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Abstract

Complex networks have been successfully used to describe the social structure on top

of which many real-world social processes take place. In this thesis, I focus on the

development of network models that aim at capturing the fundamental mechanisms

behind the dynamics of adoption of ideas, behaviours, or items.

I start considering the transmission of a single idea from one individual to another,

in an epidemic-like fashion. Recent evidence has shown that mechanisms of complex

contagion can effectively capture the fundamental rules of social reinforcement and

peer pressure proper of social systems. Along this line, I propose a model of complex

recovery in which the social influence mechanism acts on the recovery rule rather than

on the infection one, leading to explosive behaviours. Yet, in human communication,

interactions can occur in groups. I thus expand the pairwise representation given by

graphs using simplicial complexes instead. I develop a model of simplicial contagion,

showing how the inclusion of these higher-order interactions can dramatically alter the

spreading dynamics.

I then consider an individual and model the dynamics of discovery as paths of sequential

adoptions, with the first visit of an idea representing a novelty. Starting from the

empirically observed dynamics of correlated novelties, according to which one discovery

leads to another, I develop a model of biased random walks in which the exploration

of the interlinked space of possible discoveries has the byproduct of influencing also

the strengths of their connections. Balancing exploration and exploitation, the model

reproduces the basic footprints of real-world innovation processes. Nevertheless, people

do not live and work in isolation, and social ties can shape their behaviours. Thus, I

consider interacting discovery processes to investigate how social interactions contribute

to the collective emergence of new ideas and teamwork, and explorers can exploit

opportunities coming from their social contacts.
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Chapter 1

Introduction

1.1 Representing interactions

In the past decades, network science emerged as a cross-disciplinary field focused on

taming the complexity of many real-world systems starting from their interactions [14].

Each system composed by interacting units can indeed be represented as a network, where

pairs of nodes are connected by links. Simple as it is, this mathematical representation

already provides an effective multi-scale description of the structural patterns behind a

variety of real-world systems [15–18].

With its origins deeply rooted in graph theory [19, 20], the network representation of

a system can be adopted as soon as we can decompose it into a set of interacting units.

The connectivity patterns between these units, called vertices, are represented as link

connecting them. In graph terms, we have a graph �(V , ℰ) consisting in a collection

of # = |V| nodes and  = |ℰ | edges. Over the years, this formalism has allowed to

investigate of complex systems in terms of (dynamic) network models and to map their

dynamics into classes of dynamical processes on networks [21–23], ultimately improving

our understanding of the behaviour of real-world phenomena, such as disease and rumor

spreading, synchronization, and social processes. From the first seminal papers [24, 25],

10



Chapter 1. Introduction 11

the field has dramatically evolved while adapting to the new interdisciplinary challenges

brought by the—not unexpected—interactions with the neighbouring communities.

Indeed, in these twenty years networked approaches have found their way into the most

diverse disciplines [14], that span from social sciences and economics [26–30] to biology,

ecology and neuroscience [31–35].

With the support of the data revolution and the development of the network theory,

the graph-based representation continuously evolved to better capture the different

levels of interactions that most systems exhibit. Considering the intrinsic non-static

nature of interactions opened up further research on temporal networks [36]. Similarly,

distinguishing between different types of interactions among the constituents led to the

birth of multilayer networks, in which different layers encode relationships of different

nature [37–39]. All together, these aspects brought brand new research questions and

contributed to a better network representation of reality. Nevertheless, one can reasonably

ask: are networks themselves enough to provide a complete description of a complex

system?

As stressed by Butts in 2009, “To represent an empirical phenomenon as a network is

a theoretical act. It commits one to assumptions about what is interacting and the nature of

that interaction" [40]. Thus, to obtain meaningful insights from a system, choosing an

appropriate representation is a crucial step that cannot be overlooked.

Indeed, when it comes to representing real-world interactions into compact and

treatable mathematical objects, there are different representations that one can use, each

with its own caveats [41]. In this scenario, it is clear that the network representation

comes with a fundamental limit, that is, by definition, considering exclusively pairwise

interactions [5]. Instead, many empirical systems are genuinely of higher-order, that

means that their relationships are collective actions at the level of groups that simply

cannot be factorized into pairs. This is the case of competing species in ecosystems [42],

but also brain [43, 44], protein interaction [45], and gene regulatory networks [46]. We

call these higher-order systems, or HOrSs [5].
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Figure 1.1: Representing interactions. A set of interaction data (a) can be represented as
a collection of sub-interactions. These building blocks can be (b) pairwise interactions
(links or edges) or higher order building blocks, such as simplices and hyperedges (g).
Low order can interactions can be therefore encoded into a graph (c), or into a bipartite
graph composed by nodes and interactions (d). Alternatively, network motifs (e) and
cliques (f) can encode specific structures in the form of subgraphs. Similarly, higher order
building blocks such as simplices and hyperedges can be assembled into higher order
structures, that are, respectively, simplicial complexes (h) and hypergraphs (l). Simplices
allow to distinguish genuine higher order interactions from the sum of low order ones
(i). However, simplicial complexes also require the inclusion of all the subfaces of each
simplex in the complex (j). This condition is relaxed in the hypergraph representation
(k). Figure from [5].

Human social systems [28], which are at the centre of this thesis, have been also

historically characterized exclusively in terms of pairwise interactions between individu-

als [47, 48]. Still, it is hard to imagine the fabric of social networks just in terms of pairs

when many interactions involve more than two people at the same time [49]. Thus, they

naturally fall into HOrSs.

How can we represent these systems when graphs are not enough? An alternative

mathematical framework comes from algebraic topology [50]. Simplicial complexes (and

hypergraphs) can be used to explicitly encode such many-body interactions into a new

formalism [51]. Formed by simplices of different dimensions (see Fig. 1.1), these structures



Chapter 1. Introduction 13

are thus natural candidates to move system descriptions beyond dyadic relationships

and effectively map relationships between any number of units [5]. We recall that, in

its most basic definition, a :-simplex � is a set of : + 1 vertices � = [?0 , . . . , ?:]. This,

according to the language of graphs, a node is a 0-simplex and a link is a 1-simplex

[Fig. 1.1(b, g)]. It is then easy to see the difference between a group interaction among

three elements (a 2-simplex) and the collection of its edges (three 1-simplices). Just like

a collection of edges defines a network [Fig. 1.1(c)], a collection of simplices defines a

simplicial complex [Fig. 1.1(h)]. More formally, a simplicial complexK on a given set of

verticesV, with |V| = # , is a collection of simplices, with the extra requirement that if

simplex � ∈ K , then all the sub-simplices � ⊂ � built from subsets of � are also contained

inK [Fig. 1.1(j)]. Such a requirement, allows to distinguish between simplicial complexes

and hypergraphs, with the former being a special type of the latter [Fig. 1.1(k, l)].

Of course, simplicial complexes are not a new idea [50], but the interest in them has been

recently renewed thanks to the enhanced resolution of real-world datasets and the latest

advancements in topological data analysis [52–55]. In particular, they recently proved to

be useful in describing the architecture of complex networks [56–58] functional [59–61]

and structural brain networks [44], protein interactions [62], semantic networks [63], and

co-authorship networks in science [64, 65].

The latter case represents the typical (and probably easiest) example. Let us consider

a paper wrote by three authors 0, 1, and 2. Standard graph-theoretic descriptions

based on links [Fig. 1.1(b,c)], that gave rise to a number of studies around collaboration

networks in science, would consider the clique containing all the pairwise interactions

between authors, namely [0, 1], [1, 2], and [0, 2]. It is evident how this representation

lacks in capturing the multi-body nature of the interaction, that can be recovered using

the simplex [0, 1, 2] formed by all the authors instead. In this setting, we are able to

distinguish this paper from the hypothetical sum of three previous publications authored

by two researchers at a time {[0, 1], [1, 2], [0, 2]} [see Fig. 1.1(i)].

Thus, the question is: should the sub-interactions contained be considered as well?
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There is a matter of discussion whether social relationships could be better modelled

by using simplicial complexes rather than hypergraphs. In the end, depending on the

situation, it might be reasonable or not to assume that in a group interaction all the

sub-interactions among the group members should be considered as well [66]. In this

particular example, adopting the simplicial complex description would mean assuming

the “ nested" nature of co-authoring, where all the sub-interactions happen [Fig. 1.1(j)].

This might be reasonable for certain applications involving spreading and diffusion

dynamics, such as the one we will consider in Chapter 3. However, for studying the

structural properties of the collaboration networks an hypergraph description might

be more suitable, since it would allow to distinguish different publications authored

by subsets of the authors from a collective one [65]. For a complete overview of the

emergent field of network beyond pairwise interactions we refer the interested reader to the

review in Ref. [5]. Relationships between representations are also specifically discussed

in Ref. [41].

1.2 Social dynamics

Dynamical processes that emulate human behaviours have been the focus ofmany studies,

where social relationships and interactions are typically considered as an underlying

structure. Indeed, social interactions are a natural testing ground for networked

approaches. Since individuals can interact in pairs or groups, the dynamics should in

turn account for the effects that the structured interactions might lead to [5].

In this thesis, we focus on network models that aim at capturing the fundamental

mechanisms behind the social dynamics of adoption [67, 68]. These are mostly agent-

based models that describe social dynamics by relying on simple rules inspired from the

physics and mathematics literature, such as spin models and interacting particle systems.

We refer the reader interested in the more general world of sociophysics, statistical

physics, and computational social science, to the dedicated reviews [47, 48, 69–75].
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The adoption of objects and behaviours can be described both as a contagion dynamics

on a network of individuals influencing one another, and as a exploration dynamics on a

network of objects and behaviours that individuals can adopt [6]. Indeed, one the one

hand, one can consider a single idea, or behaviour, and model its transmission from one

individual to another, in an epidemic-like fashion [76, 77]. In this case, the focus is on

the propagation dynamics over a social network [78–80]. On the other hand, one can

start from the relationships between these ideas and shift the attention to their adoption

dynamics as a sequence of items that individuals can sequentially collect [1, 81]. In this

latter case, different exploration (and innovation) models have been proposed to replicate

the exploration dynamics according to which one idea leads to another and a discovery

can trigger further ones [82]. In this introductory section, we will present both points of

view, briefly describing the different modelling approaches together with some of the

key concepts and models that will be then used throughout the thesis. At the essence

of these models there is the common idea to describe a social dynamics by relying on

simple —yet sufficient— rules. Many efforts in this directions have been put forward,

contributing to the growth of a field of physicists and computational social scientists that

is often addressed as social physics [47, 48]. Within the broader spectrum that this field

covers, ranging from the formation of norms and consensus [75, 83, 84] to the dynamics

of echo chambers [85–88], we will focus on two particular dynamics. Specifically, we start

introducing spreading processes, historically embedded within the literature of epidemics

on networks [77], but recently revisited to fit the dynamics of social contagions [89]. We

then continue with a wider class of models of discovery and exploration [6].

1.2.1 From epidemic spreading to social contagions

The study of spreading processes on networks is one of the branches of network science

that attracted more attention among the community. Building on top of classical

epidemiological compartmental models [90–92], the recent success of these models is

partially due to the increasing availability of large scale data that opened up new research

avenues in which researchers make use of the newly available data sources to inform the
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models, which on turn allow us to forecast and possibly control the disease spreading

[93–97]. In light of these new advancements, network scientists have been slowly, but

extensively, introducing more and more details into the modelling framework in order to

increase its accuracy and ultimately its predictive power [98].

In this scenario, the typical approach is to divide the individuals of a population

into a finite number of classes, or compartments. In the simplest possible case we have

only two classes. Individuals or agents can either be in the susceptible (S) or in the

infected (I) class, with the latter being the class of those who have an infection and

are therefore potentially contagious for the rest of the population. Two of the most

studied compartmental models are the Susceptible-Infected-Susceptible (SIS) and the

Susceptible-Infected-Recovered (SIR). In both models, susceptible individuals (S) can

get infected by means of an interaction with infectious ones (I). This SI process always

leads, by construction, to the absorbing state in which all individuals are infected. The

introduction of the third transition leads to richer phenomena. More specifically, in

the case of the SIS, individuals can switch multiple times between the S and I states,

eventually reaching a steady state in which the epidemic is sustained by a non-zero

number of individuals [see Fig. 1.2(a)]. This SIS dynamics is indeed suitable formodelling

the dynamics of those diseases that can infect an individual more than once, such as

common cold. All individuals are initially assigned to the S class, with the exception of a

small initial seed of infected nodes. Infected individuals can then pass the infection to

the susceptible ones by means of contacts, i.e., through the links of the network. More

precisely, an infectious node can pass the infection to a neighbour according to a given

rate of infection �. In turn, infected individuals spontaneously recover with a rate � and

then can get infected again.

Differently from the SIS, in the SIR, individuals gain immunity to reinfections after

a certain amount of time, or with a given probability per unit time. These immune

individuals are then called recovered (R) and do not participate any more to the

spreading dynamics [see Fig. 1.3(a)]. This type of models is therefore used when it comes
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Figure 1.2: SIS model. (a) Transition diagram between compartments. (b) Evolution
of the density of nodes in each compartment (I, S) as a function of time. (c) Zoomed
temporal dynamics of the density of infected nodes. Simulations on a Barabási-Albert
graph [24] (# = 104, < = 5) with parameters, � = 0.1 (transmission rate), � = 1 (recovery
rate), �(C = 0) = 0.005.

tomodelling infectious diseases such as Ebola, or seasonal influenza, inwhich individuals

can acquire immunity against reinfections. As a consequence, the SIR presents also the

disease-free state as an absorbing state.

Two example-scenarios for the SIS and the SIR models on a Barabási-Albert graph

[24] are reported in Fig. 1.2(b) and Fig. 1.3(b) respectively. In both figures the evolution

of the density of nodes in each compartment (S, I, and R) is plotted as a function of time.

In Fig. 1.3(b), an initial seed of infectious nodes starts infecting the neighbours, causing

an inevitable decrease of the susceptible ones. The epidemic reaches the peak (around

C = 5 in this example) and then dies out, eventually leaving the system divided into

susceptible and recovered nodes with acquired immunity.

In the case of the SIS shown in Fig. 1.2(b), the infectivity is high enough to sustain the

epidemic. Indeed, the red curve, representing the evolution of the density of infected

nodes �(C) ≡ �(C), reaches a stationary state. This is a signature of the system reaching

the endemic state in which, even though nodes continue to switch between S and I

compartments, the total number of infected nodes fluctuates around constant value. The

average number of nodes in this state gives the size of the epidemics and it is typically

referred as �∗. The study of �(C) as a function of the infectivity, and in particular the
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Figure 1.3: SIR model. (a) Transition diagram between compartments. (b) Evolution of
the density of nodes in each compartment (I, S, R) as a function of time. (c) Zoomed
temporal dynamics of the density of infected nodes. Simulations on a Barabási-Albert
graph [24] (# = 105, < = 5) with parameters, � = 0.1 (transmission rate), � = 1 (recovery
rate), �(C = 0) = 0.005.

transition between the epidemic-free and the endemic state, will be the focus of Chapter

2 and Chapter 3, in which two different extensions of the SIS model will be extensively

studied.

Many theoretical approaches have been developed to analytically describe, with

increasing level of complexity, the dynamics of epidemic spreading on complex networks.

An accurate analytical description should include the interplay between the structure of

the contact patterns and the dynamics of the spreading process on top. In this thesis, we

will specifically use two of these analytical descriptions, that are probably the simplest

and—one of—the most accurate ones. These are, respectively, the mean field (MF)

approach and the Microscopic Markov-Chain approach (MMCA). The details of these

two approaches will be discussed in Chapter 2 and 3, while we refer the reader interested

in a complete overview to Ref. [77, 99–102] and references therein.

The contagion dynamics described so far goes under the name of simple contagion, to

stress the fact that a susceptible node in contact with more than one infected neighbour

can get an infection by means of independent exposures. Indeed, when modelling an

epidemic spreading in a population [77], the transmission between infectious and healthy

individuals is typically assumed: (i) to occur through pairwise interactions between
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Figure 1.4: Schematic illustration of a contagion dynamics. The adoption of behaviours,
ideas etc. is modelled as a spreading process on a network of social contacts. Red and
blue denote adopters (or infected) and non-adopters (or susceptible) nodes respectively.
For example, in (a) a smoker transmits the —bad— habit to his neighbours, that in turn
can transmit it again (b). Figure adapted from [6].

infectious and healthy individuals, and (ii) to be caused even by a single exposure of

a healthy individual to an infectious one. This last point is precisely what makes a

contagion simple, without undermining the complexity of the epidemic model.

While the aforementioned models have been widely used to study the spread of

diseases, there’s a variety of other domains where they can been successfully applied,

and the compartmental approach just described, initially designed to characterise the

spreading of viruses, can also cover a broader class of phenomena. In fact, another

equally long tradition of modellers have been using similar frameworks to characterize

the spreading of social phenomena, such as the diffusion of rumours or fads, or the

adoption of norms, behaviours or technological innovations [78, 103–106]. Think for

example at the spreading of a behaviour, such as smoking [107], or a behavioural-related

physical or mental state, like obesity [108] and happiness [109]. An illustrative example

is shown in Figure 1.4, for a single selected habit: smoking. We can easily associate the

addition to smoking of an individual to an infected status, as it would be for a disease.

Similarly, a non-smoking behaviour denotes the possibility to become an adopter, and

thus would correspond to being susceptible. Assuming now that a social relationship

between two individuals is the medium in which a behaviour can propagate, we can use

a network of social relationship as a structure on top of which the considered behaviour
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might spread, that means going for example from the configuration in Fig. 1.4(a) to

Fig. 1.4(b).

We have just claimed that, under a very first approximation, the spreading dynamics

of pathogens and ideas are similar. To be more precise, we introduced the idea that they

can both be modelled using the same epidemic-like framework. This is, obviously, only

partially true. Indeed, when dealing instead with phenomena of social contagion and

human systems, the situation is more complex, and there is a variety of behavioural

aspects influencing the social dynamics that cannot be overlooked [110]. In fact, often

the dynamics cannot be simply explained in terms of basic disease epidemics models,

which would result too reductive. Instead, the social nature of the contacts mediating

these processes deserves special attention, calling for ad-hoc modelling adjustments

and tailored experimental techniques to measure social effects [111, 112]. Simple

epidemic-like contagions can suffice to describe some cases, such as easily convincing

rumours or domino effects [79]. In other situations, however, they do not provide a

satisfactory description, especially in those cases where more complex dynamics of peer

influence and reinforcement mechanisms are at work [89, 110, 113]. Along this line,

recent investigations have empirically shown that simple contagion rules (SI−→2I) are not

appropriate to describe the more complex mechanisms of social influence that are at work

when humans interact [80, 107, 114, 115]. This evidence, mostly provided by digital traces,

relates to different contexts, ranging from for the adoption of applications [114, 116]

and technologies [117, 118] to the spreading of obesity [108], happiness [109], and music

listenership [119].

These considerations gave rise to new streams of research devoted to adapt these

simple models by translating theories coming from the social sciences into mechanistic

models. Among these, complex contagion is a particularly popular theory [80, 120]. As

defined by Centola & Macy [79]:

“a contagion is complex if its transmission requires an individual to have contact with

two or more sources of activation”, i.e. if a “contact with a single active neighbour is
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not enough to trigger adoption".

Complex contagion can hence be broadly defined as a process in which exposure

to multiple sources presenting the same stimulus is needed for the contagion to occur.

Current efforts in this direction have been summarized by Guilbeault et al. in Ref. [89].

The modelling of social contagion processes has been driven by these considerations in

several directions. For example, threshold models assume that, in order to adopt a novel

behaviour, an individual needs to be convinced by a fraction of his/her social contacts

larger than a given threshold [79, 116, 121–125]. Although supported by a mounting

body of empirical studies [80, 115, 116, 126, 127], complex contagion is not the only theory

out there, but alternative mechanisms have been theorized. For example, Ugander et

al. [126] proposed structural diversity, a local measure of the neighbourhood of a node,

quantified in terms of number of connected components having at least one adopter.

When empirically tested on data of adoption of online platforms upon invitation, this

measure turned out to be a better predictor of the probability of adoption with respect to

more conventional measures like the number of adopters among the peers. Complex

contagion and structural diversity have also been tested against embeddedness and tie

strength theories, in which friendship overlap and intensity are the key drivers of social

contagion instead [128, 129]

Whilemost of theworksmentioned so far focusedon the adoptionmechanism from the

single-sided transition leading to an adoption, in this thesiswewill also put some attention

to the opposite process, in which adopters abandon the new product or technology

becoming “susceptible" again (I−→S). Recently, it has been shown that differences

between the recovery rates of the nodes, i.e., considering heterogeneous distributions

of parameters instead of constant, can also dramatically change the epidemiological

dynamics [130–132]. In Chapter 2, we will introduce a model of complex recovery, in

which the social influence mechanism acts on the recovery rule rather than on the

infection one. We will show how this change of perspective might lead to explosive

adoption dynamics [3]. This behaviour will be especially pronounced in spatial systems,
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whose effects on the contagion dynamics have also been the focus of several other

studies [106, 133–135].

Yet, in human communication, interactions can occur in groups of three or more

agents, and, as discussed above, often cannot be simply factored into a collection of

dyadic contacts. Thus, in Chapter 3 we will focus on the dynamics of social contagion

but expanding the pairwise representation given by graphs in favour of a non-pairwise

one, like simplicial complexes or hypergraphs. This is indeed a recent research direction

that finds in social systems a particularly suitable playground [5]. We will introduce a

model of simplicial contagion that shows how the inclusion of these higher-order group

interactions can dramatically alter the spreading dynamics and lead to the emergence of

novel phenomena, such as discontinuous transitions and bi-stability [2]. Similar results

can be also found when hypergraphs are used to encode social patterns underneath the

spreading process instead [136–139].

We now move the focus from the adopting individuals to the adopted items and

introduce adoption processes as discovery dynamics.

1.2.2 Discovery processes and innovation

Novelties are part of our daily life. The discovery dynamics at which an individual

consumes goods or listens to songs can be described, using the words by Thomas

Kuhn [140], in terms of the essential tension between exploitation and exploration. This

eternal trade-off recurs in a variety of different systems. For example, people move

between different locations, mostly switching between already known places, but from

time to time visit new ones [141–144]. The individual propensity towards “uncharted

seas" enters in each discovery processes and enables classifications, such as the returners

versus explorer dichotomy for human mobility [141]. If we think of each visit of a

place, listening of a song, or, more in general, collection of an item as the addition of

a symbol to a symbolic sequence, the series of actions of an individual (agent) can be

represented as a sequence that grows in time, over an alphabet that represents a space
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Figure 1.5: The discovery of ideas or the adoption of objects is modelled as an exploration
process on a network of relationships (similarities or proximity). For example, in (a)
an individual collects an object � and then continues the exploration by following the
links of the network and sequentially collecting � and �. In (b) three objects have been
discovered, and the exploration path can be seen as a symbolic sequence of discovered
objects. Figure from [6]

of possibilities. Symbolic sequences have a long history in text analysis, but recently

sequences of item adoptions have been used to study human behaviour, leveraging

on sequences of purchases as tracked by credit card data [145] or supermarket fidelity

cards [146, 147]. Any process that involves a sequence of actions involving individuals

and objects can be framed in this way (see Fig. 1.5). Individuals adopt new items while

often returning on their steps. Every time a new item enters the sequence it represents a

novelty.

This precise mechanism of exploration and exploitation becomes particularly relevant

at the collective level, where novelties can be interpreted as innovations [148]. In fact, the

first discovery by any individual of a population represents a novelty for everybody. In

this scenario, the essential tension between tradition and innovation has been the focus

of many studies that analysed the collective action of researchers determining scientific

progress [149–153]. On the same line, patent data have been largely used to explore the

dynamics of technological ecosystems [154, 155], with the aim of predicting the dynamics

of innovation and eventually detecting the best strategies that could influence the rate of

innovation [154, 156, 157].

Researchers have been tackling the problem of the emergence of innovation from

different angles [158–161]. For example, some studies have been focusing on the
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dynamics of substitutive systems, in which the new always replaces the old [162]. In

this thesis instead, we keep the focus on the dynamics leading to the emergence of

the new; we frame the problem in a cumulative way, such that the new, intentionally

very broadly defined, always comes as an addition to the existing. More precisely,

the existing environment is actually a necessary condition that paves the way to the

emergence of the new. In fact, fromParmenides tomodern evolutionary biology, “nothing

comes from nothing" is a dictum at the essence of each process involving real-world

systems. Thus, even if we neglect that new items might arise from the re-combination

of existing ones [159, 163], there is still an essential ingredient that models should take

into account, that is the structure underneath these items which determines the way in

which individuals can navigate it [164, 165] and move from one item to the next. For

example, knowing the bestseller of a book writer is often a condition that puts us in the

position of deepening our research towards minor novels of the same author. In this

setting, one can think of knowledge as an unexplored space of relationships between

concepts and objects to be discovered by—more or less “innovative"—investigations and

experiments [166, 167]. These could be interpreted either as an exploration processes

of an abstract space of concepts, ideas, items, etc. [168], and as a knowledge acquisition

process [169–171], like people acquiring information through online searches [172, 173].

An important aspect is that the structure of this space does matter, since some portions

of the space are only visible from certain positions. This concept resonates with the

evolutionary theory of the adjacent possible (AP) developed by Stuart Kauffman [174].

According to this framework, we can split the knowledge space into what has already

been discovered (the actual) and what is left to explore (the possible). Notice, however,

that only one tiny fraction of the possible is achievable from the actual, and this is

precisely the AP, that is situated one step away from what is already known.

Recent empirical studies have investigated the emergence of novelties and innovation

in a wide variety of different contexts, including science and technologies [149, 166, 175–

178], knowledge and information [172, 179], goods and products [180], language [181],
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but also gastronomy [156] and cinema [182]. In parallel to the empirical analyses, various

models have been proposed to reproduce the innovation dynamics in different domains,

such as linguistics [183, 184], social systems [185], or self-organized criticality (SOC)

[186]. Other approaches have modelled the emergence of innovation as an evolutionary

process, such as the Schumpeterian economic dynamics proposed by Thurner et al.

[159, 163] and the evolutionary game among innovators and developers proposed by

Armano and Javarone [187]. At the core of these models, there is often a reinforcement

mechanism, akin to the rich-get-richer paradigm [188], that accounts for self-reinforcing

properties. This is an essential ingredient that allows to recover the emergent scaling laws

of discovery processes in real-world systems [82, 189], like the well-known Heaps’, Zipf’s,

and Taylor’s laws [190–192], for example via sample-space-reducing mechanisms [193].

The Yule process [194] is one of the first mechanisms employed to generate the empirically

observed power laws. From there, many processes with reinforcement have been

developed [195]. At their root, there are the famous standard urn processes [196], like

the ones of Pólya and Hoppe[197, 198]. However, these basic processes have been slowly

modified and tuned with empirical data in order to better capture the observed patterns.

An example is the generalization of the Yule-Simon process [199] developed to mimic

the dynamics of collaborative tagging, where online users associate tags (descriptive

keywords) to items, generating fat-tailed frequency distributions of tags.

Later, the urn framework has been further enriched in order to account for the

dynamics of correlated novelties. In fact, empirical traces of human activities show

that discoveries come in clusters, and the symbolic sequences generated by discovery

processes are thus correlated [82, 189]. Models can mimic this behaviour by letting

the space grow together with the process, such that novelties increase the number of

possible discoveries via triggering mechanisms. A review of these models of expanding

spaces can be found in Ref. [200]. Leveraging on the concept of the AP, triggering

mechanisms showed good agreement with empirical data in reproducing both the

scaling laws associated to the discovery processes and the correlated nature of the
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sequences produced. This is the case of the Urn Model with Triggering (UMT) [82],

that incorporates the AP within the urn process. In what follows we briefly recap some

important results for the UMT that will be useful for the rest of the thesis.

1.2.2.1 The Urn Model with Triggering

The UMT process is characterized by two parameters, � and � [82, 192]. At time C = 0 the

urn contains "0 balls of distinct colours. At each time step C, a ball is extracted from the

urn (representing a concept or an item) and is added to a sequence of items S(C). The ball

is then put back into the urn together with � additional copies of it. With this mechanism,

called reinforcement, the frequency of colours in of S(C) directly influences the probability

of extracting colours, favouring those that have been already drawn. The first time a ball

of a new colour is extracted, it represents a novelty. Every time that a novelty appears (is

extracted), the space of possible discoveries increases. More precisely, according to this

triggering mechanism, every time a novelty appears � + 1 balls of brand new colours are

added to the urn. Thus, if we are interested in studying the pace of discovery of this

model, we need to come up with an equation for the growth of the number of novelties

�(C). This can be done starting from the following considerations. �(C) increases by

one every time a ball is extracted for the first time, thus �(C + 1) = �(C) + %new(C). Here,

%new(C) ∈ [0, 1] is the probability that the ball extracted at time C never appeared in the

sequence S(C) before. In other words,

%new(C) = Prob [�(C + 1) = �(C) + 1|�(C)]

and we can express it as the fraction of discoverable balls over the total number of balls

available at time C. This leads to an equation for the asymptotic growth of the number of

novelties that in the continuous time limit reads:

3�(C)
3C

=
*′(C) − �(C)

*(C) , (1.1)
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where the numerator is the number of unique colours available at time C minus the

number of unique colours already extracted at that time, and the denominator is the

total number of balls present in the urn.

