
Scheduling of step-improving jobs with an identical improving rate†

Hyun-Jung Kim1, Eun-Seok Kim2 and Jun-Ho Lee3‡

1 Department of Industrial & Systems Engineering,
Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

2 School of Business and Management,
Queen Mary University of London, E1 4NS, United Kingdom.

3 School of Business,
Chungnam National University, Daejeon 34134, Republic of Korea.

February 4, 2021

†This paper has been aceepted for publication in Journal of the Operational Research Society
(https://doi.org/10.1080/01605682.2021.1886616).
‡Corresponding to: Jun-Ho Lee. E-mail: junholee@cnu.ac.kr

Abstract

Job processing times change over time in real-life production and manufacturing sys-

tems due to various factors including machine or worker learning, machine deterioration,

production system upgrades or technological shocks. For step-improving processing times,

job processing times are reduced by a certain rate if they start to process at, or after, a

common critical date, which has wide applicability in real-world settings, such as data gath-

ering networks and production systems with part-time workers. This paper considers single

machine scheduling of minimizing total weighted completion time with step-improving jobs.

The problem is shown to be intractable. Both exact and heuristic algorithms are developed,

and the approximability of the heuristic algorithm is shown for a special case of the problem.

Finally, computational experiments show that the proposed algorithms provide very effective

and efficient solutions.

Keywords: Scheduling, Step-improving processing times, Dynamic programming, Approxi-

mation.

1 Introduction

We address a single machine scheduling problem with step-improving processing times in

order to minimize the total weighted completion time. In the problem, job processing times

are reduced by a certain rate if they start to process at, or after, a common critical date.

Such a scheduling problem can be found in data gathering networks where the nodes of the

network collect some data and pass them to a single base station (Berlińska 2015, Luo et al.

2018). Each node can compress its data before sending it in order to shorten the transmission

time, but the compression process requires a certain amount of time. The base station can

communicate with at most one node at a time. Hence, the problem is to determine the nodes

that compress their data and the sequence of nodes that use the base station.

Another application can be found in an assembly process of a wiring harness in a com-

pany in South Korea. The wiring harness is an assembly of electrical wires, terminals, and

connectors, and it is commonly used in automobiles to relay information and electric power

throughout a vehicle. The assembly process of the wiring harness consists of cable grapping,

clipping, and taping operations, each of which contains several subtasks. Those subtasks

are mostly manual and can be performed simultaneously, which implies that the assembly

time can be reduced as more workers are assigned to each operation. The company also

hires some part-time workers, who work for about one week per month, to satisfy monthly

production demand. Then from the time the part-time workers are assigned, the assembly

times become shorter depending on the number of assigned workers and their performance

levels.

Moreover, this scheduling problem can also be found in many other real-life production

and manufacturing systems. When companies are operated with two shifts a day (12 hours

per shift), a set of workers assigned to each shift may have different performance levels, which

affects the processing times of jobs as well. In addition, job processing times can change

1

over time due to machine or worker learning, production system upgrades or technological

shocks (Cheng et al. 2004, Kim & Oron 2015).

As an illustrative example, we consider four jobs with processing times of 20, 40, 60, and

80, and with weights of 1 for all jobs. Figure 1(a) shows a schedule with the sequence of jobs 1,

2, 3, and 4 when the common critical date is 60 and the reduction rate is 0.5. The processing

times of jobs 3 and 4 are 30 and 40, respectively, because they start processing at or after 60.

The total weighted completion time of the schedule is 300 (= 1×20+1×60+1×90+1×130).

If the common critical date is changed to 65 and the start time of job 3 remains at time

60 as in Figure 1(b), then the makespan becomes 160, and the total weighted completion

time is 360. However, if job 3 starts processing at time 65 as in Figure 1(c), then the total

weighted completion time is reduced to 310. Hence, inserting an idle time of 5 between 60

and 65 results in a better solution in this example. Therefore, we need to determine not

only the sequence of jobs but also the start timing of jobs around the common critical date

to reduce the objective measure.

(a) Schedule 1

(b) Schedule 2

(c) Schedule 3

Figure 1: Schedules for an illustrative example

We begin by reviewing the literature in Section 2 and introducing some notation in

Section 3. We analyze the complexity of the problem and show that it is NP-hard in Section

2

4. We then provide a dynamic programming approach and a heuristic algorithm in Section

5. We perform computational experiments to evaluate the performance of the dynamic

programming approach and heuristic algorithm in Section 6. Some concluding remarks and

directions for future research are given in Section 7.

2 Literature Review

Previous studies that consider time-dependent processing times can be classified into three

categories: first, job processing times increase or decrease linearly; second, they follow a

piece-wise linear function; third, there are two possible values for the processing times de-

pending on their start times.

In the first category, the processing time of a job changes linearly depending on its

star time. Gupta & Gupta (1988) examined a single machine scheduling problem where

processing times of jobs follow a monotonically increasing function of their start times with

the makespan measure for the first time. They developed an exact optimization algorithm

and also heuristic algorithms due to the excessive computation burden of the exact method.

