC(%)

1-SHOT 5-SHOT

PROTONET 59.25 ±0.87 75.13 ±0.65

PROTONET+MP 62.52 ±0.86 76.22 ±0.69

MATCHINGNET 59.55 ±0.86 72.34 ±0.65

MATCHINGNET+MP 62.10 ±0.87 75.86 ±0.66

based) and MetaOptNet-SVM (meta-gradient) achieving similar, state of the art performance

on miniImageNet and tieredImageNet. (2) Models’ backbones vary substantially across meth-

ods, yielding large gaps in performance, in particular between 4Conv and other, more complex

backbones. (3) we observe that our model significantly outperforms the state of the art by a large

margin. Specifically, we significantly outperform multi-prototype approaches IMP and DN4; and

surpass the strongest approaches wDAE-GNN, MetaOptNet-SVM and CCrot in terms of accu-

racy by over 3% (miniImageNet) and 1.5% (tieredImageNet) in both 1-shot and 5-shot settings.

Ablation Experiments

Integration in other metric-learning methods. Our mixture of prototypes is a generic method

that can be easily integrated with other metric learning based approaches. To evaluate the ver-

satility of our approach, we explore integration with both ProtoNet [62] and MatchingNet [61]

using default parameters. These approaches are highly popular and constitute the backbone of

a large set of metric-based FSL methods. Table 6.2 reports the classification accuracy for both

methods, with and without integration of our MP. We see that the performance of both methods

improve when using our approach, with an improvement of up to 3%, highlighting the modularity

and advantage of our formulation.

Model design analysis. We evaluate the influence of each component of our model on overall

performance to understand and attribute component credit. Namely we evaluate the local / global

Mixture of Prototypes (MP), the Rotation Auxiliary task (Rot), the soft attention gate (Gate),

and the rotation Embedding Network (EN). Table 6.3 shows that each component makes a clear

contribution to the performance gain. With the full model, we achieve significant performance

improvement over the baseline: 6.43%, 4.99% for 1-shot on miniImageNet and tieredImageNet

repectively.
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Table 6.3: Model design analysis on miniImagenet. MP: Local/global mixture of prototypes,

Rot: auxiliary rotation task, Gate: soft attention gate, EN: rotation embedding network.

MODEL COMPONENTS miniIMAGENET tieredIMAGENET

MP ROT GATE EN 1-SHOT 5-SHOT 1-SHOT 5-SHOT

59.74 ±0.82 76.65 ±0.60 66.96 ±0.92 83.18 ±0.65

3 62.81 ±0.81 79.43 ±0.61 69.66 ±0.94 85.05 ±0.64

3 62.73 ±0.78 78.67 ±0.58 70.00 ±0.87 85.73 ±0.60

3 3 3 65.79 ±0.78 81.17 ±0.56 71.67 ±0.83 86.52 ±0.58
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Figure 6.2: Influence of the number of prototypes along the image’s feature width (Ŵ ) and height

(Ĥ) on classification accuracy.

The design strategy of prototypes. We further evaluated the influence of two components of

our prototype design strategy: a) the number of prototypes and the regions on which they focus

and b) the influence of the rotation task on local prototype representative power. Regarding a) we

train models with a varying number of prototypes along the height and width of the image feature.
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Results are shown in Figure 6.2. We consider 1, 2, 5 or 10 prototypes along each dimension. We

find that performance is not influenced by the direction (height or width) on which prototypes are

computed, but rather by the overall number of prototypes. We verify that prototype count can be

tied to the expressive power of the model and note that accuracy appears to be stable when the

total number of prototypes is >= 5, exhibiting model stability with respect to the design strategy.

Regarding b) we evaluate the influence of the rotation loss on the classification performance of

each individual prototype with and without use of the auxiliary task for two separate sets of 600

test episodes. We report the performance gain in terms of accuracy in Figure 6.3 and show that,

as hypothesised, our self-supervision task mainly improved local prototype performance (+4%

on average) in comparison to global prototypes (+2%). This is observed consistently across both

sets of episodes.

Free shot setting Since our imprinted weights based MP implementation does not require episode

training, our trained model is independent of the number of shots at test time. We compared the

single prototype baseline to our MP method in the free shot setting in Figure 6.4 for both ResNet

and 4Conv backbones. We observe that both baseline and our MP model consistently improve

with the number of shots increase, showing that our formulation is robust to the number of shots

and that our model surpasses the baseline for all configurations.
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Figure 6.3: Accuracy gain on local (blue) and global (red) prototypes using the rotation task.