Equation (1.1) can be written in terms of the parameters of the model. In particular,

we can write the total number of balls in the urn up to time C,*(C), as the initial number

of balls"0, plus the � balls added (C times) as reinforcement, plus the (� + 1) balls added

(�(C) times, one for each novelty) due to the triggering mechanism:

*(C) = "0 + �C + (� + 1)�(C). (1.2)

Similarly, the number of unique elements in the urn at time C,*′(C), can be obtained by

subtracting from*(C) the �C repeated balls coming from the reinforcement, that is:

*′(C) − �(C) = [*(C) − �C] − �(C) = "0 + ��(C). (1.3)

Thus, using Eq. (1.2) and Eq. (1.3) in Eq. (1.1), we obtain:

3�(C)
3C

=
"0 + ��(C)

"0 + �C + (� + 1)�(C) . (1.4)

For great times, C � "0, we can disregard"0, and, after the introduction of the auxiliary

variable I(C) = �(C)
C , Eq. (1.4) can be rewritten as:

3I(C)
3C

C + I(C) = �I(C)C
�C + (� + 1)I(C)C , (1.5)

which can be integrated as:∫ I(C)

I(C0)

� + (� + 1)I(C)
I(C)[� − (� + 1)I(C) − �]3I(C) =

∫ C

C0

1
C
3C. (1.6)

The asymptotic solution (C → ∞) depends on the parameters � and �, and it can be
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shown, as detailed in the Supplemental Material of Ref. [82, 192], that is given by:


� > � �(C) ∼ (� − �)

�
� C

�
�

� = � �(C) ∼ �
�+1

C
ln C

� < � �(C) ∼ �−�
�+1 C

(1.7)

that is precisely the Heaps’ law [190], with a sublinear growth for � > � and linear

for the other cases. As we will see in Chapter 4, many empirical discovery processes

generate Heaps’ laws [82, 190] that have sublinear behaviours. For this reason, in this

thesis we will focus on the case � > �. In particular, in Chapter 4 we will propose a

network alternative to the UMT model, the edge-reinforced random walk model [1], that

encodes the AP directly into the topology of a network of concepts and ideas. Then, in

Chapter 5 we will couple together different discovery processes through the links of a

social network, exploring in this ways the effects of the structure of a team in processes

of collective exploration [4].

1.3 Outline of the thesis

The first part of the Thesis is devoted to processes of social contagion.

In Chapter 2, we will devise a model of social contagion inspired by a real-world

scenario of energy demand management [3]. In fact, due to the emerging of new

technologies, the decentralisation of energy resources and the smart grid have forced

utility services to rethink their relationships with customers. Demand response (DR)

seeks to adjust the demand for power instead of adjusting the supply. However, DR

business models rely on customer participation and can only be effective when large

numbers of customers in close geographic vicinity, e.g. connected to the same transformer,

opt in. We will introduce a model for the dynamics of service adoption on a two-layer

multiplex network: the layer of social interactions among customers and the power-grid

layer connecting the households. While the adoption process—based on peer-to-peer
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communication—runs on the social layer, the time-dependent recovery rate of the nodes

depends on the states of their neighbours on the power-grid layer, making an infected

node surrounded by infectious ones less keen to recover. We will perform numerical

simulations of the model on synthetic and real-world networks, showing that a strong

local influence of the customers’ actions leads to a discontinuous transition where either

none or all the nodes in the network are infected, depending on the infection rate and

the social pressure to adopt. We will find that clusters of early adopters act as points of

high local pressure, helping maintaining adopters, and facilitating the eventual adoption

of all nodes.

In Chapter 3, keeping the focus on the dynamics of social contagion, we will shift

the attention towards the structural aspect of the social contacts on top of which the

dynamics evolves. Complex networks have been successfully used to describe the spread

of diseases in populations of interacting individuals. However, pairwise interactions are

often not enough to characterize social contagion processes such as opinion formation or

the adoption of novelties, where complex mechanisms of influence and reinforcement are

at work. We introduce a higher-order model of social contagion in which a social system

is represented by a simplicial complex and contagion can occur through interactions in

groups of different sizes [2, 201]. Numerical simulations of the model on both empirical

and synthetic simplicial complexes will highlight the emergence of novel phenomena

such as a discontinuous transition induced by higher-order interactions. We will show

analytically (MF and MMCA) that the transition is discontinuous and that a bistable

region appears where healthy and endemic states co-exist.

We will then shift the attention from processes of contagion to processes of discovery.

In Chapter 4, we will introduce a model for the emergence of the new in which

cognitive processes are described as random walks on the network of links among ideas

or concepts, and a discovery corresponds to the first visit of a node [1]. The transition

matrix of the random walk will depends on the network weights, while in turn the

weight of an edge will be reinforced by the passage of a walker. We will show how
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the presence of the network naturally accounts for the mechanism of the AP, and the

model reproduces both the rate at which novelties emerge and the correlations among

them observed empirically [82]. We will show this by using synthetic networks and by

studying real data sets on the growth of knowledge in different scientific disciplines.

In Chapter 5, we will focus on the mechanisms of collective exploration and propose

a model in which many urns, representing different explorers, are coupled through

the links of a social network and exploit opportunities coming from their contacts [4].

We will study different network structures showing, both analytically and numerically,

that the pace of discovery of an explorer depends on its centrality in the social network.

Overall, this model of coupled urns will shed light on the role that social structures play

in discovery processes.

The last Chapter summarises the main results of the thesis. Further research ideas

will be also exposed based on the joint results from the two parts of the thesis.

A small Appendix ends the manuscript. It contains all the supplementary material

anddetailed analytical calculation that have been left out from themain text for readability

purposes, or because redundant.



Part I

Modelling Social Contagions
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Chapter 2

Multi-layered social contagions in

space

2.1 Introduction

The study of dynamical processes on complex networks is a well established branch

of complex systems science that aims at understanding the complex interplay between

the dynamics of the process and the topology of the underlying network [22, 23]. As

discussed in Sec. 1.1, networks encompass a powerful approach, in which a system can

be represented by considering its connectivity patterns, encoding in this way all the

interactions between the different units composing it into a compact framework [21, 202].

Systems composed by units that interact in different ways can be analogously represented

by considering their multi-layered interactions [38, 39, 203–205], that means using a

different network layer for each type of interaction while keeping the nodes fixed. The

highly versatile essence of the network representation allows one to use it as a structure

for processes of very different nature, that can ultimately be used to model real world

phenomena.

32
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2.1.1 The role of social effects in contagion dynamics

Among the most studied processes on networks, together with synchronization [206]

and random walks [207], are the dynamics of spreading phenomena in a population,

such as the spreading of diseases [77], norms, innovation adoption [1, 208] or knowledge

diffusion [209]. Adoption dynamics becomes increasingly relevant when implementing

new business models e.g. for the Internet of Things or smart grids [210].

This contagion dynamics goes typically under the name of simple contagion, to stress

the fact that a susceptible node in contact with more than one infected neighbour can

get an infection by means of independent exposures. The modelling approach just

described is not only restricted to the spreading of viruses, it can also cover a broader

class of phenomena, such as smart-grid technologies. However, as extensively discussed

in Sec. 1.2.1, when dealing with phenomena that involve social contagion, it turns out

that sometimes the simple contagion framework is not the most appropriate way to

model the system under study. This is because the standard SIS model does not capture

the basic dynamics of social influence and reinforcement, nor the non-linear nature

of technological learning/adoption processes [110, 113]. Therefore, complex contagion

[79, 89] has been proposed as an alternative description in which, for example, threshold

mechanisms are introduced in order to account for the effects of peer pressure and

social reinforcement mechanisms [125]. The fundamental difference between simple and

complex contagions relies on the fact that in the latter setting multiple exposures from

different sources are required for a transmission event to happen. In Chapter 3 this idea

will be further extended by introducing a simplicial contagionmodel, in which a simplicial

complex instead of a graph is used as the underlying structure of a social systems to

encode higher-order (non-pairwise) interactions among individuals [2].

Another way of including social effects into the contagion process consists either

in allowing the dynamics of infection to depend on some local properties of the node

and their neighbourhood, or alternatively in letting nodes control for their connections

[211–216]. Ultimately, the introduction of local effects into the contagion dynamics
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allows to effectively introduce mechanisms of awareness [217–221], trust [222], and risk

perception [223].

All the models mentioned above focus on one of the two aspects of the dynamics

of a spreading process, that is the contagion mechanism. This is generally controlled

by means of the infection parameter �, which might eventually be node-dependent if

local effects are considered. In the case of simple contagion the parameter � mediates

two-body interactions, with a corresponding process ( + � → 2�, while in the case

of complex and simplicial contagion one-to-many-body and group interactions are

considered respectively. Conversely, less attention has been devoted to the other aspect,

that is the recovery mechanism. The recovery rate parameter � is typically considered

constant for all the nodes, and it is usually absorbed into an effective infection rate

�/�. Nevertheless, recent results have shown that heterogeneity in recovery rates can

have dramatic effects on the type and position of epidemic transitions, implying that

heterogeneous infectious periods are as important as structural heterogeneity in the

network when processes of disease spreading are considered [130, 131]. However, even

when node-dependent recovery rates are endowed, the recovery remains a single-body

type of process (� → ().

In this Chapter, we investigate the effects of dynamical recovery rates in a model of

adoption dynamics on a multiplex network[124]. The key feature of our model is the

presence of a time- and node-dependent recovery mechanism that is not a spontaneous

process, but depends on the states of the neighbouring nodes. Following the analogy

with the processes of complex contagion, we name complex recovery the one-to-many-body

recovery process of ourmodel. Moreover, in themodel, spreading and recovery processes

are implemented on the different layers of a multiplex network [98, 224]. Within our

problem of interest, that is the adoption of a new service within the smart power grid, a

model considering the local effects of neighbours seems more relevant than a simple SIS

model.
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2.1.2 Power grid and energy demand management

In order to have a clearer perspective on smart power grids, and thus better understand

the motivations behind our model, let us now spend a few words on the rapid changes

that the electrical supply system is currently undergoing. To reach the ambitious climate

goals set out in Paris [225], distributed generators are being installed and centrally

controlled infrastructures are being replaced by decentralized ones, so that the generation

of energy can be de-carbonised. New business models have then emerged to facilitate

new modes of operation of the electricity supply, for example via concepts such as smart

grids [226–228]. Within a smart grid, the different actors (agents or components) of

the electrical system, ranging from fossil fuel plants and solar panels to industrial and

household consumers, need to communicate and coordinate in order to allow a smooth

and stable operation of the grid. One important instrument of a smart grid is the demand

response (DR) offered from the consumer side. Instead of consuming electricity whenever

the consumer wishes, they might enter a contract, guaranteeing that a certain share of

consumption will be shifted to periods of low demand. Certain consumption is easily

shifted, e.g. water can be heated and stored in hot water tanks for usage throughout the

day, or electrical cars can be charged flexibly, given they are sufficiently charged for the

next journey. DR can be offered in a static scheme with fixed low-demand periods, such

as during the night, or it may be implemented as a dynamical scheme which constantly

updates the consumption based on the actual available supply and demand by other

customers.

Consumers are typically motivated to follow the DR scheme by price incentives.

Previous studies based on game-theory and optimization approaches have shown that

time-varying prices might be able to align the optimal schedule of individual power

consumption with the global optimum of the system [229]. If prices are also based

on consumption level, these mechanisms can be efficiently used by single companies

via scheduling games in order to minimize energy costs [230]. Other studies have

investigated the effects of increasing participation in DR schemes on the different market
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participants [231].

An important point is that, in order for DR schemes to be effective, a sufficiently

large share of households is required. First, any business addressing households will

not be profitable if only a very few participate. Even more importantly, large groups

of consumers could act similarly to a virtual power plant [232] by providing power via

demand control as a service to the grid. This is specifically profitable if many customers

in a given region are part of the contract and can provide power within one distribution

grid branch. Previous studies have found that consumers require positive feedback

to stay within demand control contracts [233]. Hence, agents, i.e. customers opting

into demand control contracts should be rewarded, e.g. by being paid a share of their

contribution towards stabilizing the grid and reducing operational costs. Since large

clusters of local consumers can act easily as a virtual power plant, we assume that rewards

for agents geographically surrounded by other agents opted into the contract could be

higher.

Here, we study the dynamics of signing contracts under DR schemes by modelling

the system as a multiplex network, where the social layer of the customers and the layer

of physical connections among households (as given by the power grid at the distribution

level) are considered at the same time and coupled together. The adoption dynamics

driving the contract signature is based on social influence mediated one-to-one social

interactions. Therefore, we make use of epidemic spreading on the social network, where

the contagion process is the standard simple contagion (modelling the word of mouth).

Contrarily, the recovery probability depends on the local dynamics on the power-grid

layer where economic incentives are implicitly included. The basic idea we want to

model here, is that a power supplier will benefit from having a cluster of individuals

who signed the contract within a localized geographical area, and in turn it will provide

a better offer to the customers. This additional benefit, combined with the social effect of

being surrounded by agents of the same type, will make the customers who signed less

keen to opt out.
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2.1.3 Outline

This Chapter is structured as follows:

In Sec. 2.2, we introduce the Adoption Dynamics Model (ADM), explaining in particular

the presence of a complex recovery (CR) mechanism in the model, and its motivation.

In Sec. 2.3, we present analytic results of the ADM in a mean field approximation.

In Sec. 2.4, we extend the analytical formalism by introducing the more precise micro-

scopic Markov-chain approach.

In Sec. 2.5, we discuss the results of numerical simulations of the model on two synthetic

network structures, namely a duplex formed by two Erdős-Rényi random graphs, as well

as another duplex consisting of a small-world network and a regular 2D lattice.

In Sec. 2.6, we focus on the application to the smart grid by using the street network as a

proxy for the power grid network at the distribution level. Although not entirely repre-

sentative of the real distribution of electricity, such a network encodes the geographical

proximity of the households, thus it provides a more realistic representation.

Finally, in Sec. 2.6.3 and 2.6.4 we investigate the effects of the initial conditions on the

temporal dynamics of the model.

Conclusions and future perspectives are summarized in Sec. 2.7.

2.2 The adoption dynamics model

Our model of adoption dynamics is formulated in terms of a multilayer network

framework [38, 39, 203–205]. In particular, we consider a multiplex network ®� =

{(V , ℰ
)}
=1,2 formed by two layers (a duplex network), composed by # = |V| nodes

and  
 = |ℰ
 | links. Every node 8 = 1, ..., # represents a household, and it has an

identical replica (8 , 
) at each layer 
. Contrarily, the nodes interact in different ways,

according to the specific layer, and have different structural patterns. In particular, the

two layers represent the following two different types of interactions:

Social layer.—The top layer (layer 
 = 1) represents the social network among the

individuals which are living in the households -or street areas- that we consider to be
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Contagion
process

Recovery
process

a b

Figure 2.1: Illustration of the Adoption Dynamics Model (ADM). The two layers of
the multiplex network stand for the social ties (layer 1, top) and connections in the
power grid (layer 2, bottom). Susceptible and infected nodes are coloured in blue and
red respectively. (a) The spreading dynamics takes place on the layer 1 according to a
standard mechanism of simple contagion, where a susceptible node 8 can get infected by
each one of its infected neighbours with an independent probability �. (b) Contrarily,
an infected node recovers with a node-dependent and dynamically changing recovery
probability, which depends on the states of the neighbours at layer 2. The shaded regions
highlighted in green indicate the subset of nodes at distance ℎ hops from 8 (the case ℎ = 2
is shown here), which are considered for the computation of the dynamical recovery rate
�8(C) [see Eq. (2.3)]. Figure from [3].

nodes. The topology of this layer is described by the binary adjacencymatrix�[1] ≡ {0[1]
8 9
},

whose non-zero entries represent existing social links. We denote as :[1]
8
=

∑
9 0
[1]
8 9

the

degree of the node 8 ∈ V at layer 1, so that 〈:[1]〉 gives the average degree of this layer.

Power-grid layer.—The bottom layer (layer 
 = 2) represents the physical connections

among households as given by the power grid at the distribution level. While the nodes

are the same as the nodes of layer 1, the connections are described by another binary

adjacency matrix �[2] ≡ {0[2]
8 9
}. Analogously to the case of the first layer, we denote as

:
[2]
8
=

∑
9 0
[2]
8 9

and 〈:[2]〉 the degree of node 8 and the average degree at layer 2.

Notice that as many other infrastructural networks, the power-grid layer can be

represented as a spatial network [234], where the nodes (a household or a street in this

case) and the links are embedded in a geographical space. The connectivity of the social

layer is usually more complex. In fact, it is reasonable to assume that social ties are
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present at two different levels: the first one is related to physical proximity, which brings

neighbours to interact more, while the second level includes long-range social links

connecting people living in different areas of the city or in other cities.

Our purpose is to build a model of the dynamics of signing contracts under DR

schemes, which we will name the Adoption Dynamics Model (ADM). Hence, at each time

C, each node 8 of the network is characterized by a binary state variable G8(C) ∈ {0, 1}.

Such a variable represents the state of household 8 with respect to the contract at time

C, with 1 indicating the user has signed a contract, and 0 indicating the user has not

signed a contract yet, or has opted out. Nodes change their states according to a

Susceptible-Infected-Susceptible (SIS) dynamics that takes place over the links of the first

layer (see Section 1.2.1). We assume that the states 0 and 1 correspond respectively to the

susceptible (S) and infected (I) states of the SIS.

In this way, each node represents a group of individuals living in a household, and

each edge of the social layer stands for a social connection along which the infection

can spread, i.e. a susceptible node can opt in being convinced by one of its social links.

Each susceptible node has as many channels of infection per unit time as the number

of infected neighbours at the social layer 1. The transition ( + �
�
−→ 2� is determined

by the transmission rate �, which enters directly in the pairwise interactions between

susceptible and infected nodes. In our model, the parameter � can be seen as a measure

of the social or advertising pressure that convinces customers to opt into a contract. In

this way, the probability ?8(C) of a node 8 to get infected at time C reads as

?8(C) = 1 −
∏
9

[1 − �0[1]
8 9
G 9(C)], (2.1)

where the product on the right hand side gets contributions from all the infected

neighbours of node 8 at the social layer 1, and is equal to the probability that node 8 is

not infected by any of its infected neighbours.
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The transition �
�8(C)−−−→ ( is controlled by the parameter �8(C), which represents the

probability that node 8 recovers at time C, becoming susceptible again. Instead of the

spontaneous recovery, the 1-body process typically adopted in themodelling of infectious

diseases, here we consider a complex recovery (CR) mechanism, which is a many-body

process. Namely, instead of using a constant recovery probability �0 equal for all nodes,

here we introduce a time-dependent recovery probability �8(C) which can also vary from

node to node. In particular, we assume that �8(C) is a function of the properties of the

neighbourhood of node 8 at time C at the power-grid layer 2. In this way wewant to model

that individuals are less likely to opt out of a contract with a specific energy supplier

if their neighbours, in the power grid, have signed a contract with the same company.

This can be seen as an effect of a particular bonus that an energy supplier is able to offer

to an individual which is part of a cluster of customers. We thus implement the CR by

defining �8(C) as:

�8(C) = (1 − �)�0 + ��8(C), (2.2)

where the parameter � ∈ [0, 1] controls for the importance of local interactions in the

recovery transition with respect to a standard constant recovery parameter �0. Notice

that, for � = 0 no local effects are considered for the recovery, and the model corresponds

to the standard SISmodel with a constant recovery probability �0. Contrarily, if � = 1, the

recovery is completely determined by the dynamical term �8(C), which is node-dependent

and that co-evolves in time together with the spreading process at layer 1.

We consider now the case in which �8(C) = �8 ,ℎ(C) is a function of the network

hop-distance ℎ at layer 2. Namely, we define �8 ,ℎ(C) as

�8 ,ℎ(C) =
(
1 −
|ℐ[2]
8 ,ℎ
(C)|

|N [2]
8 ,ℎ
|

)
�0 , (2.3)

whereN [2]
8 ,ℎ
⊆ V is the set of nodes of ®� which are within ℎ hops from 8 on layer 2, and

ℐ[2]
8 ,ℎ
(C) = N [2]

8 ,ℎ
∩ { 9 ∈ V : G 9(C) = 1} is the subset of these nodes which are infected at

time C (Fig. 2.1(a) bottom panel). Notice that the highest possible recovery probability
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in the expression above is equal to �0, the same as the static case, but when node 8 is

completely surrounded by infectious neighbours �8 ,ℎ(C) goes to zero. This becomes clear

when inserting Eq. (2.3) into Eq. (2.2), leading to

�8(C) = �0

(
1 − �

|ℐ[2]
8 ,ℎ
(C)|

|N [2]
8 ,ℎ
|

)
. (2.4)

In the simplest case, in which ℎ = 1, we can write Eq. (2.4) directly in terms of the

elements of the adjacency matrix �[2] as

�8(C) = �0

(
1 − �

∑
9 0
[2]
8 9
G 9(C)∑

9 0
[2]
8 9

)
. (2.5)

Finally, we denote the density of infected (adopters) individuals at time C as �(C) =

�(C)/# =
∑#
8=1 G8(C)/# , which represents our macroscopic order parameter. At time C = 0

all individuals are susceptible, with the exception of a seed �0 = �(C = 0) � 1 of infected

nodes (early adopters).

2.3 Mean field approach

The density of infected individuals and the infection threshold as function of the different

control parameters of the ADM can be obtained analytically in a mean-field (MF)

approximation. The MF approximation works well under the homogeneous mixing

hypothesis, assuming therefore that the individuals with whom a susceptible individual

has contact are chosen at random from the whole population. Furthermore, we also

assume that all individuals have approximately the same number of contacts at each time,

and that all contacts transmit the disease with the same probability. As a consequence,

instead of considering the specific topology of the two layers, we only focus on average

degree properties, so that we can write an equation for the temporal evolution of the
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density of infected individuals �(C) as

3C�(C) = −〈�8(C)〉�(C) + �〈:[1]〉�(C)
[
1 − �(C)

]
. (2.6)

With this approach we are assuming that each node of the social network has the same

degree, equal to the average degree 〈:[1]〉 of the social network at layer 1. 〈�8(C)〉 denotes

the average recovery probability computed over all nodes.

For the particular case in which only the first neighbours are considered (ℎ = 1) we

can derive a MF expression for 〈�8(C)〉, by approximating Eq. (2.3) as

〈�8 ,ℎ=1(C)〉 ≈
(
1 −
〈:[2]〉�(C)
〈:[2]〉

)
�0 =

(
1 − �(C)

)
�0. (2.7)

Notice that if a local tree-like structure is assumed for�[2], the sameMF approximation

would hold for any ℎ,

〈�8 ,ℎ(C)〉 ≈
(
1 −
〈:[2]〉ℎ�(C)
〈:[2]〉ℎ

)
�0 =

(
1 − �(C)

)
�0. (2.8)

Using these results for Eq. (2.2) and by substituting 〈�8 ,ℎ(C)〉 into Eq. (2.6) we can

write the final MF expression for the temporal evolution of the density �(C) of infected

nodes, which reads as

3C�(C) = −�0[1 − ��(C)]�(C) + �〈:[1]〉�(C)[1 − �(C)]. (2.9)

After defining � = �〈:[1]〉/�0 and rescaling the time as C′ = �0(� − �)C, we obtain the

equivalent equation:

3C′�(C′) = �(C′)(�∗2 − �(C′)), (2.10)

with
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�∗2 =
� − 1
� − � . (2.11)

The associated steady state equation 3C′�(C′) = 0 has therefore up to two acceptable

solutions in the range � ∈ [0, 1]: a trivial solution �∗1 = 0, corresponding to the absorbing

state in which there is no epidemic (no adopters) and all nodes have recovered; and a

non-trivial solution �∗2 which depends on the parameters of the model as follows:

2.3.1 Case � = 0

Let us first consider the case � = 0 in which local dynamical effects are neglected. This

case corresponds, as expected, to the standard SIS model, thus we recover the solution

�∗[�=0]
2 that reads as

�∗[�=0]
2 = 1 − 1

�
= 1 −

�0

�〈:[1]〉
. (2.12)

The solution �∗[�=0]
2 is acceptable, i.e. non-negative, when � ≥ 1, recovering in this

way the standard epidemic threshold �[�=0]
2 = 1.

Linear stability analysis shows that the solution �∗1 = 0 is stable only when � < �[�=0]
2 .

Contrarily, for values of � ≥ �[�=0]
2 , the absorbing state �∗1 = 0 becomes unstable while

�∗[�=0]
2 becomes stable, i.e., the epidemic takes place.

2.3.2 Case � = 1

Let us consider now the other extreme case, � = 1, in which only the local effects are

considered in the CR, and therefore the recovery phase is purely dynamical. Also

in this case the second solution of the stationary state equation becomes trivial, and

reads �∗[�=1]
2 = 1. Thus, the system presents two stationary solutions, and it is easy to

show that their stability changes at the same epidemic threshold as for � = 0, so that

�[�=1]
2 = �[�=0]

2 = �2 . For � < �2 �∗1 is stable and �∗2 is unstable, while for � > �2 we
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have the opposite case. Therefore, contrarily from the completely non-local case (� = 0),

here the system undergoes an explosive transition from the healthy to the endemic state,

where all individuals are adopters.

2.3.3 General case

In the most general case, the second solution �∗2, given by Eq. (2.11), depends on both the

rescaled infectivity � (therefore on the average degree 〈:[1]〉) and on �, the parameter

which controls for the local effects of the CR. Notice that the solution is acceptable if

�∗2 ∈ [0, 1], which implies again � ∈ [1,∞]. Therefore, for any �, the transition from the

healthy to endemic state happens at the same epidemic threshold �2 = 1, but the density

of infected in the endemic state varies with �. The stability of the fixed point �∗2 can be

easily investigated by defining the second term in Eq. (2.9) as �(�) = ��[1 − �] and then

checking the sign of the derivative of �(�). Since �′(�)|�=�∗2 = 1 − � does not depend on

�, �∗2 always represents a stable fixed point for the dynamics.

2.4 Microscopic Markov-chain approach

In the microscopic Markov-chain approach (MMCA), the probability of node 8 to be

infected at time C Prob [G8(C) = 1] = �8(C) is a random variable, and it is assumed that

for different nodes these probabilities are independent [235]. The equation for the

discrete-time evolution of �8(C) can then be written as:

�8(C + 1) = (1 − @8(C))(1 − �8(C)) + (1 − �8(C))�8(C) (2.13)

where the two terms of the right-hand side are respectively

• the probability that node 8, susceptible at time C, gets infected by a neighbour;

• the probability that node 8, infected at time C, does not recover;

@8(C) represents the probability of node 8 not being infected by any of his neighbours
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at time C, and it can be written in terms of the adjacency matrix �[1] of layer 1, which

controls the contacts between nodes 8 and 9, as

@8(C) =
∏
9

1 − �0[1]
8 9
� 9(C) (2.14)

while the recovery probability �8(C), for the case ℎ = 1, is given by

�8 ,ℎ=1(C) = �0

(
1 − �

∑
9 0
[2]
8 9
� 9(C)∑

9 0
[2]
8 9

)
(2.15)

Finally, the stationary state �8(C + 1) = �8(C) is given by

�8 = (1 − @8) + (@8 − �8)�8 (2.16)

The system of equations given by Eq. (2.16) is then solved numerically and the density

of infected is obtained by taking the average over all the nodes:

� =
1
#

∑
8

�8 (2.17)

The limitations of this approach have been discussed in Ref. [236, 237]. Moreover, in

our specific case, the underlying lattice-like structure of the network topologies that will

be used in Sec. 2.5 can break the assumption that the probabilities �8(C) and � 9(C) of two

different nodes to be infected are independent.

2.5 Numerical results on synthetic networks

Wepresent here numerical simulations of the ADMon various synthetic duplex networks.

In each case the simulations are performed for different realizations of the networks,

stopping each run whenever an absorbing state is reached. Alternatively, if a stationary
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Figure 2.2: Numerical simulations of ADM (ℎ = 1) on a duplex network formed by
two ER networks with # = 900 and 〈:〉 = 10. The average fraction of infected nodes
is plotted against the rescaled infectivity � = �〈:[1]〉/�0. Different curves (and colours)
correspond to different values of the parameter �, which controls for the strength of
the local effects in the complex recovery process, as defined in Eq (2.2). The case � = 0
corresponds to the standard SIS model. Simulations (points) are plotted together with
the analytical mean-field (MF) solution of Eq. (2.9) (continuous lines). Figure from [3].

state is reached the stationary density of infected is computed by considering an average

over the last 100 time-steps. Each run starts with different initial conditions, given by

randomly placing a seed of �0 infectious nodes (usually 1% of the nodes), and then we

average the results over all the runs. Throughout all the numerical simulations presented

in this paper, we restrict for simplicity to the case ℎ = 1.