Browne & Yechiali (1990) considered a deteriorating job where the job processing time grows

at a job-specific rate while waiting for processing. They analyzed different deterioration

schemes and derived optimal scheduling policies that minimize the expected makespan. Wu

& Lee (2003) addressed a single machine scheduling problem with linear deteriorating jobs

in which the processing time of the job follows a nondecreasing function of its starting

time. They showed that the linear deteriorating model can be solved with the 0-1 integer

programming technique even with the introduction of the machine availability. Wang, Ng &

Cheng (2008) considered general linear and proportional linear functions of the job processing

time on a single machine. They showed that there exist polynomial time algorithms for the

general linear function with the makespan measure and for the proportional linear function

3

with the total weighted completion time. Li et al. (2011) addressed an optimal due date

assignment and a job sequencing simultaneously on a single machine to minimize costs for

the earliness, due date assignment and weighted number of tary jobs. In the problem, the

processing time of a job is linearly increasing depending on its starting time. Recently, Sun

& Geng (2019) examined a single machine scheduling problem with deteriorating effects

and machine maintenance to minimize the makespan. In the study, processing times were

modeled with a linearly increasing function of the starting time.

In the second category, job processing times follow piece-wise linear functions where

the job processing times increase or decrease at a certain point while they remain constant

between two consecutive points. Kunnathur & Gupta (1990) presented a model with piece-

wise increasing processing times to minimize the makespan, and proposed two optimization

algorithms and five heuristic rules. Cheng et al. (2003) considered a single machine scheduling

problem where job processing times follow a piece-wise linear nonincreasing function of its

start time, and proved that the problem is NP-hard for the objectives of the makespan and

total completion time minimization. They also proposed a pseudo-polynomial time algorithm

for the makespan and several heuristics for both the total completion time and makespan

minimization. Moslehi & Jafari (2010) assumed piece-wise linear deterioration in a single

machine with the objective of minimizing the number of tardy jobs, and developed a branch

and bound algorithm and a heuristic algorithm.

In the third category, some studies have considered step-functions of job processing times

on single machine scheduling. Sundararaghavan & Kunnathur (1994) addressed a single

machine scheduling problem where the processing time is a binary function of a common

start time due date with the objective of minimizing the total weighted completion time. In

the problem, all jobs have the same processing time but their additional processing times

required when they start processing after the common critical date are all different. They

presented a switching algorithm and a 0-1 quadratic programming formulation. Mosheiov

4

(1995) considered step-deteriorating jobs with the makespan measure in a single machine,

and provided integer programming models and heuristic methods. Cheng & Ding (2001)

also assumed step-deteriorating processing times on a single machine with a common critical

date. They proved that the problem with the total completion time measure is NP-hard

and presented a pseudo-polynomial algorithm for the makespan minimization. Cheng et al.

(2006) further considered step-improving job processing times around a common critical

date with the makespan measure. They proved that the problem is NP-hard, and provided a

pseudo-polynomial time algorithm and an on-line algorithm with the best competitive ratio.

Ji et al. (2007) also addressed the same problem in Cheng et al. (2006) by developing a

simple linear time off-line approximation algorithm. Biskup & Jahnke (2001) considered a

common due date assignment problem with jointly reducible processing times in which all

processing times can be reduced by the same proportional amount. Recently, Kim & Oron

(2015) addressed the problem in Cheng et al. (2006) with the total completion time measure

and proved that the problem is NP-hard. They also provided polynomially solvable cases

and a heuristic algorithm for general cases. A similar problem has been solved in the context

of data gathering networks (Berlińska 2015, Luo et al. 2018).

Moreover, there are also other papers that consider a different type of the time-dependent

processing times, with other variations of classical scheduling models, where job processing

times depend on both their start times and positions in a sequence of processing. Yin et al.

(2015) considered a new deterioration model where the job processing times depend on both

the starting time of jobs and their scheduled position. They showed that the problem with

both the makespan and total completion time can be solved in polynomial time. Huang et al.

(2010) examined single machine scheduling with the time-dependent deterioration and expo-

nential learning effect, and showed that the makespan minimization problem can be solved

with the Shortest Processing Time (SPT) rule. Wang, Ng, Cheng & Liu (2008) considered

a time-dependent learning effect for single machine scheduling where the learning effect of

5

a job is a function of the total normal processing time of the jobs scheduled in front of the

job. Rustogi & Strusevich (2014) addressed a combination of time- and position-dependent

effects on job processing times subject to rate-modifying activities by considering two ob-

jectives, the makespan and total completion time. Recently, Wei (2019) addressed single

machine scheduling for general performance measures with learning effects based on the

sum-of-processing-time. Wang et al. (2020) examined a single machine scheduling problem

with a position-weighted learning effect and job release dates to minimize the total comple-

tion time. In the study, logarithm functions were used to model the learning effects. Reviews

on scheduling with time-dependent processing times can be found in Gawiejnowicz (2020),

Wang, Ng & Cheng (2008), Cheng et al. (2004), Alidaee & Womer (1999).

In this paper, we consider a single machine scheduling problem of minimizing the total

weighted completion time where job processing times are reduced by a certain rate at, or

after, a common critical date. To the best of knowledge, this is the first paper to consider

step-improving jobs and a common critical date with the total weighted completion time

measure.

3 Problem Description

There are a set of n non-preemptive jobs N = {1, . . . , n} available for processing at time

zero. All jobs in N share a common critical date D which affects their processing times. The

processing time of job j is specified by aj and δ with 0 < δ < 1. If job j begins processing

at some time t < D, then its processing time equals aj; if it starts at some time t ≥ D, then

its processing time is δaj. The weight of job j is denoted by wj. The objective of finding a

non-preemptive schedule is to minimize the total weighted completion time.

The standard classification scheme for scheduling problems (Graham et al. Graham et al.

