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Abstract

Aim of this thesis is to exploit modern technologies and statistical methods to

support precision medicine in both the gathering and analysis of data.

Real-time measurements of clinical parameters and identification of molecular

signatures are thought to be crucial to tailor medications on the individual

needs and likeliness of response.

This thesis explores both aspects. The first part of the thesis studies the

issues related to the safe real-time collection of parameters in connection to

ultrasound communications of intra-body sensor networks. A testbed has

been developed and a complete characterisation of a high water concentration

channel — comparable to human body — is provided.

The second part focuses on the analysis of transcriptomic data to predict

successful treatments in non-communicable diseases. To reach this aim we

will present a novel pathway-based tool together with the results from two

clinical trials.
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Chapter 1

Introduction

In recent years medicine is rapidly moving away from the generalised treat-

ment approach to follow a strategy to tailor medication on the individuals

needs and likeliness of response. This concept is called stratified or precision

medicine and takes advantage of key identifiable genomic, molecular and clini-

cal features [1].

The aim of this thesis is to exploits modern technologies and statistical meth-

ods to support precision medicine in both the collection and analysis of data.

In order to do so, it is fundamental to consider a patient as an individual

subject rather than an average, random sample. This necessarily involves

real-time measurements of clinical parameters and identification of genomic

signatures [2–4] .

This thesis explores the two topics and is organized as follows. The first sec-

tion (Chapter 2) addresses the issue of collecting clinical data in a safe manner.

Safe and reliable real-time monitoring of clinical parameters is crucial to per-

sonalise and adjust ongoing therapies. On the other hand, at a previous stage,

the choice of the right therapy should not be based on early symptoms only,
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but also on molecular signatures able to predict chances of response. This is

especially true for those diseases that show high probability of therapy failure.

For this reason, the second part of this thesis (Chapters 3 and 4) focuses

on methods and analyses of RNA-sequencing data. In Chapter 3 a novel

pathway-based tool called Pat-BINE (Patients Biological Interactions Network

Extractor) is presented. This can give clinicians a deeper understanding of the

complex network of gene interactions activating in whichever user-defined

group of patients. Furthermore, for a higher-level analysis, a tool comparing

pathway alterations across multiple groups of patients will be discussed in

the same Chapter.

In Chapter 4 novel and traditional methods are applied to two clinical tri-

als. One relies on the Pathobiology of Early Arthritis Cohort (PEAC) [5], the

other relates to the transcriptomic data of the TRial of Anti-B-Cell Therapy

In patients with primary Sjögren’s Syndrome (TRACTISS) [6]. From the two

cohorts, new insights on rheumatoid arthritis and Siögren’s Syndrome are

extracted.

Finally, Chapter 5 provides the conclusions and sketches future research direc-

tions.
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Chapter 2

Real-time monitoring of clinical
parameters
The use of ultrasounds for a safe and reliable
communication across sensors

The content of this chapter is based on the work published on Computer Networks as

[7].

Organs and tissues monitoring is a broadly recognised imperative to allow

adjustment of therapies and prevention of serious events such as hearth at-

tacks or ischemias.

To this purpose the use of implanted or ingested pill-sized sensor devices

is foreseen. This leads to a number of sensors/actuators deployed inside

the body building up a network that periodically communicate to a remote

medical center by means of a gateway (e.g. a smart watch or phone).

Apart from issues related to compatibility of materials, a relevant communica-

tion problem is posed in terms of waves being used. In fact, the human body

is composed for more than 65% by water, a fluid through which traditional
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Radio Frequency (RF) waves scarcely propagate. Moreover, RF waves used in

wireless transmission are ionizing. This can cause overheating of tissues and

consequent degeneration and damage of cells [8]. To this purpose, ultrasonic

waves have been proposed as a safe and efficient alternative to RF for trans-

mission of data inside the body.

Studies in [9] and [10] revealed that ultrasonic communications require much

lower transmission power with respect to the low-power RF-based technology

as water aids the propagation of ultrasonic waves and hinders the RF trans-

mission. This leads to lower energy per bit cost and longer links supported.

On the other hand, it is widely recognized that therapies exploiting ultra-

sounds are safe and do not exhibit dangerous counter-effects (in [11] a rich

overview of therapeutic ultrasounds applications is presented).

However in order to perform efficient ultrasonic communications inside the

body, a deep understanding of the peculiar features of this channel is needed.

In this chapter, we will present a complete experimental characterization of

the impulse response inside a human body channel.

In order to perform such characterization we developed a testbed which em-

ploys a human phantom of ballistic gel to mimic the human body propagation

features and perform a set of measurements to fully describe the channel

behavior as a function of the employed frequency, composition of the medium

and distance.

The rest of this chapter is organized as follows. In Section 2.1 relevant litera-

ture in the field is discussed. In Section 2.2 some basics of ultrasounds physics

are introduced and in Section 2.3 the main features of a ultrasonic transducer
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are recalled. In Section 2.4 the impulse response model for the channel un-

der consideration is derived and the measurement procedure carried out is

described in Section 2.5. In Section 2.6 numerical results are illustrated and,

finally, in Section 2.8, concluding remarks are drawn.

2.1 Related Work

The use of ultrasonic communications for health monitoring and diagnosis has

been proposed in the last years by different research groups. Indeed, together

with the use of ultrasounds in early diagnosis of fetus during pregnancy, it

was also proposed to employ them for communications inside the human

body.

In 2008 for the first time Infantis and Kalis [12] proposed a simple propagation

model exploring the theoretical feasibility of using ultrasounds inside the

body. In the same line of reasoning, in 2012 Santagati et al. published two

papers ([13] and [14]) presenting a detailed discussion on important trade-offs

regarding the frequency range, the transmission power, the bandwidth and

the transducers’ features.

Two years later the same authors developed the first simple prototype of a

software-defined testbed architecture providing an experimental demonstra-

tion of the feasibility of employing ultrasonic communications into human

body [15]. In the same year, also an hybrid opto-acoustic communication

among nanorobots was proved [16].

These feasibility studies were independently confirmed by Dressler, Charthad
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and Singer in 2015 and 2016, respectively. In particular, the first paper ad-

dressed the control and communication problem between intrabody nanosen-

sors and an external unit [17]. Charthad, instead, showed the implementation

of a mm-sized implantable device using ultrasonic power transfer and a hybrid

bi-directional data communication link [18]. Similarly other studies assessing

the possibility to use ultrasonic waves inside the human body appeared [19].

Finally Singer [20] showed an experimental acoustic transmission through real

pork tissues and beef liver achieving data rates up to 20-30 Mbps with QAM

modulation. On the same line of reasoning, in [21] the use of different modula-

tion schemes was considered in order to identify which mechanism performs

better in a variable frequency range, up to approximately 400 kHz. In 2017,

in [22] and [23] it was demonstrated for the first time also the possibility of

using multihop communications with four ultrasonic nodes communicating

through a human body phantom containing organic tissues (chicken bone,

muscles and skin). In the same year, in [22], the tissue overheating problem is

faced for the first time and a thermal aware routing protocol is proposed.

Different research groups have also focused their efforts on identification

of communication schemes for this peculiar environment. In 2015, for the first

time, Guan et al. considered the problem of designing optimal network control

algorithms for distributed networks like BANs. They proposed lightweight,

asynchronous, and distributed algorithms for either rate control or stochastic

channel access designed to maximize the throughput under energy constraints

([24, 25]). On the other hand, in [26] the authors proposed an Ultrasonic

WideBand (UsWB) transmission scheme combined with a multiple access
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technique, based on the idea of transmitting information bits spread over very

short pulses in a time-hopping pattern.

In [27] and [28] also other communication schemes and error control strategies

are discussed.

In [29] it was also proposed to employ ultrasounds at the nanoscale to design

a hierarchical Body Area Nano-Network (BANN) architecture consisting of

two types of devices, nanonodes and nanorouter which operate in the THz

band. In particular a human hand scenario is considered by taking also into

account the impact of path loss and molecular absorption noise.

However, in order to proceed with the implementation and development of

real acoustic body area networks, a proper channel impulse response analysis

is still needed. In [30] for the first time a simple channel model based on

simulation and in-vivo experimental measurements is discussed.

Later, in 2016, Rivet et al. developed a near and far field model based on a

simulated body channel [9]. More recent works such as [31] and [32], instead

presented a more detailed characterization of channels for frequencies up to 2

MHz.

Based on the above considerations it is evident that a deep understanding

of the acoustic channel response at frequencies higher than 2 MHz and for

distances longer than few centimeters is still missing and will be the focus of

this work.
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2.2 Ultrasounds Physics

Similar to light, acoustic vibrations travel in the form of a wave. However,

although other waves, like light waves, can travel in vacuum, acoustic waves

require an elastic medium such as a liquid or a solid to propagate.

With respect to the entire acoustic spectrum, ultrasounds are mechanical vibra-

tions covering frequencies greater than 20 kHz, far beyond the human hearing

range.

In a previous work [26] we have investigated on the suitable range of frequen-

cies to support transmission in tissues. In particular we have identified that,

given that attenuation and frequency are inversely proportional, depending

on tissues features, there is a maximum allowed carrier frequency for a given

maximum tolerable attenuation. In particular, in order to guarantee a suitable

communication distance (in the order of tens of centimeters) we observed that

the transmission frequency should not exceed 10 MHz. Similar results were

also derived independently in [33]. Accordingly, in this paper we will consider

the 1-5 MHz spectrum range since it represents a good trade-off between a

reasonable attenuation, as discussed above, and a good transducer size, as

discussed in the following.

Propagation of acoustic and, specifically, ultrasonic waves, is impacted by

a number of features. At a high level, the main problems exhibited during

pressure wave propagation can be classified in:

• attenuation of the transmitted signals, related to the absorption of sound
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waves in media and, specifically, in environments with high water con-

centration;

• signal perturbation and deformation due to variations in the sound speed

caused by an heterogeneous medium. Reflections on the material sur-

faces can also cause strong multi-path, generating parasite echoes and

interference;

• environmental noise inside the body due to ongoing biological mechanisms

inside the body.