The first system we have considered is a duplex with # = 900 nodes formed by

two Erdős-Rényi (ER) random graphs having average degrees 〈:[1]〉 = 〈:[2]〉 = 〈:〉 = 10.

Figure2.2 shows the stationarydensity of infected �∗, obtained by averaging the prevalence

curves for different realizations of the numerical simulations, as a function of the

rescaled infectivity � = �〈:[1]〉/�0. Different curves correspond to different values of

the parameter �, which controls for the local effects in the CR process. Indeed, the

case � = 0 is equivalent to the standard SIS model with spontaneous recovery, where

a non-zero density of infected nodes in the stationary state appears for values of �

larger than a critical value �2 = 1. By increasing �, the density of infected nodes in the

endemic state �∗ > 0 increases and the transition becomes steeper and steeper, until the
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Figure 2.3: Numerical simulations of the ADM (ℎ = 1) on a duplex network formed
by a 2D lattice and a SW network with # = 2500 nodes, 〈:[2]〉 ≈ 4, and ? = 0.01.
The average fraction of infected nodes is plotted against the rescaled infectivity � =

�〈:[1]〉/�0. Different curves (and colours) correspond to different values of the parameter
�. Simulations (points) areplotted togetherwith the curves obtainedwith themacroscopic
Markov-chain approach (MC in the figure legend) as given by Eq. (2.17) (continuous
lines). Figure from [3].

extreme case � = 1. In this latter case, i.e., when the recovery is purely dynamical, the

systems undergoes a discontinuous transition from the absorbing state �∗ = 0 with no

adopters to the opposite state �∗ = 1. Notice that the transition occurs at the same critical

threshold �2 = 1. Figure 2.2 also shows the continuous curves representing the analytical

prediction in the MF approach, as given by Eq. (2.11). The match between curves and

points confirms the accuracy of the MF approximation in reproducing the dynamics of

the ADM in the case of random graphs, and also its ability to capture the different types

of transitions the ADM exhibits when the value of � is changed.

As a second system, we have considered a slightly more realistic synthetic duplex

network. In particular, wemodel the power-grid layer as a 2D lattice (# = 2500, 〈:[2]〉 ≈ 4)

and we couple it to a social layer which is obtained from the same 2D lattice, by rewiring

each of its links at random with a probability ? = 0.01. It is worth clarifying that we

will call this layer small-world (SW), given the similarity of the rewiring mechanism

with the original small-world model proposed by Watts and Strogatz [25]. The rewiring

mechanism, adopted only at layer 1, breaks the regularity of the lattice by introducing
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social connections between nodes that are not first neighbours at the level of the power

grid network in layer 2. The results obtained are shown in Fig. 2.3. We notice a few

differences with respect to the results reported in Fig. 2.2. In particular, we observe

that the threshold �2 slightly increases when the value of � changes from � = 0 to

� = 1, and this behaviour is not captured neither by the analytical predictions in the MF

approximation, nor by the more accurate microscopic Markov-chain approach (MMCA,

see Sec. 2.4), whose curves are shown as continuous lines. Such differences might be due

to the limitations of the MMCA caused by the time discretization [236, 237] and, most

probably, to the strong correlations between nodes induced by the underlying lattice-like

structure of SW networks (which would break the assumptions of independence we used

to write Eq. 2.13).

2.6 Numerical results on real-world networks

In the previous section we explored the model on two synthetic duplex networks. With

the first we observed the phenomenology on two random graphs, while in the second we

considered a more realistic—yet synthetic— structure composed by a lattice and a SW

network. Here, we make a further step in this direction by considering street networks

[238] from the real world as proxies for power grid networks at the distribution level,

and a multilayer adaptation of the well-known Waxman random graph model[239] to

represent the social layer. With this approach, the spatial nature of the street network is

used both to embed the power grid into the physical space and to shape the connectivity

patterns of the social layer. Due to the use of the Waxman model, the social connections

decay exponentially with the distances on the network, which in turn are affected by the

physical constraints imposed by the morphology of the territory. Details on the exact

construction are given in the following section.
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2.6.1 Construction of the real-world multiplex network

We construct the power-grid layer at the distribution level by taking as a proxy the street

network in its primal approach [238], i.e., by representing crossroads as nodes connected

by streets. According to our ADM, each node corresponds to a household, hence we

approximate the households connectivity in the distribution grid by the street network

formed by intersection points linked by streets.

The construction of the street network starts from the same data set used in Ref. [240]:

the Ordnance Survey (OS) MasterMap [241]. This data set consists of a clean street

network for the entire Britain, in which roundabouts have been replaced by single

intersections, and in which each edge comes with an associated weight representing

the length of the street (for more details see Ref. [240]). We first restrict our data set to

the Greater London Authority by retaining only those points (nodes) falling within the

boundaries of the LSOA (Lower Super Output Area)[242]. Then, we select a smaller

neighbourhood in central London by following the hierarchical percolation method

proposed in Ref. [240].

The method produces a clustering on the nodes based on a single parameter &,

which acts as a percolation threshold on the street distance between the points. More

precisely, given a threshold &, the graph is divided into different connected components

corresponding to the sub-graphs induced by the thresholding on the nodes at a distance

smaller than &. For increasing values of & components are then aggregated with one

another, eventually collapsing into a single one (see Ref. [240] for more details). An

example of the top-8 largest connected components obtained for different values of the

percolation threshold & (meters) for the city of London is shown in Fig. 2.4.

The method gives rise to neighbourhoods at different scales arising from the density

of the street intersections. In the case of London, some scales reveal its composition

in terms of historical villages, corresponding now to differentiated neighbourhoods.

By selecting an appropriate scale, this method allows us to focus on a relatively small



Chapter 2. Multi-layered social contagions in space 50

252

a b c

d e f

ε=101 ε=139 ε=161

ε=231ε=201ε=181

Figure 2.4: Percolation process on the street network of London. Clusters of nodes
(crossroads) of the street network are depicted with different colours (only the top-8
largest clusters are shown). Each panel shows the outcome of the percolation process
obtained with a different value of the percolation threshold & (meters), reported on top.
Notice how the areas situated south of the River Thames merge together with the one in
the north when moving from (c) to (d).

portion of the city, as a targeted adoption campaign would do, while keeping at the

same time the computational cost at a reasonable level. Here, we restrict our attention

to a neighbourhood of the city of London [see Fig. 2.5(a)] corresponding to the largest

connected component obtained for a threshold of & = 89 meters. The resulting network

is composed of # = 3379 nodes and  [2] = 4602 links.

We construct the geographical social network starting from the well-known Waxman

random graph model [239]. In the standard model, nodes are initially placed at random

over a plane and then connected in pairs with a probability that decays exponentially

with their distance. Here, we modify the model in two ways: (i) nodes are not placed at

random, but the geographical position of each node on the social layer corresponds to

the position on the power-grid layer; (ii) instead of considering the geographical distance

between the nodes, we consider the network distance. Notice that, being the network

embedded in space, the network distance is already shaped by the particular spatial

displacement of the nodes. More precisely, the model works as follows.
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Given the set of nodes (and their position), let us call 3[2](8 , 9) their distance in layer 2

(the power-grid layer). Then, the probability that 8 and 9 are connected in layer 1 is given

by:

%[1](8 , 9) = 
 exp
[
−3[2](8 , 9)/
![2]

]
(2.18)

where ![2] denotes the diameter of layer 2 and 
 is a tunable model parameter.

We construct the network for the social layer by linking the nodes of the grid layer

according to the probability given by Eq. (2.18), with 
 tuned in order to obtained a

reasonable number of influential household connections (
 = 0.003). The resulting

network has  [1] = 17183 links, corresponding to an average of 〈:[1]〉 ≈ 10 connections

per household.

2.6.2 Results

Using the procedure described in the previous section, we produce a duplex network

with# ≈ 3000 nodes, and an average degree of 〈:[1]〉 ≈ 10 at the social layer and 〈:[2]〉 ≈ 3

at the power-grid layer. The associated degree distributions are shown in Fig. 2.5(b).

As in the previous cases, we investigate the density of infected individuals in the

stationary state as a function of the rescaled infectivity. The plots reported in Fig. 2.5(c)

confirm similar results to those obtained with synthetic networks. In particular, a clear

change in the nature of the transition is observed also when more realistic network

structures are used both at the grid and at the social layer. Associated to the sudden

transitions at large values of �, we have also observed the appearance of hysteresis loops.

An example is shown in the inset plot for the case � = 0.9. In the next section we will

explore these phenomena more in details.
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Figure 2.5: ADM (ℎ = 1) on a real-world duplex network in which a street network is
used as a proxy for the power grid. (a) A central neighbourhood in London is selected
by using a hierarchical percolation approach (blue zone). The degree distributions of the
street network and the coupled social network constructed from it are shown in panel (b).
(c) The average fraction of infected nodes obtained by means of numerical simulations
is plotted against the rescaled infectivity � = �〈:[1]〉/�0. Different curves (and colours)
correspond to different values of the parameter �, which controls for strength of the local
effects in the CR process, as defined by Eq (2.2). The inset shows the hysteresis loop,
which appears close to the threshold for � = 0.9. Figure from [3].

2.6.3 Varying the size of the initial seed

In what follows we briefly investigate the effects of initial conditions in the evolution of

the density of infected nodes [243]. Most of the existing literature targets this problem

within the domain of infectious diseases spreading, which translates into looking for

optimal immunisation strategies, i.e., key nodes to vaccinate in order to limit the spread

[244–246]. Here, we investigate the temporal aspect of the infection dynamics as a

function of the initial conditions. This will be done in two different ways, since we can

control for both the number and the position in the network of the initial adopters, i.e. of

those nodes who will initiate the spreading.

We start considering a set of randomly placed infectious nodes, as before, whose

size at time 0 is controlled by the density �(C = 0) = �0. We then simulate the ADM

with different values of the parameters (�, �) for different initial densities �0 in the

range (0, 0.6]. Results are shown in Fig. 2.6. Each panel corresponds to a given pair of
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Figure 2.6: Effect of the initial density of adopters on the temporal evolution of the
spreading. Each panel shows the densities of infectious nodes for different sizes of the
initial seed of infectious adopters �(C = 0) = �0 and for different values of (�,�). (a-c)
refer to the standard SIS model, without local effects, while (g-i) represent the other
extreme case inwhich the recovery process is completely controlled by the local dynamics.
Different scales have been adopted for panels (b), (e), and (h) due to the proximity of the
epidemic threshold �2 , which makes the runs last longer. Figure from [3].

parameters (�, �), while different curves within the same panel display the temporal

evolution of the density of infected nodes when considering different �0 (see colourbar

on the right-hand-side). Rows indicate different values of �, moving from the standard

SIS model with no dynamical recovery [� = 0, (a-c)], to the other extreme case in which

the recovery process completely depends on the local dynamics of the neighbouring

nodes (� = 1, g-i). An intermediate case with � = 0.5 is also considered (panels d-f).

Similarly, we use three values of the infectivity �: one below the epidemic threshold

[� = 0.7, (a,d,g)], one close to the epidemic threshold [� = 0.9, (b,e,h)], and one above the

epidemic threshold (� = 1.3, c,f,i). Trivial effects are found when we are below and above

the threshold. In particular, in the first case [panels (a,d,g)], the higher the �0 the longer

it takes to the system to reach the absorbing state �∗ = 0. Similarly, when high values of

� are considered [panels (c,f,i)] what matters is the distance between the initial density

of the seed �0 and the final stationary state, which in turn depends on �. However, close

to the threshold, the strong dynamical effects of the CR process create a bi-stable region

[panel (h)], in which the initial density of infectious nodes �0 determines whether the

systems will end up in the absorbing states without adopters (�∗ = 0) or with all adopters
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Figure 2.7: Effect of the position of the initial seed of adopters in the ADM on the
real-world duplex network with parameters: � = 0.9, � = 1. The temporal evolution
of the densities of infectious nodes is showed for the two considered scenario: (a) a
clustered seed of infectious nodes on the power-grid layer and (b) a randomly placed
seed of infectious nodes. Different colours correspond to different sizes of the initial seed
of infectious �0 (single realizations are plotted as continuous lines, while dashed lines
represent their average). The actual positions of the seeds are shown, for each �0, in the
top and bottom maps, representing, respectively, the clustered and the random scenario.
Infectious nodes are depicted in red. Figure from [3].

(�∗ = 1). Notice that such bi-stability is not present in the MF formulation presented in

Sec. 2.3.

2.6.4 Varying the position of the initial seed

To better understand the phenomenology of the ADM close to the threshold, we fix the

parameters to the latest case (� = 0.9, � = 1) and explore the effects of the initial position

of the seed, while still varying its size. To do this, we consider a different scenario in

which the initial adopters form a cluster in the power-grid layer. This cluster corresponds

to a smaller neighbourhood within the considered area, and it is selected with the same

hierarchical percolation approach used in the construction of the real-world multiplex

network, but for smaller percolation thresholds (see Sec. 2.6 for more details on the
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method). We will compare this scenario with the standard case in which the initial seed

of adopters is placed at random instead.

The results are shown in panel (a) and (b) of Fig. 2.7 respectively. In each case

the temporal evolution for the density of infected nodes is plotted for different values

of �0 (different colours). Shaded curves are different realizations of the ADM, while

their average is represented by the dashed thick lines. As a reference, we also add the

maps showing the exact position of the seed of infectious nodes (depicted in red) for

each scenario and for the different values of �0 considered. Maps for the clustered

seed and randomly placed seed are shown in the top and bottom row respectively.

Different behaviours emerge from the two scenarios. Indeed, the prevalence curves

seem to fluctuate more when the seed is placed at random (panel b). Interestingly, this

phenomenon is in contrast with the results of the MF formulation and the simulations of

the ADM on synthetic ER networks discussed in Sec.s 2.3 and 2.5. As a result, when a

density �0 = 0.2 of initial adopters is considered, fluctuations are so strong that, even

with exactly the same (random) initial positions of adopters, the system can end up in

either the absorbing state �∗ = 0 or in the state �∗ = 1. If clustered seeds are considered

instead (panel a), the same seed size �0 = 0.2 always drives the system to the absorbing

state with all adopters (�∗ = 1). In this scenario, the critical value for �0 which separates

the two basins of attractions seems to be better defined: see the curves for �0 = 0.03

and �0 = 0.1. Finally, it is worth noticing that for this last seed size, �0 = 0.1, the initial

placement completely determines the final state of the system. Indeed, only 10% of

clustered adopters are enough to drive the system towards the full adoption case, while

this does not happen if a seed of the same size is placed at random.

2.7 Summary and conclusions

In this Chapter, we have introduced and studied both numerically and when possible

analytically a mathematical model of spreading on a network with a dynamical recovery

mechanism of the nodes, which is a function of the network state. Our original purpose
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is to reproduce the dynamics of service adoption in demand response management [247–

250], in which the behaviour of a customer is influenced by its social contacts, in addition

of also depending on the specific spatial configuration of other customers in close

proximity within the power grid service area. For this reason, we consider a duplex

network with a social layer and a power-grid layer. The adoption process is modelled as

an epidemic spreading on the social layer, with a recovery rate of the nodes that depends

on the states of their neighbours on the power-grid layer. In this way the dynamics tends

to preserve clusters of infected individuals by making an infected node surrounded by

nodes in the same state less keen to recover.

Results suggest that the more the recovery of the nodes depends on the local influence

of peers (large values of �), the more discontinuous the transition from non-adopters

(healthy) to full adoption (fully infected network) becomes. In simulations on real-world

networks, such as the London network, we also noted that the final state of the system is

not uniquely defined by the infection and recovery parameters � and �, but the initial

conditions can have a substantial impact on the spreading dynamics, with clustered seeds

in the power-grid layer more likely leading to full network infection. We have found

that a mean-field approximation captures the simulation results nicely for Erdős-Rényi

networks, while more advanced analytical descriptionsmight be necessary to characterise

our model on more realistic and complex network structures.

While we motivated our model from the electricity demand management, other

applications that rely on local customer resources should follow similar dynamics [251].

This could for example include car sharing or citizen science projects. The main message

we can derive for all such systems from the analysis of our model is the following. In any

real application case, we would first need to determine the strength of the local influence

of other customers, i.e. the magnitude of the parameter � in our model. If such local

influence is weak, a smooth transition to a non-zero density of adopters takes place when

the infectivity is above a given threshold. When the local influence is strong instead, we

observe a sudden transition and the appearance of an intermediate (hysteresis) region
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where, as soon as a critical mass is reached, (almost) everyone would adopt the new

technology.

Our results also show that strong local influence is key to determine adoption, hence

giving insights on how to strategically plan on the nodes to be targeted initially. Namely,

reaching out to customers who are physically spread out in the power-grid layer, or

explicitly targeting social clusters which are not defined spatially, is more likely to

fail than starting the adoption process from clusters in the power-grid layer, which

provides the positive feedback-loop for the consumers. In fact, a cluster of "adopters"

on the power-grid layer is likely to stay within the contract and will also convince their

neighbours to join. Therefore, this strategy will in most cases lead to a higher penetration

of the new technology. Advertisement should take this into account, e.g. by explicitly

advertising within local communities. Alternatively, businesses might try to re-shape

the infection and recovery process itself. Already commonly adopted "hire a friend"

schemes try to build a positive feedback among customers, which can directly strengthen

the infection process. Our results suggest that alternative "hire a neighbour" schemes,

specifically designed to target neighbours in the power-grid layer, could also positively

contribute, this time by altering the recovery dynamics.

The presented approach can easily be extended into multiple directions. On the one

hand, one could further improve the accuracy of the network topologies, for example by

modelling the social network as a crossover between scale-free and spatial networks, as

proposed in Ref. [252], or by directly using real-world friendship data. Further analytical

development might also be required in this direction. On the other hand, different

variations of the model are also possible. For instance, the dynamical recovery term

�8(C) could include influences from nodes ℎ = 2, or more, hops away. Alternatively, it

could rely on Euclidean distances calculated on the physical space, or other distance

functions more realistically mapping consumer decisions. Another natural extension

might involve the introduction of other, both exogenous and endogenous, effects as

additional contributions to the adoption dynamics. These could include, for example,
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mass media exposure [134] and the explicit introduction of economic factors such as

price of energy or price incentives. Finally, in this Chapter we focused on demand

control for households, specifically neglecting industrial consumers, as they follow very

different rules and require independent business models which are also more likely

follow different adoption schemes. Future work should extend the present framework to

non-household customers.

In the next Chapter, we will take one step back and reconsider the choice of the

representation for the dynamics of social contagion.



Chapter 3

Social contagions beyond pairwise

interactions

3.1 Introduction

In Sec. 1.2.1 we have introduced the problem of modelling the dynamics of social

contagions in a population, presenting the different frameworks and theory that are

commonly used. In particular, we have focused on the differences between models of

simple and complex contagion. Then, in Chapter 2 we have considered the effects of

having a complex recovery mechanism in a model of multilayer adoption dynamics.

The model introduced, as well as the famous models of complex contagion present in the

literature, are however still defined on networks of interactions between individuals: even

when multiple interactions are needed for a contagion to take place, in both threshold

and epidemic-like models, the fundamental building blocks of the system are pairwise

interactions, structurally represented by the links of the network on which the process is

taking place [79, 116, 121–125].

In this Chapter, we propose to go further and take into account that contagion can

occur in different ways, either through pairwise interactions (the links of a network)

59
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or through group interactions, i.e., through higher-order structures [5]. Indeed, while

an individual can be convinced independently by each of his/her neighbours (simple

contagion), or by the successive exposure to the arguments of different neighbours

(complex contagion), a fundamentally different mechanism is at work if the neighbours

of an individual convince him/her in a group interaction. For example, we can adopt a

new norm because of two-body processes, which means we can get convinced, separately,

by each one of our first neighbours in our social network who have already adopted the

norm. However, this is qualitatively different from a mechanism of contagion in which

we get convinced because we are part of a social group of three individuals, and our two

neighbours are both adopters. In this case the contagion is a three-body process, which

mimics the simplest multiple source of reinforcement that induces adoption. The same

argument can easily be generalized to larger group sizes.

To build a modelling framework based on these ideas, we formalise a social group as

a simplex, and we adopt simplicial complexes as the underlying structure of the social

system under consideration [see Fig. 3.1(a-b)]. This simplicial representations is indeed

more suited than networks to describe the co-existence of pairwise and higher-order

interactions (see Sec. 1.1). We recall that, in its most basic definition, a :-simplex � is

a set of : + 1 vertices � = [?0 , . . . , ?:]. It is then easy to see the difference between a

group interaction among three elements, which can be represented as a 2-simplex or

“full” triangle [?0 , ?1 , ?2], and the collection of its edges, [?0 , ?1], [?0 , ?2], [?1 , ?2]. Just

like a collection of edges defines a network, a collection of simplices defines a simplicial

complex. Formally, a simplicial complexK on a given set of verticesV, with |V| = # ,

is a collection of simplices, with the extra requirement that if simplex � ∈ K , then

all the sub-simplices � ⊂ � built from subsets of � are also contained in K . Such a

requirement, which makes simplicial complexes a special type of hypergraphs (see

Sec. 1.1), seems appropriate in the definition of higher-dimensional groups in the context

of social systems, and simplicial complexes have indeed been used to represent social

aggregation in human communication [66]. Removing this extra requirement would
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imply, for instance, modelling a group interaction of three individuals without taking

into account also the dyadic interactions among them. The same argument can be

extended to interactions of four or more individuals: it is reasonable to assume that the

existence of high-order interactions implies the presence of the lower-order interactions.

For simplicity and coherence with the standard network nomenclature, we call nodes (or

vertices) the 0-simplices and links (or edges) the 1-simplices of a simplicial complexK ,

while 2-simplices correspond to the (“full") triangles, 3-simplices to the tetrahedra ofK ,

and so on [see Fig. 3.1(a)].

Here, we thus propose a new modelling framework for social contagion, namely a

model of simplicial contagion: this epidemic-like model of social contagion on simplicial

complexes takes into account the fact that contagion processes occurring through a link

or through a group interaction both exist and have different rates. Our model therefore

combines stochastic processes of simple contagion (pairwise interactions) and of complex

contagion occurring through group interactions in which an individual is simultaneously

exposed to multiple sources of contagion.

3.1.1 Outline

This Chapter is structured as follows:

In Sec. 3.2, we introduce the Simplicial Contagion Model (SCM), explaining in particular

the role played by the higher-order interactions in the the contagion dynamics.

In Sec. 3.3, we first extract empirical high order structures from data of face-to-face

interactions and then perform extensive numerical simulations on them to investigate

the model behaviour.

In Sec. 3.4, we further analyse the dynamics of themodel on synthetic simplicial complexes

with controlled properties. This requires defining a new model for random simplicial

complexes that generates simplices of different dimensions and in which the expected

local connectivity can be tuned as desired.

In Sec. 3.5, we develop an analytical approach in which we derive and solve the mean
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field equations describing the evolution of density of infected nodes. We analytically

show, in agreement with the numerical results, that the higher-order interactions lead to

the emergence of new phenomena, changing the nature of the transition at the epidemic

threshold from continuous to discontinuous and leading to the appearance of a bistable

region of the parameter space where both healthy and endemic asymptotic states co-exist.

Indeed, the mean-field analytical approach correctly predicts the steady-state dynamics,

the position and the nature of the transition and the location of the bistable region. We

also show that, in the bistable region, a critical mass is needed to reach the endemic state,

reminding of the recently observed minimal size of committed minorities required to

initiate social changes [253].

In Sec. 3.6, we extend the analytical formalism by introducing the microscopic Markov-

chain approach for simplicial contagions. This approach, differently from the mean field

one, can correctly captures the behaviour of the model also on simplicial complexes with

heterogeneous structures.

Conclusions and future perspectives are summarized in Sec. 3.7.

3.2 The simplicial contagion model

In order to model a simplicial contagion process, we associate a dynamical binary state

variable G to each of the # vertices ofK , such that G8(C) ∈ {0, 1} represents the state of

vertex 8 at time C. Using a standard notation, we divide the population of individuals

into two classes of susceptible (S) and infectious (I) nodes, corresponding respectively to

the values 0 and 1 of the state variable G. In the context of adoption processes, the state I

represents individuals who have adopted a behaviour. At each time C, the macroscopic

order parameter is given by the density of infectious nodes �(C) = 1
#

∑#
8=1 G8(C). The

model we propose here, the so-called Simplicial Contagion Model (SCM) of order �,

with � ∈ [1, # − 1], is governed by a set of � control parameters � = {�1 , �2 , . . . , ��},

whose elements represent the probability per unit time for a susceptible node 8 that

participates to a simplex � of dimension � to get the infection from each one of the
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Figure 3.1: Simplicial Contagion Model (SCM). The underlying structure of a social
system ismade of simplices, representing d-dimensional group interactions (a), organized
in a simplicial complex (b). (c-h) Different channels of infection for a susceptible node
8 in the Simplicial Contagion Model (SCM) of order � = 2. Susceptible and infected
nodes are coloured in blue and red, respectively. Node 8 is in contact with one (c, e)
or more (d, f) infected nodes through links (1-simplices), and it becomes infected with
probability � at each time step through each of these links. (g-h) Node 8 belongs to a
2-simplex (triangle). In (g) one of the nodes of the 2-simplex is not infected, so 8 can only
receive the infection from the (red) link, with probability �. In (h) the two other nodes of
the 2-simplex are infected, so 8 can get the infection from each of the two 1-faces (links)
of the simplex with probability �, and also from the 2-face with probability �2 = �Δ. (i)
Infected nodes recover with probability � at each time step, as in the standard SIS model.
Figure from [2].

subfaces composing �, under the condition that all the other nodes of the subface are

infectious. In practice, with this notation, �1 is equal to the standard probability of

infection � that a susceptible node 8 gets the infection from an infected neighbour 9

through the link (8 , 9) (corresponding to the process ( + � → 2�). Similarly, the second

parameter �2 ≡ �Δ corresponds to the probability per unit time that node 8 receives the

infection from a “full" triangle (2-simplex) (8 , 9 , :) in which both 9 and : are infectious,

�3 = �� from a group of size 4 (3-simplex) to which it belongs, and so on. Such processes

can be represented as (8<?((, =�) → (8<?((=+1)�): a susceptible node, part of a simplex

of = + 1 nodes among which all other = nodes are infectious, becomes infectious with

probability per unit time �= . Thanks to the simplicial complex requirements that all

sub-simplices of a simplex are included, contagion processes in a =-simplex among

which ? < = nodes are infectious are also automatically considered, each of the = + 1 − ?

susceptible nodes being in a simplex of size ? + 1 with the ? infectious ones. Notice,
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however, that this assumption can be dropped and the contagion model extended to the

case of hypergraphs [254, 255], as it has been subsequently done in Ref. [137, 256].

Figure 3.1(c-h) illustrates the concrete example of the six possible ways in which a

susceptible node 8 can undergo social contagion for an SCM of order � = 2 with

parameters � and �Δ. Finally, the recovery dynamics (� → () is controlled by the

node-independent recovery probability � [Figure 3.1(i)]. Notice that the SCM of order

� reduces to the standard SIS model on a network when � = 1, since in this case the

infection can only be transmitted through the links ofK .

3.3 Simplicial contagion on real-world simplicial complexes

To explore the phenomenology of the SCM, we first consider its evolution on empirical

social structures. To this aim, we consider publicly available data sets describing

face-to-face interactions collected by the SocioPatterns collaboration [257]. Face-to-

face interactions represent indeed a typical example in which group encounters are

fundamentally different from sets of binary interactions and can naturally be encoded as

simplices. The time-resolved nature of the data allows us to create simplicial complexes

describing the aggregated social structure.

3.3.1 Construction of simplicial complexes from face-to-face interactions

data

We consider four data sets of face-to-face interactions collected in different social contexts:

a workplace (InVS15) [258], a conference (SFHH) [259], a hospital (LH10) [260] and a high

school (Thiers13) [261]. In each case, face-to-face interactions have been measured with

a temporal resolution of 20 seconds. We first aggregated the data by using a temporal

window of ΔC = 5 minutes, and computed all the maximal cliques that appear (see

Fig. 3.2). Since we limit our study to the case � = 2, we need to produce a clique complex

formed by 1- and 2-simplices. Therefore, we considered all the 2- and 3-cliques and

weight them according to their frequency. Note that while higher-dimensional cliques are
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time

Figure 3.2: Construction simplicial complexes from face-to-face interactions data.
Contacts are first aggregated by using a temporal window of ΔC = 5 minutes. Maximal
cliques in each window are then “promoted" to simplicial complexes. The complexes
of all the snapshots are finally aggregated into a single simplicial complex keeping the
frequency of each clique as the weight of each simplex. Figure inspired by [36].