(1979)) is α1|α2|α3, where α1 describes the machine structure, α2 gives the job characteristics

6

or restrictive requirements, and α3 defines the objective function to be minimized. We extend

this scheme to provide for the step-improving processing time with an identical improving

rate and a common critical date by using pj = aj or pj = δaj and dj = D in the α2 field.

Our problem can be denoted as 1|pj = aj or pj = δaj, dj = D|
∑
wjCj.

A schedule σ is an assignment of the jobs in N to the single machine such that each job

receives an appropriate amount of processing time, and no two jobs can be processed on the

single machine at the same time. Let Sj(σ) and Cj(σ) denote the start and finish times of

job j in schedule σ, respectively. We represent Sj(σ) as Sj and Cj(σ) as Cj when schedule

σ is clear from the context. Let σ∗ represent the optimal schedule, i.e., the one which

minimizes the total weighted completion time, and let
∑
wjCj(σ

∗) indicate the minimum

cost associated with this schedule.

4 Complexity Results

This section studies the complexity issue of the considered problem.

Theorem 1 The problem 1|pj = aj or pj = δaj, dj = D|
∑
wjCj is NP-hard.

Proof. A reduction method is used from the following problem, which is known to be

NP -complete.

Partition (Garey & Johnson (1979)): Given positive integers x1, x2, . . . , xt, does there

exist a set X ⊆ T = {1, 2, . . . , t} such that
∑

j∈X xj =
∑

j∈T\X xj?

Assume without loss of generality that r > 3t where r =
∑

j∈T xj/2. If not, then we can

multiply each partition element and partition size by 3t without changing the solution of the

problem.

Consider the following instance of 1|pj = aj or pj = δaj, dj = D|
∑
wjCj, called instance

I:

7

n = t+ 1,

aj = 2xj, j = 1, . . . , t,

at+1 = 2r3,

wj = 1, j = 1, . . . , t,

wt+1 = r2,

δ = 0.5,

D = 2r.

In the following, we prove that there exists a schedule for this instance of 1|pj = aj or pj =

δaj, dj = D|
∑
wjCj with

∑
wjCj ≤ K if and only if there exists a solution to a partition

problem where K = r5 + 3r3 + 3tr.

(⇐) Let X denote a solution to the partition problem. Consider a schedule σ constructed

as follows: The jobs in X are scheduled without idle time from time zero; the jobs in N \X

are scheduled without idle time from time D; job t+ 1 is scheduled at time 3r. Thus,

∑t+1

j=1
wjCj =

∑t

j=1
wjCj + wt+1Ct+1

≤ 3tr + r2
(
3r + r3

)
= r5 + 3r3 + 3tr

= K.

The first inequality follows because wj = 1 and Cj ≤ 3r for j = 1, . . . , t and Ct+1 =

St+1 + δat+1 = 3r + r3. This implies that there exists a feasible schedule with
∑
wjCj ≤ K

for instance I.

(⇒) We first show that job t+ 1 is the last job to be processed in an optimal solution σ∗.

If job t+ 1 starts before D, then wt+1Ct+1 ≥ 2r5 > K. Thus, job t+ 1 starts at, or after, D.

For the jobs starting at, or after, D, the WSPT (Weighted Shortest Processing Time) rule

is optimal (Smith (1956)), which implies that job t + 1 must be the last job in σ∗ because

at+1/wt+1 ≥ aj/wj for j = 1, . . . , t. Let X denote a set of jobs that starts before D in the

8

optimal solution σ∗. If
∑

j∈X aj < 2r, then∑t+1

j=1
wjCj ≥ wt+1Ct+1

= wt+1

(
D + δ

(
4r −

∑
j∈X

aj

)
+ δat+1

)
≥ r5 + 3r3 + r2

> K.

The second and the last inequalities follow because
∑

j∈X aj ≤ 2r−2 and r > 3t, respectively.

If
∑

j∈X aj > 2r, then∑t+1

j=1
wjCj ≥ wt+1Ct+1

= wt+1

(∑
j∈X

aj + δ
(

4r −
∑

j∈X
aj

)
+ δat+1

)
≥ r5 + 3r3 + r2

> K.

The second and the last inequalities follow because
∑

j∈X aj ≥ 2r+2 and r > 3t, respectively.

Therefore,
∑

j∈X aj = 2r if
∑
wjCj (σ∗) ≤ K , which implies that X is a solution to the

partition problem.

As a result of the proof of NP-hardness, it can be said that no polynomial time exact

algorithm may exist for the problem 1|pj = aj or pj = δaj, dj = D|
∑
wjCj unless P = NP .

5 Scheduling algorithms

In this section, we propose scheduling algorithms for the problem 1|pj = aj or pj = δaj, dj =

D|
∑
wjCj.

5.1 The exact algorithm

Without loss of generality, the jobs are assumed to be indexed in non-decreasing order of

aj/wj. We define f(j, t, u) to be the minimum total weighted completion time of jobs 1, . . . , j,

9

where t denotes the total processing time of jobs starting before D, and u denotes the total

weight of jobs starting before D. To calculate f(j, t, u), there are two cases to consider:

either job j starts before D, or job j starts at, or after, D. Using fi(j, t, u) for i = 1, 2 to

denote such two cases, respectively, then we have

f(j, t, u) = min
i=1,2

fi(j, t, u).

Each fi(j, t, u) can be obtained by a dynamic programming recursion as follows.

Case 1: job j starts its processing before D.