In terms of communication issues, this result in absorption, reflection,

scattering, refraction, diffraction and interference.

• Absorption occurs when part of the sound energy is converted into heat

from a medium. This obviously introduces loss;

• Reflection occurs when a sound wave is back-propagated because of an

interface between two different media. Reflection can be specular if the

reflected wave is characterized by a single direction, or diffuse in case of

multiple directions

• Scattering causes a redistribution of the acoustic energy among different

wave numbers and frequencies resulting in spectral and directional

broadening of the waves at high frequencies;

• Refraction corresponds to a change of the sound beam directivity induced

by the mean velocity gradient of the flow;
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• Diffraction occurs when the sound wave meets a large obstacle so that a

shadow is generated behind, where the incident wave could not pene-

trate deeply;

• Interference happen when different acoustic sources emit sound waves

at the same frequency and their distance equals a wavelength multiple.

Briefly, interference appears where multiple waves are superimposed.

In the following wave propagation and particle motion will be described.

2.2.1 Wave Propagation and Particle Motion

Acoustic wave propagation consists of a sequence of compressions and dilata-

tions into an elastic medium. The propagation rate of the consequent medium

perturbation is denoted as acoustic wave velocity. The propagation velocity of

an acoustic wave depends on the propagation medium as

c =

√
E
ρ

(2.1)

where E is the elastic modulus that quantifies the relative variation of volume

or density as a function of pressure variations. ρ is the medium density.

At a given temperature and pressure, in a particular point in space, the

c velocity in a perfectly elastic material is independent of temperature and

pressure , i.e. c(T, p) = c, and the relationship between velocity, frequency f

and wavelength of a wave λ is:

λ =
c
f

(2.2)
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However, an ultrasonic source generates more than one mechanical wave.

In particular, four types of waves can be distinguished (Figure 2.1):

• The Longitudinal wave, that is a compression wave in which the particle

motion and the wave propagation share the same direction;

• The Shear wave where the particle motion and the direction of the propa-

gation are perpendicular;

• The Surface (Rayleigh) wave, that travels through the surface of a material

and has an elliptical particle motion. Its depth of penetration is approxi-

mately equal to one wavelength and the velocity is approximately 90%

of the shear wave velocity of the material;

• The Love wave that has a complex vibration and is parallel to the plane

layer, perpendicular to the wave direction.

All these waves induce pressure variations over the three dimensions and

can be fully described by the Helmholtz equation:

∇2P − 1
c2

∂2P
∂t2 = 0 (2.3)

where P(x, y, z, t) is the pressure field of a wave propagating in space as a

function of time, and c(x, y, z) is the local material propagation velocity that,

in general, can be dependent on the position.

If the ultrasonic wave encounters an absorbing medium, the initial pressure

P0 decays following the below relationship:

P(d) = P0e−βd (2.4)
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Figure 2.1: a) Longitudinal (particle motion and wave propagation in the same
direction), b) Shear (orthogonal particle motion and wave propagation) , c) Rayleigh
(elliptical particle motion and wave propagation across the surface) and d) Love
(particle motion parallel to the plane layer and orthogonal to wave propagation)
waves ([34]).

where d is distance and β is the amplitude attenuation coefficient.

Clearly, in case of non-isotropic environments, multiple set of waves appear

due to multipath fading. Their number and entities are related to the particular

scattering phenomenon generated in the material.

2.3 The Ultrasonic Transducer

An ultrasonic transducer is a device used to generate and detect ultrasonic

waves. Different types of ultrasonic transducers are available, depending

on the specific application they are designed for. Contact, immersion, and

air-coupled transducers are some of the most common ultrasonic devices

employed in many applications. They mainly differ on the coupling media

placed between the transducer and the sample. Contact transducers employ
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a highly viscous fluid for coupling so that a reduced mismatch between the

impedance of the tested material and the transducer is achieved; immersion

transducers use instead water for coupling. Air-coupled transducers use air

for the waves to propagate.

The use of a transducer implies a good knowledge of its physics. Each of its

parameters influences the propagation of acoustic waves inside the material.

In Figure 2.2, the main components of a generic ultrasonic transducer are

shown. It consists of an active element, a backing and a wear plate. The

active element represents the most relevant bit, where a piezo or ferroelectric

material trasduces the electrical energy into a mechanical wave.

Once the ultrasonic wave leaves the wear plate, two propagation regions can

be identified: the near field (or Fresnel zone) and the far field (or Fraunhofer zone).

In the near field a series of maxima and minima of the echo amplitude occur

until the last maximum is reached, at distance N (see Figure 2.3).

Then, in the far field, the beam profile spreads and the sound field pressure

gradually decreases.

The near field distance N depends on the transducer diameter D, the propa-

gation velocity of the acoustic wave c and the frequency f as follows:

N =
D2 f
4c

(2.5)

Of note, according to eq. (2.5) the higher the frequency or the transducer

diameter, the larger the near field region.

The far field beam spread can also be characterized by its divergence angle
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Figure 2.2: Main components of an acoustic transducer.

according to the following equation:

sin
γ

2
=

0.514v
f D

(2.6)

where γ
2 is the half -6dB angle spread.

This angle measures the divergence of the beam starting from the central

axis to the point where the sound pressure has decreased by one half (-6 dB).

The shape of the beam and, in particular, the near and far field regions for

a particular material, can thus be appropriately tuned as a function of the

transducer size and frequency.
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Figure 2.3: Near and Far Field [35].

2.4 Channel Characterization

In order to completely characterise the wireless ultrasonic channel, in this

section we will derive the impulse response. As in other wireless channels,

this can be mathematically modeled as a linear filter with a complex low pass

equivalent impulse response in the form of [26, 36]:

h(t) =
L

∑
l

αlδ(t − τl) (2.7)

where α and τ are the complex gain and delay for each of the l replicas and

L is the overall number of replicas due to multipath, i.e. l ∈ {1 . . . L}. Indeed,

in a wave propagating a medium, at least three components can be identified:

• Direct wave, which travels through the medium in Line-of-Sight (LoS)

from the transmitter to the receiver;
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• Lateral wave, which propagates out of the medium, along the external

surface and, then, enters the medium to reach the receiver;

• Reflected wave, which travels through the medium and is reflected at the

interface between the medium and other tissues such as bones, muscles

or external air.

Accordingly, in eq. (2.7), among the L components we will denote LD the

number of direct wave components, LR the number of reflected components

and LL the number of lateral components, each characterised by its own gain

and delay.

Another important parameter used to characterize a channel is the path

loss, defined (in logarithmic form) as the difference between the transmitted

power (at the end of the transmission system) and the received power (at the

end of the receiver antenna, before entering the receiver circuit), i.e.

PL = Pt − Pr (2.8)

In the above eq. (2.8), the received power1 is given (in logarithmic form)

as the sum of the received power of the three types of waves (direct, reflected

and lateral waves) and thus

Pr =
LD

∑
lD

|αlD |
2 +

LR

∑
lR

|αlR |
2 +

LL

∑
lL

|αlL |
2 (2.9)

In order to derive the channel impulse response, the excess delay and the

mean excess delay are useful metrics that can be derived. The former quantifies

1We are assuming that Pt = 1 W.
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the time elapsed between the first and the last arriving components, while the

latter is the first moment of the power delay profile and can be derived as:

τ =
∑k Pkτk

∑k Pk
(2.10)

where τk is the delay of the k-th replica and Pk is the associated instanta-

neous power.

Finally, the root mean square (RMS) delay spread is also calculated to give a

complete description of the channel. This parameter is considered as a good

indicator of multipath spread, because it gives hints on the occurrence of a

possible inter-symbol interference (ISI).

The RMS delay spread is defined as:

τRMS =
√
(τ2)− (τ)2 (2.11)

where (τ2) is

(τ2) =
∑k Pkτ2

k
∑k Pk

(2.12)

and τk is the associated delay for the k-th replica.

The the above metrics being defined, in the following sections we will detail

the experimental procedure used to derive the channel impulse response in a

real setting.
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2.5 Measurement Procedure

The measurement procedure required use of a set of laboratory instruments.

The signal input is provided by an Agilent 33220A waveform generator [37]

that produces a 10 V peak-to-peak Voltage pulse with 9% duty cycle and null

offset. Via BNC connections, this pulse is delivered to a V326-SU Olympus

transducer [35] that emits the resulting ultrasonic wave through an artifical

human body mimicking phantom. The latter consists of 10% ballistic gelatin,

used to mimic human muscle tissues [38]; we also considered a set of exper-

iments where an animal bone is encapsulated in the gel in order to test an

even more realistic scenario for BANs 2. Many studies has been conducted

on ultrasounds propagation speed in phantom tissues. Based on experiments

described in [39], [40] and [41] it has been observed that the ballistic gel sound

velocity is slightly lower than in water, exhibiting values around 1450 m s−1.

The ultrasonic pulse propagates inside the gel block in such a way to generate

multiple copies, as foreseen and discussed above. Then, a receiving transducer

located at the opposite side of the ballistic gel block, sends the received signal

to a Mini-Circuits ZFL-1000LN+ Low Power Amplifier (LNA) [42] connected

to a Keysight Infiniium oscilloscope 900A series oscilloscope [43].

The latter estimates amplitude and delay of the received pulse.

An illustrative example of the laboratory setup is shown in Figure 2.4.

To control the overall system we used the National Instrument LabVIEW

software [44] to develop a customized Virtual Instrument (VI) and control

2This work has respected the European Commission Guidelines on scientific activity
involving animals. In particular, organic tissues (e.g. bones) have been obtained from those
commercially available.
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either the waveform generator and the oscilloscope. In Figure 2.5 the front

panel of our VI is shown.

In particular, the VI sets the generation of a pulse train at a defined fre-

quency and queries the oscilloscope about the received amplitude. The fre-

quency varies from 1 MHz to 5 MHz with a 1 kHz step. The choice of this

set of frequencies is motivated by our preliminary work in [14, 26] where

we showed that this range guarantees an appropriate trade-off between a

controllable transducer size, low tissue attenuation and a high directivity.