Dataset Context 〈:〉 〈:Δ〉 〈:〉aug 〈:Δ〉aug

InVS15 Workplace 16.9 7.0 21.0 7.0
SFHH Conference 15.0 7.6 21.6 7.7
LH10 Hospital 19.1 17.1 25.7 17.5
Thiers13 High school 20.1 10.9 32.0 11.1

Table 3-A: Average generalized degree of the four real-world simplicial complexes
constructed from the considered data sets (before and after the data augmentation).

not included in the final simplicial complex, their sub-cliques up to size 3 are considered

in the counting. We then retained 20% of the simplices with the largest number of

appearances. The thresholded simplicial complexes obtained in this way are those used

in Fig. A.1 of Appendix A. Their connectivity properties are summarised in Table 3-A.

To reduce finite size effects, we augmented the thresholded simplicial complexes as

follows: for each data set we extracted the list of sizes of the maximal simplices, also

called facets, and the list of pure simplicial degrees of nodes. We then duplicated these

lists five times and used the extended lists as input for the simplicial configuration model,

described in Ref. [262]. The outputs of this procedure are simplicial complexes with the

same statistical properties as the input complex but of significantly larger size. We used

these augmented complexes as substrates for the simulations shown in Figure 3.4.
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Figure 3.3: Generalised degree distributions of random simplicial complexes created
from real-world data sets (see Sec. 3.3.1). The four panels correspond to different social
contexts, namely (a) a workplace (InVS15), (b) a conference (SFHH), (c) a hospital
(LH10) and (d) a high school (Thiers13). The generalised degrees :1 and :2 = :Δ denote
respectively the number of 1-simplices (blue) and 2-simplices (orange) incident in a node.
The vertical dashed lines indicate the corresponding average values. Figure from [2].

3.3.2 Results on real-world simplicial complexes

We simulate the SCM over the simplicial complexes obtained from the four data sets as

described in the previous Section. In particular, we start with an initial density �0 of

infectious nodes and we run the simulations by taking into consideration all the possible

channels of infection illustrated in Figure 3.1(c-h). We stop a simulation if an absorbing

state is reached, otherwise we compute the average stationary density of infectious nodes

�∗ by averaging the values measured in the last 100 time-steps after reaching a stationary

state. The results are averaged over 120 runs obtained with randomly placed initial

infectious nodes with the same density �0. Moreover, the different data sets correspond

to different densities of 1- and 2-simplices. We thus rescale the infectivity parameters �

and �Δ respectively by the average degree 〈:〉 and by the average number of 2-simplices

incident on a node, 〈:Δ〉. We finally express all results as functions of the rescaled
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parameters � = �〈:〉/� and �Δ = �Δ〈:Δ〉/�.

It is worth noticing that while this rescaling takes into account the different densities

of simplices, it neglects the heterogeneity of contacts in the different dimensions. This is

displayed in Fig. 3.3, where the generalized degree distributions show that for some data

sets the the average number of contacts —per dimension— is not representative. This

will have, as we will see, an impact on the position of the epidemic threshold.

Figure 3.4 shows the resulting prevalence curves for the four data sets In each panel

(b,d,f,h), the average fraction of infected nodes �∗ in the stationary state is plotted as a

function of the rescaled infectivity � = �〈:〉/� for simulations of the SCM with �Δ = 0.8

(black triangles) and �Δ = 2 (orange squares). For comparison, we also plot the case

�Δ = 0, which is equivalent to the standard SIS model with no higher-order effects (blue

circles). We observe two radically different behaviours for the two values of �Δ ≠ 0. For

�Δ = 0.8, the density of infectious nodes varies as a function of � in a very similar way to

the case �Δ = 0 (simple contagion), with a continuous transition. For �Δ = 2 we observe

instead the appearance of an endemic state with �∗ > 0 at a value of �2 well below the

epidemic threshold of the other two cases. Furthermore, this transition appears to be

discontinuous, and an hysteresis loop appears in a bi-stable region, where both healthy

�∗ = 0 and endemic �∗ > 0 states can co-exist (dashed orange lines): in this parameter

region, the final state depends on the initial density of infectious nodes �0.

The simplicial complexes used in these simulations correspond to various social

contexts and different densities of 1- and 2-simplices, and yield a similar phenomenology.

These empirical structures however exhibit distributions of generalized degrees that

are not well peaked around their average values (see Fig. 3.3), and do not allow us to

systematically explore size effects.

To better understand the phenomenology of the simplicial contagion model, we thus

now explore its behaviour on synthetic simplicial complexes with controlled properties.
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Figure 3.4: SCM of order � = 2 on real-world higher-order social structures. Simplicial
complexes are constructed from high-resolution face-to-face contact data recorded in
four different context: (a) a workplace, (c) a conference, (e) a hospital and (g) a high
school. Prevalence curves are respectively reported in panels (b), (d), (f) and (h), in which
the average fraction of infectious nodes obtained in the numerical simulations is plotted
against the rescaled infectivity � = �〈:〉/� for different values of the rescaled parameter
�Δ = �Δ〈:Δ〉/�, namely �Δ = 0.8 (black triangles) and �Δ = 2 (orange squares). The blue
circles denote the simulated curve for the equivalent standard SIS model (�Δ = 0), which
does not consider higher order effects. For �Δ = 2 a bi-stable region appears, where
healthy and endemic states co-exist. Figure from [2].
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3.4 Simplicial contagion on synthetic simplicial complexes

A range of models for random simplicial complexes have been proposed so far, starting

from the exponential random simplicial complex, the growing and generalized canonical

ensemble [263–265] and the simplicial configuration models [262] to the more recent

simplicial activity driven model [266] generalizing the activity driven temporal network

model [267]. While these yield Erdös-Rényi-likemodels [268, 269] of arbitrary complexity,

here we are interested in models generating simplicial complexes with simplices of

different dimension in which we can control and tune the expected local connectivity,

e.g. the number of edges and “full" triangles a node belongs to. We therefore propose,

inspired by the models in Ref. [269] and Ref. [264], a new model to construct random

simplicial complexes, the RSC model, which allows us to maintain the average degree

of the nodes, 〈:1〉, fixed, while varying at the same time the expected number of “full"

triangles (2-simplices) 〈:Δ〉 incident on a node.

3.4.1 Construction of random simplicial complexes

The Random Simplicial Complex (RSC) model of dimension � has � + 1 parameters,

namely the number of vertices # and � probabilities {?1 , . . . , ?: , . . . , ?�}, ?: ∈ [0, 1],

which control for the creation of :-simplices up to dimension �. For the purpose of this

study we limit the RSC model to � = 2, which restricts the set of required parameters to

(#, ?1 , ?2), but the procedure could easily be extended to larger �.

The model works as follows. Given a setV of # vertices, we first create 1-simplices

(links) as in the Erdös-Rényi model [270], by connecting any two nodes 8 , 9 ∈ V of

vertices with probability ?1 ∈ [0, 1]. The average degree, at this stage, is (# − 1)?1.

Similarly, 2-simplices are then created by connecting any triplet (8 , 9 , :) of vertices. More

precisely, we add a 2-simplex (8 , 9 , :)with probability ?Δ ∈ [0, 1]. Notice that simplicial

complexes built in this way are radically different from the clique complexes obtained

from Erdös-Rényi graphs[268], in which every subset of nodes forming a clique is

automatically “promoted" to a simplex. Contrarily, in a simplicial complex generated by
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the RSC model proposed here, a 2-simplex (8 , 9 , :) does not come from the promotion of

an “empty" triangle composed by three 1-simplices (8 , 9), (9 , :), (:, 8) to a “full triangle"

(8 , 9 , :). This also means that the model allows for the presence of (: + 1)-cliques that are

not considered :-simplices, therefore it is able generate simplicial complexes having both

“empty" and “full" triangles, respectively encoding three 2-body interactions and one

3-body interactions [as for instance in Fig. 3.1(b)].

At this point each node has an average number 〈:Δ〉 = (# − 1)(# − 2)?Δ/2 of incident

2-simplices that also contribute to increase the degree of the nodes. The exact contribution

can be calculated by considering the different scenarios in which a 2-simplex (8 , 9 , :)

can be attached to a node 8 already having some links due to the first phase of the

RSC construction. More precisely, the degree :8 of node 8 is incremented by 2 for each

2-simplex (8 , 9 , :) such that neither the link (8 , 9) nor the link (8 , :) are already present; this

happens with probability (1− ?1)2. Analogously, if either the link (8 , 9) is already present

but not (8 , :), or vice-versa, the addition of the 2-simplex (8 , 9 , :) increases the degree of 8

by 1. Since each case happens with the same probability ?1(1 − ?1) the contribution is

therefore 2?1(1 − ?1). Overall, the degree :8 increases on average by 2(1 − ?1) for each

2-simplex attached to 8.

Finally, for ?1 , ?Δ � 1, we can thus write the expected average degree 〈:〉 as the

sum of the two contributions coming from the links and the 2-simplices, namely

〈:〉 ≈ (# − 1)?1 + 2〈:Δ〉(1 − ?1). For any given size # , we can thus produce simplicial

complexes having desired values of 〈:〉 and 〈:Δ〉 by fixing ?1 and ?Δ as:

?1 =
〈:〉 − 2〈:Δ〉
(# − 1) − 2〈:Δ〉

(3.1a)

?Δ =
2〈:Δ〉

(# − 1)(# − 2) . (3.1b)

With this procedure, for any given size # , we can produce simplicial complexes

having desired values of 〈:〉 and 〈:Δ〉 by appropriately tuning ?1 and ?Δ.

Figure 3.5 reports the generalized degree distributions obtained with the RSC model
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Figure 3.5: Generalised degree distributions of random simplicial complexes (RSC)
generated by the model described in Sec. 3.4.1. The generalised degrees :1 and :2 = :Δ
denote respectively the number of 1-simplices (blue) and 2-simplices (orange) incident in
a node. The vertical lines compare the average values of 〈:1〉 and 〈:2〉 obtained from
multiple realizations of the model (coloured dashed lines) with the approximated values
(continuous grey lines) calculated as described in the main text. Figure from [2].

just introduced. It is evident that, as for the classical Erdös-Rényi construction and

in contrast to what observed for the complexes constructed from the real-world data

sets (see Fig. 3.3), here both curves are well peaked around their average values. This

also confirms the agreement between the expected values of 〈:〉 and 〈:Δ〉 ( as given by

Eq. (3.1) and depicted as continuous gray lines) with the empirical averages obtained

from different realizations of the model (dashed coloured lines).

3.4.2 Results on random simplicial complexes

We simulate the SCM over a RSC created with the procedure described above, with

# = 2000 nodes, 〈:〉 ' 20 and 〈:Δ〉 ' 6. As for the real-world simplicial complexes, we

start with a seed of �0 infectious nodes placed at random and we compute the average

stationary density of infectious �∗ by averaging over different runs, each one using a

different instance of the RSC model. Results are shown in Fig.3.6(a), where the average

fraction of infected nodes, as obtained by the simulations, is plotted as a function of the

rescaled infectivity � = �〈:〉 for a (� = 2) SCM with �Δ = 0.8 (white squares), �Δ = 2.5

(filled blue circles) and �Δ = 0 (light blue circles).

Despite the very different properties of the underlying structure, the dynamics of
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a b

Figure 3.6: SCM of order � = 2 on a synthetic random simplicial complex (RSC). The
RSC is generated with the procedure described in this manuscript, with parameters
# = 2000, ?1 and ?Δ tuned in order to produce a simplicial complex with 〈:〉 ∼ 20 and
〈:Δ〉 ∼ 6. (a) The average fraction of infected obtained bymeans of numerical simulations
is plotted against the rescaled infectivity � = �〈:〉/� for �Δ = 0.8 (white squares) and
�Δ = 2.5 (filled blue circles). The light blue circles give the numerical results for the
standard SIS model (�Δ = 0) that does not consider higher order effects. The red lines
correspond to the analytical mean field solution described by Eq. (3.4). For �Δ = 2.5 we
observe a discontinuous transition with the formation of a bistable region where healthy
and endemic states co-exist. (b) Effect of the initial density of infected nodes, shown
by the temporal evolution of the densities of infectious nodes (a single realization is
shown for each value of the initial density). The infectivity parameters are set within the
range in which we observe a bistable region (� = �〈:〉/� = 0.75, �Δ = �Δ〈:Δ〉/� = 2.5).
Different curves - and different colours - correspond to different values for the initial
density of infectious nodes �0 ≡ �(0). The dashed horizontal line corresponds to the
unstable branch �∗2− of the mean field solution given by Eq. (3.5), which separates the
two basins of attraction. Figure from [2].

the SCM on the RSC is very similar to the one observed on the real-world simplicial

complexes. For �Δ = 0.8 the model behaves similarly to a simple contagion model

(�Δ = 0), with a continuous transition at �2 = 1, the well-know epidemic threshold of the

standard SIS model on homogeneous networks. When a higher value of �Δ is considered

(�Δ = 2.5), the epidemic can be sustained below �2 = 1, and both an epidemic-free and

an endemic states are present in the region �2 < � < 1, with appearance of a hysteresis

loop [see the filled blue circles in Fig. 3.6(a)]. In this region, we obtain �(C →∞) = 0 for

�(C = 0) = 0.01, while �(C →∞) > 0 for �(C = 0) = 0.4.

The dependency from the initial conditions is also illustrated in Fig. 3.6(b), in which the

temporal dynamics of single runs are shown. The various curves show how the density

of infected nodes �(C) evolves when initial seeds of infected nodes of different sizes are

considered. Each colour corresponds to a different value of �0, with brighter colours
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representing higher initial densities of infected individuals. The figure clearly shows the

presence of a threshold value for �0, such that �(C) goes to the absorbing state �(C) = 0 if

�0 is smaller than the threshold, and to a non-trivial steady state if the initial density is

above the threshold.

We now briefly investigate the size-dependence of the hysteresis loop. In particular,

we check the size effects in the behaviour of the hysteresis by performing simulations

of the SCM on systems of different sizes, namely # = 500, 1000, 2000, and 4000, while

keeping �Δ fixed within the region where we observe the bi-stability (�� = 2.5). As the

Fig. 3.7 shows, we do not observe a significant variation of the dynamics when simplicial

complexes of different sizes are considered, apart from a general stabilization of the

incidence curves whose fluctuations tend to be smaller as the size increases. Further

illustration of the finite size effects on the hysteresis loop can be found in Fig. A.2 of

Appendix A.

3.5 Mean field approach

In order to study more extensively this phenomenology as �Δ and � vary, and to further

characterize the discontinuous transition, we consider a mean field (MF) description

of the SCM, under a homogeneous mixing hypothesis [102]. Given the set of infection

probabilities � ≡ {�$ , $ = 1, · · · , �} and a recovery probability �, we assume the

independence between the states G8(C) and G 9(C) ∀ 8 , 9 ∈ V, and we write a MF expression

for the temporal evolution of the density of infected nodes �(C) as:

3C�(C) = −��(C) +
�∑
$=1

�$〈:$〉�$(C)
[
1 − �(C)

]
(3.2)

where, for each $ = 1, · · · , �, :$(8) = :$,0(8) is the generalized (simplicial) degree of a

0-dimensional face (node 8), i. e., the number of $-dimensional simplices incident to the

node 8 [264, 265], and 〈:$〉 is its average over all the nodes 8 ∈ V. With this approximation

we assume that the local connectivity of the nodes is well described by globally averaged
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Figure 3.7: Numerical exploration of the finite size effects on the hysteresis for a SCM of
order � = 2 on synthetic random simplicial complexes (RSC). The RSCs are generated
with the procedure described in the main text, with parameters ?1 and ?Δ tuned in
order to produce simplicial complexes with 〈:〉 ∼ 20 and 〈:Δ〉 ∼ 6. Different panels
correspond to different system sizes, namely (a) # = 500, (b) # = 1000, (c) # = 2000, and
(d) # = 4000. Each panel shows the average stationary fraction of infected individuals
plotted against the rescaled infectivity � = �〈:〉/�. The parameter �Δ = �Δ〈:Δ〉/� is set to
�Δ = 2.5, which corresponds to the case in which we observe a discontinuous transition,
with the formation of a a bistable region where healthy and endemic states co-exist and a
hysteresis appears. The two types of orange symbols correspond to two different values
of the initial density of infected individuals for �Δ = 2.5, namely �0 = 0.01 (circles) and
�0 = 0.4 (squares). The case �Δ = 0.8, in which we observe a continuous transition with
no hysteresis, is shown for reference (black squares). Figure from [2].

properties, such as the average generalized degree. We can immediately check that in

the case � = 1 we recover the standard MF equation for the SIS model, which leads to

the well known stationary state solutions �∗[�=1]
1 = 0 and �∗[�=1]

2 = 1 − �/(�〈:〉). The

absorbing state �∗[�=1]
1 = 0 is the only solution for �〈:〉/� < 1, i.e., below the epidemic

threshold. When �〈:〉/� > 1, this state becomes unstable while the solution �∗[�=1]
2

becomes a stable fixed point of the dynamics. The transition between these two regimes

is continuous at �〈:〉/� = 1.



Chapter 3. Social contagions beyond pairwise interactions 75

3.5.1 Case � = 2

Let us now focus on a more interesting but still analytically tractable case in which we

extend the contagion dynamics up to dimension � = 2, so that Eq. (3.2) reads:

3C�(C) = −��(C) + �〈:〉�(C)
[
1 − �(C)

]
+ �Δ〈:Δ〉�2(C)

[
1 − �(C)

]
(3.3)

where 〈:Δ〉 ≡ 〈:2〉. By defining as before � = �〈:〉/� and �Δ = �Δ〈:Δ〉/�, and by

rescaling the time by �, we can rewrite Eq. (3.3) as:

3C�(C) = −�(C)(�(C) − �∗2+)(�(C) − �∗2−) , (3.4)

where�∗2+ and�
∗
2− are the solutions of the secondorder equation 1−�(1−�)−�Δ�(1−�) = 0.

We thus obtain:

�∗2± =
�Δ − � ±

√
(� − �Δ)2 − 4�Δ(1 − �)

2�Δ
. (3.5)

The steady state equation 3C�(C) = 0 has thus up to three solutions in the acceptable

range � ∈ [0, 1]. The solution �∗1 = 0 corresponds to the usual absorbing epidemic-free

state, in which all the individuals recover and the spreading dies out. A careful analysis

of the stability of this state and of the two other solutions �∗2+ and �∗2− is however needed

to fully characterize the phase diagram of the system.

Let us first consider the case �Δ ≤ 1. It is possible to show that �∗2−, when it is

real-valued, is always negative, i.e., it is not an acceptable solution. Moreover, �∗2+ is

positive for � > 1 and negative for � < 1. In the regime �Δ ≤ 1 therefore, if � < 1, the

only acceptable solution to 3C�(C) = 0 is �∗1 = 0; contrarily, for � > 1, since �∗2− < 0 and

�∗2+ > 0, Eq. (3.4) shows that 3C�(C) is positive at small �(C): the absorbing state �∗1 = 0 is

thus unstable and the solution �∗2+ is stable. As �∗2+ = 0 for � = 1, the transition at the

epidemic threshold � = 1 is continuous. In conclusion, when �Δ ≤ 1, the transition is

similar to the one of the standard SIS model with �Δ = 0.
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Let us now consider the case of �Δ > 1. Then, for � < �2 = 2
√
�Δ − �Δ, both �∗2+

and �∗2− are outside the real domain, and the only steady state is the absorbing one

�∗1 = 0. Note that �2 < 1, since �Δ > 1. For � > �2 , we thus have two possibilities

to consider. If � > 1, we can show that �∗2− < 0 < �∗2+. Eq. (3.4) shows then that, for

small �(C), 3C�(C) > 0: as above, the absorbing state �∗1 = 0 is unstable and the density of

infectious nodes tends to �∗2+ in the large time limit; if instead �2 < � < 1, we obtain that

0 < �∗2− < �∗2+. Then, still from Eq. (3.4), we obtain that 3C�(C) < 0 for �(C) between 0 and

�∗2−, and that 3C�(C) > 0 for �(C) between �∗2− and �∗2+. As a result, both �∗1 = 0 and �∗2+ are

stable steady states of the dynamics, while �∗2− is an unstable solution. Most interestingly,

the long time limit of the dynamics depends then on the initial conditions. Indeed, if

the initial density of infectious nodes, �(C = 0), is below �∗2−, the short time derivative of

�(C) is negative, so that the density of infectious nodes decreases and the system tends

to the absorbing state: �(C) −−−→
C→∞

0. On the other hand, if the initial density �(C = 0) is

large enough (namely, larger than �∗2−), the dynamical evolution Eq. (3.4) pushes the

density towards the value �∗2+, i.e. �(C) −−−→C→∞
�∗2+. Since �

∗
2+ > 0, the transition at �2 is

discontinuous.

We illustrate these results by showing in Fig. 3.8(a) the solutions �∗1, �
∗
2+ and �∗2− as a

function of � and for different values of �Δ. The vertical line corresponds to the standard

epidemic threshold for the SIS model (�Δ = 0). Dashed lines depict unstable branches,

as given by �∗2−.

We emphasize again two important points. First, for �Δ > 1 we observe a discontinu-

ous transition at

�2 = 2
√
�Δ − �Δ , (3.6)

instead of the usual continuous transition at the epidemic threshold. Second, for

�2 < � < 1 the final state depends on the initial density of infectious nodes, as described

above: the absorbing state �∗1 = 0 is reached if the initial density �(C = 0) is below the

unstable steady state value �∗2−; on the contrary, if �(C = 0) is above this value, the system

tends to a finite density of infectious nodes equal to �∗2+. In other words, a critical mass
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Figure 3.8: Phase diagram of the SCM of order � = 2 in mean field approximation. (a)
The stationary solutions �∗ given by Eq. (3.5) are plotted as a function of the rescaled link
infectivity � = �〈:〉/�. Different curves correspond to different values of the triangle
infectivity �Δ = �Δ〈:Δ〉/�. Continuous and dashed lines correspond to stable and
unstable branches respectively, while the vertical line denotes the epidemic threshold
�2 = 1 in the standard SIS model that does not consider higher order effects. For �Δ ≤ 1
the higher order interactions only contribute to an increase in the density of infected
individuals in the endemic state, while they leave the threshold unchanged. Conversely,
when �Δ > 1 we observe a shift of the epidemic threshold, and a change in the type of
transition, which becomes discontinuous. (b) Heatmap of the stationary solution �∗ given
by Eq. (3.5) as a function of the rescaled infectivities � = �〈:〉/� and �Δ = �Δ〈:Δ〉/�. The
black area corresponds to the values of (�,�Δ) such that the only stable solution is �∗1 = 0.
The dashed vertical line corresponds to � = 1, the epidemic threshold of the standard SIS
model without higher order effects. The dash-dotted line represents the points (�2 ,�Δ),
with �2 = 2

√
�Δ − �Δ, where the system undergoes a discontinuous transition. Figure

from [2].

is needed to reach the endemic state, reminding of the recently observed minimal size of

committed minorities required to initiate social changes [253].

Figure 3.8(b) is a two-dimensional phase diagram showing �∗2+ for different values

of � and �Δ. Lighter colours correspond to higher values of the stationary density of

infectious nodes, while the dashed vertical line corresponds to the epidemic threshold

of the standard (without higher order effects) SIS model, namely � = 1. For �Δ ≤ 1

(below the dashed horizontal line) the transition as � crosses 1 is seen to be continuous,

while, for �Δ > 1, the transition is clearly discontinuous along the curve �2 = 2
√
�Δ − �Δ

(dash-dotted line). The analytical values of �∗2+ are also reported as continuous red lines

in Fig. 3.6(a) and compared to the results of the simulations, showing in this way the
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accuracy of the mean field approach just described. In addition, Fig. 3.6(b) shows that the

unstable solution �∗2− accurately separates the two basins of attractions for the dynamics,

i.e., it defines the critical initial density of infected �0 that determines whether the long

term dynamics reaches the healthy state or the endemic one. Notice that the mean field

approach is in fact able to correctly capture both the position of the thresholds and the

discontinuous nature of the transition for the SCM with �Δ > 1.

We finally note that, while a general solution for general � with arbitrary parameters

{�$} remains out of reach, it is possible to show that the phenomenology obtained

for � = 2 is also observed for specific cases with � ≥ 3. We consider indeed in the

next two Sections 3.5.2 and 3.5.3 two cases: � = 3 with �2 = 0 and general � > 3 with

�1 = · · · = ��−1 = 0. In both cases, we will show the appearance of a discontinuous

transition in the regimewhere the simple contagion �1 is below threshold (i.e., �1〈:〉 < �):

similarly to the case � = 2, this transition occurs as �� , which describes the rate of the

high-order contagion process, increases.

3.5.2 Case � = 3

Let us consider here a system with maximum dimension of simplices � = 3. In this case

the model has three spreading parameters �1, �2 = �Δ and �3, and the evolution equation

for �(C) reads

3C�(C) = −��(C) + �〈:〉�(C)(1− �(C)) + �2〈:2〉�(C)2(1− �(C)) + �3〈:3〉�(C)3(1− �(C)). (3.7)

Finding the roots of 3C�(C) = 0 yields a polynomial of degree 3, so it is possible to

write these roots, corresponding to stable and unstable fixed points of the dynamics,

as functions of the parameters of the model. The process is however lengthy and

cumbersome, and depends moreover on three parameters, so that the representation of

the whole phase diagram is not convenient.

As we want here simply to show that the phenomenology of the appearance of first
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order transitions obtained in the case � = 2, is also observed in higher dimensions,

we restrict ourselves for simplicity to the case �Δ = 0, in which we will see that we

can avoid writing the explicit solutions and resort instead to a graphical solution. This

case corresponds to the hypothesis that contagion can occur only either through simple

contagion or through cliques of size 4 in which 3 of the nodes are already infectious, and

the evolution equation reduces to:

3C�(C) = −��(C) + �〈:〉�(C)(1 − �(C)) + �3〈:3〉�(C)3(1 − �(C)). (3.8)

Setting � = �〈:〉/�, �3 = �3〈:3〉/� and rescaling time by �we obtain:

3C�(C) = �(C)(1 − �(C))
(
� + �3�

2 − 1
1 − �(C)

)
(3.9)

where we can define the functions 51(�) = � + �3�2 and 52(�) = 1/(1 − �). The sign

of the temporal evolution of the density of infectious is thus given by the sign of the

difference between 51 − 52. Note that �(C) is by definition between 0 and 1 so we need to

consider 51 and 52 only between these limits. In this interval, 51 is positive and increases

monotonically from � for � = 0 to �+�3 for � = 1. Function 52 is also positive and strictly

increasing, with 52(0) = 1 and 52 diverging towards +∞ as �→ 1−. We also note that the

equation 51(�) = 52(�) yields a polynomial of degree 3, so it has at most 3 real roots.

Let us first consider the case � > 1. Then at � = 0 we have 51 > 52, and as �→ 1, 51

becomes smaller than 52. Therefore, at small �, 3C� is positive and hence the state � = 0

is unstable. More in detail, there are two possibilities:

• either there is one single crossing point of 51 and 52, at �∗. Then, 3C�(C) > 0 if

�(C) < �∗ and 3C�(C) < 0 if �(C) > �∗: for any �(C = 0) > 0, the system goes to the

stationary state �(C → ∞) = �∗. This is similar to the usual SIS case with �3 = 0:

the effect of a non-zero value of �3 is simply to shift the value of �∗.

• or there are three crossing points �1 < �2 < �3. This occurs for certain combinations
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of values of � and �3. Then for �(C) < �1, 3C�(C) > 0 so the absorbing state � = 0 is

again unstable. The state �2 is also seen to be unstable while there are two stable

fixed points �1 and �3: depending on the value of �(C = 0), the systemwill converge

to one of these values.

Hence, for � > 1, the system always reaches a stationary state with a finite fraction of

infectious nodes, which in some regions of the (�,�3) phase diagram, can depend on

�(C = 0).

Let us now consider the more interesting case � < 1. Then 51(�) < 52(�) both for � = 0

and as �→ 1. Hence 51 − 52 is negative both in 0 and 1, and either 0 or 2 of the roots of

the equation 51(�) = 52(�) are between 0 and 1. Hence, for � ∈ [0, 1], either 51 is always

below 52, or the two functions intersect in 2 points that we call �− and �+ (�− < �+):

• in the former case ( 51(�) < 52(�) ∀� ∈ [0, 1]), 3C�(C) is always negative so the only

stationary state is the absorbing one � = 0;

• in the latter case, 3C� is positive for �(C) between �− and �+ and negative else, so

that

– if �(C = 0) < �−, 3C� is negative, hence �(C) decreases and the system converges

to � = 0

– if �(C = 0) > �−, the system converges towards �(C →∞) = �+ > 0.