For the jobs starting before D, the WSPT rule is optimal (Smith Smith (1956)), which

implies that job j is the last of all jobs starting before D. If the completion time of job

j is less than D, then the completion times of jobs 1, . . . , j − 1 remain the same. If the

completion time of job j is greater than D, then scheduling job j increases the completion

times of the jobs starting at, or after, D by Cj − D. Moreover, note that the completion

time of job j must be less than D + δaj. Otherwise, it is optimal that job j starts at time

D. Hence,

f1(j, t, u) =

f(j − 1, t− aj, u− wj) + wjt if t ≤ D,

f(j − 1, t− aj, u− wj) + wjt+
(∑j

i=1wi − u
)

(t−D) if D < t < D + δaj,

+∞ if t ≥ D + δaj.

Case 2: job j starts its processing at, or after, D.

For the jobs starting at, or after, D, the WSPT rule is optimal, which implies that job j is

the last of jobs 1, . . . , j. Hence,

f2(j, t, u) = f(j − 1, t, u) + wj (max{t,D}+ δ (bj − t)) .

The initial conditions for f(0, t, u) are f(0, 0, 0) = 0 and f(0, t, u) = +∞ for t > 0 and

u > 0.

10

Theorem 2 The minimum total completion time is given by

min{f(n, t, u) | t = 0, . . . ,
∑n

j=1
aj and u = 0, . . . ,

∑n

j=1
wj},

and the optimal schedule can be found by backtracking.

The time complexity of the dynamic programming is in O(n
∑n

j=1 aj
∑n

j=1wj) because j

is bounded by n, and t and u are bounded by
∑n

j=1 aj and
∑n

j=1wj, respectively. This is a

pseudo-polynomial algorithm, and since the problem is NP-hard, it is unlikely to solve the

problem in polynomial time unless P = NP .

5.2 A heuristic algorithm

This section proposes a simple heuristic based on the WSPT rule for the problem. We

present a formal description of the heuristic algorithm as follows.

Algorithm A

1. Re-order the jobs such that a1/w1 ≤ a2/w2 ≤ · · · ≤ an/wn. Determine k = max{j|
∑

i<j ai ≤

D}.

2. If
∑k

j=1 aj ≤ D+ δak, then schedule the jobs in non-decreasing order of aj/wj from time

zero without idle time. Otherwise, schedule the jobs 1, . . . , k− 1 in this order from time

zero and the jobs k, . . . , n in this order from time D.

In order to examine the performance of Algorithm A, we define a preemptive schedule where

a job that starts before D and finishes after D is interrupted and resumed at D, and all other

jobs are processed without interruption. Let σA
pmt denote a preemptive schedule of a schedule

found by Algorithm A: the jobs are scheduled in non-decreasing order of aj/wj from time

zero without idle time; job k is interrupted and resumed at D; all other jobs j ∈ N \ {k} are

processed without interruption.

11

Lemma 1 If the jobs have agreeable weights, that is, ak < al implies wk ≥ wl, then σ
A
pmt is

an optimal preemptive schedule.

Proof. For ease of analysis, the jobs are assumed to be indexed in non-decreasing order of

aj/wj without loss of generality. For any given optimal preemptive schedule, let k denote

the last job starting processing before D, and there are two sets of jobs: one is a set of jobs

scheduled before job k, denoted as J1; another is a set of jobs scheduled after D, denoted

as J2. Note that the jobs in each set of jobs, J1 and J2 must be in the WSPT order in an

optimal preemptive schedule. Let i and l denote the last job in J1 and the first job in J2,

respectively.

We show that ai/wi ≤ ak/wk ≤ al/wl in an optimal preemptive schedule. Firstly, suppose

that there exists an optimal preemptive schedule σpmt where ai/wi > ak/wk. Construct a

preemptive schedule σ′pmt by exchanging jobs i and k where τ = Si (σpmt), as shown in Figure

2.

Figure 2: Structure of schedules σpmt and σ′pmt

Then,

Ci (σpmt) = τ + ai,

Ck (σpmt) = D + δ (τ + ai + ak −D) ,

Ci

(
σ′pmt

)
= D + δ (τ + ai + ak −D) ,

Ck

(
σ′pmt

)
= τ + ak.

12

Since Cj (σpmt) = Cj

(
σ′pmt

)
for all j ∈ N \ {i, k},

∑n

j=1
wjCj

(
σ′pmt

)
−
∑n

j=1
wjCj (σpmt) = wi(D + δ(τ + ai + ak −D)− τ − ai)

−wk(D + δ(τ + ai + ak −D)− τ − ak)

≤ (wi − wk)(D + δ(τ + ai + ak −D)− τ − ai)

≤ 0.

The first and second inequality holds that ai ≥ ak and wi ≤ wk, respectively, because the

jobs i and k have agreeable weights. This contradicts that σpmt is optimal.

To complete the proof, suppose that there exists an optimal preemptive schedule σpmt

where ak/wk > al/wl. Construct a preemptive schedule σ′pmt by exchanging jobs k and l

where τ = Sk (σpmt), as shown in Figure 3.

Figure 3: Structure of schedules σpmt and σ′pmt

Note that a job that starts before D and finishes after D is interrupted and resumed at

13

D in a preemptive schedule. Thus,

Ck (σpmt) = D + δ (τ + ak −D) ,

Cl (σpmt) = D + δ (τ + ak + al −D) ,

Ck

(
σ′pmt

)
= D + δ (τ + ak + al −D) ,

Cl

(
σ′pmt

)
=

{
D + δ (τ + al −D) if τ + al > D,

τ + al if τ + al ≤ D.