Two 600 random test episode draws.
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Figure 6.4: Free shot evaluation on miniImagenet.

6.2 Fewmatch: Dynamic Consistency Regularization for

Semi-Supervised Learning

In reality, we often have access to a large amount of unlabelled data without expensive human

labelling cost. However, the proposed approach in the above section ignores the latent informa-

tion from unlabelled data. In this section, we investigate the benefit of utilizing unlabelled data

on cross-task knowledge transfer.

6.2.1 Methodology

Similar to Section 6.1, we consider a base training dataset Dbase = {X l
b,X

u
b } comprising Labelled

Data (LD) X l
b = {xxxl

1, . . . ,xxx
l
n} with labels Yb = {y1, . . . ,yn}, while the difference is an additional

set of Unlabelled Data (UD) Xu
b = {xxxu

1, . . . ,xxx
u
m} is provided in this section. All examples in Dbase

belong to one of Cb base categories. Our novel dataset Dnovel contains Cn disjoint novel classes

each with only a handful of labelled samples (e.g. ≤ 5) as well as a further limited set of unla-

belled samples (e.g.≤ 100) per class with which to fine-tune the model. Dnovel further comprises

unlabelled samples used for evaluation. Our objective, similarly to standard few-shot settings, is

to learn a classifier capable of accurately recognising novel classes, despite having only a limited

amount of available LD. However in contrast to standard FSL, we possess additional UD for

both base and novel classes, which we aim to leverage in order to maximise performance. To

formalise our setting, we consider that Dnovel comprises of a fixed support set of Kl
n labelled and

Ku
n unlabelled examples per class, and refer to the remaining unlabelled test images as the query



150 Chapter 6. Knowledge Transfer Across Tasks in Image Classification

Initial proxiesNetwork
Labelled

W

Imprint 

with support set

Base Categories

Unlabelled

Student

Prediction

W

Teacher 

Prediction

W**

Refine
3rd

Consistency 

regularisation Loss

Weak

Novel Categories

Feature normalisation and scaling

Augmentation
Strong

Feature

Cross 

Entropy

Labelled

Unlabelled

Weak

Student

Prediction

Teacher 

Prediction

Consistency 

regularisation Loss

Cross 

Entropy
Finetune

Pseudo-label top K

Legend

W*

(a) Prototype driven consistency regularisation

(b) Dynamic Prototype Refinement

Augmentation
Strong

Labelled data flow
Unlabelled data flow

Unlabelled + labelled data flow

Class prediction on 

unlabelled

Pseudo-labelled data flow

Select 

top K

Student

teacher

Student

teacher

WT

WT

Teacher prototype

Student

Teacher

Moving

average

Moving

average

Iterative 

process

Forget pseudo-labels
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set Qn. This Cn-way Kl
n-shot classification problem defines a standard SS-FSL setting.

An overview of our proposed “FewMatch” method is provided in Figure 6.5. FewMatch first

trains a classification model on Dbase by exploiting the concept of imprinted weights (IW). IW

allow end-to-end model training, while at the same time learning global class feature representa-

tions (commonly referred to as prototypes [62]) utilised as classifier weights. This is achieved by

computing predictions as the cosine similarity between input features and classifier. End-to-end

training allows seamless introduction of a CR loss, effectively leveraging UD to train a strong

feature extractor and learn high quality prototypes. The second stage involves model fine-tuning

on Dnovel in order to leverage UD for novel classes. Our cosine classifier formulation, which min-

imises distance between input feature and classifier weights, enables the initialisation of classifier

weights for new, previously unseen classes with the average feature vector of the novel labelled

support set. This strong initialisation enables exploitation of UD and allows our CR approach to

dynamically refine prototypes via a two-level scheme. Prototypes are updated iteratively using

a combination of explicit feature averaging and implicit parameter updates. This is achieved by

1) extending the support set using unlabelled samples with highest prediction confidence and 2)

fine-tuning the model using a CR scheme.