At fixed � < 1, the former case is obtained at small values of �3, while the latter is

obtained for �3 large enough. The situation is illustrated in Fig. 3.9 for � = 0.5. At the

transition �3 = �23 between these two cases, �− = �+ > 0 (the functions 51 and 52 are

tangent in this point): the transition from �(C →∞) = 0 for �3 < �23 to �(C →∞) = �+ (if

�(C = 0) > �−) for �3 > �23 is thus a discontinuous one, in a similar way to the case � = 2

discussed in the main text.
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Figure 3.9: SCM of order � = 3, case � = 0.5, �2 = 0: 51(�) for various �3 (<, ≈ and > �23),
and 52(�). 51 is below 52 both at � = 0 and as �→ 1. The two curves therefore either do
not cross (for �3 < �23), are tangent in �+ = �− (for �3 = �23) or cross in two points �− and
�+ (for �3 > �23). Figure from [2].

3.5.3 General �, with �1 = · · · = ��−1 = 0

For general �, there is no analytical solution for the stationary values of the density of

infectious nodes. We show here however that, if we consider that contagion can occur

only through cliques of size�+1, i.e., if all spreading rates �1, �2, . . . , ��−1 are null, there

exists a discontinuous transition between the phase in which the spreading vanishes at

low �� and the phase in which �(C →∞) is finite at large �� .

The evolution equation for � reads

3C�(C) = −��(C) + �� 〈:�〉�(C)�(1 − �(C)). (3.10)

Defining �� = �� 〈:�〉/� and rescaling time by �we obtain

3C�(C) = − �(C)
[
1 − ����−1(C)(1 − �(C))

]
. (3.11)

Defining ��(�) = 1 − ����−1(1 − �), we see that the sign of 3C�(C) is opposite to the sign

of ��(�(C)), so that we need to study the sign of the function ��(�) for � ∈ [0, 1] (as the

density �(C) is by definition between 0 and 1).
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We have ��(0) = ��(1) = 1. Moreover, the derivative of �� is

�′�(�) = ��(���−1 − (� − 1)��−2) = �����−2(� − (1 − 1/�)).

It is thus negative for � < 1 − 1/� and positive for � > 1 − 1/�: �� first decreases as �

increases, reaches a minimum at � = 1 − 1/� and then increases back to 1 as � increases

to 1. We have thus two cases:

• if the minimum, ��(1 − 1/�), is positive, then ��(�) > 0 for � ∈ [0, 1]: therefore,

3C�(C) is always negative for any �(C) > 0: the density of infectious nodes can only

decrease and the contagion-free state � = 0 is the only stable state.

• if instead ��(1 − 1/�) < 0, then, as ��(0) = ��(1) = 1, by continuity the equation

��(�) = 0 has two roots in [0, 1], which we call �− and �+ (�− < �+). ��(�)

is positive for � ∈ [0, �−) and � ∈ (�+ , 1] and negative between the two roots.

Therefore

– if �(C = 0) < �−, 3C�(C = 0) is negative, hence �(C) decreases and the system

converges to � = 0

– if �(C = 0) > �−, the system converges towards �(C →∞) = �+ > 0.

The condition to have ��(1 − 1/�) < 0 and hence a non-trivial stationary state can

be written simply as

1 − ��(1 − 1/�)�−1(1/�) < 0

i.e.,

�� > �2� =
��

(� − 1)�−1 .

Note that for �� = �2
�
, �− = �+ = 1 − 1/� is strictly positive, showing that the

transition at �2
�
is discontinuous.

This shows therefore that for �1 = · · · = ��−1 = 0, we have the same phenomenology
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for any � as for the case � = 2 studied in Sec. 3.5.1: a discontinuous transition occurs at

�2� =
��

(� − 1)�−1 (3.12)

between an absorbing state � = 0 and a stationary state with a non-zero density of

infectious individuals �+ > 0.

3.6 Microscopic Markov-chain approach

Following the Microscopic Markov chain approach (MMCA) [235] we can write the

probability ?8(C) ≡ Prob
[
G8(C) = 1

]
for any node 8 being infected at time C as a function of

?8(C − 1):

?8(C) =
[
1 − @8(C − 1)

] [
1 − ?8(C − 1)

]
+

[
1 − �

]
?8(C − 1) (3.13)

where @8(C) denotes the probability of node 8 ∈ � not being infected by any of

the subfaces of �. Such a quantity can be written in terms of the parameters in

� = {�1 , �2 , . . . , ��} and of the states of the faces (links, filled triangles, etc) in which

node 8 is involved. Considering for simplicity only contributions up to � = 2 we have

@8(C) =
∏
9∈V

[
1 − �08 9? 9(C − 1)

] ∏
9 ,;∈V

[
1 − �Δ08 9;? 9(C − 1)?;(C − 1)

]
(3.14)

The first term of Eq. (3.14) accounts for the contagion through the links ofK . These

links are fully specified by means of the standard adjacency matrix {08 9}, whose elements

08 9 = 0, 1 denote the absence or presence of a link (8 , 9). Similarly, the second term of

Eq. (3.14) accounts for the contagion of 8 through the 2-simplices ofK (triangles), which

are analogously specified by the elements of the adjacency tensor {08 9;}. This tensor is

the 3-dimensional version of the adjacency matrix, in which a non-zero element (8 9;)

denotes the presence of a 2-simplex (8 , 9 , ;).
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Figure 3.10: SCM of order � = 2 on real-world simplicial complexes constructed
from high-resolution face-to-face contact data recorded in four different context: (a) a
workplace, (b) a conference, and (c) a high school. The average densities of infectious
nodes �∗ are plotted against the rescaled infectivity � = �〈:〉/� for different values of the
rescaled parameter �Δ = �Δ〈:Δ〉/�. Results from numerical simulations (symbols) are
compared to analytical results form the MMCA (dashed lines), as given by Eq. (3.13).

We can quickly test the accuracy of the MMCA by comparing the results of the

numerical integration of Eq. (3.13) against simulations. We do this on the real-world

simplicial complexes we constructed in Sec. 3.3.1 before the data augmentation. This

allows us to check at the same time also the behaviour of the model and the accuracy of

the analytical approach on systems of small size. Results are shown in Fig. 3.10 for the

data sets referring to (a) a workplace (InVS15) [258], (b) a conference (SFHH) [259], and

(c) a high school (Thiers13) [261]. In each panel, the average densities of infected nodes is

plotted, as usual, against the rescaled infectivity �. While symbols represent mean values

coming from different simulated realizations, the dashed lines refer to the results of the

MMCA. Differently from the MF, here the good match between the curves confirms the

validity of the MMCA for simplicial contagions on heterogeneous structures, such as the

ones considered. The results also hold in the case of the conference data set [Fig. 3.10(b)]

in which the epidemic threshold vanishes for sufficiently high values of the 2-simplex

infectivity (�� = 2.5).

3.7 Summary and conclusions

In summary, the simplicial model of contagion introduced here is able to capture the basic

mechanisms and effects of higher-order interactions in social contagion processes. Our

analytical results were derived in a mean field approximation and indeed quantitatively
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compared to the nondescript simplicial complexes obtained in our random simplicial

complex model (akin to ER simplicial complexes [269]). However, the framework we

introduced is very general and the phenomenology robust, as seen from the results

obtained on empirical data sets.

In this Chapter, we focused our attention on the behaviour of the SCM on simplicial

complexes. It would be interesting to further investigate the SCM on more general

simplicial complexes with, for instance, heterogeneous generalized degree distribution or

with community structures. Previous results on spreading dynamics on networks have

already showed the impact that the presence of clusters, communities and sub-graphs

might have on the epidemic threshold and on the final epidemic size [102, 271–276].

Another interesting direction would be to consider simplicial complexes with emergent

properties such as hyperbolic geometry[277–279], or temporally evolving simplicial

complexes [266].

Notice that some investigations are already underway. Indeed, following our sugges-

tion [2], further efforts have been already made by other researchers in the field in order

to understand the impact of the representation of the social structure on the dynamics of

the model.

More precisely, Jhun et al. [137] extended the SCM to the more general case of hyper-

graphs. The model works exactly as the one proposed here, but this time the spreading

process takes place on top of 3-uniform hypergraphs in which all the hyperedges have the

same size 3. As for the simplicial version, a susceptible node that is part of an hyperedge


 of size 3 can get an infection from 
, with rate �3, only if the remaining 3 − 1 nodes

composing 
 are infectious. The standard recovery probability � is used. The authors

considered the case of scale-free (SF) uniform hypergraphs. Notice that even if all the

hyperedges have the same size, different nodes can belong to a different number of these

hyperedges. In this sense, the heterogeneity is given by the number of hyperedges a node

belongs to, which is distributed as ∼ %(:)�. The heterogeneous mean-field formalism

(HMF) —in which nodes of the same hyper-degree class as considered equivalent [280]—
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leads to the following equation for the evolution of the stationary density of infected

nodes of hyperdegree ::

3C�: = −��: + �:(1 − �:):Θ3−1 (3.15)

The contagion term on the r.h.s. considers the probability that a susceptible node

of hyperdegree : gets the infection from one of the hyperedges. This is, as usual,

proportional to the infection rate �: , the number of hyperedges :, and the probability

Θ3−1 to be connected to an hyperedge having all the other nodes infected.

A comparison of Eq. (3.15) with Eq. (3.3) highlights the difference in the representation

used. Indeed, differently from the simplicial case, here the contagion term does not

dependent on the lower order sub-faces.

In this case, the system presents a characteristic exponent �2 = 2 + 1/(3 − 2) of the

degree distribution that determines the nature of the transition. In particular, for � < �2

the epidemic threshold vanishes (�2 = 0). By contrast, if � = �2 a second order transition

appears, that becomes hybrid when higher values of � are considered. The associated

values of the susceptibility diverge at the transition point, as expected [281, 282]. These

results are consistent with simulations on SF uniform hypergraphs, confirming the

validity of the HMF approach on such topologies.

A different version of the higher-order social contagion model on hypergraph was

recently proposed by de Arruda et al. [256]. Based on a similar SIS framework, the

fundamental difference with respect to the other models relies in the explicit inclusion of

a critical-mass dynamics into the contagion process that generalizes the SCM [2]. In the

SCM, a susceptible node 8 part of a hyperedge 
 (or a simplex) of size 3 could get the

infection from 
 only if all the remaining 3 − 1 nodes composing it are infected. Here,

the authors relax the constraints by i) moving from simplicial complexes to hypergraphs

and ii) allowing an hyperedge 
 to be potentially infectious for 8 ∈ 
 if the number of

infected nodes composing 
 is greater or equal to a given threshold Θ
. The standard
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SIS model is then recovered by restricting this threshold mechanism to hyperedges

of size greater than two, so that a contagion through active links can always happen

(no threshold). This model reveals a similar phenomenology to the one on simplices,

characterized by the appearance of first and second-order transitions and hysteresis. In

addition, the authors provide further analytical results on regular hypergraphs, namely

an hyper-blob (a random regular network with one hyperedge containing all the nodes)

and an hyper-star (a star network with one hyperedge containing all the nodes). The

critical values analysis is further extended with the introduction of the concept of a

“social latent" heat, interpreted as the fraction of individuals to add or remove in order to

move the dynamics from one solution to the other. These findings provide a possible

phenomenological explanation to some apparently contradictory results previously

obtained. In fact, experimental work has showed different values of critical mass levels

needed to initiate a social change, i.e., to revert an existing equilibrium to a new one by

mean of a committed minority [253, 283, 284]. These threshold values, spanning from

10% to 40%, could be consistently seen as the effect of the interplay between a global

critical mass and the local thresholds as given by the Θ
, which also depend on the size

of the interacting group.

Finally, further developments of the SCM based on probabilistic descriptions have

showed that more complex analytical formulations, namely the microscopic Markov-

chain approach [235] and the link equation [285], can improve the accuracy of the

predictions [286]. Indeed, differently from the MF, these approaches can be used to

analytically describe the contagion dynamics on high-order heterogeneous structures.
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Chapter 4

Discovery processes on networks

4.1 Introduction

Creativity and innovation are the underlying forces driving the growth of our society

and economy. Studying creative processes and understanding how new ideas emerge

and how novelties can trigger further discoveries is therefore fundamental if we want to

devise effective interventions to nurture the success and sustainable growth of our society.

As already described in Chapter 1, many models have been developed in this direction.

In particular, the authors of Refs. [82, 189, 199, 287] have looked at different types of

temporally ordered sequences of data, such as sequences of words, songs, Wikipages and

tags to study how the number �(C) of novelties grows with the length of the sequence C.

They have found that the Heaps’ law, i.e. a power-law behaviour �(C) ∼ C� originally

introduced to describe the number of distinct words in a text document [190], applies

to different contexts, producing different values of � < 1. Some examples are reported

in Fig. 4.1 for five different real-world data sets. From the left to the right, each Heaps’

law represents the growth of (8) the number of distinct songs listened by users on the

online platform last.fm, (88) the number of distinct hashtags tweeted by users on the

popular social network Twitter, (888) the number of different projects to which developers

contributed to on the online hosting service GItHub, (8E) the number of distinct words

89
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Figure 4.1: Empirical Heaps’ laws from five different real-world data sets: Last.fm,
Twitter, Github, Wikipedia, and Gutenberg. Red points represent the respective growth
of the number of distinct elements �(C) as a function of the total number of elements C.
Black lines denote the associate power-law fits (exponent displayed). Figure adapted
from [189].

contained on several web pages of the English Wikipedia, and (E) the number of distinct

words contained in the texts of prose and poetry of the Gutenberg Project [82, 189]. Notice

how these processes are radically different. Some of them are pure exploration processes,

since users of last.fm are consumers of songs that are created by artists. Contrarily,

hashtags are created by users and then absorbed into the system and eventually used by

others.

In Section 1.2.2, we have introduced the urn model, a useful framework to study dis-

covery and innovation processes in evolutionary biology, chemistry, sociology, economy

and text analysis [288, 289]. Let us recall that in the classic Pólya urn model [197, 198], a

temporal sequence of discoveries can be generated by drawing balls from an urn that

contains all possible discoveries. An interesting development is the recent model by Tria

and co-workers [82, 200], which adds the concept of the AP [174, 290] to the reinforcement

mechanism which is already present in the original Pólya’s urn framework. This model,

called Urn Model with Triggering, well reproduces the empirical signatures of discovery

processes, such as the Heaps’ law (as it has been analytically shown in Sec. 1.2.2.1), the

Zipf’s law, and the semantic correlations proper of real-world systems (more details will

be given in the next sections).

In this Chapter, we propose tomodel the dynamicalmechanisms leading to discoveries

and innovations as an edge-reinforced random walk (ERRW) on an underlying network

of relations among concepts and ideas. It is easy to see how the network representation
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of the space of items naturally accounts for the AP, since paths are restricted to existing

connections, and the discovery (visit) of a given node could provide access to a different

set of nodes not directly accessible before.The use of networks as an underlying structure

for search strategies and navigation is strictly linked to the literature in random walks

and optimal foraging [207], but in lately it has been applied to a various contexts. For

example, in cognitive sciences, networks have been used at length to encode the patterns

behind mental representations [291–294]. Then, as for contagions, understanding the

influence of these structures on the process of discovery that unfolds on top remains a

fascinating problem.

Random walks on complex networks [16, 18, 21, 23, 202] have been studied at length

[207]. In similar contexts, they have been used to build exploration models for social

annotation [168], music album popularity [295], knowledge acquisition [170, 171], animal

foraging and migration [296, 297], human mobility [298], information processing [299],

human language complexity [300, 301] and evolution in research interests [302]. A special

class of random walks are those with reinforcement [195, 303, 304], which have been

successfully applied to biology [305] and also in human mobility [306, 307]. In particular,

the concept of edge reinforcement [308–310]was introduced in themathematical literature

by Coppersmith and Diaconis [311] as a model of a person exploring a new town. Here,

we will use ERWWs to mimic how different concepts are explored moving from a concept

to an adjacent one in the network, with innovations being represented, in this framework,

by the first discovery of nodes [312]. As supported by empirical observations, we expect

indeed the walkers to move more frequently among already known concepts and, from

time to time, to discover new nodes. For this reason, we introduce and study a model in

which the network is co-evolving with the dynamical process taking place over it [1]. In

our model, (i) random walkers move over a network with assigned topology and whose

edge weights represent the strength of concept associations, and (ii) the network evolves

in time through a reinforcement mechanism in which the weight of an edge is increased

every time the edge is traversed by a walker, making traversed edges more likely to be
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traversed again.

4.1.1 Outline

This Chapter is structured as follows:

In Sec. 4.2, we introduce the edge-reinforced random walk (ERRW) model, explaining in

particular the co-evolution of the network with the dynamics of the walker by means of

the reinforcementmechanism.

In Sec. 4.3, we first test the model on synthetic SW networks and observe the natural

emergence of a Heaps’ law, characterizing the pace of innovation [190], with only two

ingredients, namely the topology of the network and a parameter describing the strength

of the reinforcement. We then show how, by tuning the amount of reinforcement, the

model can give rise to different scaling exponents.

In Sec. 4.4 we consider a more realistic scenario, namely the growth of knowledge in

modern science as tracked by a large database of scientific publications. We study the

dynamics of these real innovation processes by extracting the empirical network behind

them and by running our model on top of it. In such cases, the framework we propose is

even simpler and easier to interpret, since the topology comes directly from the data,

and the model has only one parameter.

In Sec. 4.5, we investigate the correlations in the temporal sequences of visited concepts

produced by the model and compare them to appropriate null models. The correlations,

in agreement with the ones of empirical trajectories, will appear as a natural consequence

of the interplay between the network topology and the reinforcement mechanism that

controls the exploration dynamics.

Conclusions and future perspectives are summarized in Sec. 4.6.

4.2 The edge-reinforced random walk model

Let us consider a random walker over a weighted connected graph �(V , ℰ), whereV

and ℰ are, respectively, a set of # = |V| nodes and a set of  = |ℰ | links. Each node of
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the graph represents a concept or an idea, and the presence of a link (8 , 9) denotes the

existence of a direct relation between two concepts 8 and 9. The values of # and  and

the topology of the network are assumed to be fixed, while the weights of the edges can

change in time according to the dynamics of the walker, which, as we will see below, is

in turn influenced by the underlying network. The graph at time C, with C = 0, 1, 2, . . ., is

fully described by the non-negative time-dependent adjacency matrix, C ≡ {FC
8 9
}, where

the value FC
8 9
is different from 0 if the two concepts 8 and 9 are related, and quantifies

the strength of the relationship at time C. We initialize the network assuming that at

time C = 0 all the edges have the same weight, namely F0
8 9
= 1 ∀(8 , 9) ∈ ℰ. The dynamics

of the walkers is defined as follows: at each time step C, a walker at node 8 jumps to a

randomly chosen neighbouring node 9 with a probability proportional to the weight of

the connecting edge. Formally, the probability of going from node 8 to node 9 at time C is:

ProbC(8 → 9) = �C98 =
FC
8 9∑

; F
C
8;

(4.1)

where the time-dependent transition probability matrix ΠC ≡ {�C
8 9
} depends on the

weights of all links at time C [313]. The transition probabilities satisfy the normalization∑
9 �

C
98
= 1 ∀ 8 , C, and we assume that � has no self-loops, so that the walker changes

position at each time step. On the other hand, the network co-evolves with the random

walk process, since every time a walker traverses a link, it increases its weight by a

quantity �F > 0, as illustrated in Fig. 4.2. This mechanism mimics the fact that the

relation between two concepts is reinforced every time the two concepts are associated

by a cognitive process.

Formally, the dynamics of the network is the following. Every time an edge (8 , 9) ∈ ℰ

is traversed at time C, the associated weight is reinforced as

FC+1
8 9 = FC

8 9 + �F (4.2)

The quantity �F, called reinforcement, is the only tunable parameter of the model.
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Figure 4.2: Edge-reinforced random walks (ERRWs) produce a co-evolution of the
network with the dynamics of the walkers. At time C the walker is on the red node and
has already visited the gray nodes, while the shaded nodes are still unexplored. The
widths of edges are proportional to their weights. At time C + 1 the walker has moved to
a neighbour (red) with probability as in Eq. (4.1), and the weight of the used edge has
been reinforced by �F. At this point, the walker will preferentially go back, although it
can also access the set of “adjacent possible” (green). Figure from [1].

The idea of a walker preferentially returning on its steps is in line with the classical

rich-get-richer paradigm, which has been extensively used in the network literature

to grow scale-free graphs [24], and is here implemented in terms of reinforcement of

the edges, instead of using a random walk biased on some properties of the nodes

[303, 314, 315].

The co-evolution of network and walker motion induces a long-term memory in

the trajectories which reproduces, as we will show below, the empirically observed

correlations in the dynamics of discovery [82]. In fact, if 8C is a realization of the random

variable -C denoting the position of the walker at time C, the conditional probability

Prob [-C+1 = 8 |80 , 81 , . . . , 8C] that, at time step C+1, the walker is at node 8, after a trajectory

S = (80 , 81 , 82 , . . . , 8C), depends on the whole history of the visited nodes, namely on

the frequency but also on the precise order in which they have been visited [307]. The

strongly non-Markovian [316] nature of the random walks comes indeed from the fact

that the transition matrix ΠC co-evolves with the rearrangement of the weights. This

makes our approach fundamentally different from the other models based on Polya-like

processes (cfr. Sec. 1.2.2.1). For instance, in the Tria et al. urn model [82], where an

innovation corresponds to the extraction of a ball of a new colour, the probability of

extracting a given colour (colours correspond to node labels in our model) at time C + 1

only depends on the number of times each colour has been extracted up to time C, and
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not on the precise sequence of colours. Moreover, the use of an underlying network

(see Fig. 4.2) is a natural way to include the concept of the adjacent possible in our model,

without the need of a triggering mechanism and further parameters, which are instead

necessary in the UMT (balls of new colours added into the urn whenever a colour is

drawn out for the first time) and in its mapping in terms of growing graphs considered

in SI of Refs. [82, 189].

Another consequence of the strongly non-Markovian nature of ERRWs is their very

limited analytical tractability that makes them extremely hard to handle. Nevertheless,

mathematiciansmanaged to achieve specific analytical results by focusingon the evolution

of the edges in time. This can be done by (i) subtracting the initial values of the weights,

so that ∀ (8 , 9) ∈ ℰ and ∀C, F̃C
8 9
= FC

8 9
− F0

8 9
and (ii) normalizing step by step by defining a

new random variable 
 as 
C
8 9
= F̃C

8 9
/C�F, which represents the percentage of time the

walker spent on the edge (8 , 9) up to time C. The resulting random vector 
C := (
C
8 9
)(8 , 9)∈ℰ

takes values in the simplex Δ = {(-8 9)(8 , 9)∈ℰ ∈ (0,∞)ℰ :
∑
8 9 -8 9 = 1}. It has been proved

that the sequence (
C)C∈N converges almost surely, and the associated random limit

distribution can be determined analytically [309]. We refer the interested reader to a

general survey of random processes with reinforcement that can be found in [195].

In the next sections we will first test our model on synthetic networks (Section 4.3),

and then we will consider a real case where the underlying network of relations among

concepts can be directly accessed and used (Section 4.4).

4.3 Results on synthetic networks

As a first experiment, based on the idea that concepts are organized in dense clusters

connected by few long-range links, we model the relations among concepts as a small-

world network (SW) [317].Our choice is supported by recent results on small-world

properties of word associations[318], language networks [319] and semantic networks of

creative people [320].
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Figure 4.3: ERRW on SW networks with # = 105, < = 1, and ? = 0.02. Heaps’ law
and associated exponents � obtained for different values of reinforcement �F. Each
curve (points) represent the average of different realizations of the process. Dashed lines
denote the power-law fit, with exponents given in the legend. Figure adapted from [1].

To construct SW networks, we use the procedure proposed by Newman in Ref. [321].

Namely, we start with a ring of # nodes, each connected to its 2< nearest neighbours,

and then we add, with a tunable probability ?, usually called rewiring, a new random

edge for each of the edges of the ring. Notice that the name rewiringmight be misleading

in this case, since, differently from classic Watts-Strogatz version [25], here the new lines

are not replacing the one of the ring, but are simply added.

The first thing we want to investigate is the Heaps’ law for the rate at which novelties

happen [82, 190]. We therefore look at how the number of distinct nodes �(C) in a

sequence S generated by a walker grows as a function of length of the sequence C. Figure

4.3 shows the curves �(C) obtained by averaging over different realizations of a ERRW

process with reinforcement �F on a SW network with rewiring probability ? = 0.02.

Points represent the results of these simulations, with different colours for different value

of �F. All the curves can be well fitted by a power law �(C) ∼ C�, with an exponent

� which decreases when the reinforcement �F increases. Fitted curves are plotted as

dashed lines of the correspondent colour, with � exponents reported in the legend.

Finding the average number of distinct sites visited by a random walker is a well-

known problem in the case of graphs without reinforcement. In particular, it has been



Chapter 4. Discovery processes on networks 97

Figure 4.4: ERRW on SW networks with # = 105, < = 1. Heaps’ exponent � as a
function of the reinforcement �F for networks with different rewiring probabilities ?.
Figure adapted from [1].

proven that, in the absence of reinforcement, the average number of distinct sites �(C)

visited in C steps scales, for C � 1, as (ring(C) ∼ (8C/�)1/2 [322] in one-dimensional lattices

and as (ER(C) ∼ C [323] in Erdős-Rényi random graphs [324].

While transition between these two regimes (? = 0 −→ ? = 1) has been investigated in

Refs. [325–327] for SW networks with different values of ?, the effects of the reinforcement

has never been explored. To this extend, we run again the process on SW networks

having different values of ? and extract the resulting Heaps’ curves. Figure 4.4 reports

the fitted values of the exponent � obtained in the case of ERRWprocesses under different

strength of reinforcement �F. The four curves refer to SW networks with rewiring

probabilities ? = 0, 0.02, 0.1, and 1. Notice that the previously known results, �ring = 1/2

and �ER = 1, are recovered as limits of the two curves relative to ? = 0 and ? = 1 when

�F → 0. Furthermore, for values of ? in the SW regime [328], it is possible to get values

of � spanning the entire range [0, 1] by tuning the amount of reinforcement �F. This

means that the reinforcement mechanism we propose is able to reproduce all the Heaps’

exponents empirically observed (see Fig. 4.1, [82, 189]).
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Figure 4.5: Growth of knowledge in science. (a) Number of scientific articles published
per year. (b) Number of unique title phrases of scientific articles published per year. Points
correspond to averages of data coming from the Web of Science database, continuous
lines are fits. Figure adapted from [329].

4.4 The cognitive growth of science

To show how the model works in a real case, we need to consider a scenario in which we

can access both the empirical curves �(C) associated with a discovery process and an

underlying network on top of which the process takes place. We therefore consider the

case of the growth of knowledge in modern science.

Recently, a consistent body of scientific research has been devoted to understanding

the structure and evolution of science. These efforts have been unified under the name of

science of science [329, 330], that is generally used when performing data-driven research

on citation and collaboration networks in a quantitative fashion [331–336]. Among the

many interesting results of this collective investigation, it has been shown that while the

number of publication per year is growing exponentially [see Fig. 4.5(a)], ideas grow

much slower. This is reported in Fig. 4.5(b), in which a linear trend can be observed in

the annual number of distinct title phrases of scientific articles as a function of time.

Here, however, we want to focus on the discovery novelties in science, whose growth

is intuitively slower than linear. This is obviously linked to the exploration-exploitation

dichotomy extensively discussed in Sec. 1.2.2 [149, 152], particularly relevant when it

comes to scientific innovation [149, 153, 337, 338]. In order to do so, we move from an

annual count to a publication-based time step. Furthermore, instead of considering title

phrases, we look for unique concepts in abstracts, containing much more information
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Figure 4.6: Heaps’ law for the growth of knowledge in science. Number of distinct
scientific novelties�(C) discovered as a function of (re-scaled) time for the four considered
disciplines: (a) astronomy, (b) mathematics, (c) ecology, and (d) economics. The
associated fitted Heaps’ exponents � are reported in the respective panels.

than the simple keywords in the titles. More specifically, we analyse 20 years (1991-

2010) of scientific articles in four different disciplines, namely, astronomy, mathematics,

ecology, andmathematics. Articles were taken from core journals in these four fields, and

bibliographic records were downloaded from the Web of Science database. Details on

data collection and the list of core journals are given in Ref. [339]. From a text analysis of

each abstract, we extract relevant concepts as multi-word phrases [334] and construct, as

illustrated in Fig. 4.7(a), the real temporal sequence S in each field from the publication

date of the papers. By concatenating all the sub-sequences obtained from each abstract

we produce a single sequence containing the evolution of knowledge in the considered

field as collectively explored by the relevant community. Each sequence will contain

recurrent concepts (exploitation mechanism) and novel ones (exploration). As before,

the number of novelties as a function of the sequence length represents the pace of

innovation of the field. Figure 4.6 shows that the number �(C) of novel concepts in the

considered fields grows with the length C of S as a power law with fitted exponents: (a)

� = 0.82 (astronomy), (b) � = 0.87 (mathematics), (c) � = 0.85 (ecology), (d) and � = 0.91

(economics).