Note that Cj (σpmt) = Cj

(
σ′pmt

)
for all j ∈ N \ {k, l}. If τ + al > D, then∑n

j=1
wjCj

(
σ′pmt

)
−
∑n

j=1
wjCj (σpmt) = δ (wkal − wlak) < 0.

If τ + al ≤ D, then∑n

j=1
wjCj

(
σ′pmt

)
−
∑n

j=1
wjCj (σpmt) ≤ δwkal + wl(τ + al −D)

−δwl (τ + ak + al −D)

= δwkal + (1− δ)wl(τ + al −D)− δwlak

≤ δ (wkal − wlak) < 0.

The second inequality holds because τ + al −D ≤ 0. This contradicts that σpmt is optimal.

We now show the approximability of Algorithm A when the jobs have agreeable weights,

that is, ak < al implies wk ≥ wl. An algorithm is called as α-approximation algorithm for a

problem if for every instance of the problem it can find a solution within a factor α of the

optimum solution.

Theorem 3 If the jobs have agreeable weights, that is, ak < al implies wk ≥ wl, then

Algorithm A is a (2− δ)-approximation algorithm.

Proof. Let σA denote a schedule found by Algorithm A. As in the formal description of

Algorithm A, let k denote the last job that starts processing before or at D and bj =
∑j

i=1 ai.

14

From the result of Lemma 1, in an optimal preemptive schedule σA
pmt,

Cj(σ
A
pmt) = bj for j = 1, . . . , k − 1,

Cj(σ
A
pmt) = D + δ(bj −D) = (1− δ)D + δbj for j = k, . . . , n.

Therefore,∑n

j=1
wjCj(σ

A
pmt) =

∑k−1

j=1
wjbj +

∑n

j=k
wj ((1− δ)D + δbj)

=
∑k−1

j=1
wjbj + δ

∑n

j=k
wjbj + (1− δ)D

∑n

j=k
wj

≥ δ
∑n

j=k
wjbj

≥ δ
∑n

j=k
wjbk.

The last inequality follows because bj ≥ bk for j = k, . . . , n.

We now examine a schedule found by Algorithm A. There are two cases to consider:

either job k starts before D or job k starts at D in σA.

Case 1: job k starts its processing before D in σA.

In this case, Ck(σA) = bk. Thus,∑n

j=1
wjCj(σ

A)−
∑n

j=1
wjCj(σ

A
pmt) =

(∑n

j=k
wj

)
(bk − (D + δ (bk −D)))

=
(∑n

j=k
wj

)
(1− δ) (bk −D)

≤
(∑n

j=k
wj

)
(1− δ)δak.

The last inequality follows because job k starts its processing before D in σA which implies

that bk ≤ D + δak.

Case 2: job k starts its processing at D in σA.

In this case, Ck(σA) = D + δak. Thus,∑n

j=1
wjCj(σ

A)−
∑n

j=1
wjCj(σ

A
pmt) =

(∑n

j=k
wj

)
δ (ak − bk +D)

≤
(∑n

j=k
wj

)
δ (ak − δak)

≤
(∑n

j=k
wj

)
(1− δ)δak.

15

The first inequality follows because job k starts its processing at D in σA which implies that

D + δak ≤ bk.

Therefore,∑n
j=1wjCj(σ

A)−
∑n

j=1wjCj(σ
A
pmt)∑n

j=1wjCj(σA
pmt)

≤

(∑n
j=k wj

)
(1− δ)δak(∑n

j=k wj

)
δbk

≤ (1− δ)ak
bk

≤ 1− δ.

The last inequality follows because ak ≤ bk. Since
∑n

j=1wjCj(σ
A
pmt) =

∑n
j=1wjCj(σ

∗
pmt) ≤∑n

j=1wjCj(σ
∗),∑n

j=1wjCj(σ
A)−

∑n
j=1wjCj(σ

∗)∑n
j=1wjCj(σ∗)

≤
∑n

j=1wjCj(σ
A)−

∑n
j=1wjCj(σ

A
pmt)∑n

j=1wjCj(σA
pmt)

≤ 1− δ.

As a result, Algorithm A is a (2− δ)-approximation algorithm.

For δ = 0, Algorithm A finds an optimal solution, but the approximation factor is 2.

This implies that the (2− δ)-approximation algorithm is not tight.

6 Computational study

In this section, we undertake extensive numerical tests to analyze the performance of the

exact algorithm (i.e., dynamic programming) and the heuristic algorithm (i.e., Algorithm

A), proposed in Sections 5.1 and 5.2, respectively. The algorithms are coded in JAVA with

20GB heap space, and run on a personal computer with Intel Core i7-9700 processor with a

3-GHz clock and 32GB RAM.