Prototypes Driven Consistency Regularisation

Our formulation exploits the popular concept of prototypes as discussed in Section 6.1 , Proto-

types P = {p1, p2, . . . , pCb} are learned global feature representations, each describing a particu-

lar class to recognise. Class prototypes are typically defined as the average feature representation
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of the support set. They are learned such that the distances between input samples, of a given

class, and the respective class prototype is minimised (else maximised). Our prototype-based

formulation exploits the concept of imprinted weights [69], allowing prototypes to be learned

using a classifier trained end-to-end on the entire set of base classes Cb. In this section we firstly

introduce our imprinted weight formulation and then describe the integration of this within a

teacher-student framework, enabling the introduction of our CR loss.

Imprinted weights formulation. Our classification model uses a standard architecture, compris-

ing a feature extraction network θ f , and a classifier defined by a fully connected layer without

bias W ∈ F ×Cb, where F is the output dimension of θ f . The main idea of imprinted weights

is to train the model such that, for a given class c, the cosine similarity between the embedding

vector θ f (xxx) of input image x and the corresponding column wc of W is maximised. By normal-

ising the classifier and embedding vectors, the model can be trained end-to-end using a standard

cross entropy loss. In this setting, wc is regarded as the prototype representation of class c and

can be learned implicitly without the typically required, episode training strategy and support

set averaging. More formally, for input sample x, the set of classification scores output by the

model is f (x) = { f 1(x), f 2(x), . . . , f c(x), . . . , f Cb(x)} and the score f c
(
x
)

for a given class c can

be computed by

f c(x)= exp
(

γ
(
wT

c ,θf(xxx)
))

∑
Cb
i=1 exp

(
γ
(
wT

i ,θf(xxx)
)) (6.7)

where wi is the ith column of weight matrix W and the prototype pi of class i. The scaled

cosine similarity is then given by γ
(
wT

i ,θf(xxx)
)
= s ·wT

i

(
θf(xxx)

)
. wi and θf(xxx) are normalized

using the L2 norm, and s is a trainable scalar, as introduced by [69] to avoid the risk that the

cosine distance yields distributions lacking in discriminative power.

Finally, the classification loss can be calculated as: Lce(x) =−∑
Cb
c=1 δc,y log fc(x) where δc,y

is the Dirac delta function. Defining class prototypes as learnable model weights affords end-to-

end training and enables introduction of CR to our model in a natural fashion. These decisions

allow us to leverage UD and implicitly refine prototypes without explicit pseudo-labelling. Fur-

thermore, this approach optimises the base class learning process by allowing full exploitation

of the available LD without the typical requirement that necessitates simulation of the few-shot

set-up (episode training) [65].

Consistency Regularisation. We highlight that the described training strategy does not yet
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leverage UD, available in the considered SS-FSL problem setting. Towards taking advantage of

UD, we introduce a CR loss [76] that is driven by the learned prototypes. The idea underlying

CR is to regularise predictions such that they become invariant to small input perturbations that

do not affect class semantics. This strategy has been used successfully for a variety of problems

and is particularly appealing in the semi-supervised context as it leverages UD without explicit

pseudo-labelling. A key difference in our setting, with respect to conventional SSL, is that our CR

loss directly depends on prototype instantiations, as predictions are based on the distance between

input and each class prototype. This strategy drives our approach to learn more discriminative and

robust prototypes so as to maintain classification accuracy under different input perturbations.

Following strategies adopted in the recent SSL state of the art [76, 79], we embed our IW

model within a teacher-student framework [76] where we seek to impose consistency between

teacher and student predictions. Both teacher and student networks share the same architec-

ture, however only student weights are optimised by back-propagation. Teacher weights θ T

are alternatively computed as an Exponential Moving Average (EMA) of the student weights θ ,

θ T = (1−α)θ T +αθ . Such temporal averaging strategies have been shown to yield more robust

and accurate models and are therefore desirable in the often noisy few-shot setting.

Considering an unlabelled sample ub we realise sample perturbations, as suggested in [266,

79], by generating ūb and ûb using weak and strong augmentations respectively. The weak aug-

mentation sample ūb has the goal of improving prediction stability in the teacher network. This

strategy helps to constrain the strong augmentation sample prediction. The consistency loss is

then computed as:

Lcons(ub) = ||Sharp( ft(ûb),T )− fs(ūb)||2, where Sharp(x,T ) = xi
1
T

∑
Cb
j=1 x j

1
T

(6.8)

such that fs and ft are predictions computed by the student and teacher networks respectively;

and Sharp(·) is a sharpening function introduced as in [78] to reduce the entropy of the label

distribution. In summary, the model is trained on the base classes using the global loss function

Lbase = Lce + λLcons, where the hyperparameter λ balances the relative influence of the two

terms.