After repeating each set of measurements one hundred times, a table report-

ing the transmitted signal amplitude, the received signal amplitude and the

frequency used for each iteration has been obtained.

We performed the measurement campaign in different settings. In par-

ticular, we varied the size and the composition of the medium considering

a ballistic gel block with three possible widths, namely 5.5 cm, 10 cm and

12 cm. Then, for each size, we considered not only the pure ballistic gel case,

but also the condition where an animal bone 2 cm × 5 cm × 0.5 cm in size is

encapsulated in the gel. Our results provide an accuracy of 97.5%. Figure 2.6

illustrates the ballistic gel block where a bone is embedded.

The size of the block was chosen taking into account the transducer prop-

erties. Indeed, by remembering eq. (2.5) and given a transducer diameter

of 952 mm [35], we calculated the N value for 3.7 MHz which is perfectly

compatible with the central frequency declared in the transducer datasheet,

by also taking into account that the presence of the LNA partially distorts
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Figure 2.4: Experimental setting: Waveform generator, transmitter and receiver
transducers, body phantom made of ballistic gel and oscilloscope.

the signal, thus reducing the central frequency with respect to the declared

value. Accordingly, the desired near field distance is approximately 5.7 cm.

The other block sizes (10 cm and 12 cm) were considered in order to test the

possibility of longer distances.
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Figure 2.5: Customized Virtual Instrument developed in LabVIEW.

Figure 2.6: Ballistic gel with embedded bone.

2.6 Numerical Analysis

In the following we will discuss the impact of channel composition and dis-

tance on different performance metrics such as delay and frequency response.

Tables 2.1 and 2.2 summarise all the experimental parameters obtained for

each configuration. We will refer to them in the below considerations 3.

3In doing our experiments we assumed that a perfect matching of impedance happens
and disregarded mismatch or microscopic phenomena that could arise in the derivation of
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5.5 cm 10 cm 12 cm

Homo Hetero Homo Hetero Homo Hetero

α(dB) Av τ(µs) α(dB) Av τ(µs) α(dB) Av τ(µs) α(dB) Av τ(µs) α(dB) Av τ(µs) α(dB) Av τ(µs)

1st component -9.51 37.47 -14.90 29.46 -16.98 70.05 -17.21 68.82 -17.55 80 -25.43 84.36

2nd component -52.39 112.8 -40.93 89.51 -50.4 192 -47.27 967.92 -41.98 240.76 N.A. 250

3rd component N.A. 187 N.A. N.A. -53.36 315.8 N.A. N.A. N.A. N.A. N.A. N.A.

Table 2.1: Gain module and delay of each component in all configurations

2.6.1 Impulse Response

To derive the impulse response we recall the eq. (2.7), which can be character-

ized upon specifying the gain (α) and the delay (τ) associated to each replica.

At every measurement campaign, we send a pulse with 9% duty cycle and

null offset; accordingly, the received signal consists of three multipath replicas,

i.e. the direct, surface and reflected waves. When the last component exhibits

a power level comparable with noise, the weak replica cannot be detected by

the receiving transducer. This occurs when distances are large (e.g. 12 cm) or

a heterogeneous channel (ballistic gel with bone) significantly attenuates the

power of each component.

Figure 2.7 shows the gain modulus in case of homogeneous channel (i.e. pure

ballistic gel) and a 10 cm gel block size. Note that the direct component reaches

the transducer after 70.5 µs with a peak amplitude of −16.98 dB; the second

component has a delay equal to 192 µs and its peak amplitude is −50.4 dB.

Finally, the last component reaches the receiver after 315.8 µs with a −53.36 dB

peak amplitude.

Table 2.1 summarizes all α and τ values for the considered configurations.

the impulse response and all parameters discussed in the rest of this section.
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5.5 cm 10 cm 12 cm

Homogeneous Heterogeneous Homogeneous Heterogeneous Homogeneous Heterogeneous

Path Loss (dB) 9.51 14.90 16.98 17.21 17.55 25.43

Excess Delay (µs) 75.33 60.05 121.95 899.1 160.76 165

# of replicas 3 2 3 2 2 2

τ (µs) 37.195 ± 0.27 29.595 ± 0.02 70.269 ± 0.005 69.624 ± 0.031 80.293 ± 0.03 83.545 ± 0.05

τRMS (µs) 6.4015 ± 0.0005 30.20 ± 0.04 6.512 ± 0.768 26.79 ± 0.02 6.922 ± 0.289 N.A.

Table 2.2: Main impulse response parameters for all configurations

Figure 2.7: Gain modulus in case of homogeneous channel and
10 cm gel block size.

2.6.2 Path Loss

In this section we investigate on the path loss. We calculated the path loss for

each considered scenario, i.e. both Homogeneous and Heterogeneous channel,

and three different gel block sizes. We observed that, as expected, the path

loss increases with distance and with the addition of discontinuities in the

medium.

As indicated in Table 2.2, in case of Homogeneous channel, the path loss seems

to increase approximately at an average rate of 0.972 dB/cm.

The addition of a discontinuity element (i.e. heterogeneous case) makes

the path loss decrease in a non-linear manner, reaching high values at larger
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distances. Note that in particular, at 12 cm, the gain modulus is −25.43 dBm

while at 10 cm it was −17.21 dBm.

2.6.3 Excess Delay

In this paragraph we investigate on the excess delay which is defined as the

time interval between the arrival of the first and the last signal components.

Based on this definition, it is clear that the estimation of this parameter is

affected by the number of copies obtained at the receiver. Accordingly, in order

to take into account the lack of received components in case of larger distances,

we considered only the time interval between the reception of the first and the

second components. In case of Homogeneous channel, at 5.5 cm gel block size

the excess delay is 75.33 µs, at 10 cm it is almost doubled, i.e. 121.95 µs, while

for 12 cm the value of the excess delay is 160.7 µs. These values suggest that

the excess delay increases approximately at a rate of 10.26 µs/cm.

Observe also that, as expected, the larger is the block size — and thus the

distance between transmitter and receiver — the higher is the difference

between the time employed by the direct wave to reach the destination and

the time needed by the reflected components.

In case of Heterogeneous channel, the presence of scattering effects seems

to make this parameter unpredictable with respect to distance. Indeed, the

measured values of the excess delay are: 60.0 µs for 5.5 cm gel block size,

899.1 µs for 10 cm and 165 µs for 12 cm. Note that, in case of 10 cm, due to the

unpredictable effects of a not perfectly identical positioning of the animal bone

with respect to the other two cases, the scattered components are reflected
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multiple times, thus causing an excessive and unpredictable increase in the

delay.

2.6.4 Mean Excess Delay

We have observed so far how the delay spread metrics are influenced by the

number of received copies. Similar considerations can be done for the mean

excess delay and for the RMS delay spread reported in Table 2.2.

Table 2.1 shows how τ depends on the number of replicas and the gel block

size. Note that, the presence of discontinuity elements in the communication

channel (i.e. heterogeneous case) does not necessarily correspond to an in-

creased value of the mean excess delay. In fact, multipath copies could sum to

superficial waves in a positive or destructive manner.

In Figure 2.8 we show the Cumulative Distribution Function of τ in case of

10 cm gel block size both for Homogeneous and for Heterogeneous channel.

Note that the positive summing effect due to the presence of the discontinuity

element at 10 cm is evident by observing the set of the mean excess delay

values. However note that the delay associated to the direct wave (i.e. the first

component) is approximately unchanged.

2.6.5 RMS Delay Spread

In this paragraph experimental measurements on RMS delay spread are pro-

vided. From Table 2.2 observe that τRMS seems to slightly depend on the

distance between transmitter and receiver, while it is mainly impacted by the

channel composition.
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(a)

(b)

Figure 2.8: Distribution of Mean Excess Delay τ at 10 cm gel block size in both
homogeneous (a) and heterogeneous (b) channels.

Both for 5.5 cm and 10 cm block sizes, observe that the RMS delay in the ho-

mogeneous case is about one fifth as compared to the heterogeneous case.

This means that the effect of having a homogeneous channel is to reduce the

variability in the delay.

Unfortunately in case of 12 cm gel block size, the RMS for the heteroge-

neous case cannot be recorded because in this case only one component arrives

at the receiver. As previously stated, in case of higher distances and hetero-

geneous channel, each component is heavily attenuated; so in this particular

case, even the second component has a low amplitude, comparable with noise
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Figure 2.9: CDF of the RMS delay spread in case of homoge-
neous channel for 5.5 cm, 10 cm and 12 cm gel blocks.

and, thus, cannot be recorded.

In Figure 2.9 we report the Cumulative Distribution Function of τRMS in

case of homogeneous channel for three distinct gel block sizes. It is clear that

at lowest distance this parameter is more stable showing a standard deviation

σ equal to 0.0005 µs. This is because when the transmitter-receiver distance

is low, in spite of the different path traveled by the three components, the

delay remains limited. In the other cases instead, upon increasing the distance

between the transmitter and the receiver, the difference in the traveled path

becomes relevant and the RMS delay spread increases. In the extreme case,

when only two components are received (i.e. gel block size 12 cm), the RMS

delay spread evaluation is imprecise and suffers for the lack of part of the

delay contribution.

Note that in the same figure we also illustrate the comparison between

the experimental data and the log-normal distribution. As evident, the RMS

Delay Spread can be described quite well by the log-normal fit.
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For the homogeneous channel described above, it is possible to calculate

the coherence bandwidth of the channel which is proportional to the inverse

of the RMS delay spread τRMS. Accordingly, we could consider this channel

as frequency- selective for signals of bandwidth above approximately 30 kHz

[45].

2.6.6 Effect of Frequency

In this paragraph we perform an analysis of the gain modulus (i.e. |α|) as a

function of the frequency used.

In particular, we plot the transfer function modulus (i.e. the attenuation)

depending on the frequency being selected in the experiments which has been

chosen in the range 1.6-5MHz based on the considerations done in previous

sections.