We evaluate the performance of the proposed algorithms by considering the impact of:

number of jobs (n), processing times (aj), weights (wj), the improving rate (δ), and the

common critical date (D). The experiments are designed to evaluate: firstly, the compu-

tational performance of the exact algorithm; secondly, the quality of solutions found by

16

the heuristic algorithm. To test the computational performance of the exact algorithm,

we let n ∈ {100, 200, 400}; aj ∼ DU[1,30], aj ∼ DU[1,50] and aj ∼ DU[1,100]; and wj ∼

DU[1,5], wj ∼ DU[1,10] and wj ∼ DU[1,20], where DU[l, u] is the discrete uniform dis-

tribution over the interval [l, u]. Note that the time complexity of the exact algorithm

is in O
(
n
∑n

j=1 aj
∑n

j=1wj

)
. These results are presented in Table 1. To test the quality

of solutions found by the heuristic algorithm, we let n ∈ {100, 200, 400}; aj ∼ DU[1,30],

aj ∼ DU[1,50] and aj ∼ DU[1,100]; wj ∼ DU[1,5], wj ∼ DU[1,10] and wj ∼ DU[1,20];

δ ∈ {0.2, 0.5, 0.8}; and D = α
∑n

j=1 aj where α ∈ {0.1, 0.3, 0.5}. These results are pre-

sented in Table 2. Our performance indicator is the percentage gap between the total

weighted completion times from the exact and heuristic algorithms, which is computed by

100× (zA − zE)/zE where zA and zE are the total weighted completion times of the heuris-

tic algorithm and exact algorithm, respectively. For each condition, the table entry is the

average of 20 instances that are randomly generated. Times are given in seconds.

In Table 1, we can observe that the computation time of the exact algorithm rapidly

increases as n, aj and wj increase because the time complexity of the exact algorithm is in

O
(
n
∑n

j=1 aj
∑n

j=1wj

)
. However, the exact algorithm finds an optimal solution in reason-

able times for up to 400 jobs. In particular, the average computation times for n = 100, 200

and 400 are 7.6 s, 76.9 s and 1814.8 s, respectively.

In Table 2, we can observe that the heuristic algorithm finds near-optimal solutions. The

average gap between solutions from the heuristic and exact algorithms is only 0.12%. The

maximum gap is 1.09% which occurs for n = 100, aj ∼ DU[1,50], wj ∼ DU[1,20], α = 0.1

and δ = 0.5. It is worth noting that the average computation time of the heuristic algorithm

is less than 0.001 s. Therefore, when the problem size is very large, it is sensible to use the

heuristic algorithm as an effective alternative.

In Table 2, we can also observe that n, δ, and α affect the performance of the heuristic

algorithm. Firstly, the average gap tends to decrease as the number of jobs increases as

17

Table 1: Computational performance of the exact algorithm.

n aj wj Average Computation Times (s) Maximum Computation Times (s)

100

DU[1,30]

DU[1,5] 2.1 3.2

DU[1,10] 2.2 2.8

DU[1,20] 7.8 9.1

DU[1,50]

DU[1,5] 2.0 2.4

DU[1,10] 3.7 4.6

DU[1,20] 7.3 10.8

DU[1,100]

DU[1,5] 7.0 8.4

DU[1,10] 12.3 13.9

DU[1,20] 23.7 29.8

200

DU[1,30]

DU[1,5] 18.2 21.1

DU[1,10] 34.2 46.8

DU[1,20] 64.3 80.0

DU[1,50]

DU[1,5] 30.4 37.2

DU[1,10] 54.9 70.7

DU[1,20] 106.8 125.2

DU[1,100]

DU[1,5] 61.1 74.4

DU[1,10] 111.5 154.8

DU[1,20] 210.5 246.0

400

DU[1,30]

DU[1,5] 444.5 537.1

DU[1,10] 798.0 907.9

DU[1,20] 1510.5 1647.8

DU[1,50]

DU[1,5] 728.3 857.2

DU[1,10] 1325.1 1431.2

DU[1,20] 2492.1 2776.7

DU[1,100]

DU[1,5] 1434.9 1667.4

DU[1,10] 2626.4 2948.3

DU[1,20] 4973.0 5431.6

shown in Figure 4(a). It is because the denominator of the gap, zE, becomes larger as n

increases whereas the numerator of the gap, zA − zE, coming from the idle time near the

common critical date is relatively constant. Secondly, as shown in Figure 4(b), the average

gap is maximized when δ = 0.5. When δ is close to 0 or 1, the problem becomes similar to

traditional single machine scheduling problems with constant processing times, and hence

the heuristic algorithm based on WSPT works well. Lastly, the average gap tends to decrease

as the common critical date, D (or equivalently α), increases as shown in Figure 4(c). The

18

Table 2: Performance of the heuristic algorithm.

n aj wj

δ = 0.2 δ = 0.5 δ = 0.8

α = 0.1 α = 0.3 α = 0.5 α = 0.1 α = 0.3 α = 0.5 α = 0.1 α = 0.3 α = 0.5

Avg(%) Avg(%) Avg(%) Avg(%) Avg(%) Avg(%) Avg(%) Avg(%) Avg(%)

100

DU[1,30]

DU[1,5] 0.29 0.24 0.13 0.32 0.27 0.21 0.16 0.09 0.08

DU[1,10] 0.36 0.24 0.10 0.37 0.31 0.12 0.16 0.17 0.07

DU[1,20] 0.34 0.20 0.10 0.27 0.24 0.14 0.15 0.12 0.09

DU[1,50]

DU[1,5] 0.32 0.21 0.11 0.36 0.22 0.14 0.18 0.09 0.09

DU[1,10] 0.33 0.22 0.10 0.36 0.26 0.14 0.16 0.13 0.09

DU[1,20] 0.35 0.18 0.09 0.44 0.29 0.16 0.22 0.17 0.09

DU[1,100]

DU[1,5] 0.34 0.21 0.08 0.37 0.29 0.11 0.16 0.16 0.07

DU[1,10] 0.34 0.21 0.09 0.30 0.25 0.15 0.14 0.15 0.08

DU[1,20] 0.38 0.20 0.11 0.43 0.27 0.17 0.19 0.18 0.08

200

DU[1,30]