Dynamic Prototype Refinement

Our training stage, using Dbase, yields a model capable of estimating reliable class prototypes on

novel, unseen categories. In a standard few-shot setting (i.e. without available UD), prototypes
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are often estimated directly from the support set and reliable performance can be achieved with-

out further training. In our problem setting, we set the objective of exploiting the additionally

available UD in order to obtain strong prototype initialisations that can then lend themselves to

further refinement. Towards this goal, the second component of FewMatch constitutes our Dy-

namic Prototype Refinement (DPR) strategy to take advantage of the UD, available from Dnovel ,

towards improving model adaption to novel categories. The approach we introduce is, by design,

able to improve performance on novel categories despite the presence of limited data regimes.

DPR comprises three stages: (1) Prototype Initial Inference (PII), via the introduced IW proce-

dure (2) Explicit prototype refinement using top-K selection and (3) Implicit prototype refinement

using CR. Prototypes are initially estimated during the first step and then dynamically updated

iteratively using steps two and three, such that prototype quality is improved. The remainder of

this section provides further detail on steps (1)-(3) and the iterative process. Algorithm 3 details

pseudocode for the complete DPR process.

(1) Prototype Initial Inference. Given new category j from Dnovel with support set S j={xxxs
1,y

s
1, . . . ,xxx

s
n,y

s
n}∪

{uuu1,,, . . . ,,,uuum}, compute an initial prototype as:

p∗j = P(S j) =
1
|S j| ∑

xxxs
iii∈S j

θ f (xxxs
iii), (6.9)

The estimated prototype is then imprinted in classifier W as w j = p j and the process is re-

peated for each new category (see Figure 6.5). This allows for recognition of new classes without

model retraining and provides high quality initialisations for our dynamic refinement stage.

(2) Explicit Prototype Refinement. We highlight that initial prototypes, computed using Eq. 6.9,

do not make use of the additional UD available for novel classes. Exploiting UD can be consid-

ered crucial for novel classes due to the very limited amount of labelled data. Towards reducing

prototype biases, we expand the support set using pseudo-labelled UD, where labels are assigned

according to respective prediction scores. The prediction scores fs(u) are again obtained with

Eq. 6.7 using updated prototype estimates and current model parameters. We mitigate the vary-

ing quality of pseudo labels by selecting the top-K samples with the most confident predictions

per class which, by definition, consist of the K unlabelled samples that are closest to their as-

signed class’ prototypes. This augmentation results in an extended annotated support set defined

for each class j as S∗j = S j∪U j, where U j = top-K( f j
s (u)) is the set of unlabelled samples selected

for class j. The prototype is then refined using Eq. 6.9 by replacing S with S∗. Crucially, we
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Algorithm 3 Dynamic Prototype Refinement
1: Input: labelled examples S = {S1, . . . ,S j,SCn}, and unlabelled examples U ; Number of novel

categories: Cn ; number of iterations M; number of fine-tuning steps R; pre-trained student

and teacher model parameters θ ,θ T ; weighting parameters λ f t , α .

2: Output: Prototypes of novel categories W ∗∗, student model parameters θ ;

3: Prototypes initial inference: W ←{p∗1, p∗2, . . . , p∗Cn
}, calculate p∗j ← P(S j) by Eq (6.9)

4: For i = 1 to M :

5: Explicit prototype refinement

6: U j ←top-K( f j
t,θ T ,W T (u)),∀ j ∈ 1, . . . ,Cn, f j

t,θ T ,W T computed as in by Eq (6.7)

with parameters θ T ,W T . θ T ,W T initialised to θ ,W for i = 1

7: S∗j ←U j ∪S j ∀ j ∈ 1, . . . ,Cn

8: W ∗←{P(S∗1), . . . ,P(S∗Cn
)}

9: Implicit refinement using CR

10: Randomly re-initialise teacher parameters θ T

11: For r = 1 to R:

12: Sample a batch of unlabelled samples Us from U

13: ū←WeakAugment(u), û← StrongAugment(u),u ∈ Us

14: Vj←top-K( f j
t,θt ,W∗(ū)) ∀ j ∈ 1, . . . ,Cn

15: W ∗∗,θ∗← argmin
W,θ

Lce(x)+λ f tLcons(vu
b), x ∈ S,vu ∈V = {V1, · · · ,VCn}

16: Update teacher parameters W T = (1−α)W T +αW ∗∗,θ T = (1−α)θ T +αθ∗

17: end

emphasise that per stage pseudo-labels are used uniquely to update prototypes and that samples,

pseudo-labelled at this stage, are considered unlabelled again at the next iteration. Importantly

pseudo-labels are therefore not propagated, allowing recovery from potentially erroneous predic-

tions during the subsequent fine-tuning stage.