In Figures 2.10 and 2.12 we show |α| for each of the three gel block sizes

considered, upon issuing either a square wave or a pulse. The square wave

has 10 peak-to-peak Volt amplitude, 50% duty cycle and null offset. The pulse

has 10 peak-to-peak Volt amplitude, 9% duty cycle, null offset. In the same

plot we report also the standard deviation and the confidence interval (in grey

color) set to 97.5%. In Figures 2.11 and 2.13 the same analysis is performed in

case of heterogeneous channel.

By comparing Figures 2.10 and 2.11, as expected, we observe that the use

of heterogeneous channels with a higher density causes an increase in |α|.

This is also evident by considering Figures 2.12 and 2.13. Note that, in case of
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Figure 2.10: |α| Vs. Frequency in homogeneous channel when
issuing a square pulse.

Figure 2.11: |α| Vs. Frequency in heterogeneous channel when
issuing a square pulse.
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Figure 2.12: |α| Vs. Frequency in homogeneous channel when
issuing a pulse.
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Figure 2.13: |α| Vs. Frequency in heterogeneous channel when
issuing a pulse.
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a heterogeneous channel, the standard deviation increases significantly too,

especially in case of 10 cm which has shown to be the most critical size for the

gel block size. Also note that, due to the features of the ultrasonic transducer

being employed, i.e. the V326-SU Olympus transducer, which has a maximum

sensitivity at 3.4-3.5 MHz, |α| is minimal at these frequencies. We also observe

that, due to the small coherence bandwidth, in case of pulse wave, the high

signal frequency leads to larger variations in the attenuation.

2.7 Effect of propagation inside tissues

In this section we investigate on the dynamics of ultrasonic signal propagation

inside tissues. Specifically we developed k-Wave simulations [46] of our

testbed system consisting of a cylinder of ballistic gel with a bone embedded

in it. In Figure 2.14 we show the considered topology, the signal received at

different positions inside the bone, namely at the ingress of the bone, in the

intermediate positions at 5 mm of distance each, till the egress of the bone. In

Figures 2.15 (a) and (b) we observe the intensity of the received signal at the

different positions inside the bone and at different time instants. Note that the

maximum received signal intensity decreases upon moving rightmost inside

the bone. This is because, as expected, the bone tissues add an attenuation to

the signal. In Figure 2.15b a graphical representation of the intensity is shown

with colors ranging from red to grey. Note the drastic decrease in the received

signal at the different interfaces, in particular at the egress point of the bone.

In Figures 2.16 three snapshots report the ultrasonic acoustic field at dif-

ferent time instants and a different positions, inside the phantom and in
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Figure 2.14: 2D topology considered for k-Wave simulations.

proximity of the bone. Note that the effect of the presence of the bone is to

cause numerous reflected waves and, thus, the presence of bone and similar

heterogeneous tissues as compared to homogeneous ballistic gel, can turn

into an advantage because it allows, through the existence of reflections, to

propagate the signal also to far-away destinations.
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(a)

(b)

Figure 2.15: Received Ultrasonic Signal Intensity at different positions across the bone
tissue as a function of time (a) and as a function of position and time (b).
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(a)

(b)

(c)

Figure 2.16: Ultrasonic field as a function of the distance traveled at three different
time instants.
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2.8 Chapter Summary

In this chapter, the use of ultrasounds has been introduced for communica-

tions across intra-body sensors.

To allow a reliable communication, an impulse response analysis of a channel

comparable to the human body has been presented and assessed using exper-

imental data. Distribution of mean excess delay and RMS delay spread has

been investigated showing that they can be fitted by a log-normal distribu-

tion. We have discussed the effect of considering an homogeneous channel or

a heterogeneous one where components with different densities have been

added. Also the effect of transmitter-receiver distance has been investigated.

The coherence bandwidth of the channel has been estimated in relationship

with the RMS delay spread. The behavior of the channel at different frequency

ranges has been studied as well as the propagation of the ultrasonic wave

across heterogeneous tissues. Results provided in this work can be consid-

ered as a preliminary useful tool for the design of intra-body communication

systems for precision medicine.
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Chapter 3

New methods for RNA-sequencing
data analysis

The content of this Chapter is partially included in the abstract published on Rheuma-

tology as [47].

While treatment fine-tuning can be achieved by constant monitoring of

selected parameters, preliminary studies on prediction of response should be

set for those pathologies where multiple therapies are available.

Even for long known diseases as for example rheumatoid arthritis, treatment

options have improved substantially with both synthetic and biologic thera-

pies. Yet, treatment response remains low with around 40% of patients failing

treatments.

The identification of gene expression levels patterns has proven to be a promis-

ing way to stratify patients and therefore help clinicians in the decision making

process of a therapy. On the other hand, Next Generation Sequencing (NGS)

technology opened the doors to a vast quantity of RNA-sequencing data in-

creasing chances of getting genetic signatures associated with phenotypes.

36



In in the first section of this Chapter (3.1) we will introduce a new network-

based tool to analyse RNA-seq data and highlight the activation of biological

interactions characterising groups of patients.

In the second section (3.2) a new way of aggregating and visualising pathway

alterations across multiple patient groups will be discussed.

3.1 Pat-BINE: A new network-based tool to charac-
terise sub-groups of patients

Many statistical tools have been developed over time to determine charac-

teristic genes related to specific groups of patients. However, a list of genes

is not sufficient to understand underlying biological mechanisms. A biolog-

ically relevant view is fundamental to analyse how the identified genes are

interacting within patient sub-groups. This can facilitate repurposing of drugs

and stratified treatment based on interfering somewhere within a pathway

rather than only relying on very few genes to target. On the other hand,

several tools outputting a list of up or down-regulated pathways are available

(e.g. IPA [48], MITHrIL [49], Reactome [50], SPIA [51], PARADIGM [52], etc.).

However, they point to predefined pathways without specifying the links

that are effectively active into it. In this section we will introduce a novel

pathway-based tool called Pat-BINE (Patients Biological Interactions Network

Extractor). Pat-BINE exploits the information of four well curated databases to

extract sub-networks of relevant biological interactions characterising patient

sub-groups.

This allows clinicians not only to have an indication of the altered genes in a
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group, but also to explore how they are linked together in a comprehensive

network of interactions.

The main difference with a Differentially Expressed Gene (DEG) analysis

lies in the network view. While a DEG analysis points to single genes, the

described approach looks at differentially active interactions occurring among

the highly expressed genes. For this reason, the tool can be used in combi-

nation with a DEG analysis allowing to identify those genes originating an

up/down-regulation (upstream genes) or genes that will be affected from it

(downstream genes).

In the following sub-sections we will describe the developed pipeline in four

steps.

Step 1 - Aggregation

Throughout this phase, patient samples are stratified according to a parameter

of interest.

In Chapter 4 we will describe two cases of study originated by two respec-

tive parameters. In the first one, the patients are divided according to three

histopathological classes. In the second case, a treatment response parameter

is used to split the cohort into good, moderate and none patients.

As standard NGS RNA-seq data, patients’ samples are organised in a count

matrix of gene counts per sample. After Variance Stabilizing Transformation

(VST) normalisation, the count matrix is separated into as many sub-matrices

as groups of samples the stratification defined (three matrices for both studies

in this case).

Each sub-matrix is finally reduced to a vector by replacing each row with its
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mean value. As a result, the mean gene expression level of each gene for each

category is obtained.

Step 2 - Categorical Networks Creation

At this stage, a list of genes with their related average value is available for

each category.

These genes can be linked to one another by utilising available pathway

information. This implementation uses the KEGG [53] pathway repository

enriched with miRNA interactions from miRTarBase [54] and miRecords [55].

Interactions between transcription factors (TFs) and microRNAs (miRNA) are

added from TransmiR [56]. If the count matrix does not contain any TFs or

miRNAs those interactions are ignored. This yields to multiple networks of

biological interactions built on the gene lists found in Step 1. Here, nodes

represent biological entities such as genes, proteins or miRNAs, while edges

serve as activation or inhibition interactions among them. A weight is inferred

to each node according to its average value estimated in Step 1. Therefore,

each network shares the same topology (same nodes and edges) and differs

on weights attributed to nodes.

Step 3 - Expression-based cut-off and percolation analysis

To reduce the number of nodes and highlight the most relevant interactions,

low expressed genes are removed from each category network. This is done

by making use of a user-provided threshold. To choose this threshold, a

percolation analysis is performed. Commonly used in statistical physics

and mathematics, percolation describes the behaviour of network properties
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when nodes or edges are progressively removed [57]. Network parameters

are usually plotted as a function of the threshold, and the optimal cut-off

value is chosen in correspondence of a change of the function slope or with

an inflection point. In the presented method we choose the threshold that

would have led to the maximum average number of statistically significant

interactions across the three networks (i.e. 75th quantile cut-off). Once the

cut-off is set, all the nodes whose mean expression is below the threshold are

removed from every network. This naturally leads to different sets of nodes

being discarded from each network, therefore, at the end of this phase, every

network has a different topology.

Step 4 - Remove overlapping links across networks

In the last phase, the category networks are compared, and all the overlapping

links are removed. In other words, if the same edge is present in two or more

networks, it will be erased from both of them. This final step allows to bring

out category-specific interactions avoiding redundant information between

two or more categories.

This tool has been applied to the Pathobiology of Early Arthritis Cohort

(PEAC) cohort [5]. Details and results will be discussed in Chapter 4.

3.2 A new feature to visualise altered pathways over
multiple groups

The tool described in the previous section can give a detailed description of

the biological interactions uniquely activated in a selected category of patients.
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This comes extremely useful while studying the etiology of a pathology and

trying to understand upstream causes and downstream consequences of a

gene level alteration.

Anyway, when a more general view is required, a traditional pathway analysis

can be satisfying enough to compare distinct category of patients.

Nevertheless, when it comes to compare more than two categories, it is often

hard to visualise the different outcomes at a glance. All the traditional pathway

analysis tools offer the possibility of comparing only two groups of patients at

a time (usually treated Vs control patients).

To cope with this issue we took advantage of the MITHrIL software [49] to

develop a tool able to show the alteration of a pathway over three or more

groups of patients.

The traditional way of using this software requires the calculation of the Log-

Fold-Change of differentially expressed genes between two groups of patients.