DU[1,5] 0.17 0.10 0.06 0.19 0.14 0.08 0.09 0.07 0.04

DU[1,10] 0.19 0.11 0.06 0.20 0.15 0.09 0.10 0.09 0.04

DU[1,20] 0.17 0.10 0.07 0.14 0.15 0.09 0.06 0.09 0.04

DU[1,50]

DU[1,5] 0.16 0.13 0.04 0.14 0.16 0.05 0.07 0.08 0.03

DU[1,10] 0.22 0.10 0.05 0.17 0.12 0.07 0.06 0.07 0.03

DU[1,20] 0.16 0.13 0.05 0.17 0.14 0.08 0.09 0.07 0.04

DU[1,100]

DU[1,5] 0.17 0.11 0.07 0.20 0.16 0.08 0.09 0.09 0.05

DU[1,10] 0.18 0.10 0.06 0.17 0.15 0.08 0.09 0.08 0.04

DU[1,20] 0.16 0.12 0.06 0.18 0.12 0.07 0.10 0.06 0.04

400

DU[1,30]

DU[1,5] 0.09 0.07 0.02 0.10 0.08 0.03 0.04 0.03 0.02

DU[1,10] 0.09 0.05 0.03 0.09 0.07 0.04 0.04 0.04 0.02

DU[1,20] 0.08 0.05 0.03 0.08 0.06 0.04 0.05 0.04 0.02

DU[1,50]

DU[1,5] 0.07 0.06 0.03 0.08 0.06 0.05 0.03 0.04 0.03

DU[1,10] 0.08 0.04 0.03 0.11 0.06 0.04 0.05 0.05 0.02

DU[1,20] 0.09 0.06 0.03 0.09 0.08 0.04 0.03 0.04 0.03

DU[1,100]

DU[1,5] 0.10 0.05 0.02 0.09 0.06 0.03 0.05 0.03 0.03

DU[1,10] 0.11 0.06 0.03 0.12 0.09 0.04 0.05 0.05 0.02

DU[1,20] 0.09 0.06 0.03 0.12 0.08 0.04 0.06 0.04 0.02

Average 0.20 0.13 0.06 0.21 0.16 0.09 0.10 0.09 0.05

heuristic algorithm inserts an idle time right before D if the condition,
∑k

j=1 aj ≤ D + δak,

is not satisfied. If D is small, then the inserted idle time before D has a significant impact

on the total weighted completion time because a large number of jobs assigned at, or after,

D are delayed by the idle time.

In addition, we carried out an one-way analysis of variance (ANOVA) to see whether

the differences between average gaps with different n, δ, and α are statistically significant.

Specifically, we consider the following three cases: (1) differences between the average gaps

with n of 100, 200, and 400, (2) differences between the average gaps with δ of 0.2, 0.5,

19

Average

Gap(%)

�

Average

Gap(%)

�

Average

Gap(%)

(a) (b) (c)

0.00

0.05

0.10

0.15

0.20

100 200 400

0

0.05

0.1

0.15

0.2

0.2 0.5 0.8

0

0.05

0.1

0.15

0.2

0.1 0.3 0.5 �

Figure 4: Performance of the heuristic algorithm with different n, δ and α

and 0.8, (3) differences between the average gaps with α of 0.1, 0.3, and 0.5. P -values

from ANOVA are very small as shown in Table 3, and we can conclude that the differences

between average gaps with different n, δ, and α are statistically significant.

Table 3: ANOVA results

Description ANOVA P -value

Differences between average gaps with n of 100, 200, and 400 2.99× 10−34

Differences between average gaps with δ of 0.2, 0.5, and 0.8 1.61× 10−7

Differences between average gaps with α of 0.1, 0.3, and 0.5 7.15× 10−14

7 Conclusions

This paper studies the single machine scheduling problem of minimizing total weighted com-

pletion time with step-improving processing time jobs. The job processing times are reduced

by a certain rate if they start to process at, or after, a common critical date. We establish

that the problem is NP-hard. For the problem, we develop the pseudo-polynomial exact

algorithm based on dynamic programming and the simple heuristic algorithm based on the

WSPT rule. In order to evaluate the effectiveness and efficiency of the proposed algorithms,

computational experiments are carried out. The experiment results show that the exact

algorithm can find an optimal solution in reasonable times for up to 400 jobs and that the

20

heuristic algorithm provides near-optimal solutions with the average gap of 0.12% in short

computation times.

Future research could extend our results to job-dependent critical dates. Also, it would

be interesting to consider step-improving processing times with different scheduling criteria

in various multiple machine environments. Finally, the complexity of the unweighted model

for the considered problem is still open.

Acknowledgement

This work was supported by Global Research Network program through the Ministry of

Education of the Republic of Korea and the National Research Foundation of Korea (NRF-

2019S1A2A2031006).

21

References

Alidaee, B. & Womer, N. K. (1999), ‘Scheduling with time dependent processing times:

Review and extensions’, Journal of the Operational Research Society 50(1), 711 – 720.

Berlińska, J. (2015), ‘Scheduling for data gathering networks with data compression’, Euro-

pean Journal of Operational Research 246(3), 744–749.

Biskup, D. & Jahnke, H. (2001), ‘Common due date assignment for scheduling on a sin-

glemachine with jointly reducible processing times’, International Journal of Production

Economics 69(3), 317 – 322.