(3) Implicit Refinement using Consistency Regularisation. Our implicit refinement stage bor-

rows ideas from gradient-based FSL, which typically adapts the entire model to the novel set

of classes via a fine-tuning stage. This stage is generally missing from prototype-based meth-

ods, which explicitly represent prototypes as an average feature representation, and thus lose

the flexibility afforded by learning implicit network parameters. This fine-tuning stage is par-

ticularly desirable in our setting, where we seek to maximally leverage the UD available and

where our prototypes are defined as model weights. It is a natural choice to consider deploying
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Consistency Regularisation to fine-tune the model, noting that the refined prototypes obtained

at this stage afford high quality teacher predictions. We implement the strategy described in

Sec. 6.2.1 to fine-tune the model on novel classes with CR. To further improve robustness to

noisy teacher predictions and difficult examples, we adopt a selective prototype CR strategy. By

calculating teacher prediction scores ft(ū) according to their prototype distance, we can select

the top-K unlabelled examples with the least ambiguous label predictions to compute the CR

loss. Note that this second top-K selection set V will differ from top-K set U computed during

the explicit stage, as 1) prototypes were updated 2) they are computed on the teacher model sub-

ject to weak input augmentation. The model is fine-tuned for R gradient updates by minimising

L(x,vu
b) = Lce(x)+λ f tLcons(vu), where Lce and Lcons are computed as described in Sec. 6.2.1,

where labelled sample x is from Dnovel and vu ∈V .

Dynamic Refinement. Our implicit and explicit refinement steps allow us to iteratively refine

prototypes to further improve performance. As shown in Algorithm 3, we alternate between

explicit and implicit steps for M iterations, reinitialising estimated pseudo-label at each itera-

tion. Top-K selection, for the first explicit stage, relies on student predictions since teachers are

randomly initialised. Teacher predictions, expected to be more accurate and stable, are used in

subsequent iterations. Importantly, we note that teacher parameters are reinitialised before each

implicit stage (after explicit selection), so as to introduce stochasticity, increasing robustness to

pseudo-label errors and allowing a more diverse exploration of the loss landscape.

6.2.2 Experiments

Experimental set-up. We evaluated Fewmatch on standard SS-FSL benchmarks: miniImageNet [61]

and tieredImageNet [183], both subsets of the ImageNet dataset[3] designed for FSL as discussed

in Section 6.1. In contrast to fully supervised learning for miniImageNet in Section 6.1, we adopt

semi-supervised setting on this benchmark, using 40%/60% of the data for labelled/unlabelled

splits following previous works [183, 71]. Similarly, we follow the standard semi-supervised split

[183, 71] on tieredImageNet [183], with 10% of the images of each class forming the labelled

split and the remaining 90% being the unlabelled data. We consider Kl
n = 5 way N = 1/5 shot

classification problems and follow the strategy adopted in [183, 71] to generate test episodes: we

randomly sample Kl
n classes from the test set, N labelled images from each class and 100 unla-

belled images as support images, and 15 images as query images. We further test the distractor

setting, randomly selecting 100 unlabelled images from 3 task-irrelevant classes as distractors
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Table 6.4: Mean classification accuracies of the 5-way 1/5-shot tasks on miniImageNet and

tieredImageNet (Bold: Best results per set-up).