Together with the real exploration sequences we have also extracted, as illustrated
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Figure 4.7: Extracting the growth of knowledge from scientific abstracts. (a) For each
scientific field, an empirical sequence of scientific concepts S is extracted from the
abstracts of the temporally ordered sequence of papers. (b) The network of relations
among concepts is constructed by linking two concepts if they appear in the same abstract.
The network is then used as the underlying structure for the ERRW model. (c) The
model is tuned to the empirical data by choosing the value of the reinforcement �F that
reproduces the Heaps’ exponent � associated to S. Figure adapted from [1].

in Fig. 4.7(b), the underlying networks of relations among concepts [293] from their

co-occurrences in the abstracts, so that we do not need to rely on synthetic small-world

topologies, or on the graph version of the UM (see SI of Refs. [82, 189]). Table 4-A reports

basic properties, such as number of nodes # , average node degree 〈:〉, characteristic path

length ! and clustering coefficient �, for the largest components of the four networks we

have constructed. Notice that different disciplines exhibit values of 〈:〉 ranging from 19

for mathematics to 172 for astronomy, but all of them have high values of � and low !.

Research field Papers # 〈:〉 � ! � �F

Astronomy 97,255 103,069 172 0.41 2.48 0.82 330
Ecology 18,272 289,061 52 0.89 2.98 0.85 105
Economics 7,100 60,327 20 0.91 3.69 0.91 6
Mathematics 7,874 48,593 19 0.89 3.69 0.87 20

Table 4-A: Statistics of the network of concepts in four research fields, together with the
empirical Heaps’ exponent � and the value of �F that reproduces it.
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Figure 4.8: Impact of the average degree on the Heaps’ exponent for ERRWs on ER
networks with # = 105 and average degree 〈:〉. The Heaps’ exponent � is plotted as a
function of reinforcement �F for different values of 〈:〉. Figure adapted from [1].

We have then run the ERRW on each of the four networks, tuning the strength of the

reinforcement �F, the only parameter of the model, so that the obtained curves for the

growth of the number of distinct nodes visited by the walkers reproduce the empirical

values of the exponent �. Figure 4.7(c) shows that, for the case of astronomy, the curve

�(C) of our model with �F = 330 has a power-law growth with exponent � = 0.82, equal

to the one extracted from the real sequence of concepts.

The values of reinforcement obtained for the other scientific disciplines are reported

in Table 4-A. Interestingly, there seems to be a clear division of the four disciplines

into a class of lower reinforcement (astronomy and ecology) and a class of higher one

(economics and mathematics). This difference could be due to the different research

habits, approaches and techniques required by each field. For example, astronomy

and ecology often rely on physical technologies, tools, field work, and experiments,

while most of the research in economics and mathematics can be easily performed on a

backboard or with the help of a computer. However, notice that stronger reinforcement

is required to get the same � in networks with higher values of 〈:〉.

To better understand the wide range of values obtained for the reinforcement

parameter from the analysis of the growth of knowledge in different scientific fields

(see Table 4-A), we looked at the relation between the exponent � extracted from the
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Heaps’ law and the reinforcement �F in networks where we could control for a different

average node degree. Results are showed in Fig. 4.8, where the fitted � exponents are

plotted against the reinforcement �F. Each curve corresponds to an Erdős-Rényi random

graphs with # = 105 nodes and average degrees 〈:〉 ranging from 6 to 80. As expected,

the average degree significantly impacts the reinforcement. In particular, the higher the

value of 〈:〉, the stronger the reinforcement �F has to be in order to produce the same

Heaps’ exponent. This is easily understandable if one considers the possible choices of

a walker reaching a node connected to a link that has been reinforced. If the node has

a high degree, the probability of selecting that specific link among all the others will

be smaller, and the walker will more easily select a new link, leading to a previously

undiscovered node, and therefore to a higher �. If one wants to keep a certain discovery

rate in networks with higher 〈:〉, higher values of reinforcement will then need to be

considered.

4.5 Correlated novelties

In addition to the Heaps’ law, our model naturally captures also the correlations among

novelties, which are a hallmark of real exploration sequences [82, 189]. In order to

show this, we need to compare the synthetic sequences generated by the model with an

appropriate null model. To this extent. in Sec. 4.5.1 we will define two null models that

will then be tested in Sec. 4.5.2.

4.5.1 Null models

In order to check whether the sequences produced by our ERRWmodel are correlated,

we need to introduce some appropriate null models, both based on a reshuffling method.

More precisely, given a trajectory S of visited nodes (concepts), we use the the following

two reshuffling procedures[82]. The simplest procedure consists in the global reshuffling

of all the elements of S (indicated as glob in Fig. 4.9). This method destroys indeed the

correlations (if there are any) in the sequence, but it also modifies the rate at which the
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new concepts appear, ultimately changing the exponent of the Heaps’ law. Contrarily,

the rate can be preserved by defining a second version of the null model, based on a

local reshuffling (indicated as loc in Fig. 4.9). In this second procedure we reshuffle all the

elements in S only after their first appearance, such that a concept cannot be randomly

replaced in the sequence before the actual time it has been discovered. Algorithmically

speaking, this can be achieved by following the following steps:

(i) Find all the novelties inS (first appearance of a symbol) and their respective indexes;

(ii) Count the number of occurrences of each symbol in S;

(iii) Create an empty sequence S(;>2) of the same length of S and fill it with the

novelties,keeping the same position;

(iv) Consider S and the last novelty, say �, that you find. If � appears =(�) times in S ,

randomly place =(�) − 1 symbols � in the compatible empty slots of S(;>2). These

are all the available slots in S(;>2) after the appearance of �, that is already there;

(v) Repeat step (iv) for all the novelties ofS, starting from the end and going backwards

until all the slots of S(;>2) are filled.

4.5.2 Results

In order to investigate the presence of correlations, we now compare the results for

sequences generated by the ERRW model against their respective null models. In

particular, we run the model with a reinforcement �F = 0.01 on small-world networks

with rewiring probability ? = 0.02 (results for different values of ? and �F are reported

in Fig. A.4 and A.5 of Appendix B). The paths produced by the walkers are symbolic

sequences, that can be represented as a non-stationary process, where the alphabet is

growing in time. We now show the results by considering three different quantities that

are typically used to characterized symbolic sequences, such as texts.

Figure 4.9(a) shows that the frequency distribution 5 (ΔC) of inter-event times ΔC between

pairs of consecutive occurrences of the same concept is a power law, like the ones found
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Figure 4.9: Correlations among concepts produced by an ERRW (�F = 0.01) on a
SW network (? = 0.02). (a) Frequency distribution of inter-event times ΔC between
consecutive occurrences of the same concept (node in our model). (b) Number "; of
different subsequences of length ; as a function of ;. (c) Normalized entropy of the
sequence of visited nodes as a function of =, the number of times the nodes have been
visited. In each panel, blue circles show average values over 20 different realizations,
while triangles and crosses refer to those of (globally and locally) reshuffled sequences.
Figure from [1].

for novelties in Wikipedia and in other data sets in Refs. [82, 189]. Furthermore, the

shape of 5 (ΔC) in our model significantly differs from that obtained by reshuffling the

sequences locally and globally (see Sec. 4.5.1). Notice that 5 (ΔC) is the distribution of first

return times (FRT), and it remains an interesting research question to investigate how

FRT are linked to first passage times (FPT) in the case of correlated random walks [207].

We have also looked at how "; , the number of distinct subsequences of S of length

;, grows with ; [340]. The number of different sub-sequences of length ; that can

be generated by an alphabet of size � is #� = �; . Of course, in real data we expect

to find only a small subset of the possible combinations. In particular, it has been

shown that the number of allowed sub-sequences in texts scales according to a stretched

exponential law [340]. In Fig. 4.9(b) the curve "; generated by the ERRWmodel with

�F = 0.01 is compared to those obtained by reshuffling the sequences. The value of

"; grows with ;, until it reaches a plateau (equal to ) − ;, where ) = 5 × 104 is the
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number of steps of the walker in the simulation) as a consequence of the finite length

of S. Interestingly, the analogous curves for the null models immediately approach

the saturation value, meaning that a process without reinforcement would generate all

the possible subsequences in a sequence of length ), while with the reinforcement this

number drops down because of the correlations.

In our model, the correlated sequences naturally emerge from the co-evolution

of network and walker dynamics, while the UM [82] requires the introduction of an

additional semantic triggering mechanism to reproduce the correlations found in the

data.

To better characterize the correlations, we finally studied how homogeneously

concepts occur in the sequence S, after their first appearance. Following Tria et al. [82],

we have divided the sequence S in =(�) subsequences of the same length, with =(�) being

the total number of occurrence of � in S, and we have evaluated the Shannon entropy

[341]

�(�) = −
=(�)∑
B=1

?
(�)
B log ?(�)B (4.3)

for every concept �, where ?(�)B = =
(�)
B /=(�) denotes the probability of finding concept �

in subsequence B.

Figure 4.9(c) shows the normalized average entropy �(=) of concepts appearing = times.

Themaximumvalue is reached for a concept equally distributed alongS. Again, the large

differences with respect to the null models reveal the correlated dynamics of our model.

Similar results are obtained for the network of relationships among scientific concepts

(see Fig. A.3 of Appendix B), confirming the validity of the choice of SW networks as

underlying structures.

4.6 Summary and conclusions

In summary, the mechanism of co-evolution of network and random walks introduced

in this work naturally reproduces all the properties observed in real discovery processes,



Chapter 4. Discovery processes on networks 106

including the correlated nature of empirical exploration trajectories. Notice that in

our ERRWmodel, and differently from the original Urn Model with semantic triggering

proposed by Tria et al., the correlations naturally appear from the network representation

of the space of discoverable items and concepts. In the urn version, the correlations

can only appear the introduction of semantic labels specifically attached to the balls

(different balls and colours might share the same label), together with a mechanism

named semantic triggering [82]. The semantic triggering mechanism is able to produce

correlated sequences, but it also requires the addition of a third parameter, namely �, to

the model. Notice, instead, that the model we propose in this paper does not need labels

or additional mechanisms since correlations emerge naturally from the co-evolution of

the walker dynamics and the network.

A similar model has been exploited to characterise the process of knowledge network

building associated with curiosity [173]. Further applications of the ERRW framework

could include the design of optimal novelty-driven exploration strategies, which could

be highly relevant for scientific investigations [342]. Some preliminary in this direction,

but with a different scope, include the search for edges in the space of scientific concepts

where innovations might emerge [343].

In the next Chapter, we will consider the multi-agent nature of discovery processes in

a model of interacting explorers [4].



Chapter 5

Interacting discovery processes

5.1 Introduction

Discoveries are essentialmilestones for the progress of our societies [153, 156, 158, 160, 166,

344–348]. Recently, different mathematical approaches have been proposed to investigate

andmodel the dynamics of discovery and innovation [155, 157, 163, 168, 179, 180, 185, 186,

349–351], such as the one proposed in the previous Chapter. Among these, of particular

interest are those based on random processes with reinforcement [195, 352, 353], like

the ERRW and more standard Pòlya urns [197, 198]. Urns have been extensively used

to study and model a variety of systems and processes, from evolutionary economics,

voting and contagions [288, 354–356] to language and folksonomies [199, 357]. More

recently, they have been also employed to filter information [358] and to explain the

birth and evolution of social networks [351]. Interestingly, as discussed in Sec. 1.2.2, the

same family of models can also be used to model discovery processes, if opportunely

combined with the concept of the adjacent possible—the set of all those things which are

one step away from what is already known [174, 290]. In fact, after the original Kauffman’s

formulation, the AP has been successfully translated into models. This is the case of the

UMT [82] that incorporates the AP within the urn process in which the space expands

together with the discovery dynamics, and the appearance of a novelty opens up the

107
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possibilities of further discoveries [82, 189, 200]. Another example is the ERRWmodel [1]

just introduced that encodes it into the topology of a network of concepts and ideas.

UMTs have proved to be able to replicate the basic signatures of real-world discovery

processes, such as the famous Heaps’ and Zipf’s laws [190, 191], often recurrent in

complex systems [188, 193, 359–361], as well as Taylor’s law [192]. It turns out that the

Heaps’ law, a sub-linear growth of the number of distinct elements �(C) ∼ C� with the

number of elements C, well describes the pace at which scientists discover concepts (see

Sec. 4.4), or users collect new items [1, 82, 362], with higher values of the Heaps’ exponent

� denoting a faster exploration of the AP.

In Chapter 4, we have showed how reinforced randomwalks can be used to mimic the

exploration processes leading to the appearance of the new. As we saw, the exploration

dynamics considered, just like the ones previously introduced in urn models with

semantic triggering, refers to a single entity, representing, for example, the collective

efforts of researchers within a research field [1]. However, despite the existingmodels can

capture some of the essential underlying mechanisms behind the discovery of novelties,

little emphasis is given to the collective exploration of the space of novelties and to

the benefits that social interactions could bring to the discovery process. In fact, with

the exception of Ref. [351], the modelled exploration dynamics refers to a single entity,

representing, for example, the collective efforts of researchers within a research field [1].

Without taking into account the multi-agent nature of the process, these models (i) do

not capture the heterogeneity of the pace of the individual explorers and (ii) do not

include the benefits brought by social interactions and collaborations. Indeed, empirical

evidence of these mechanisms has been found in various contexts [363–365], such as

music-listening, politics and voting [366, 367], health [108] and language [368].

In this Chapter, we propose a model of interacting discovery processes where an

explorer is associated to each of the nodes of a social network [18, 21, 202], and its

dynamics is governed by an UMT (see Sec. 1.2.2.1). Hence, the local dynamics of each

node accounts for the presence of an AP, more precisely the adjacent possible in the space of
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concepts. The social network makes the exploration a collective one, since processes of

neighboring urns are coupled. This coupling expands the notion of the AP by adding

a social dimension, represented by the set of opportunities one is possibly exposed to

through his/her social contacts. We call this the adjacent possible in the social space. Social

networks have been extensively used as a substrate on top of which dynamical processes

take place [22, 23]. Indeed, in Chapter 2 and 3 we have used social interactions as the

underlying structure that shapes the contagion dynamics.Notice, however, that here our

setting crucially differs from the typical approach in which the network mediates, for

example, the diffusion of innovations or social contagions [2, 89, 105, 120, 369]. Here

instead, the interactions among the many discovery processes reveals the twofold nature

of the AP of each individual, highlighting the crucial role played by the social structure

in determining the individual exploration dynamics [4].

5.1.1 Outline

This Chapter is structured as follows:

In Sec. 5.2, we focus on the mechanisms of collective exploration by introducing a model

of many urns coupled through the links of a network. Each urn process represents a

different explorer that exploits opportunities coming from his/her social contacts.

In Sec. 5.3, we restrict our attention to the pace of discovery, that is the speed at which

each individual discovers new objects. We then show how it is possible to write down a

system of coupled equation that governs the growth of the number of novelties of each

explorer as a function of the parameters of the model, namely the reinforcement and the

size of the adjacent possible in the space of concepts, and the topology of the social network.

In Sec. 5.4, we study different network structure, starting from small toy graphs and

concluding with real-world social networks extracted from empirical data. We study

the asymptotic dynamics of the model on these networks and its behaviour at transient

times, finding a non-trivial dependence between the pace of discovery of each explorer

and its position in the social network. Simulations are also compared to the numerical

integrations of the analytical equations introduced in Sec. 5.3, thus confirming its
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accuracy.

In Sec. 5.5, we analytically solve the equations for the growth of the number of novelties

for a generic network in the asymptotic regime. We then show how non-local centrality

measures, such as the Eigenvector and 
-centrality, can be used to rank the nodes

according to their pace of discovery and thus predict the best innovators as a function

of the social structure. These analytical results are finally tested on real-world social

networks, finding an agreementwith the predictions that on both undirected and directed

structure.

Conclusions and future perspectives are summarized in Sec. 5.6.

5.2 The model: coupling urn processes

Let us consider an unweighted directed graph �(N , ℰ), whereN and ℰ are respectively

a set of # = |N | nodes and a set of � = |ℰ | links. Each node of the graph represents an

individual/agent, while link (8 , 9) denotes the existence of a directed social relation from

individual 8 to 9 (such that 8 can benefit from 9). The graph is described by its adjacency

matrix G ≡ {08 9}, whose element 08 9 is equal to 1 if link (8 , 9) is present, and is 0 otherwise.

Each node 8 is equipped with an Urn Model with Triggering (UMT) that describes the

discovery process of the agent 8 [82]. In the following we indicate asU8(C) the urn 8 at

time C, while S8(C) denotes the sequence of balls generated up to time C. Notice that

U8(C) is an unordered multiset of size*8(C) = |U8(C)|, while S8(C) is an ordered multiset

of size |S8(C)| = C. Each urn 8 is characterized by two parameters, �8 and �8 . As in the

original UMT (see Sec. 1.2.2.1), the reinforcement parameter �8 accounts for the number of

balls of the same colour that are added to the urn 8 whenever a ball of a given colour

is extracted at time C. Furthermore, the triggering parameter �8 controls the size of the

adjacent possible in the space of concepts, as (�8 + 1) balls of new colours are added to the

urn of node 8 whenever at time C a colour is extracted for the first time [82]. In this

abstract representation, the space of concepts—made by all the colours—expands in time

together with each discovery process, without relying on a predefined structure [200].
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Figure 5.1:
Illustration of the model in the case of a network with two nodes. Each node is equipped
with an urn obeying to the urn model with triggering (UMT) with same parameters
� = 1, � = 1, and "0 = � + 1. At the time C, the urns start with two balls, one red (R) and
the other blue (B). Then, each node extracts a ball (1:R, 2:B), and therefore � additional
balls of the same colours are added to the respective urns (reinforcement). Also, since in
both cases, the extracted balls represent a novelty for the respective nodes, � + 1 balls of
new colours are also added to the urns (adjacent possible). At the time C + 1, node 1 has
access to all its balls plus two extra ones coming from the adjacent possible in the social
space, i.e., the set of balls available through its neighbour, depicted with dashed borders.
Figure from [4].

Discovery processes of different individuals are then coupled through the links of the

network, representing social interactions. Namely, at each time C, the individual 8 draws

a ball from an enriched urn, the so-called social urn of node 8, Ũ8(C), composed by its

own urn, as in the original UMT, plus the additional balls present at time C in the urns

of all its neighbours, without their reinforcement. The latter wants to represent the

adjacent possible in the social space, i.e., the AP to which we are exposed through our social

contacts. The model is illustrated in Fig. 5.1 in the case of two nodes with a directed link

(parameters � = 1, � = 1, and "0 = � + 1). We thus have:

Ũ8(C) =U8(C) +
⋃
9∈N

08 9U′9 (C) (5.1)

where U′
9
(C) = U [<=1]

9
(C) ⊆ U9(C) is the underlying set of the multiset U9(C) (with

multiplicity < = 1), i.e., the set of size *′
9
(C) = |U′

9
(C)| formed by its unique elements.

Duplicates in the urn associated to node 9 at time C are indeed not considered. Thus, the

“memory" of node 9 due to the reinforcement does not influence node 8. Similarly, let us

denote with S′
8
(C) the underlying set of the sequence S8(C), i.e., the sequence of all the

unique elements of S8(C). We consider synchronous updates for all the urn.
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5.3 Pace of discovery

As previous works have shown [82], the dynamics of novelties and innovations share a

number of commonalities and can, thus, be thought as two sides of the same process; a

novelty refers to the discovery of something by an individual (already known to others),

while innovations are novelties that are new to everybody. Here, we are interested

in studying the asymptotic growth of the number of novelties—of each sequence—as

a function of time (length of the sequence), representing the pace of discovery. We

know, from standard results on the UMT [82], that an isolated urn 8 follows a Heaps’

law, i.e., a power law behaviour �8(C) ∼ C�8 [190], �8(C) = |S′8 (C)| being the number of

different elements contained in the sequence S8(C) up to time C (see analytical results

in Sec. 1.2.2.1). Thus, the Heaps’ exponent �8 quantifies the speed at which the urn

discovers new element, and by definition it is bounded by 1. Let us consider now a node

8 that interacts through the network. In general, since �8(C) increases by one every time a

ball is extracted for the first time, we can write

�8(C + 1) = �8(C) + %new
8 (C) (5.2)

where %new
8
(C) ∈ [0, 1] is the probability that the ball extracted at node 8 at time C never

appeared in S8(C) before. In other words, %new
8
(C) = Prob [�8(C + 1) = �8(C) + 1|�8(C)]

and we can express it as the fraction of discoverable balls over the total number of

balls available to node 8 at time C. This leads to an equation for the asymptotic Heaps’

dynamics that in the continuous time limit reads:

3�8(C)
3C

= %new
8 (C) =

|Ũ8(C) 	 S′8 (C)|
*̃8(C)

, (5.3)

where A 	 ℬ denotes the multiset obtained by removing all the elements in set ℬ

from the multiset A (all duplicates are removed). Notice that if a node 8 has an out-

degree
∑
9 08 9 = 0, its associated Eq. (5.3) reduces to the one of an isolated urn, for which

Ũ8(C) =U8(C). Thus, its Heaps dynamics for � > � follows�8(C) ∼ C�/� for C →∞ [82, 192]
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(see Eq. (1.7) in Sec. 1.2.2.1).

In the most general case, in which each node 8 is equipped with a UMT(�8 , �8), the

equation for the Heaps’ laws of each node 8 ∈ N can be written as in Eq. (5.3), by

accounting for all the neighbours that are part of the social urn of node 8. This can be

done by using the non-zero elements of the adjacency matrix G, so that the number of

balls *̃8(C) in the social urn of node 8 at time C reads:

*̃8(C) = *8(C) +
∑
9∈N

08 9
[
"0 + (�9 + 1)�9(C)

]
= "0 + �8C + (�8 + 1)�8(C) +

∑
9∈N

08 9
[
"0 + (� + 1)�9(C)

]
= �8C +

∑
9∈N

[
08 9 + �8 9

] [
"0 + (�9 + 1)�9(C)

] (5.4)

where "0 is the initial number of balls in each urn, and �8 9 stands for the Kronecker

delta. Notice that the term �C does not appear on the r.h.s. of the first Eq. above, since

the social urn does not account for the reinforcement of the neighbours.

Finally, from Eq. (5.3) and Eq. (5.4), the large time behaviour of the number of different

elements �8(C) for each node 8 of our network can be written as

3�8(C)
3C

=
|Ũ8(C) 	 S′8 (C)|

*̃8(C)
=

"0 + ��8(C) +
∑
9 08 9

[
"0 + (� + 1)�9(C)

]
�C +"0 + (� + 1)�8(C) +

∑
9 08 9

[
"0 + (� + 1)�9(C)

] (5.5)

or, equivalently

3�8(C)
3C

=
"0

∑
9(08 9 + �8 9) +

∑
9

[
�8 9�9 + 08 9(�9 + 1)

]
�9(C)

�8C +
∑
9(08 9 + �8 9)

[
"0 + (�9 + 1)�9(C)

] . (5.6)

Eq.s (5.6) form a system of # coupled non-linear ordinary differential equations (ODE),

with initial conditions �8(0) = 0 ∀8 ∈ N , that can be numerically integrated for any

network topology {08 9}.
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Data set Label Type # � 〈:〉 �̂ CCs SCCs S. LCC S. LSCC

ZKC (a) Und. 34 78 4.6 6.7 1 1 34 34
Twitter (b) Dir. 4968 26875 10.8 5.2 1 4164 4968 770
NetSci (c) Und. 1589 2742 3.4 19.0 396 396 379 379
Jazz (d) Undir. 198 2742 27.7 40.0 1 1 198 198

Table 5-A: Statistics and properties of the four real-world networks considered (see
Fig. 5.6): type of edges (Undirected/Directed), number of nodes # , number of edges �,
average node degree 〈:〉, maximum eigenvalue �̂ of the correspondent adjacency matrix,
number of (weakly) connected components (CCs), and number of strongly connected
components (SCCs), size of the largest (weakly) connected component (S. LCC), and size
of the largest strongly connected component (S. LSCC).

5.4 Numerical results

In this Section, we will explore the behaviour of the model in introduced in Sec. 5.2 and

we will test the analytical formalism for the pace of discovery introduced in Sec. 5.3

against simulations. To do this, we will rely on small toy graphs to understand the

basic mechanisms of the model and also on bigger empirical networks extracted form

real-world data sets. Let us first give a brief overview of these data sets.

5.4.1 Description of the real-world social networks

We consider four data sets of real-world networks representing different types of social

interactions: the Zachary Karate Club (ZKC) network [370], a network of follower rela-

tionships among Twitter users [371], a co-authorship network in Network Science [372],

and a collaboration network between jazz musicians [373]. The network of Twitter

from the original data set (Ref. [371]) has been reduced by performing a random walk

sampling.

Some basic properties of the networks are summarized in Table 5-A, like the total

number of nodes # , the total number of links �, if links are directed or undirected, the

average degree 〈:〉, and the maximum eigenvalue �̂ of the related adjacency matrix.

We also report the number of weakly- and strongly-connected components (CCs and

SCCs respectively) together with the size of the respective largest one, since they play an
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: Instructor

: Administrator

Figure 5.2: Dynamics of the interacting urns on the Zachary Karate Club network,
whose nodes are coloured according to the resulting Heaps’ exponent. Figure from [4].

important role in the dynamics under investigation. As we can see, the considered social

networks display very different structural properties.

5.4.2 Results

We start exploring the behaviour of our model on the famous Zachary Karate Club

network (ZKC) [370], a small network often used by network scientists as a benchmark

for community detection algorithms [374–377] (details of the network are reported in

Table 5-A).

Each node of the network is equippedwith a UMT(� = 6, � = 3)with same parameters

and initial conditions. We run different simulations and observe, for each node 8, the

average growth of the number of distinct elements �8(C) as a function of time. We

then extract the values of the Heaps’ exponents of each node as �8 = �8()), where

�8(C) = ln�8(C)/ln C and ) = 104.

Figure 5.2 shows the nodes of the networks coloured accordingly. Notice the higher pace

of discovery displayed by the notoriously central nodes corresponding to the instructor

(node 1) and the administrator of the Club (node 34). This proves that nodes with

identical UMTs can have completely different discovery dynamics, suggesting that a

strategic location on the social network correlates with the discovery potential of an

individual.
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To further investigate this relation, we study the dynamics on five small directed

networks. Figure 5.3(a-e) shows the temporal evolution of �8(C) for each node 8 of each of

the networks displayed on the left. We report the simulatedHeaps’ laws (coloured points),

whose extracted exponents �8 are shown in the legend. In addition, to assess the validity

of Eq. (5.6), we also plot the curves (continuous black lines) obtained using the appropriate

{08 9}. It can be seen that the analytical formalism introduced in Sec. 5.3 perfectly captures

the Heaps’ laws, since lines are almost indistinguishable from—simulated—points. In

particular, in Fig. 5.3(a) we observe the highest pace of discovery in the node with more

outgoing links. However, the non-trivial behaviours observed in Fig. 5.3(b-e) for chains

and graphs containing cycles indicate that the exponent of a node does not depend solely

on local node properties. For instance, in Fig. 5.3(d) node 2 has two outgoing links, while

the others have one link only. In contrast with what observed in Fig. 5.3(a), here the

highest pace of discovery is the one of node 1, whose social urn gets the benefits of the

urn of node 2. Moreover, in Fig. 5.3(c) and (d) a simple change of direction of link 4→ 2

translates into completely different dynamics. We also notice that in both Fig. 5.3(c)

and (e) the presence of a cycle enhances the pace of discovery in a process of mutual

exchange. However, while in (d) node 1 is linked to the cycle and captures the same

behaviour of those in the cycle, in Fig. 5.3(e) node 1 behaves as an individual urn and

does not affect the behaviour of the other nodes.

We have further investigated whether the extracted values of the Heaps’ exponents

�8 may depend on the maximum time ) at which we have stopped the numerical

simulations. The curves of �8(C) reported in Fig. 5.3(f-j) as function of the time C for times

up to 108 clearly indicate that the systems, even for the small graphs considered, have

not yet reached a stationary state. As we will show later, thermalisation times, that are

typical of empirical trajectories of diffusion process [378], here are strongly influenced by

the topology of the network. This can be seen by comparing the two �1(C) of Fig. 5.3(f)

and (g), both approaching—as we will see later—the asymptotic value �/� = 0.5, but at

very different timescales. Nevertheless, the ranking induced by the pace of discovery
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Figure 5.3: Heaps’ dynamics of the interacting urns on five directed toy graphs (different
symbols correspond to different nodes). Each node is equipped with a UMT with same
parameters � = 6, and � = 3. (a-e) Temporal evolution of the number of discoveries
�8(C) for each node 8 (associated Heaps’ exponents �8 in the legend). The solutions of
Eq. (5.6), shown as continuous black lines, are in perfect agreement with simulations.
(f-j) Temporal behaviour of the associated Heaps’ exponents extracted at different times.
The grey area up to ) = 104 corresponds to the values of (a-e). Figure from [4].

persists at all finite times. In the next section we will further investigate this characteristic

behaviour, ultimately proving its universality for all networks.