Browne, S. & Yechiali, U. (1990), ‘Scheduling deteriorating jobs on a single processor’,

Operations Research 38(3), 495–498.

Cheng, T. C. E., Ding, Q., Kovalyov, M. Y., Bachman, A. & Janiak, A. (2003), ‘Schedul-

ing jobs with piecewise linear decreasing processing times’, Naval Research Logistics

50(6), 531–554.

Cheng, T. C. E., Ding, Q. & Lin, B. M. T. (2004), ‘A concise survey of scheduling with

time-dependent processing times’, European Journal of Operational Research 152(1), 1 –

13.

Cheng, T. C. E., He, Y., Hoogeveen, H., Ji, M. & Woeginger, G. J. (2006), ‘Scheduling with

step-improving processing times’, Operations Research Letters 34(1), 37 – 40.

Cheng, T. & Ding, Q. (2001), ‘Single machine scheduling with step-deteriorating processing

times’, European Journal of Operational Research 134(3), 623 – 630.

Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: A guide to the theory

of NP-completeness, W. H. Freeman and Company, New York, NY, USA.

22

Gawiejnowicz, S. (2020), ‘A review of four decades of time-dependent scheduling: main

results, new topics, and open problems’, Journal of Scheduling 23(1), 3–47.

Graham, R. L., Lawler, E. L., Lenstra, J. K. & Rinnooy-Kan, A. (1979), ‘Optimization

and approximation in deterministic machine scheduling: A survey’, Annals of Discrete

Mathematics 15, 287–326.

Gupta, J. N. D. & Gupta, S. K. (1988), ‘Single facility scheduling with nonlinear processing

times’, Computers & Industrial Engineering 14(4), 387–393.

Huang, X., Wang, J.-B., Wang, L.-Y., Gao, W.-J. & Wang, X.-R. (2010), ‘Single machine

scheduling with time-dependent deterioration and exponential learning effect’, Computers

& Industrial Engineering 58(1), 58 – 63.

Ji, M., He, Y. & Cheng, T. (2007), ‘A simple linear time algorithm for scheduling with

step-improving processing times’, Computers & Operations Research 34(8), 2396 – 2402.

Kim, E.-S. & Oron, D. (2015), ‘Minimizing total completion time on a single machine with

step improving jobs’, Journal of the Operational Research Society 66(9), 1481–1490.

Kunnathur, A. S. & Gupta, S. K. (1990), ‘Minimizing the makespan with late start penalties

added to processing times in a single facility scheduling problem’, European Journal of

Operational Research 47(1), 56 – 64.

Li, S., Ng, C. T. & Yuan, J. (2011), ‘Scheduling deteriorating jobs with CON/SLK due

date assignment on a single machine’, International Journal of Production Economics

131(2), 747 – 751.

Luo, W., Gu, B. & Lin, G. (2018), ‘Communication scheduling in data gathering neworks

of heterogeneous sensors with data compression: Algorithms and empirical experiments’,

European Journal of Operational Research 271(2), 462–473.

23

Mosheiov, G. (1995), ‘Scheduling jobs with step-deterioration; minimizing makespan on a

single- and multi-machine’, Computers & Industrial Engineering 28(4), 869 – 879.

Moslehi, G. & Jafari, A. (2010), ‘Minimizing the number of tardy jobs under piecewise-linear

deterioration’, Computers & Industrial Engineering 59(4), 573 – 584.

Rustogi, K. & Strusevich, V. A. (2014), ‘Combining time and position dependent effects on

a single machine subject to rate-modifying activities’, Omega 42(1), 166 – 178.

Smith, W. E. (1956), ‘Various optimizer for single stage production’, Naval Research Logistics

Quarterly 3, 59–66.

Sun, X. & Geng, X.-N. (2019), ‘Single-machine scheduling with deteriorating effects and

machine maintenance’, International Journal of Production Research 57(10), 3186–3199.

Sundararaghavan, P. S. & Kunnathur, A. S. (1994), ‘Single machine scheduling with start

time dependent processing times: Some solvable cases’, European Journal of Operational

Research 78(3), 394 – 403.

Wang, J.-B., Gao, M., Wang, J.-J., Liu, L. & He, H. (2020), ‘Scheduling with a

position-weighted learning effect and job release dates’, Engineering Optimization (DOI:

10.1080/0305215X.2019.1664498) .

Wang, J.-B., Ng, C. T. & Cheng, T. C. E. (2008), ‘Single-machine scheduling with deteri-

orating jobs under a series–parallel graph constraint’, Computers & Operations Research

35(8), 2684 – 2693.

Wang, J.-B., Ng, C. T., Cheng, T. C. E. & Liu, L. L. (2008), ‘Single-machine scheduling

with a time-dependent learning effect’, International Journal of Production Economics

111(2), 802 – 811.

24

Wei, W. (2019), ‘Single machine scheduling with stochastically dependent times’, Journal of

Scheduling 22, 677–689.

Wu, C.-C. & Lee, W.-C. (2003), ‘Scheduling linear deteriorating jobs to minimize makespan

with an availability constraint on a single machine’, Information Processing Letters

87(2), 89 – 93.

Yin, Y., Wu, W.-H., Cheng, T. & Wu, C.-C. (2015), ‘Single-machine scheduling with time-

dependent and position-dependent deteriorating jobs’, International Journal of Computer

Integrated Manufacturing 28(7), 781–790.

25