Setting Model Backbone
miniImagenet tieredImagenet

cline4-6 1-shot 5-shot 1-shot 5-shot

SL

CTM [255] ResNet-18 62.05 ±0.55 78.63 ±0.06 64.78 ±0.11 81.05 ±0.52

CCrot[179] WRN-28-10 62.93 ±0.45 79.87 ±0.33 70.53 ±0.51 84.98 ±0.36

MTL [168] ResNet-12 61.20 ±1.80 75.50 ±0.80 - -

SSL

MS k-Means[183] 4Conv 50.4 64.4 52.4 69.9

MS k-Means with MTL ResNet-12 62.1 73.6 68.6 81.0

TPN[70] 4Conv 52.8 66.4 55.7 71.0

TPN with MTL ResNet-12 62.7 74.2 72.1 83.3

LST [71] ResNet-12 70.1 ±1.9 78.7 ±0.8 77.7 ±1.6 85.2 ±0.8

Ours ResNet-12 75.66±0.95 82.93±0.62 78.70±0.93 85.40±0.58

Distractor Setting

SSL

MS k-Means [183] with MTL ResNet-12 61.0 72.0 66.9 80.2

TPN [70] with MTL ResNet-12 61.3 72.4 71.5 82.7

LST [71] ResNet-12 64.1 77.4 73.4 83.4

Ours ResNet-12 70.35±0.98 80.23±0.66 74.24±0.95 83.64±0.63

[71] to be added to the unlabeleld set. We report the mean accuracy of 600 randomly generated

test episodes with 95% confidence intervals.

The method was implemented using PyTorch [264]. We use the same backbone architecture

ResNet-12 as [71]. For base category training, we follow parameters used in [175]: our model is

optimised using SGD with momentum set to 0.9, weight decay to 0.0005, mini-batchsize to 256

(128 LD and 128 UD) for 30 epochs. All input images were resized to 84×84. The learning rate

was initialised to 0.1, and updated to 0.01 at epoch 20. Following SSL practice [76], weighting

parameter λ is defined as a linear ramp-up function increasing from 0 to 300 in the first 15

epochs. We set the total number of DPR iterations as M = 3 and each implicit refinement step

fine-tunes the model for 20 steps with 0.01 learning rate. Each mini-batch comprises all LD and

40 randomly sampled UD per-category. We linearly increase weighting parameter λ f t from 0 to

10 in the first 10 steps. The number of unlabelled samples selected is set to K = 25. We set EMA

rate α = 0.5, and T = 0.5. Strong augmentations for the student network are computed using

RandAugment [267], applying three random operations with magnitude set to 9. Teacher weak
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Table 6.5: Model design analysis on

miniImagenet. PCR: base training prototype

Consistency Regularisation; ER: Explicit pro-

totype refinment; IR: Implicit refinement us-

ing Selective Consistency Regularisation; DR:

Dynamic Refinement

Model Components miniImageNet

PCR ER IR DR 1-shot 5-shot

Remixmatch 53.52 66.50

Imprinted-weights (IW) 59.09 75.59

IW + Remixmatch (no mixup) 62.20 76.31

3 61.59 77.90

3 3 71.35 81.75

3 3 3 72.52 82.25

3 3 3 3 75.66 82.93

Figure 6.6: Accuracy on training unlabelled

data with M = 3 iterations of the DPR stage.

augmentations use random cropping and flipping functions.

Comparison to State-of-the-Art (SOTA) Methods. We compared FewMatch with SOTA ap-

proaches including (a) 3 FSL and (b) 5 SS-FSL methods in Table 6.4. We note that several

SS-FSL approaches, including FewMatch, outperform SOTA FSL approaches, highlighting the

potential of using additional UD to learn more accurate models. We observe that FewMatch

outperforms the SS-FSL state of the art and that strongest performance gains are observed in the

1-shot setting. We further highlight that the closest SOTA method LST, requires, in contrast to

FewMatch, complex episode training, requiring fixed numbers of LD and UD at both training

and test time.We additionally compared FewMatch to the SS-FSL SOTA when the UD contains

distractor samples. Results are reported in Table 6.4 (distractor setting) and show that we con-

sistently achieve the best performance. This highlights the strong performance and robustness of

our method in a more realistic setting.

Ablation experiments. We evaluate the influence of each model component on miniImageNet

on 5 way 1/5 shot classification settings. Specifically, we evaluate the influence of using CR

in the base training stage (PCR), Explicit Prototype refinement (ER), Implicit Refinement (IR)
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and Dynamic Refinement (DR) which iterates between ER and IR. We additionally include three

baselines: Imprinted Weights[69] (no use of unlabelled data), SOTA CR based SSL method

Remixmatch[79] (no accounting for the few-shot setup), and Imprinted Weights combined with

Remixmatch. We note that methods using Remixmatch use CR during both base and novel

training stage and that the latter method is implemented without mixup (which is used in the

Remixmatch method) as the label mixing strategy is not compatible with the prototype approach

and would require the definition of infinitely many prototypes. Results are reported in Table

6.5 and show that each component makes a clear contribution to the performance gain; with ER

(providing a strong initialisation) and DR (addressing CR’s low convergence rates) yielding the

strongest performance gains.