This can be easily obtained by means of widely spread software such as limma

[58] or DESeq2 [59].

Anyway, MITHrIL also allows to compare the gene expression profile of a

single patient to its internal null model. This outputs an estimated alteration

of every available pathway compared to the random model.

We used this feature to show the different levels of pathways alteration across

multiple group of patients.

The details of this approach can be summarised in the following steps:

• Step 1 - The gene expression profile of each patient is filtered and log2

normalised by means of limma/voom [58, 60].
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• Step 2 - For each pathway, the estimated alteration from each patient is

collected.

• Step 3 - For every pathway, a boxplot is drawn grouping the patient

according to a user defined categorisation. This allow to compare the

alteration of a pathway of interest over multiple groups at a glance.

This tool has been applied to the Pathobiology of Early Arthritis Cohort

(PEAC) cohort [5]. Details and results will be discussed in Chapter 4.
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Chapter 4

Clinical Trials

The content of this Chapter (Section 4.1) has been presented at the American College

of Rheumatology Convergence 2020 [61]. An extended report will be submitted to

Annals of the Rheumatic Diseases (ARD) as [62]. The content of Section 4.2 will be

submitted to Science translational medicine as [63].

Find genetic signatures of treatment response is certainly a gold objective for

precision medicine. Although laboratory and animal tests can give an impor-

tant contribution, the relevance of clinical trials cannot be disregarded. They

can highlight what does not work in humans and reveal distinct sub-groups

of patients.

For this reason, in this chapter focuses on the analyses and results of two

clinical trials.

The first Section (4.1) relies on the Pathobiology of Early Arthritis Cohort

(PEAC) [5] whose RNA-seq data is available under request at [64]. A complete

transcriptomic analysis on this trial can be found at [5] and [65]. We exploited

this data to validate the tools described in Chapter 3 and find new insights on
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rheumatology arthitis.

In Section 4.2 a transcriptomic analysis of RNA-seq data collected in the TRial

of Anti-B-Cell Therapy In patients with primary Sjögren’s Syndrome (TRAC-

TISS) [6] will be adressed. It represents the first longitudinal transcriptomic

analysis on salivary gland biopsies collected over a year time in Sjögren’s

Syndrome patients treated both with placebo and immuno-modulatory thera-

peuthic agent.

4.1 Pathobiology of Early Arthritis Cohort
Study of histological pathotypes and clinical treatment response
classes by means of network and pathway analysis

Rhumatoid Arthritis (RA) is a chronic inflammatory autoimmune disease that

can cause joint pain, damage and disability. [66]

Several studies have tried to characterize the pathology based on gene expres-

sion in the disease tissue, i.e. the synovial membrane. However, most of these

studies have investigated the gene expression in synovial tissues obtained

mostly from joint replacement, thus from patients with well-established or

terminal disease, with the additional bias of concomitant medications. Re-

cently, in [5] and [67] a large cohort of patients with early treatment-naïve

RA was profiled, describing different histological patterns, i.e. pathotypes

(lympho-myeloid, diffuse-myeloid, pauci-immune fibroid) with correspond-

ing molecular signatures including RNA-sequencing of the synovial tissue.

Additionally, they showed how response to conventional synthetic Disease-

Modifying Anti-Rheumatic Drugs (csDMARDs) correlates to gene modules.

In the study described in this chapter, we utilise gene expression data derived
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from the same cohort of treatment-naïve early RA patients, but apply the

novel pathway-based tool Pat-BINE defined in Chapter 3. This allows to

explore a comprehensive network of interactions that are occurring in patients

classified according to synovial inflammation (pathotypes) and response to

treatment with csDMARDs.

4.1.1 Patient cohort

In total, RNA-seq data of 94 patients with early, treatment-naïve RA fulfilling

the 2010 ACR/EULAR Criteria were recruited into the Pathobiology of Early

Arthritis Cohort (PEAC) [5, 67]. We removed 11 samples due to poor RNA

quality or ungraded histopathology, the remaining 83 were included in our

study (see Table 4.1). As previously described1,2, patients have been stratified

into three distinct synovial histopathological groups:

1. lympho-myeloid (n=49) characterized by lymphoid cell infiltration such

as T cells, B cells and plasma cells together with myeloid cells;

2. diffuse-myeloid (n=18) with a high prevalence of cells from the myeloid

lineage with low numbers in B cells and plasma-cells;

3. pauci-immune (n=16) identified by fibroblast expansion while immune

cells are sparse.

After baseline treatment naÃŕve biopsy, patients underwent six months of

csDMARD therapy and their responsiveness was assessed according to DAS28

EULAR criteria. This resulted in 26 good, 32 moderate and 9 non responders.
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Lymphoid (N=49) Myeloid (N=18) Fibroid (N=16) Total (N=83) p value

Age (years) 52.3 (16.2) 50.4 (16.5) 53.2 (15.0) 52.1 (15.9) 0.865

Gender 0.608

- F 37 (75.5%) 12 (66.7%) 13 (81.2%) 62 (74.7%)

- M 12 (24.5%) 6 (33.3%) 3 (18.8%) 21 (25.3%)

Disease duration (months) 5.9 (3.3) 4.8 (2.6) 7.0 (3.5) 5.8 (3.3) 0.152

RF 0.203

- positive 32 (69.6%) 9 (52.9%) 7 (46.7%) 48 (61.5%)

- negative 14 (30.4%) 8 (47.1%) 8 (53.3%) 30 (38.5%)

CCP 0.025

- positive 39 (84.8%) 10 (55.6%) 9 (60.0%) 58 (73.4%)

- negative 7 (15.2%) 8 (44.4%) 6 (40.0%) 21 (26.6%)

DAS28 6.2 (1.2) 5.6 (1.2) 5.2 (1.6) 5.8 (1.3) 0.029

ESR (mm/hr) 50.9 (28.1) 37.6 (25.4) 30.8 (27.7) 44.1 (28.4) 0.025

CRP (µ g/mL) 25.0 (26.5) 17.5 (26.0) 14.4 (41.7) 21.3 (29.9) 0.395

TJC 12.6 (7.2) 9.9 (6.3) 10.9 (8.9) 11.7 (7.4) 0.396

SJC 8.4 (5.7) 7.1 (4.3) 5.2 (5.0) 7.5 (5.4) 0.116

VAS 67.9 (24.0) 61.1 (21.7) 57.8 (27.1) 64.5 (24.2) 0.287

HAQ 1.6 (0.8) 1.4 (0.6) 1.6 (0.8) 1.5 (0.7) 0.499

Table 4.1: Baseline demographics of treatment-naïve RA patients recruited into the
Pathobiology of Early Arthritis Cohort (PEAC).

4.1.2 GO enrichment analysis

The presented methodology was applied to five categories of patients deter-

mined by their synovial histopathology and their response to six months of

csDMARD treatment. The categories are:

• Lympho-myeloids

• Diffuse-myeloids

• Pauci-immune fibroids

• Good responders

• Non responders
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Each resulting network is made of a number of easily identifiable clusters.

To perform a systematic interpretation of these clusters we used the clueGO

Cytoscape plugin [68].

ClueGO exploits several Gene Ontology (GO) and pathway repositories to

find the GO terms/pathways associated to a list of genes given in input. Its

features are REST enabled, so we analysed each cluster in an automated way

via R software.

We summarised the ClueGO results in Table 4.2.

First, the GO terms/pathways associated to each cluster were filtered by BH

adjusted p-value < 0.05. Then the table was built on the following columns:

• Network, indicating of one of the five networks associated to a group

• Cluster, identifying the cluster inside a network (cluster IDs were as-

signed for each cluster in a network)

• Associated GO Term, the GO term/pathway containing the largest number

of genes making the cluster

• Nr. of Associated Genes, indicating the actual number of the genes con-

tained in the Associated GO Term, over the total number of genes in the

cluster

• % of Associated Genes, the percentage of genes in the cluster contained in

the Associated GO Term

In the following sections findings from each group will be discussed.
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Network Cluster Associated GO Term Nr. of Associated Genes % of Associated Genes

Lympho-myeloid

A Chemokine signaling pathway 29/31 93.5

B Antigen processing and presentation 6/6 100.0

C Focal adhesion 31/33 93.9

D TNF signaling pathway 20/41 48.8

E RIG-I-like receptor signaling pathway 7/8 87.5

F Apoptosis 33/65 50.8

G MAPK signaling pathway 44/71 62.0

H Wnt signaling pathway 13/16 81.2

I positive regulation of interleukin-8 production 6/12 50.0

L Interleukin-2 family signaling 3/3 100.0

M disulfide oxidoreductase activity 4/4 100.0

Diffuse-myeloid

A Focal adhesion 34/45 75.6

B PPAR signaling pathway 22/28 78.6

C Dopaminergic synapse 23/30 76.7

D EPHA-mediated growth cone collapse 3/3 100.0

E Cam-PDE 1 activation 4/4 100.0

F Adherens junction 5/6 83.3

Pauci-immune Fibroid

A Regulation of RUNX1 Expression and Activity 3/3 100.0

B Notch signaling pathway 5/5 100.0

C Wnt signaling pathway 18/19 94.7

D Focal adhesion 42/45 93.3

E Ras signaling pathway 49/64 76.6

F JAK-STAT signaling pathway 18/18 100.0

G TGF-beta signaling pathway 9/14 64.3

H AKT-mediated inactivation of FOXO1A 3/3 100.0

I Energy dependent regulation of mTOR by LKB1-AMPK 6/6 100.0

N Adrenergic signaling in cardiomyocytes 9/11 81.8

O Long-term depression 12/19 63.2

Good Responders

A PI3K-Akt signaling pathway 34/64 53.1

B Signaling by high-kinase activity BRAF mutants 5/7 71.4

C ECM-receptor interaction 7/7 100.0

D disulfide oxidoreductase activity 4/4 100.0

E Chemokine receptors bind chemokines 6/6 100.0

F Triglyceride catabolism 3/3 100.0

G Cam-PDE 1 activation 4/4 100.0

Non Responders

A Olfactory transduction 32/50 64.0

B Chemokine signaling pathway 25/25 100.0

C Cytosolic DNA-sensing pathway 5/6 83.3

D Human cytomegalovirus infection 24/39 61.5

E Wnt signaling pathway 10/15 66.7

F Antigen processing and presentation 6/6 100.0

G Adrenergic signaling in cardiomyocytes 11/18 61.1

H Wnt signaling pathway 13/16 81.2

Table 4.2: GO/Pathway enrichment analysis on network clusters resulting from the
applied method.
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4.1.3 Results

4.1.3.1 The lympho-myeloid pathotype

As described in the methods section, the lympho-myeloid network is obtained

selecting the most active gene-gene interactions of this class. Among them,

those links equivalently active in the diffuse-myeloid and pauci-immune

fibroid classes were discarded. This allows inspection of specific functions

uniquely characterising the lympho-myeloid phenotype.