Most of real world innovation systems operate far from equilibrium, thus we are

particularly interested in the behaviour of our model at transient times. In order to

numerically check the persistence of the ranking discussed in the last paragraph, we
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Figure 5.4: Transient behaviour and rank persistence. Scatter plot and Spearman’s
rank correlation coefficient A( between fitted Heaps’ exponents �8()) at ) = 104 and
) = 108 associated to the 8 = 1, . . . , # nodes off the four empirical networks considered:
(a) the Zachary Karate Club network [370], (b) a network of follower relationships of
Twitter [371], (c) a co-authorship network in network science [372] and (d) a collaboration
network between jazz musicians [373]. The parameters of the model are � = 10, � = 1,
"0 = � + 1.

further run the model on each of the four empirical networks introduced in Sec. 5.4.1. We

run our model connecting the urns with each one of them, keeping the same parameters,

and record the Heap’s exponent �8()) of each node 8 at two different times ) = 104 and

) = 108. Figure 5.4 shows the scatter plot and the Spearman’s rank correlation coefficient

between these fitted Heaps’ exponents �() = 104) and �() = 108), together with their

distributions, for the node of the four real-world networks considered. In all cases, we get

a Spearman’s correlation of A( = 1, meaning that even though the distribution of fitted

exponents change (as it can be seen in the side panels of each scatter plot), the ranking is

time-invariant and does not depend on the particular ) at which Heaps’ exponents are
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fitted. This is evident in the scatter plot of Fig. 5.4(b), where, apart from a set of nodes

whose exponents span across the entire range, most of the nodes present a very low pace

of discovery, with fitted exponents very close to 0. The opposite behaviour can be seen in

Fig. 5.4(d), that displays the highest Heaps’ exponents among the four networks (with all

Heaps’ exponents very close to 1).

These results suggest that the various paces of discovery have to depend on some

structural characteristics of the networks, and the next section will focus specifically on

this.

5.5 Analytical results

In this section, we derive an analytical solution to Eq. (5.6) introduced in Sec. 5.3. The

system of equation fully characterises the pace of discovery of each node of the network

as the temporal growth of the number of novelties. In particular, building on top of the

numerical results discussed in Sec. 5.4, we are interested in finding an exact expression

for the asymptotic values of the Heaps’ exponents and investigating their dependence

on the network topology. To achieve this, consider the system of # coupled non-linear

ODEs given by Eq. (5.6) in the C →∞ limit.

Let us suppose �8 = � and �8 = � ∀8 ∈ N . For sufficiently high values of � we

have limC→∞�8(C)/C = 0 ∀8, so that the denominator of the r.h.s. of Eq. (5.6) can be

approximated by �C, leading to:

3�8(C)
3C

≈
∑
9

[
�8 9� + 08 9(� + 1)

]
�9(C)

�C
, (5.7)

which can be expressed in a more compact way as:

3 ®�(C)
3C
≈ 1
C

(
�
�
O + � + 1

�
G

)
®�(C) = 1

C

5 (G) ®�(C)
C

=
1
C
S ®�(C), (5.8)

where ®�(C) ≡ {�8(C)}8=1,...,# , O denotes the#×# identitymatrix, andwe have introduced
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the constant matrix

S = 5 (G) = (�
�
O + � + 1

�
G) (5.9)

By operating the change of variable C = 4I , Eq. (5.8) can be rewritten in terms of Eq. (5.9)

as

3I ®�(I) ≈ S ®�(I), (5.10)

a standard first-order differential system, which leads to the solution

®�(C) ≈
A∑
ℓ=1

<ℓ−1∑
?=0
®2? ln?(C) C�ℓ , (5.11)

where {�ℓ }ℓ=1,...,A and {<ℓ }ℓ=1,...,A are the eigenvalues of S with their respective multi-

plicities, and ®2? are vectors defined by the initial conditions.

The asymptotic behaviour of the number of novelties �8(C) discovered by node 8 at

time C is then governed by the leading term in Eq. (5.11), so that we can write:

�8(C) ≈
C→∞

D8 ln?̂(8)(C) C�̂(8). (5.12)

where �̂(8) is the eigenvalue of S with the biggest real part such that the 8-th entry of

at least one of its eigenvectors ®2? is different from zero. Similarly, ?̂(8) is the maximum

value of ? among these eigenvectors with non-zero 8-th entries. Notice that, in general,

�̂(8) can be smaller than the multiplicity of the eigenvalue �̂(8) minus one. Moreover,

different nodes may have different values for these exponents. In particular, nodes in the

same strongly connected component (SCC) will have the same Heaps’ exponent, while

these may vary across SCCs (more details, together with the full analytical derivation,

are given in Appendix C.

Let us consider here a single illustrative example, that is a chain of four nodes such

as the one depicted in Fig. 5.3(b). In this case, the asymptotic solution for a node
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Network

(a) (b) (c) (d) (e)

�1(C) ≈
C→∞

D1 ln(C) C
�
� D1 ln3(C) C

�
� D1 C

2�+1
� D1 ln3(C) C

�
� D1 C

�
�

�2(C) ≈
C→∞

D2 C
�
� D2 ln2(C) C

�
� D2 C

2�+1
� D2 ln2(C) C

�
� D2 C

2�+1
�

�3(C) ≈
C→∞

D3 C
�
� D3 ln(C) C

�
� D3 C

2�+1
� D3 ln(C) C

�
� D3 C

2�+1
�

�4(C) ≈
C→∞

D4 C
�
� D4 C

�
� D4 C

2�+1
� D4 C

�
� D4 C

2�+1
�

Table 5-B: Summary of the asymptotic Heaps’ laws derived analytically for the 4 nodes
composing the five directed toy networks considered in Fig. 5.3 of Sec. 5.4 (here displayed
at the top). The coefficients D8 have not been reported to focus on the exponents of the
power laws and the logarithms, when present.

8 = 1, . . . , # = 4 reads

�8(C) ∼ D8 ln#−8(C) C�/� (5.13)

In this example, all the fitted exponents tend to �/� at large times, while at finite

times nodes with higher powers in the logarithm show higher paces of discovery, thus

explaining the behaviour seen in Fig. 5.3(g).

Exact analytical solutions (in the asymptotic regimes) for the others directed toy

graphs studied in Fig. 5.3 of Sec. 5.4 can be found in the Appendix C together with some

additional toy structures, namely chains, cycles, and cliques. Here, we just report their

explicit solutions in Table 5-B, where the coefficients D8 are left implicit.

In the case of strongly connected graphs, Eq. (5.12) simplifies. In particular, the

logarithmic correction disappears and all the asymptotic exponents are equal to the

maximum eigenvalue �̂ = 5 (�̂) ofS . In fact, for the Perron–Frobenius theorem [379, 380],

the adjacency matrix G has a simple and positive maximum eigenvalue �̂ corresponding

to an eigenvector ®D with all positive entries. Therefore, the approximated solution in

Eq. (5.12) becomes:

�8(C) ≈
C→∞

D8 C
�̂ , (5.14)
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where D8 is proportional to the Bonacich eigenvector centrality [381] of node 8, a global

indicator of centrality that recursively quantifies the importance of a node from that of

its neighbours, and not just from the number of neighbours (node degree).

As a consequence of Eq. (5.14), for strongly connected graphs every node has

approximately the same behaviour C�̂. What makes a node different from another is

precisely the multiplicative factor D8 . In cycles and cliques, nodes are all structurally

equivalent (D8 = D ∀8), meaning that they all have the same curves �8(C) (see Appendix

C). On the contrary, in graphs such as the ZKC (see Fig. 5.2), the different values of D8 play

a very important role. Most central nodes, as the instructor and the chief administrator,

are the fastest explorers (highest �8), even if they all have the same asymptotic Heaps’

exponent �̂.

5.5.0.1 Pace of innovation and node centrality

The analytical argument just discussed showed us that for strongly connected components

we expect the same asymptotic Heaps’ exponents. However, the same analysis showed

us that the coefficients depend on the eigenvector centrality. This factor plays a role in

the transient times, when we are far from the asymptotic regime, and it is thus especially

important for real-world systems.

Following the results in Eq. (5.14), we now test numerically the correlation between

the eigenvector centrality and the measured Heaps’ exponents at transient times for the

Zachary Karate Club network (already used in Fig. 5.2). Figure 5.5(a) shows the scatter

plot and the Spearman’s rank correlation coefficient A( of the normalised eigenvector

centralities 2[�]
8
/2[�]max and the fitted Heaps’ exponents �8()) at time ) = 104 for the (largest

strongly connected component of the) ZKC network. In parallel, Fig. 5.5(b) shows a

network visualization where nodes are colour-coded accordingly to the centrality (cfr

Fig. 5.2 of Sec. 5.4). Notice that the resulting Spearman’s rank correlation higher than

0.98 persists changing the parameters in the simulations, even for sets of parameters in

contrast with the approximations used in the analytical study, i.e. � < � + (� + 1)�̂. From
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: Instructor

: Administrator

Figure 5.5: Dynamics of the interacting urns on the Zachary Karate Club network [370].
(a) Scatter plot and Spearman’s rank correlation coefficients A( between fitted Heaps’
exponents �8() = 104) and normalized eigenvector centrality 2[�]

8
/2[�]max associated to the

8 = 1, . . . , # nodes of the network. (b) Nodes are coloured according to the resulting
normalized eigenvector centrality.

here, we can hence conclude that the eigenvector centrality is an optimal proxy for the

distribution of Heaps’ exponents in strongly connected social networks, and it can be

used to give a faithful ranking of the individual expected paces of discovery.

In the more general case in which a graph is not strongly connected, Eq. (5.12)

still holds, and the same argument can be applied to each of the strongly connected

components in the graph to recursively find the values of D8 , ?̂(8), and �̂(8) (see Appendix

C). In such cases, the eigenvector centrality needs to be replaced by its natural extension

to non-strongly-connected graphs, i.e., the 
-centrality [382].

The 
-centrality is a measure widely used in network analysis [383–385] that has been

first introduced in Ref. [382] to extend the eigenvector centrality to asymmetric graphs.

The idea behind this measure is to tune the influence of the structure (adjacency matrix)

by means of a parameter 
, adding therefore exogenous sources to the centrality [18, 382].

Formally, it is defined as the vector ®2 (
) such that

®2 (
) = 
G®2 (
) + ®4 , (5.15)
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Figure 5.6: Scatter plot and Spearman’s rank correlation coefficients A( between fitted
Heaps’ exponents �8 and normalized 
-centrality 2[
]

8
/2[
]max associated to the 8 = 1, . . . , #

nodes of four empirical networks: (a) the Zachary Karate Club network [370], (b) a
network of follower relationships of Twitter [371], (c) a co-authorship network in network
science [372] and (d) a collaboration network between jazz musicians [373]. Figure
from [4].

where ®4 is an #-dimensional vector of ones. The matricial form of Eq. (5.15) reads:

®2 (
) = (O − 
G)−1®4 =
( ∞∑
:=0


:G:

)
®4 , (5.16)

where O is the #-dimensional identity matrix. It has also been shown that this centrality

is equivalent to Katz-centrality [386] given by

®2 ( ) =
( ∞∑
:=1

0:G:

)
®4 , (5.17)

with 0 being an attenuation factor. In fact, it has been shown that the equality ®2 ( ) =

−®4 + ®2 (
) holds, i.e. these two centralities differ only by a constant [382]. From Eq. (5.15)

and (5.16), it is clear that the 
-centrality can be both a local and global measure. In fact,

for 
→ 0+, the relative importance of the structure as given by the adjacency matrix G

decreases, in favour of the exogenous factor given by ®4. When higher values of 
 are

considered instead, the role of the exogenous part is damped.
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Figure 5.7: Spearman’s rank correlation A( between paces of discovery �8(104) and

-centrality 2[
]

8
as a function of 
 for nodes 8 = 1, . . . , # belonging to four different

real-world networks: (a) the Zachary Karate Club network [370], (b) a network of follower
relationships of Twitter [371], (c) a co-authorship network in network science [372]
and (d) a collaboration network between jazz musicians [373]. Each dashed vertical
line corresponds the value of 1/�̂, with �̂ denoting the maximum eigenvalue of the
corresponding adjacency matrix. The parameters of the model are � = 10, � = 1,
"0 = � + 1.

The role of this measure in our particular setting can be explored, as before, by

investigating the correlation between the 
-centrality and the pace of discovery for

interacting urn models connected by real-world social networks. Figure 5.6 shows the

scatter plot of the number of discovered colours�8()) against the normalized 
-centrality

2
[
]
8
/2[
]max for each of the four real-world networks considered: (a) the ZKC, (b) a network

of follower relationships of Twitter, a co-authorship network in network science, and (d)

a collaboration network between jazz musicians (details in Sec. 5.4.1). The parameters

of the model, which are the same for each urn, are set to � = 10, � = 1, "0 = � + 1 and

) = 104.

The high values of the Spearman’s rank correlations (A( ≥ 0.97 in all cases) found in both

undirected (a,c,d) and directed networks (b) are in agreement with our predictions. This

result confirms that, together with the AP in the space of concepts, it is crucial to take

into account of an AP in the social space.
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Finally, we test how reliable the 
-centrality is to give a ranking of the pace of discovery

of the nodes when varying the value of 
. This is shown in Fig. 5.7, where we plot the

Spearman’s rank correlation coefficient A( between the paces of discovery �8(104) and

the 
-centralities 2[
]
8

as a function of 
 for all the nodes 8 = 1, . . . , # composing the

four considered real-world networks. Although panel (d) displays a decrease in the

correlation when approaching 1/�̂, setting 
 < 1/�̂ leads to Spearman’s rank correlation

coefficients A( > 0.89 in all four cases.

5.6 Summary and conclusions

In conclusion, we have presented a first example inwhich stochastic processes are coupled

over the nodes of a complex network, and analytical insights on the relations between

structure and dynamics are possible. The results highlight that the structural—not just

local—properties of the nodes can strongly affect their ability to discover novelties. Our

networked model of social urns is not just a simple extension of UMTs. What makes it

novel and different is the very same idea of coupling together many urns over a complex

social network, and the concept of “social urn” we have introduced. It is such a network

coupling that spontaneously produces novel behaviors, such as different exponents of the

Heaps’ law in a single system, and has the potential to open new areas of research and

applications. This work represents only a first step toward the inclusion of structured

interactions in discovery processes. Urns can, in fact, result oversimplified models

for the dynamics of individual explorers. Future works could consider non-identical

urns, or even explore the effects of having individuals with a finite storage capacity,

or where the adoption of the new might trigger the abandoning of the old, as for

substitutive systems [162]. Another natural extension would be considering discoveries

and social relationships unfolding across different network layers [38] or higher-order

structures [2, 5]. In addition, it would be interesting to establish a mapping between the

model proposed here and models of multiple interacting random walkers on complex

networks [1, 387], as well as its relationship with existing models of social spreading
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and meme popularity [388–390]. Finally, our results could be directly applied in studies

about efficient team structures in cooperative creative tasks [7, 178, 329, 391, 392].



Conclusions and outlook

The processes of discovery and contagion are two social dynamics that been extensively

studied, but have always been considered separately. In this thesis, we introduced them

as the outcome of an adoption process studied from two different angles [6]. In Chapter 2

we started from the point of view of a single item (concept, or behaviour) spreading

among individuals through an SIS-like dynamics whose transitions are decoupled across

two different network layers, namely the social network (controlling the simple contagion)

and the power grid (controlling the complex recovery) [3]. Then, with the paradigm shift

proposed in Chapter 3, we studied a simplicial contagion model that accounts for the

effects of higher-order group interactions—using the formalism of simplicial complexes

instead of graphs —in processes of social contagion [2].

In the second part of the thesis we adopted the complementary point of view of a single

individual sequentially adopting interlinked items. This is a good framework to model

discovery and innovation processes, where novelties can indeed be seen as the first

collection of an item of the first visit of a node. The network representation used in

Chapter 4 enabled the development of a model that could mimic the basic dynamics

and the statistical properties of real-world discovery processes by relying on a single

parameter, the reinforcement [1]. Finally, in Chapter 5 we introduced a multi-agent

discovery dynamics in which a social network is used to couple together discovery

processes [4]. We proposed for the first time to couple urn processes on a complex

network in order to explore how social interactions contribute to the collective emergence

of new ideas in a team. By unveiling the crucial role played by the structure of the social

128
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network on the pace of discovery, this model opens up new research avenues towards

the design of optimal group structure in teamwork.

The dual vision of adoption processes presented in this thesis and the different

representations used trigger a series of open questions and research directions that could

be addressed in the near future..

Coupling discovery and contagion processes. In this work, we have discussed the

duality between contagion and discovery processes and presented some modelling

advancements. However, a comprehensive model that bridges these complementary

processes is still missing. Ideally, this model could make use of two different networks,

namely the one of individuals and the one of items. Similarly to the models discussed

in Chapters 2 and 3, the process of contagion could rely on social interactions and thus

uses as a substrate a social network between individuals. In parallel, there could be an

exploration processes with reinforcement akin to the one introduced in Chapter 4 that

takes place over a different network of relationships between items. Individuals could

independently perform an exploration of the space of items, that can be modelled as a

random walk with reinforcement. While the topology of this network is the same for all

the explorers and does not change in time, the strength of the links could vary across

different explorers according to their personal history. As such, walkers explore the space

according to an edge-reinforced random walk process [1], but different walkers would

preferably jump towards different items according to the personal memory. Indeed,

while the structure of the network of items is common to all the walkers, the strengths

of the connections co-evolve with the dynamics of each walker. With the exploration

mechanism just described, each walker independently performs independent searches

of the space of possible discoveries [167, 200]. However, due to the reinforcement,

discovering new ideas becomes more and more difficult, and walkers will often return

on their steps [1]. This implies that the last novelty found will remain unchanged

for some time. As for processes of individual and collective attention in social and

substitutive systems [162], individuals will focus on a single novelty at the time. Thus, a
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Figure 5.8: Coupling discovery and contagion processes on complex networks. (A)
A walker explores the space of items via ERRWs. Thus, every time a node is visited
the corresponding item is added to the sequence (top). Walking on � represents the
discovery of a novelty, since it never appeared in the sequence before. (B) The new item
� spreads from the walker to his neighbours through the link of the social network. In
particular, in (C) a neighbour discovers � through the social contagion dynamics. As a
consequence, her position on the network of items is immediately updated by means of
a flight (D). Figure from [6].

naive coupling could have a contagion process where each individual tries to spread

this last novelty to her/his neighbours through the links of the social network (see

Fig. 5.8). If it spreads enough, it will eventually become popular. This could be linked

to recent works that have shown how simple mathematical models can be accurately

describe processes of topics and memes that compete for collective attention, displaying

bursts and decays [388, 393–395]. In a novelty-driven scenario, every time that a walker

finds a novelty, she could consequently updates the item to spread to this one, select a

neighbour and try to spread it. If adopted, the neighbour would immediately jump to

the correspondent node on the network of items, ultimately adding flights to the random

walks process [6].

The results presented inChapter 3 highlight the importance of considering appropriate

representations to model the dynamics of higher-order systems (HOrSs). The model of

simplicial contagion represents only the beginning of what could be a long journey.

Dynamical processes beyond pairwise interactions. Many dynamical processes could

be studied moving from pairwise to higher-order approaches [5]. This is potentially

relevant to all classes of dynamical processes notoriously studied on complex structures.

Developing and studying such systems might also allow to better take into account
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higher-order dynamical effects in real data-driven models. Recent works in this direction

include higher-order extension of the Kuramoto model of synchronisation [396–399] and

studies of synchronization on complex network manifolds [277, 278, 400–402]. Besides,

early investigations of other dynamical processes further confirmed the key role played

by HOrSs, such as for the social dynamics of consensus and cooperation [403–405], but

also for other landmark dynamical processes like diffusion and random walks [406, 407].

HOrS and their representation. What is a truly genuine higher-order interaction? We

already mentioned that for some systems this question is relatively easy to address.

For example, data on co-authorship in publication where each paper constitutes an

interaction among all authors [65] naturally come in the form of sets, and the higher-

order representation can thus be adopted straightforwardly. However, there are many

other systems, such as for people engaging in conversations or colleagues working in

a team [408, 409], in which group interactions are not so easily identifiable and would

require the design and implementation of ad-hoc data collection experiments. These

novel experiments will also have to be designed to record temporal traces of social

behaviour along with the patterns of interactions underneath. Having access to both the

underlying—evolving—structure, and the data on the dynamical process unfolding upon

it, is essential to fully understand and model the behaviour of social systems as HOrS.

Behind these methodological difficulties, stands a cardinal question of an ontological

nature. Once one chooses a suitable representation around a sensibly collected data

set of human interactions, how does one characterize what is obtained? This is already

challenging in theoretical models, but how do we tease them apart in data, and what

data do we need?

HOrS and the problem with the data. Observational data, such as digital traces

collected through mobile phone devices, provide an always-on picture of human

behaviour that has been widely exploited by social researchers. As a matter of fact,

these traces have been successfully used to find evidence of (complex) social contagions
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mechanisms, such as for the adoption of applications [114, 116] and the spreading of

running habits [129], that complemented results obtained with more traditional methods

(surveys) [107]. Data sets of this type—assuming their availability—are intrinsically

ill-suited to answer HOrSs-related questions, since the patterns of interactions therein

are not encoded in a higher-order fashion. With the raw data already encoded in a

pairwise representation, moving to a higher-order one would require adding structural

assumptions that would invalidate most of the HOrS-related research questions.

Following this path, thefirst optionwouldbe to leveragehigh-resolutiondata coming from

already performedmeasurements. In fact, standard call detail records are not appropriate

given their poor spatial resolution and their heterogeneous sampling biases. A number of

large-scale data collection experiments have already been performed to overcome these

limitations. These studies make use of modern social sensing technologies to track the

proximity of individuals, a good proxy for measuring social—group—interactions. For

example, physical proximity between mobile phone users—detected via Bluetooth signal

strength—has been used to measure the strength of friendship ties [410] and to unveil

the structural patterns in longitudinal data sets [411]. Although these data, released

by the Copenhagen Networks Study [412], would represent a good testing ground for

higher-order representational algorithms, they miss one essential component, that is

information about social phenomena unfolding on top of the social structure.

Alternatively, one could use radio-frequency identification devices (RFID) as those

deployed by the Sociopatterns collaboration [413]. In these measurements, devices

are fine-tuned to capture possible routes for respiratory droplet transmission [414] via

face-to-face contacts, but can also offer an adequate description of person-to-person

interactions (see Fig. 3.2) from Chapter 3 where we used them to construct empirical

simplicial complexes [2]). While customizing these last technologies could improve

the extraction of higher-order interactions, the currently available data, designed for a

different purpose, lack, again, information on any social phenomenon unfolding on the

captured contacts. As such, to track both the dynamical behaviour of individuals and

the many-body interactions underneath ad-hoc experiments are needed.
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Computational challenges for HOrS. Finally, moving from pairwise to higher-order

interactions opens up also new algorithmic and computational challenges. The first one

is about efficiency in storage. For example, while matrix representations can be very

convenient for extracting properties, the amount of absent relationships they contain

might explode as the dimension of the considered interactions increases. Thus, just like

lists of edges represent the most compact representation for pairwise interactions, it is

possible to efficiently compress and sparsely store HOrS using lists of simplices. However,

this representation comes trades off memory and access efficiency. Think, for example, at

a simple check for the existence of a specific 2-body interaction from the list of maximal

simplices representing the entire complex. This difficulty is particularly relevant when

using HOrSs as a substrate for simulations of dynamical processes. In addition, many

standard algorithms for networks can not be simply extended, since (8) they would

result too slow, and (88) the standard dichotomy of active/inactive links—extensively

used in network algorithms—lacks a counterpart for HOrS, where a :-simplex can

be “active" at : different levels. This, combined with the combinatorial necessity of

adapting the dynamics to all the relevant interactions within each simplex, calls for

ad-hoc algorithmic implementations of dynamical processes on higher-order structures.

A way to tackle the problem with a bottom-up approach would be to extract in advance

the essential structural information from a HOrS while maintaining its richness. For

example, akin to Serrano et al. [415], is there a way of extracting a statistically significant

backbone from HOrSs? More interestingly, one could develop order-reduction methods

specifically tailored to preserve the meaningful higher-order structures that are relevant

to the process under study. To achieve this, a profound rethinking of standard pairwise

approaches is necessary.
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A: Simplicial contagion on empirical and synthetic simplicial

complexes

FigureA.1: SCMof order� = 2 on real-world higher-order social structureswithout data
augmentation. Simplicial complexes are constructed from high-resolution face-to-face
contact data recorded in a workplace (a), a conference (b), and a high school (c). The
average fraction of infected nodes in the stationary state obtained numerically is plotted
against the rescaled infectivity � = �〈:〉/� for �Δ = 0.8 (black triangles) and �Δ = 2.5
(orange squares). The blue circles denote the simulated curve for the standard SIS model
(�Δ = 0), which does not consider higher order effects. For �Δ = 2.5 a bi-stable region
appears, where healthy and endemic states co-exist.

Figure A.2: Numerical exploration of the finite size effects on the hysteresis for a SCM
of order � = 2 on synthetic random simplicial complexes (RSC). The two panels refer to
two different values of the initial density of infected individuals, namely (a) �0 = 0.4 and
(b) �0 = 0.01. The dashed line corresponds to the mean-field result. Figure from [2].
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B: Correlations produced by ERRWs

Correlations produced by ERRWs on real networks
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Figure A.3: Correlations among concepts for the growth of knowledge in science
(Astronomy shown) produced by an ERRW model. The ERRW is tuned to the empirical
data by selecting the reinforcement �F that reproduces the Heaps’ exponent � obtained
by fitting the associated Heaps’ curve as a power law (for the Astronomy case shown
�F = 330). (a) Frequency distribution of inter-event times ΔC between consecutive
occurrences of the same concept (node in our model). (b) Number "; of different
subsequences of length ; as a function of ;. (c) Normalized entropy of the sequence of
visited nodes as a function of =, the number of times the nodes have been visited. In each
panel, blue circles show average values over 20 different realizations, while triangles and
crosses refer to those of (globally and locally) reshuffled sequences. Figure from [1].

In Sec. 4.5, we have shown how the ERRW model on small-world (SW) networks

is able to produce correlated sequences of concepts. We have also proposed a study

case of the ERRW model on real topologies extracted from empirical data. In particular,

we have explored the cognitive growth of science by extracting empirical sequences

of relevant concepts in different scientific fields. For each one of the considered fields,

we have then tuned the reinforcement parameter of our model in order to produce

sequences with the same Heaps’ exponents as the empirical ones (see Fig. 4.7 and

Table 4-A). Here, we investigate correlations in the sequences produced by ERRWs on

real networks. Figure A.3 reports the same quantities we used to study correlations

in sequences produced by ERRWs on synthetic SW networks (see Fig. 4.9), namely the

average entropy of the sequence [Fig. A.3(a)], number "; of different subsequences of

length ; as a function of ; [Fig. A.3(b)], and frequency distribution 5 (ΔC) of inter-event

times ΔC between couples of consecutive concepts [Fig. A.3(c)]. In each plot, results are

compared to the two null models defined in Sec. 4.5.1, confirming the correlated nature
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of the sequences. Furthermore, the comparison with the same statistics obtained for

ERRWs on SW networks (see Fig. 4.9) confirms again that SW topologies represent a

good choice for modeling the relations among concepts.