Unlabelled data prediction accuracy. Figure 6.6 evaluates the improved reliability of teacher

predictions due to our DPR process (M=3). We report accuracy on training UD during the

DPR stage, compared to baseline imprinted weights + remixmatch (IWR) which uses CR with-

out addressing the underlying challenges. We observe that our iterative process continuously

improves performance, successfully exploiting CR towards reaching higher quality predictions.

Conversely, the IWR model fails to exploit UD, obtaining a minimal performance gain with

respect to baseline FSL method IW.

6.3 Summary

This chapter provides solutions for cross-task knowledge transfer in image classification. To

solve the issue of ineffective cross-task knowledge transfer brought by the single prototype as-

sumption, this chapter introduces a novel, generic approach for metric-based few-shot classifica-

tion methods. We propose to represent a class as a mixture of prototypes and carefully design

our model so as to jointly optimise prototypes variance and representative power. Our model

can easily be integrated into a large number of metric learning methods and, as an example, we

combined MP with the imprinted weights method yielding performance that significantly out-

performs the state of the art on two popular FSL benchmarks. We demonstrate the validity of

our design through a comprehensive set of ablation experiments. Existing metric based FSL

approaches typically limit class representation to a uni-modal prototype and our work offers a

solution to the important limitations commonly associated with such strategies.

Additionally, to take full advantage of unlabelled data in cross-task knowledge transfer, this
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chapter proposes a novel prototype-driven approach named FewMatch, which exploits, for the

first time, the concept of consistency regularisation in an SS-FSL setting. In contrast with pre-

existing methods, we alleviate requirements for iterative pseudo-labelling, preventing propaga-

tion of errors induced by inaccurate model predictions. Alternatively, we introduce a dynamic

prototype refinement strategy that alternates between explicit pseudo label based updates and

implicit model fine-tuning. Our extensive experiments demonstrate that this iterative strategy

allows successful exploitation of unlabelled data within a consistency regularisation framework.
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Chapter 7

Conclusion and Future Work

Sometimes it’s necessary to go a long

distance out of the way in order to come

back a short distance correctly.

—— Edward Albee

7.1 Conclusion

This thesis has explored various aspects of Knowledge Transfer (KT) in object recognition, with

the goal of yielding more scalable visual recognition systems applicable in real-world scenarios.

This is realised by simulating the human behaviour of cross-utilizing the knowledge from the

experience, when encountering new complex scenarios. Specifically, four types of knowledge

transfer scheme on fine-grained and coarse-grained object recognition task are investigated, in-

cluding 1) cross-class KT in person re-id; 2) cross-domain KT in person re-id; 3) cross-model

KT in image classification; 4) cross-task KT in image classification. These problems are inher-

ently challenging due, in part, to the common convention held by machine learning approaches

to ignore knowledge from past experience. This is in direct contrast to humans, and other bi-

ological learning systems, capable of displaying genuine intelligence. Crucially, this artificial

trait results in lack of generalization abilities, that in turn hinder performance in the complex and

novel scenarios that are often met in reality.

In particular,

1. In chapter 3, a novel Identity Discriminative Attention Reinforcement Learning (IDEAL)
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framework is proposed to solve the negative influence of background noise to the cross-

class knowledge transfer in person re-id. This allows to obtain more accurate and gen-

eralizable feature representation of person identity in deployment, and therefore boosting

re-id system performance. Besides, this chapter investigates the multi-scale challenge of

person bounding box in more severe and realistic situation: person search. To address this

limitation, a new Cross-Level Semantic Alignment (CLSA) framework is proposed. The

CLSA enables matching images to be “scale-invariant” (more “scale insensitive”) in the

sense that a scale change in person search.

2. In chapter 4, cross-domain knowledge transfer in person re-id is discussed. To effectively

address the domain shift problem when transferring knowledge across domains, an extra

local instance alignment constraint is formulated to find the optimal solution for feature

network. Furthermore, this chapter discusses more realistic universal person re-id problem

by considering the knowledge transfer to any target domains rather than the specific single

domain. The proposed Universal Model Learning (UML) for domain-generic universal

person re-id is in a “train once, run everywhere” pattern. This differs from all the existing

state-of-the-art supervised and unsupervised learning approaches typically considering a

“train once, run once” pattern, suffering from per-domain repeated model training as well

as the corresponding various costs and limitations.