The network contains 334 nodes and 469 edges. 373 are activator links, while

96 are inhibitor links. 11 gene clusters were identified, and their functions are

reflected in the Associated GO Term in Table 4.2.

The six most prominent clusters regulate the chemokine signaling pathway

(93.5% of cluster genes, Figure 4.1.A), Antigen processing and presentation

(100%, Fig. 4.1.B), Focal adhesion (93.9%, Fig. 4.1.C) TNF signaling pathway

(48.8%, Fig. 4.1.D), Tumour Necrosis Factor (TNF) receptor (TNFR) associated

factor Ribonuclease A F3-dependent interferon regulatory factor family (IRF)

activation pathway (87.5%, Fig. 4.1.E) and Apoptosis (50.8%, Fig. 4.1.F).

Functions of the remaining clusters are MAPK (62.0%, cluster G), Wnt (81.2%,

Cluster H) signaling, positive regulation of interleukin-8 production (50%,

Cluster I), Interleukin-2 family signaling (100%, Cluster L) and disulfide

oxidoreductase activity (100%, Cluster M) (see Table 4.2).
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Figure 4.1: (Previous page.) Unique clusters of genes in joints within the lympho-
myeloid pathotype. (A) Chemokine activation for leukocyte recruitment. (B) Antigen
processing and presentation with T cell activation genes. (C) Group of Focal adhesion
genes comprising collagens, integrin and laminin. (D) TNF signaling through mTOR.
(E) Interferon regulating signaling. (F) Genes of the intrinsic and extrinsic apoptotic
pathways.
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4.1.3.2 The diffuse-myeloid pathotype

Among all the active interactions found in the diffuse-myeloid pathotype,

those in common with the lympho-myeloid and the pauci-immune fibroid

pathotype were removed. This results in only 129 unique nodes with fewer

connections compared to the previous pathotype. 98 edges are active connec-

tors while 22 are inhibitors.

The smaller size of this network may be explained by the overlapping charac-

teristics of both the lympho-myeloid and the pauci-immune fibroid group. On

the one hand this category is characterized by the infiltration of macrophages,

like observed in the lympho-myeloid pathotype; on the other hand, the ab-

sence of B and plasma cell aggregates is in common with the pauci-immune

fibroid group.

One cluster with the same Associated GO Term as observed in the lymphoid

group was for focal adhesion (75.6% Fig. 4.2.A(I)). However, the cluster in

the diffuse-myeloid pathotype was centered around ITGB3. On the other

hand, unique for the diffuse-myeloid pathotype were Peroxisome proliferator-

activated receptor (PPAR) signaling pathway (78.6% Fig. 4.2.A(II)), Dopamin-

ergic synapse (76.7%), EPHA-mediated growth cone collapse (100%), Cam-

PDE 1 activation (100%) and Adherens junction (83.3%) (see Table 4.2).
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Figure 4.2: (Previous page.) A. Activated Pathways in diffuse-myeloid synovia.
(I) Activated network joint extracellular matrix genes for focal adhesion. (II) Gene
network of PPAR signaling pathway.
B. Activated Pathways in pauci-immune fibroid synovia. (I) Extracellular matrix
interaction clusters. (II) Genes of the Ras signaling pathway. (III) Clusters of Notch-,
Wnt- and TGF-beta signaling. (IV) Cytokine-cytokine interaction of pro-inflammatory
genes.

54



4.1.3.3 The pauci-immune fibroid pathotype

While few nodes were observed for the diffuse-myeloid pathotype and even

fewer included unique functions, the pauci-immune fibroid pathotype has a

more abundant network with 229 nodes and 299 edges (253 activators and 46

inhibitors). As in the previous analyses, the active links in common with the

other pathotypes were discarded.

While there is substantial overlap with the previous two pathotypes regarding

interactions related to the ECM pathway (Fig. 4.2.B(I)), the pauci-immune

fibroid pathotype showed unique functions as evidenced, for example, by the

presence of a wealth of growth factors and their receptors as part of the Ras

signaling pathway (76.6% cluster genes, Fig. 4.2.B(II)).

Another node of major interest was found around the pro-inflammatory cy-

tokine Interleukin (IL)-17D in a cluster of Cytokine-cytokine receptor interac-

tion (100% cluster genes) shown in Figure 4.2.B(IV). Finally, additional clusters

were Regulation of RUNX1 Expression and Activity (100%), AKT-mediated in-

activation of FOXO1A (100%), mTOR signaling (100%), Adrenergic signaling

in cardiomyocytes (81.8%) and Vascular smooth muscle contraction/Long-

term depression (63.2%) (see Table 4.2).
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Figure 4.3: (Previous page.) Interaction network of differentially expressed genes
unique to Disease-modifying anti-rheumatic drug (DMARD) response.
A. Clusters representing genes unique to DMARD responders (I) Cell survival genes
as part of the PI3K-Akt signaling pathway in patients responding to DMARD treat-
ment. (II) Cluster of ECM-receptor interaction genes is found in responders (III)
Genes of chemokines and their receptors.
B Genes associated with DMARD non responders. (I) Chemokine signaling clusters
linked to no response. (II) Antigen processing and presentation cluster. (III) Wnt
signaling networks.
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4.1.3.4 Baseline networks corresponding to response to csDMARD treat-
ment

In the observations described above, three networks were built on the three

histopathological categories (lympho-myeloid, diffuse-myeloid, and pauci-

immune fibroid).

In the following section the extracted response and remission networks will

be described. According to their responsiveness to six months of csDMARD

treatments patients were categorised based on the DAS28 EULAR criteria.

This divided the baseline cohort into three groups: good responders (n=26),

moderate responders (n=32), and no responders (n=9) (see Table 4.3). Hence,

three networks were extracted from the most actively interactions that are

unique in the three groups.

In the interest of highlighting key mechanisms responsible for response/ re-

mission, the moderate network is not described in this manuscript.

Patients who will respond well to csDMARD have few nodes of which the

PI3K-Akt signaling pathway (53.1% cluster genes) cluster linked to B-cell

lymphoma 2 (BCL2) is the most prominent one (Fig. 4.3.A (I)). Other clusters

regarded signaling pathways as Signaling by MET (71.4%) and the Calmod-

ulin (CaM) pathway (100%). The remaining two clusters were related to

Triglyceride catabolism (100%) and disulfide oxidoreductase activity (100%)

(see Table 4.2).

Non responders showed many active interactions across genes part of

the Chemokine signaling pathway (100%, Fig 4.3.B (I)) around the node of
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CCR2 and CXCR5. Two clusters showed Wnt signaling activity (Fig 4.3.B (III)

66.7% and 81.3%), while another small cluster showed Antigen processing and

presentation activity (100%, Fig. 4.3.B (II)), as found in the lympho-myeloid

group. The remaining clusters were associated with Olfactory transduction

(64%), Cytosolic DNA-sensing pathway (83.3%), Human cytomegalovirus

infection (61.5%) and Glioma (61.1%).

Good (N=26) Moderate (N=32) None (N=9) Total (N=67)

Pathotype

- Lymphoid 15 (57.7%) 20 (62.5%) 6 (66.7%) 41 (61.2%)

- Myeloid 4 (15.4%) 8 (25.0%) 1 (11.1%) 13 (19.4%)

- Fibroid 7 (26.9%) 4 (12.5%) 2 (22.2%) 13 (19.4%)

Table 4.3: Distribution of synovial pathotypes, related to DMARD treatment response.

4.1.4 Discussion

4.1.4.1 Interactions between collagens, laminins and integrins recur in all
classes

Focal adhesion or ECM interactions recur across all the networks with in-

creased expression of collagens, laminins and integrins (Fig 4.1.C, 4.2.A(I),

4.2.B(I) and 4.3.A(II)). This suggests that a destructive process or at least and

ECM remodelling process is already ongoing in RA early patients [69].

Nonetheless, a particular note must be reserved to the leucine-rich chon-

droadherin (CHAD) protein whose interaction with integrins is known to

be involved in the pro-inflammatory and pro-catabolic response to cartilage

matrix damage [70]. This interaction is significantly active for the lympho-

myeloid and pauci-immune fibroid patients but absent in the diffuse-myeloid
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class (see Fig. 4.4.A, B).

4.1.4.2 The lympho-myeloid pathotype shows molecular signature of leuko-
cyte attracting chemokines

The lympho-myeloid network comprises of a wealth of chemokine genes (Fig.

4.1.A) including CCR1 and its ligands CCL5 and CCL14, CCR2 together with

its ligand CCL2 and CCR7 and its ligands CCL19 and CCL21. Expression

of these genes suggest a signature of leukocyte recruitment to the joints [71].

The lympho-myeloid pathotype is indeed classified as such because of the

infiltration of lymphocytes. T cell genes are also prominent in the antigen

processing and presentation cluster (Fig. 4.1.B). They include CD8A with

different major histocompatibility complex (MHC) class I and T cell activation

genes including CD247, ZAP70, CD28 and CD86. Alongside T-cell genes

additional B cell recruitment is suggested by the presence of chemokine (C-X-

C motif) ligand (CXCL13) in Fig. 4.1.A [72].

Other active pathways in the lympho-myeloid pathotype include NFKB and

mammalian target of rapamycin (mTOR) signaling as part of chemokine

and TNF signaling (Fig. 4.1.A and 4.1.D). A regulator of NFKB and mTOR

signaling namely Inhibitor of nuclear factor kappa B kinase subunit epsilon

(IKBKE) is found within an Interferon (IFN) signaling node where it also

influences IRF genes (Fig. 4.1.E)[73]. Finally, a turnover of cells is suggested

by clusters with cell death related genes for both the extrinsic and intrinsic

apoptotic pathway with nodes in TRAF2, BAD, BAK, BCL2 and GZMB (Fig.

4.1.D and 4.1.F).
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4.1.4.3 Macrophage activation and T cell monocytes in the diffuse-myeloid
pathotype

The wealth of increased chemokine and cytokine expression detected in the

lympho-myeloid environment (Fig. 4.1.A) was not present in diffuse-myeloid

patients. However, CCR5 was also found to be increased and linked to CX3CL1

(data not shown). Activation of this interaction is evidence of chemoattractant

activity for T cells and monocytes [74, 75], giving molecular confirmation of

the histological definition.

Additionally, activation of genes from the PPAR signaling pathway can explain

the presence of macrophages in the diffuse-myeloid pathotype [76]. The

cluster is centered around PPARG and includes genes such as CYP27A1,

ACSL1, LPL, SLC27A4 and its paralog SLC27A1, CD36, CPT1A, FABP4, SCD,

PLIN1), ADIPOQ, ADIPOR1 and ADIPOR2.

4.1.4.4 A stimulating environment is found the synovium of the pauci-
immune fibroid pathotype

Although the pauci-immune fibroid group demonstrates absence of immune

cells infiltration, a wealth of growth factors still testifies dysregulation of the

synovium tissue as stimulating environment.

In figure 4.2.B(II) we found a lot of growth factors with their receptors. As for

example the epidermal growth factor (EGFR), fibroblast growth factors (FGF2,

FGF7, FGFR1) that can be linked to the pathotype defining stromal cells, but

also nerve growth factors (NGFR) that may explain angiogenesis in the joints,

as well as insulin-like (IRS2, IGF1, INSR and IGF1R) and platelet-derived

growth factors (PDGFRA, PDGFRB, PDGFC, PDGFD). Furthermore, these
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nodes were associated with their signaling molecules through SRC, MAPK

and PI3K.

Angiogenesis is also suggested by the presence of TNC [77] and ITGAV [78].

Figure 4.4.C shows the active interaction between LAMA3 and ITGAV that is

not present in the other two histophatological classes.

Finally, we found activation of the WNT signaling pathway as consequence of

fibroblast presence in the synovium tissue [79].

4.1.4.5 Good responders to csDMARD show enhanced apoptosis at base-
line and expression of CXCL13

The network of active interactions characterising the good responders class

presents few clusters offering key suggestions.

First, the whole network is dominated by a big cluster centered around BCL2

(Fig. 4.3.A(I)). This gene was found to be highly expressed in the synovial tis-

sue of RA patients, particularly in CD68- synovial fibroblasts[80]. However, its

interaction with pro-apoptotic genes from the same family (BAX, BAD, BAK1,

BCL2L11) and many cathepsins needed for caspase activation (CTSB, CTSC,

CTSD, CTSF, CTSK, CTSL, CTSO, CTSS, CTSZ) confirms previous hypotheses

of beneficial effects of enhanced apoptosis in RA [81]. As shown in Figure

4.1.F, we observed these links to be equivalently active in the lympho-myeloid

pathotype. This overlap can be thought as another potential explanation

of lympho-myeloidsâĂŹ higher response to DMARDs compared to pauci-

immune fibroids response [67]. In fact, activation of synovial fibroblasts has

been correlated with apoptosis activity reduction [82, 83].

Furthermore, the same cluster shows centrality of another interesting gene,
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part of the suppressor of cytokine signaling family, namely SOCS2. Its interac-

tion with JAK-STAT genes is evidence of an immunosuppression process that

is not active in the non responder class (Fig. 4.4.D as an example)[84].

Another minor cluster belonging to the good responders network detected

chemokine receptors binding chemokines (Fig. 4.3.A (III)). Genes of this family

were also found in the non responders network but with greater abundance

(Fig. 4.3.B (I)). Most notably, the good responders class showed stronger ac-

tivation of CXCL13 (Fig. 4.4.E) that is believed to be marker of early joint

inflammation still responsive to csDMARD treatment [85].

4.1.4.6 Non responders to csDMARD show expression of CXCR5 and ac-
tivation of the WNT signaling pathway

The non responders network showed leukocyte attracting chemokines (Fig.

4.3.B (I)) as in the lympho-myeloid pathotype. Of note, this class demonstrated

differential activation of CXCR5 compared to the good responder counterpart

(Fig. 4.4.F). Expression of this gene has been considered essential for the in-

duction of RA since CXCR5 deficiency completely prevented RA development

in mice [86].

Additionally, the non responders showed similarities to the pauci-immune

fibroid class as we obtained two Wnt signaling clusters (Fig 4.3.B (III)). How-

ever, they differed in the containing genes as for example only WNT5B but

not WNT11 was included and also Dishevelled proteins were missing.

Finally, a small cluster containing antigen processing and presentation genes

(Fig. 4.3.B (II)) seem to suggest that in this class of patients the state of inflam-

mation is already high.
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Other interesting considerations can be done on the differential role of NOS3

in good and none responders. NOS3 contributes in the regulation of inflam-

mation, endothelial functions, and bone remodeling process [87]. However

its role is still unclear in many aspects. According to our study NOS3 acts as

activator of AKT3 and inhibitor of CAMK1 (Fig. 4.4.G, 4.4.H). AKT is known

to be a regulator of TNF-alpha-mediated apoptosis in RA synovial fibroblasts

[88], while CAMK1 mediates the macrophage inflammatory response to sepsis

[89].

4.1.5 Pathways Overview

In the above sections we provided a detailed description of gene interactions

characterising three distinct RA pathotypes. By means of Pat-BINE, we looked

inside pathways and explored those links actually active into each group.

In this final section we will show a general overview of the key disregulated

pathways identified above. We compared their overall alterations across

pathotypes using the the tool described in Chapter 3, Section 3.2.

In Figure 4.5 pathways with higher up-regulation in the lympho-myeloid

group are shown.

Figure 4.6.A shows higher up-regulation of the Peroxisome proliferator-activated

receptor (PPAR) signaling pathway in the diffuse-myloid group. Finally, the

extracellular matrix (ECM) receptor pathway, up-regulated among the three

groups, looks mostly altered in the pauci-immune fibroid group (Figure 4.6.B).

All the showed box plots obtained a Kruskal-Wallis test p-value less then 0.05.
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4.1.6 Section Summary

In this Section we applied a novel Patients’ Biological Interactions Networks

Extractor (Pat-BINE) to a large cohort of early rheumatoid arthritis patients.

To systematically analise the extracted networks we utilised the ClueGO Cy-

toscape plugin and obtained GO terms associated to clusters inside networks.

Finally, a new MITHrIL feature was applied to the cohort to generate an

overview of key altered pathways.

Results of the Pat-BINE analysis applied to three histopathological categories

showed a coherent genetic signature of the histological description. This jus-

tified the use of the proposed tool to assess responses/remission marks and

look for correlations between pathotypes and response classes. To this aim,

characteristic networks of gene interactions were extracted for both good and

non responders to csDMARD therapy.

Patients who well responded showed enhanced apoptosis at baseline and

expression of CXCL13. Furthermore, there was sign of an ongoing immuno-

suppression process through Suppressor Of Cytokine Signaling 2 (SOCS2).

On the other hand, the non responders group showed expression of CXCR5

that is believed to play a key role in RA development and activation of the

WNT signaling pathway, observed also in the pauci-immune fibroid patho-

type.
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Figure 4.4: Significant gene-gene interactions in PEAC.
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Figure 4.5: Disregulated pathways across RA pathotypes (Part I).
L = Lympho-myeloid, M = diffuse-myeloid, F = pauci-immune fibroid
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L = Lympho-myeloid, M = diffuse-myeloid, F = pauci-immune fibroid
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4.2 Trial of anti-B-cell Therapy in patients with pri-
mary Sjögren’s Syndrome
A transcriptomic study on a B-cell depletion therapy in Sjögren’s
syndrome patients

Primary Sjögren’s syndrome (pSS) is a chronic, systemic autoimmune disease

characterised by the impaired secretory function of the exocrine glands, in

particular the salivary and lachrymal glands [90].

Despite the progression in understanding the pathogenic mechanism occur-

ring in pSS, treatment options are currently symptom dependent. The current

therapies focus on relieving symptoms, rather than changing the actual course

of disease.

Targeting B-cells is certainly a rationale therapeutic approach in diseases like

pSS, where B-cell hyperactivity is believed to be an essential pathogenic event

[91, 92].

The TRial of Anti-B-Cell Therapy In patients with primary Sjögren’s Syndrome

(TRACTISS) is the biggest UK multi-centre, double-blind, randomised, con-

trolled, parallel group trial of 110 patients with Sjögren’s syndrome [6]. The

main goal of the clinical trial is to investigate whether Rituximab (MabThera®/

Rituxan®) leads to an improvement in patient symptoms and a reduction in

disease damage and activity [93, 94]. Rituximab is an immuno-modulatory

agent depleting selectively B-cells, the antibody producing lymphocytes [95].

The patient cohort includes two arms of treatment: one treated with Rituximab

and the other treated with placebo. Salivary glands biopsies and matched

peripheral blood were collected from both treatment (Rituximab) and control

(placebo) group of patients. RNA-seq analysis represents the first longitudinal
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study (three sequential biopsies over a year time) of salivary glands biopsies

in pSS.

The transcriptomic analysis in the placebo arm informs on the disease evolu-

tion, identifying the inflammatory mediators driving peripheral B-cell hyper-

activity and salivary gland autoimmune response. While, the same analysis

in the Rituximab arm, characterises the effects of the B-cell depletion therapy.