3. In chapter 5, to address the expensive cost of training teacher models and complex multi-

stages in training for cross-model knowledge transfer, self-referenced deep learning (SRDL)

and knowledge distillation by On-the-fly Native Ensemble (ONE) are proposed, respec-

tively. In particular, SRDL exploits the self-discovered knowledge in a two-step training

procedure without the need of training a large capacity teacher networks. In contrast, ONE

constructs a multi-branch variant of a given target network by adding auxiliary branches

and creates a native ensemble teacher model from all branches on-the-fly in the single

stage training stage. The proposed ONE does not require the complex multi-stage training

and reduces expensive cost in training heavy teacher networks, while boosting the model

performance through more effectively cross-model knowledge transfer.

4. In chapter 6, cross-task knowledge transfer in image classification is investigated. This

chapter focuses on few shot classification, aiming to recognize novel objects with very



7.2. Future Work 163

limited labelled data. Existing metric based approaches constitute the highly popular strat-

egy to solve few shot classification. However, the common assumption that results in

employing a single prototype in current methods can not deal with complex multi-model

distribution in reality and results in a model that is very sensitive to the quality of the

prototype. A novel mixture of prototypes is formulated in this thesis to address these limi-

tations. Besides, a new semi-supervised few shot classification (SSFSC) method fewmatch

is proposed to take full advantage of unlabelled data in cross-task knowledge transfer. In

contrast to existing competitive SSFSC approaches based self-training, the proposed few-

match successfully utilizes the consistency regularization, enabling the fast convergency,

avoiding the error propagation and obtaining the state-of-art performance.

7.2 Future Work

The potential research directions beyond the proposed methods in this thesis are summarised as

follows:

1. (Chapter 3) Cross-class knowledge transfer in Person Re-identification: Chapter 3 at-

tempts to alleviate the negative influence of irrelevant factors to the cross-class knowledge

transfer, such as background noise and multi-scale matching challenge. The approaches

proposed in Chapter 3 are supervised learning methods, and therefore require expensive

human labelling cost. One possible direction could be formulated as unsupervised learn-

ing cross-class knowledge transfer, i.e., clustering [232, 117] methods. In this context, the

background noise and multi-scale challenge could be further explored.

2. (Chapter 4) Cross-domain knowledge transfer in person re-identification: Chapter 4

explores the local instance alignment in cross-domain knowledge transfer and proposes

a novel and practical challenge: universal re-id, which is trained in the seed domain and

deploys in any unseen target domains. Chapter 4 develops a simple method Univeral Model

Learning driven by a variety of data augmentation method. This is the first attempt to solve

universal person re-id and might inspire many works. One of the possible directions is

considering the UML is an interesting combination of domain generalisation [268] (aiming

for target domain performance without data access but no need to maintain the source

domain performance) and incremental learning (need to maintain the old class/domain
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performance). In this context, some existing gradient based method domain generalisation

methods [268, 269] might be useful for universal re-id.

3. (Chapter 5) Cross-model knowledge transfer in image classification: Our SRDL and

ONE model in chapter 5 investigate the knowledge transfer in human design neural net-

work. Recently, researchers are interested in Neural Architecture Search (NAS) [87, 88,

89, 90, 91, 92], and therefore the combination of NAS and cross-model knowledge transfer

is a potential direction. Some people point out the transferred knowledge in NAS contains

the structual knowledge of the model [270]. This indicates different achitectures might

have an inidividual ability to transfer and receive the knowledge to other network. Thus,

how to find a optimal achitecture to easliy learn knowledge from other networks is a open

question and worth to be discussed.

4. (Chapter 6) Cross-task knowledge transfer in image classification: Although the pro-

posed MP and Fewmatch make a significant step to explore the cross-task knowledge trans-

fer in the more realistic scenarios (complex multi-model distribution and contains unlabel

data), there are still a long road to explore the knowledge transfer in the few shot classi-

fication. Firstly, the issue of domain shift across task is not deeply investigated. Recent

work[271, 272] illustrates the influence of the domain shift largely degrades the model

generalization performance across the tasks. Besides, Huang et.al [273] argue current

widely used benchmarks Omniglot and miniImageNet are too simple because their class

semantics do not vary across episodes, which defeat their intended purpose of evaluating

few-shot classification methods. Endeavours on the more challenging META-DATASET

[274] benchmark should be encouraged.
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