The analyses described in this chapter are restricted to only biopsies from

salivary glands. Peripheral blood samples will be analysed in a future work.

4.2.1 Patient Cohort

Transcriptomic analysis of salivary gland tissues was performed on 29 patients

whose biopsies were collected at three time points (0, 16 and 48 weeks). Some

patient did not underwent biopsy at all timepoints, so the total number of sam-

ples is 51. After quality checks two samples were excluded (see Section4.2.2),

the remaining 49 samples are distributed across timepoints as follow: 23 at

week 0, 15 at week 16, and 14 at Week 48 (see Table 4.4).

4.2.2 Quality Checks and Preliminary Analysis

Prior to start the analysis, integrity and quality checks were performed on

data.

First of all, quality assessment parameters, such as RIN score and DV 200,

were verified according to best practice.

The RNA Integrity Number (RIN) is the result of an automated algorithm

based on a combination of different features contributing to RNA integrity
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Placebo (N=15) RTX (N=8) Total (N=23) p value

Age 0.263

- <65 11 (73.3%) 4 (50.0%) 15 (65.2%)

- ≥ 65 4 (26.7%) 4 (50.0%) 8 (34.8%)

Gender 0.433

- Female 11 (73.3%) 7 (87.5%) 18 (78.3%)

- Male 4 (26.7%) 1 (12.5%) 5 (21.7%)

Disease duration (months) 0.482

- <10 13 (86.7%) 6 (75.0%) 19 (82.6%)

- ≥ 10 2 (13.3%) 2 (25.0%) 4 (17.4%)

ESSDAI 6.1 (5.2) 3.0 (2.3) 5.0 (4.6) 0.126

IgG 19.0 (10.5) 16.5 (7.1) 18.2 (9.4) 0.577

IgA 3.5 (2.4) 2.3 (0.7) 3.1 (2.1) 0.241

IgM 1.4 (0.6) 1.3 (0.6) 1.3 (0.6) 0.963

C3 1.4 (0.4) 1.2 (0.3) 1.3 (0.4) 0.264

C4 0.3 (0.1) 0.2 (0.1) 0.2 (0.1) 0.078

RHF 112.3 (158.4) 25.4 (20.1) 81.9 (133.4) 0.171

Table 4.4: Baseline demographics of treatment-naïve pSS patients recruited in this
study.

[96]. Its value can vary from 1 to 10, with values >6 assessing absence of degra-

dation and good quality. All the samples belonging to the cohort satisfied this

requirement.

On the other hand, DV200 evaluates the percentage of fragments of >200

nucleotides [97]. It can vary from 0% to 100% and was found to be less then

70 in one sample, indicating short fragment band.

Additionally, the same sample turned to be an outlier in the Principal Compo-

nent Analysis (PCA) done on the whole dataset (Figure 4.7). Because of this,

the sample has been removed from the cohort.

Additional PCAs were performed on each timepoint subset. They revealed
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another sample to be outlier among all week 16 samples (Figure 4.8). The

latter was also found outlier in the global PCA, when looking at the fourth

Principal Component (PC4) (Figure 4.9). While further investigating on other

possible degradation issues, we found the quantity of extracted RNA was

poor for the mRNA sequencing. This led this second sample to be excluded

from the subsequent analysis.

After outliers removal, the new global PCA (including all timepoints) looks

neat and not clustered on timepoints (Figure 4.10).

It rather seems to cluster on gender, with the exception of two male samples

(Figure 4.11).

Figure 4.7: Principal Component Analysis of the whole cohort. Color scheme on
timepoints.
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Figure 4.8: Principal Component Analysis of week 16 samples.

Figure 4.9: Principal Component Analysis of the whole cohort, first and fourth
Pricipal Components shown. Color scheme on timepoints.
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Figure 4.10: Principal Component Analysis of the whole cohort, after outliers removal.
Color scheme on timepoints.

4.2.3 Rituximab Vs Placebo

To assess the effect of B-cell depletion on pSS patients, we used the DESeq2

software [59] to perform a Differentially Expressed Gene (DEG) analysis on

Rituximab Vs placebo biopsies after 48 weeks of treatment. Q-values were

derived from the estimated p-values by means of qvalue software [98].

The DEG analysis highlighted 157 significantly differentially expressed genes

(i.e. q-value < 0.05) that are shown in Figure 4.12.

Placebo samples - compared to RTX - showed up-regulation of immune

cell genes, mainly related to B- and T-cell activation (CD79B, PAX5, CD72,

CD3D) and lymphoid neogenesis (CXCL13, CXCR5, CCL19,LTB) known to be
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Figure 4.11: Principal Component Analysis of the whole cohort, after outliers removal.
Color scheme on gender.

pathogenic events in the salivary glands of pSS patients.

The same set of genes (157 DEGs) were given in input to MITHrIL [49] to

extract the related disregulated pathways (see Figure 4.15.

This pathway analysis pointed out a global down-regulation of inflammatory

pathways suggesting a good impact of Rituximab in the salivary gland inflam-

mation.

The same group of genes was used again to drawn the heatmap shown in

Figure 4.13.

Using different color hues, the heatmap allows to look at the magnitude of

gene alterations for each sample (in columns). Moreover, samples and genes
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are sorted according a clustering algorithm that tends to bring similar sam-

ples/genes closer to each other. In this particular implementation, rows (genes)

were clustered using the complete linkage method [99] based on euclidean

distance, while in columns (samples) the Ward’s hierachical clustering [100]

was used. In this case, based on the gene expression of the DEGs, samples

are clearly segregated by treatment (see Treatment track on top) and, most

interestingly, the placebo group is in turn segregated in two clusters matching

with gender (see Gender track on top). This suggests that the up-regulation of

B-cell-lineage genes (such as PAX5, chemokine receptors and ligands involved

in B- and T-cell recruitment) and ectopic lymphoid-related genes (such as LTB,

CXCL13, CXCR5, CCL19) was mainly driven by the female subjects.

Moreover, the histological characterization of CD20+ B- and CD3+ T-cell infil-

tration over a year follow-up in the placebo group confirms the worsening of

inflammatory infiltration in female, but not in the male subjects recruited in

the study (Figure 4.14). In line with the higher prevalence of pSS in females

compared to males with a ratio of 9 to 1, these results show for the first time

how female and male salivary glands are characterized by a complete different

transcriptomic profile with an up-regulation of immune cells for females.

4.2.4 Time Course Analysis

In the previous section we compared RNA-seq of placebo and Rituximab

treated patients collected at the same timepoint (i.e. after 48 weeks of treat-

ment).

In this section we will look how lymphoid neogenesis genes change over time
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Figure 4.12: Volcano plot showing the differentially expressed genes between Ritux-
imab and placebo treated samples at week 48.

(i.e. across three timepoints) in the salivary glands tissue of both placebo and

Rituximab group.

To this aim, gene expression level distributions over time of chemokine recep-

tor and ligands involved in the B- and T-cell recruitment such as CCL21 and

CXCR4 have been reported for both placebo and Rituximab samples (Figure

4.16). Those genes are both down-regulated after two doses of Rituximab.

The same occurs for ICOS and PDCD1 (Figure 4.17), involved in the B- and

T-cell organisation. Similarly, the B-cell lineage PAX5 gene is lowered after the

treatment with Rituximab (Figure 4.18).

These findings might explain the effect of Rituximab in preventing newly
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RTX Vs Placebo , Week 48
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Figure 4.13: Heatmap showing expression levels of genes of samples at 48 weeks.
Only the previously identified DEGs are shown.

immune cell infiltration and the organization of ectopic germinal centres, ob-

served from the longitudinal histological analysis of placebo group, reported

in Figure 4.14.

4.2.5 Section Summary

In this Section a transcriptomic analysis on the TRial of Anti-B-Cell Therapy

In patients with primary Sjögren’s Syndrome (TRACTISS) has been reported.

For the first time, a longitudinal analysis has been conducted on salivary gland

tissues from both Rituximab and placebo treated patients over a year time.

This revealed an important role of Rituximab in preventing the salivary gland
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inflammation worsening. Moreover, on the placebo arm, the RNA-seq analysis

has revealed clear segregation between males and females transcriptomic

profiles, showing a greater inflammatory activity in women (in consistence

with disease incidence).
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Figure 4.14: Histological characterisation of CD20+ B- and CD3+ T-cell infiltration
over 48 weeks in placebo patients.
(A, C) Levels of B- and T-cells density over time per patient. (B, D) Average levels of
B- and T-cells density over time.
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Figure 4.16: Expression level distributions of CCL21 and CXCR4 over time in the
placebo group (A, C) and Rituximab group (B, D).
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Figure 4.17: Expression level distributions of ICOS and PDCD1 over time in the
placebo group (A, C) and Rituximab group (B, D).
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Figure 4.18: Expression level distribution of PAX5 over time in the placebo group (A)
and Rituximab group (B).
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Chapter 5

Conclusion

In this thesis engineering and analytical tools have been discussed to support

a paradigm shift towards precision medicine.

Chapter 2 concerns safety and reliability of communications in intra-body

scenarios, where implanted sensors are deployed for clinical parameters mon-

itoring, allowing adjustment of ongoing therapies.

The use of ultrasounds is envisaged and a testbed has been developed to

emulate human body propagation features. An impulse response analysis of

this channel has been conducted and other key metrics of channel behavior

were also evaluated as a function of different parameters such as frequency,

channel composition and distance.

Chapter 3 and 4 focus on an another stage of the precision medicine process,

where genomic signatures are identified to stratify patients.

In Chapter 3 a novel methodology called Pat-BINE has been presented. This

allows to bring out characterising gene interactions activated in user-defined

groups of patients. In the same chapter, for a higher level view, another feature

to visualise altered pathways over multiple groups is discussed.
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Finally, in Chapter 4 analysis and results from two clinical trials are reviewed.

In the first section, Pat-BINE has been used to assess responses/remission

marks to csDMARDs therapies in rheumatoid arthritis patients. In the second

section, a longitudinal transcriptomic analysis in Siögren’s Syndrome affected

patients is conducted to determine the effect of a B-cell depleting therapy.
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