Correlations produced by ERRWs on synthetic networks

In Sec. 4.5, we have implemented the ERRW model on SW networks, which proved to be

good topologies for modeling the structure of relations among concepts [318–320]). In

addition to the results in Fig. 4.9, wherewe studied the correlations produced by an ERRW

over a SW network with fixed link probability ? for a fixed amount of reinforcement at

�F = 0.01, here we show the curves of average entropy of sequence (Figure A.4) and

frequency distribution 5 (ΔC) of inter-event times ΔC between couples of consecutive

concepts (Figure A.5) for different values of reinforcement, ranging from �F = 0.001 to

�F = 1. Three different cases of SW networks with # = 106 nodes and respectively with

link rewiring probability ? = 0.001 [Fig. A.4(a-d) and Fig. A.5(a-d)], ? = 0.01 [Fig. A.4(e-h)

and Fig. A.5(e-h) ] and ? = 0.1 [Fig. A.4(i-l) and Fig. A.5(i-l) ], are considered. All curves

are compared to the corresponding null models as defined in Sec.4.5.1.
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p=0.001, δw=0.010
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p=0.001, δw=0.100

100 101 102 103 104 105

n

0.0

0.2

0.4

0.6

0.8

1.0

H
(n
)/
lo
g(
n
)

(d)
p=0.001, δw=1.000
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(e)
p=0.01, δw=0.001
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Figure A.4: Correlations among concepts produced by an edge-reinforced random walk
on a SW network for different values of link probability ? and reinforcement �F (see the
main text for details). Normalized entropy of the sequence of visited nodes as a function
of =, the number of times the nodes have been visited. In each panel, blue circles show
average values over 20 different realizations, while triangles and crosses refer to those of
(globally and locally) reshuffled sequences. Figure from [1].
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Figure A.5: Correlations among concepts produced by ERRWs on a SW network for
different values of link probability ? and reinforcement �F (see the main text for details).
Frequency distribution of inter-event times ΔC between consecutive occurrences of the
same concept (node in our model). In each panel, blue circles show average values over
20 different realizations, while triangles and crosses refer to those of (globally and locally)
reshuffled sequences. Figure from [1].
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C: Interacting discovery processes - Analytical solutions

Here, we will study in more detail the analytical solutions associated to the model of

interacting discovery processes presented in Chapter 5. In particular, we focus on the

solution of the equation for the pace of innovation we derived in the main text. The case

of an individual urn is equivalent to the urn model with triggering and is detailed in

Sec. 1.2.2.1. We will thus consider simple cases of coupled urns, such as a pair of nodes,

a chain, a cycle, a clique, ending with the formulation for a general network. Moreover,

we will derive an analytical solution for each of the small networks studied in Fig. 5.3 of

the main text. In every case, we will set the same parameters for each urn, so that �8 = �

(reinforcement) and �8 = � (triggering) ∀8 = 1, . . . , # . Each urn will be initialized with "0

balls of different colours. These and the other colours—added from an individual 8 when

triggered by a discovery—will be taken from a single predefined set of discoverable balls

of different colours.

Pace of discovery - Two coupled urns

Let us consider now the simplest case of two coupled urns, that is a network with only

two nodes connected by a directed edge (1→ 2), as in Fig. 5.1 of the main text. This is

equivalent to a directed chain of # = 2 nodes, that will be discussed in the next section

for a general number # of nodes. The associated equations to determine the asymptotic

growth of the number of novelties can be written expressing the probabilities %new
8
(C) to

draw a new ball as the the fraction of discoverable balls over the total number of balls

available to node 8 at time C:


3�1(C)
3C

=
|Ũ1(C) 	 S′1(C)|

*̃1(C)
3�2(C)
3C

=
|Ũ2(C) 	 S′2(C)|

*̃2(C)
=
*′2(C) − �2(C)

*2(C)
.

(A1a)

(A1b)

Notice that the right-hand side of Eq. (A1b) is simplified since node 2 does not have

any outgoing link, and therefore its dynamics is the same of an isolated urn for which
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Ũ2(C) =U2(C). Thus, following the same procedure of the single urn (see Sec.1.2.2.1), we

have, for � > �:

�2(C) ∼ (� − �)
�
� C

�
� . (A2)

The denominator *̃1(C) of Eq. (A1a) can be expressed in terms of the two contributions

coming from the two urns at time C, which reads:

*̃1(C) =

*1(C)︷                       ︸︸                       ︷
"0 + �C + (� + 1)�1(C) +

*′2(C)︷                ︸︸                ︷
"0 + (� + 1)�2(C)

= 2"0 + �C + (� + 1)
[
�1(C) + �2(C)

]
.

(A3)

Similarly, the numerator of Eq. (A1a), consisting in the number of balls present in the

social urn of node 1 at time C which did not appeared yet in S1(C), can be written as the

total number of balls in the social urn of 1 at time C, minus the number of duplicates,

minus the number of balls that do not represent a novelty any more with respect to the

sequence S1(C), i.e.:

|Ũ1(C) 	 S′1(C)| = *̃1(C) − �C − �1(C). (A4)

Then, using Eq. (A3) and Eq. (A4), the final expression for Eq. (A1a) reads:

3�1(C)
3C

=
2"0 + ��1(C) + (� + 1)�2(C)

2"0 + �C + (� + 1)
[
�1(C) + �2(C)

] . (A5)

For large times (C � "0) we can approximate Eq. (A5) as

3�1(C)
3C

≈ ��1(C) + (� + 1)�2(C)
�C + (� + 1)

[
�1(C) + �2(C)

] . (A6)

Let us assume now that the dynamics of node 2 relaxes before the one of node 1, so

that we can solve Eq. (A6) independently from Eq. (A2). In addition, if we suppose that

limC→∞�(C)/C = 0, Eq. (A6) can be approximated as:

3�1(C)
3C

≈ ��1(C)
�C

+ (� + 1)�2(C)
�C

. (A7)
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The related homogeneous equation has a similar solution of Eq. (A2), i.e.:

3�1(C)
3C

≈ ��1(C)
�C

=⇒ �1(C) ∼ (� − �)
�
� C

�
� . (A8)

We now look for a solution like �1(C) = �(C)�1(C) that, plugged into Eq. (A7), leads to:

3�(C)
3C

�1(C) + �(C)
3�1(C)
3C

≈ �(C)3�1(C)
3C

+ (� + 1)�2(C)
�C

. (A9)

Thus, from Eq. (A2) and Eq. (A8) we get:

3�(C)
3C

=
� + 1
�C

�2(C)
�1(C)

≈ � + 1
�C

, (A10)

whose solution is

�(C) ≈ � + 1
�

ln C. (A11)

The asymptotic solution (C →∞) of �1(C) is then approximated by:

�1(C) ∼
� + 1
�
(� − �)

�
� ln(C) C

�
� . (A12)

In conclusion, comparing the solutions in Eq. (A2) and Eq. (A12) the presence of an

outgoing link increases the number of novelties with respect to an isolated urn dynamics.

However, as we have shown here, this increase is approximately only logarithmic,

meaning that we can see a slight increase at finite times which practically disappears for

larger times. Le us also notice that this applies to the directed case, while in the case of

an undirected link we would get identical Heaps’ laws for both nodes 8 = 1, 2, without

logarithmic corrections, but with higher exponents. This particular case is a cycle of two

nodes, and as we will see in a dedicated section, cycles have their own behaviour.

Pace of discovery - Chain of T urns

Let us consider now a slightly more complicated case. Let us suppose that the network

is composed by an open chain of # urns, where there are only directed links (8 → 8 + 1),
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with 8 = 1, 2, . . . , #−1. This is the case considered in Fig. 5.3(b,g) of themain text, where

in that case # = 4. Analogously to the previous case, the associated set of equations

governing the growth of the number of novelties can be approximated to:



3�1(C)
3C

≈ ��1(C) + (� + 1)�2(C)
�C + (� + 1)

[
�1(C) + �2(C)

]
...

3�#−1(C)
3C

≈ ��#−1(C) + (� + 1)�# (C)
�C + (� + 1)

[
�#−1(C) + �# (C)

]
3�# (C)
3C

≈ ��# (C)
�C + (� + 1)�# (C)

(A13a)

(A13b)

(A13c)

(A13d)

We can solve the system by solving each equation, starting from the last one and

recursively substituting its solution into the equation above. Indeed, since node 8 = #

does not have any outgoing link, its independent Eq. (A13d) can be immediately solved,

resulting in the known asymptotic solution:

�# (C) ∼ (� − �)
�
� C

�
� . (A14)

As in the previous case, in Eq. (A13c) we can consider �#−1(C) to be the only unknown

variable. Then, following the same analytical steps presented in previous section leads

to:

�#−1(C) ≈
� + 1
�
(� − �)

�
� ln (C)C�/�. (A15)

The same reasoning can be iterated for each node 8. Let us now prove by induction on 8

that the asymptotic solution is

�8(C) =
(� − �)�/�
(# − 8)!

(
� + 1
�

ln(C)
)#−8

C�/�. (A16)

We have already proved that this holds for 8 = # and 8 = # − 1. Let us now suppose that

it holds for 8 and let us prove it for 8 − 1, with 1 < 8 < # . In the asymptotic limit, the
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equation for the growth of the number of novelties of node 8 reads

3�8−1(C)
3C

≈ ��8−1(C) + (� + 1)�8(C)
�C + (� + 1)

[
�8−1(C) + �8(C)

] . (A17)

For the induction hypothesis, in Eq. (A17) the only unknown variable is �8(C). Therefore,

we can consider the homogeneous associated equation

3� 8−1(C)
3C

≈ �� 8−1(C)
�C

, (A18)

which provides the approximated solution:

� 8−1(C) ≈ (� − �)
�
� C

�
� . (A19)

As for the case of two coupled urns, we now look for a solution like �8−1(C) = �(C)� 8−1(C),

that, plugged into Eq. (A17), leads to:

3�(C)
3C

� 8−1(C) +
�
���

���

�(C)3� 8−1(C)
3C

≈
�

���
���

�(C)3� 8−1(C)
3C

+ (� + 1)�8(C)
�C

. (A20)

Thus, we get

3�(C)
3C
≈ � + 1

�C

�8(C)
� 8−1(C)

≈ 1
(# − 8)!

� + 1
�C

(
� + 1
�

ln(C)
)#−8

, (A21)

whose solution is

�(C) ≈ 1
(# − (8 − 1))!

(
� + 1
�

ln(C)
)#−(8−1)

. (A22)

Finally, after combining Eq. (A19) and Eq. (A22), we reach the solution for the dynamics

of node 8 − 1, that reads:

�8−1(C) ≈
(� − �)�/�
(# − (8 − 1))!

(
� + 1
�

ln(C)
)#−(8−1)

C�/� , (A23)

which completes the proof by induction.
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Finally, it is worth observing that the Heaps’ laws would be very different if the links

were undirected. This would indeed result, similarly to undirected cycles, in higher

asymptotic Heaps’ exponents.

Pace of discovery - Cycle of T urns

Directed cycle—Let us consider the case of directed cycles. As we will see, this is the

simplest system leading to asymptotic Heaps’ exponents that are higher than that of an

individual urn. Let us hence suppose that every node 8 is connected just to the following

one, node 8 + 1, with a directed link (8 → 8 + 1), with 8 = 1, 2, . . . , # , where we identify

node # + 1 with node 1. For a generic node 8, the asymptotic differential equation for the

growth of the number of novelties reads:

3�8(C)
3C

≈ ��8(C) + (� + 1)�8+1(C)
�C + (� + 1)

[
�8(C) + �8+1(C)

] . (A24)

For symmetry reasons, the dynamics of each node is the same, implying that �1(C) ≈

· · · ≈ �8(C) ≈ · · · ≈ �# (C). Hence, Eq. (A24) becomes

3�8(C)
3C

≈ (2� + 1)�8(C)
�C + 2(� + 1)�8(C)

, (A25)

that is equal to the equation of an individual urn [see Eq. (1.4)], with �′ = 2�+1. Therefore,

from Sec. 1.2.2.1, if � > �′ we have the solution

�8(C) ≈ (� − 2� − 1)
2�+1
� C

2�+1
� . (A26)

Undirected cycle—Let us now consider cycles composed by undirected links. Let us

suppose that # > 2, considered that for # = 1 the network reduces to an individual urn,

and for # = 2 it is equivalent to a directed cycle of 2 nodes. For # > 2, each node 8 is

therefore connected to two different nodes 8 − 1 and 8 + 1, and the associated equations
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to be solved are:

3�8(C)
3C

≈ ��8(C) + (� + 1)�8−1(C) + (� + 1)�8+1(C)
�C + (� + 1)

[
�8(C) + (� + 1)�8−1(C) + �8+1(C)

] . (A27)

Again, for symmetry reasons, we can equivalently write Eq. (A27) as

3�8(C)
3C

≈ (3� + 2)�8(C)
�C + 3(� + 1)�8(C)

, (A28)

that is equal to the equation of an individual urn [see Eq. (1.4)], with �′′ = 3� + 2.

Therefore, if � > �′′ we have the solution

�8(C) ≈ (� − 3� − 2)
3�+2
� C

3�+2
� . (A29)

Undirected cycle—Let us now consider cycles composed by undirected links. Let us

suppose that # > 2, considered that for # = 1 the network reduces to an individual urn,

and for # = 2 it is equivalent to a directed cycle of 2 nodes. For # > 2, each node 8 is

therefore connected to two different nodes 8 − 1 and 8 + 1, and the associated equations

to be solved are:

3�8(C)
3C

≈ ��8(C) + (� + 1)�8−1(C) + (� + 1)�8+1(C)
�C + (� + 1)

[
�8(C) + (� + 1)�8−1(C) + �8+1(C)

] . (A30)

Again, for symmetry reasons, we can equivalently write Eq. (A30) as

3�8(C)
3C

≈ (3� + 2)�8(C)
�C + 3(� + 1)�8(C)

, (A31)

that is equal to the equation of an individual urn [see Eq. (1.4)], with �′′ = 3� + 2.

Therefore, if � > �′′ we have the solution

�8(C) ≈ (� − 3� − 2)
3�+2
� C

3�+2
� . (A32)

Notice that for undirected cycles, since all connections are mutual, the resulting paces of
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discovery are higher than those in the directed case. However, in both cases, directed

and undirected, the dynamics of each node does not depend on the length of the cycle.

Pace of discovery - Clique of T urns

Let us consider a #-clique, that is a fully connected network of # nodes, equivalently

directed or undirected. Being every node 8 connected to all other nodes, all nodes are

equivalent, and the general equation for the growth of the number of novelties of node 8

reads:
3�8(C)
3C

≈
��8(C) + (� + 1)∑9≠8 �9(C)
�C + (� + 1)∑#

9=1 �9(C)
. (A33)

For symmetry reasons, each urn follows the same dynamics and we can equivalently

write Eq. (A33) as
3�8(C)
3C

≈ [#(� + 1) − 1]�8(C)
�C + #(� + 1)�8(C)

, (A34)

that is equal to the equation for an individual urn [see Eq. (1.4)], with �′′′ = #(� + 1) − 1.

Therefore, if � > �′′′ we have the solution

�8(C) ≈ (� − #(� + 1) − 1)
#(�+1)−1

� C
#(�+1)−1

� . (A35)

Let us observe that for any network with # nodes, the maximum allowed Heaps’

exponent is hence [#(� + 1) − 1]/�, which occurs only in the case of a fully connected

network.

Pace of discovery - The general case

Let us consider a general graph �(N , ℰ), either directed or undirected. In order to

write and solve the equations for the growth of the number of novelties, we first have to

calculate the probability %new
8
(C) of drawing a new ball from the urn of each node 8. This

can be done by considering the number of different colours present in the social urn Ũ8(C)

of node 8 at time C that have not been discovered yet by 8, divided by the total number

of balls *̃8(C) present in its social urn at that time. The numerator can be expressed
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as |Ũ8(C) 	 S′8 (C)|, which is the length of the multiset obtained by removing from the

multiset Ũ8(C) all the elements appeared in the sequence (taking out all duplicates). In

other words, it is the number of unique colours present in the urn of node 8 and in the

one of its neighbours (without their multiplicity) minus the number of colours already

drawn (unique elements in the sequence of 8). Considering that all (and only) the already

discovered balls are those that have been reinforced and that the number of triggered

colours added to the urn 9 is exactly (� + 1)�9(C), we can write:

3�8(C)
3C

= %new
8 (C) =

|Ũ8(C) 	 S′8 (C)|
*̃8(C)

=
"0 + ��8(C) +

∑
9≠8 08 9

[
"0 + (� + 1)�9(C)

]
�C +"0 + (� + 1)�8(C) +

∑
9≠8 08 9

[
"0 + (� + 1)�9(C)

] ,
(A36)

or, equivalently:

3�8(C)
3C

=
"0

∑
9(08 9 + �8 9) +

∑
9

[
�8 9� + 08 9(� + 1)

]
�9(C)

�C +∑
9(08 9 + �8 9)

[
"0 + (� + 1)�9(C)

] . (A37)

For C � "0 we can disregard the presence of "0 in Eq. (A37). As shown above for

#-cliques, in the asymptotic limit C →∞ the growth of the number of novelties obeys

an Heaps’ law with maximum exponent [#(� + 1) − 1]/�. This means that if � is high

enough, we can approximate the denominator on the r.h.s. of Eq. (A37) to �C. After

finding the approximated solution, we will estimate the set of parameters for which this

approximation is valid for any topology. Therefore, in the asymptotic limit and with a

proper choice of the parameters, Eq. (A37) can be rewritten as:

3�8(C)
3C

≈
∑
9

[
�8 9� + 08 9(� + 1)

]
�9(C)

�C
, (A38)

which can be expressed in a more compact way as:

3 ®�(C)
3C
≈ 1
C

(
�
�
O + � + 1

�
G

)
®�(C) = 1

C

5 (G) ®�(C)
C

=
1
C
S ®�(C), (A39)

where O is the#×# identitymatrix andS = 5 (�), with 5 (G) = �
�+ �+1

� G. By operating the

change of variable C = 4I , Eq. (A39) can be rewritten as a standard first-order differential
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system, i.e. 3I ®�(I) ≈ S ®�(I), which leads to the solution

®�(C) ≈
A∑
ℓ=1

<ℓ−1∑
?=0
®2? ln?(C) C�ℓ , (A40)

where {�ℓ }ℓ=1,...,A and {<ℓ }ℓ=1,...,A are the eigenvalues of S with their respective multi-

plicities, and ®2? are vectors defined by the initial conditions. The asymptotic behaviour

of the number of novelties �8(C) discovered by node 8 at time C is then governed by the

leading term in Eq. (A40), so that we can write:

�8(C) ≈
C→∞

D8 ln?̂(8)(C) C�̂(8). (A41)

where �̂(8) is the eigenvalue of S with the biggest real part such that the 8-th entry of

at least one of its eigenvectors ®2? is different from zero. Similarly, ?̂(8) is the maximum

value of ? among these eigenvectors with non-zero 8-th entries. In general, then, �̂(8)

might not be the maximum eigenvalue of S , like ?̂(8)might be less than the multiplicity

of the eigenvalue �̂(8)minus one. Moreover, different nodes may have different values

for these exponents. In particular, we have the same exponents for nodes in the same

strongly connected components (SCCs), while they may vary from SCC to SCC. In the

following paragraphs we will investigate this aspect.

Strongly connected network—Let us suppose that the graph �(N , ℰ) is strongly

connected. In this case the solution given by Eq. (A41) simplifies. Indeed, in this case,

the corresponding adjacency matrix G = {08 9} is irreducible [416]. Let us recall that

for irreducible matrices the Perron–Frobenius theorem holds [379, 380], according to

which there exists a positive eigenvalue �̂ greater or equal to (in absolute value) all other

eigenvalues. Such eigenvalue corresponds to a simple root of the characteristic equation

and the corresponding eigenvector ®D has all positive entries too. The latter vector is a

multiple of the Bonacich eigenvector centrality vector [381]. Widely used in network

science, the Bonacich eigenvector centrality is a measure that recursively accounts for

local and global properties of the network, relying on the notion that a node can be highly
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central either by having a high degree or by being connected to others that themselves are

highly central [18]. Simple algebraic steps can prove that if � is an eigenvalue for G, then

� = 5 (�) is an eigenvalue for S . Moreover, if ®D is an eigenvector corresponding to the

eigenvalue � of G, then ®D is also an eigenvector corresponding to the eigenvalue � = 5 (�)

of S . Therefore, if �̂ is the maximum eigenvalue of G, then �̂ = 5 (�̂) = �
� + �+1

� �̂ > 0 is

the highest eigenvalue of S , and with the same positive eigenvector ®D. Thus, for strongly

connected graphs, the approximated solution given by Eq. (A41) becomes

�8(C) ≈
C→∞

D8 C
�̂ , (A42)

meaning that all nodes have similar Heaps’ laws, and the key difference is made by their

eigenvector centrality. As we saw in the main text (and we will see here more in details),

these differences, more pronounced in transient times, will contribute to determine the

fastest explorers in the network. Moreover, we deduce that the approximation used in

Eq. (A38) is valid provided that �̂ = 5 (�̂) < 1, that is � > � + (� + 1)�̂, while for higher

values of � the solution is bounded by the linear solution as seen for the individual urn

in Eq. (1.7), since in the original system in Eq. (A36) we have 3C�8(C) ≤ 1.

Non-strongly connected network—Let us now consider the most general case, that is

a directed or undirected graph with any hypotheses of connectivity. Let us construct an

algorithm to determine the pace of discovery of each node, which will help us better

understand analytically why some nodes have higher paces of discovery. To do this, let

us partition the graphs into its strongly connected components (SCCs), i.e. maximal

strongly connected subgraphs of �, which can be found in linear computational time, for

example with a DFS-based algorithm [417]. Let all the SCCs be indexed as �1 , . . . , �? ,

with �8 ∩ � 9 = ∅ ∀8 ≠ 9.

Without loss of generality, let us suppose that the graph� isweakly connected, because

otherwise we can repeat the same reasoning for each weakly connected component.

Let us also suppose that the number of SCCs is ? > 1, because otherwise the graph
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would be strongly connected, which we already discussed in the previous paragraph.

Since � is weakly connected, for each SCC �@ there must exist another component �; ,

with ; ≠ @, such that there are some links from �@ to �; or viceversa. However, there

cannot be links in both directions (from �@ to �; and viceversa), because otherwise they

would be a unique SCC. It is also easy to show that there is always a SCC without any

outgoing links to other SCCs. Eventually permutating the indexes of the SCCs, let us

call �1 , . . . , �?1 all the components with no outer links. Then, for each 1 ≤ @ ≤ ?1, the

respective system of differential equations for �8 , 8 ∈ �@ , does not depend on any outer

variable �9 , 9 ∈ �; ≠ �@ . Therefore, we can consider �@ as an independent strongly

connected subgraph of �, for which the reasoning in last paragraph holds. The solution

for these SCCs is then:

�8(C) ≈
C→∞

�
(@)
8
C�̂
(@) ∀8 ∈ �@ , 1 ≤ @ ≤ ?1 , (A43)

where �̂(@) is the maximum eigenvalue of the adjacency matrix of subgraph �@ and �
(@)
8

is

a multiple of the eigenvector centrality for node 8 in �@ . Found all the Heaps’ laws relative

to the nodes in �1 , . . . , �?1 , it is possible to show that there exist SCCs �?1+1 , . . . , �?2 that

have links only towards the previously studied SCCs �1 , . . . , �?1 , with ?2 > ?1. Then,

choosing �@ one of these other SCCs, let �
(@)

be the highest eigenvalue of the adjacency

matrix of �@ . Let also �̃(@) = max;≤?1(�@;�̂(;)) be the maximum of the Heaps’ exponents

in Eq. (A43) of the SCCs reachable from �@ , where �@A = 1 if there is at least a link from

�@ to �; , �@A = 0 otherwise. As we will see further in this section, the Heaps’ solutions

for the nodes in these SCCs is:

�8(C) ≈
C→∞


�
(@)
8
C�
(@)

if �
(@)

> �̃(@)

�
(@)
8

ln(C) C�̃(@) if �
(@)
= �̃(@)

�
(@)
8
C�̃
(@) if �

(@)
< �̃(@)

∀8 ∈ �@ , ?1 + 1 ≤ @ ≤ ?2 , (A44)
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meaning that the Heaps’ exponent �̂(@) for node 8 in �@ , ?1 + 1 ≤ @ ≤ ?2, is

�̂(@) = max(�(@) , �̃(@)), (A45)

that is the maximum of the highest eigenvalue �
(@)

of S relative to �@ and the highest

�̃(@) of the Heap’s exponents �̂(;) for 1 ≤ ; ≤ ?1. Moreover, if �
(@)
= �̃(@), a factor ln(C)

appears in the solution. The same procedure can be repeated for all other successive

SCCs �@ , keeping in mind that now a higher power ln?̂(@)(C) of log(C) can appear.

In this algorithmic process, let us now consider a generic SCC, say �@ , and let us

suppose we have solved inductively all the equations for the Heaps’ law of the nodes

in the already examined SCCs, that is �1 , . . . , �@−1. Let us recall that we arranged the

indexes in such a way that the only outgoing links from �@ are pointed to nodes in

previous SCCs, i.e. in some of the SCCs �1 , . . . , �@−1. For this reason, in order to solve

the asymptotic differential equations responsible for the Heaps’ law of the nodes in �@ ,

we can consider only the equations relative to the nodes in �@ in Eq. (A39), since the

previous SCCs have been already solved and the following variables do not appear in

these equations. We hence have to solve the following approximated equations:

3�8(C)
3C

≈ 1
C

©­«���8(C) +
� + 1
�

∑
9∈�@

08 9�9(C) +
� + 1
�

∑
9∉�@

08 9�9(C)
ª®¬ , 8 ∈ �@ , (A46)

where we have isolated the contributions coming from nodes outside �@ , which we have

suppose to be known. Considering the general asymptotic solution for each individual

Heaps’ law derived for a strongly connected graph in Eq. (A41), for each 8 ∈ �@ for large

C we can write explicitly the functions �9(C), 9 ∉ �@ , which lets us write:

� + 1
�

∑
9∉�@

08 9�9(C) ≈
� + 1
�

∑
9∉�@

08 9D9 ln?̂ 9 (C) C�̂9 ≈
C→∞

D̃8 ln?̃
(@)(C) C�̃(@) = 58(C), (A47)

where we have used the fact that �8 ln?̃8 (C) C�̃8 is the leading term of the expression∑
9∉�@ 08 9D9 ln

?̂ 9 (C) C�̂9 and that we are working for large C. Then, using Eq. (A47) and
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calling ®�(@) and G(@) the sub-vector of ®� and sub-matrix of S relative to �@ , we can

rewrite Eq. (A46) in a compact form as

3 ®�(@)(C)
3C

≈ S (@) ®�(@)(C)
C

+
®5 (@)(C)
C

. (A48)

The associated homogeneous system corresponds to the considering the sub-graph �@

without all the external links. For this system we get the same solution derived for a

strongly connected graph in Eq. (A42), which is

®
�
(@)
(C) ≈

C→∞
®D
(@)
C�
(@)
, (A49)

where�
(@)

is the highest eigenvalue ofS (@) (positive and simple for the Perron-Frobenious

theorem), and ®D(@) is a multiple of the eigenvector centrality. Let us search a solution for

Eq. (A48) of the form ®�(@)(C) = ®D(@)(C) ◦ ®�
(@)
(C), where ◦ is the Hadamard (element-wise)

product, that plugged in Eq. (A48) gives:

3®D(@)(C)
3C

◦ ®�
(@)
(C) +����������

®D(@)(C) ◦
3
[ ®
�
(@)
(C)

]
3C

≈�����������

®D(@)(C) ◦ S (@) ®�
(@)
(C)

C
+
®5 (@)(C)
C

, (A50)

where the cancellation is due to the general solution in Eq. (A49) of the associated

homogeneous system. Therefore, recalling Eq. (A47) and Eq. (A49) we have:

3®D(@)(C)
3C

≈ ®̃D(@) ◦
(
®D
(@)

)−1 ln?̃
(@)(C) C�̃(@)

C�+1
= ®� ln?̃

(@)(C) C�̃(@)

C�+1
, (A51)

or equivalently, considering the 8-th components:

3D8(C)
3C
≈ D̃(@)

8

[(
®D
(@)

)−1
]
8

ln?̃
(@)(C) C�̃(@)

C�+1
= �8

ln?̃
(@)(C) C�̃(@)

C�+1
, (A52)

where we have defined ®� = ®̃D(@) ◦
(
®D
(@)

)−1

and �8 = D̃
(@)
8

[(
®D
(@)

)−1
]
8

its 8-th component.

Let us hence distinguish three cases.
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1. If �
(@)

> �̃(@), then we have:

D8(C) ≈
�8

�̃(@) − �(@)
ln?̃

(@)(C) C�̃(@)−�
(@)
+ D8 ≈

C→∞
D8 , (A53)

which gives the solution:

�8(C) ≈
C→∞

D8C
�
(@)
. (A54)

2. Similarly, for �
(@)
= �̃(@) we have:

D8(C) ≈
�8

?̃(@) + 1
ln?̃

(@)+1(C) + D8 ≈
C→∞

�8

?̃(@) + 1
ln?̃

(@)+1(C), (A55)

which gives:

�8(C) ≈
C→∞

D8 ln?̃
(@)+1(C) C�̃(@) . (A56)

3. Finally, if �
(@)

< �̃(@) we have:

D8(C) ≈
�8

�̃(@) − �(@)
ln?̃

(@)(C) C�̃(@)−�
(@)
+ 31 ≈

C→∞

�8

�̃(@) − �(@)
ln?̃

(@)(C) C�̃(@)−�
(@)
, (A57)

hence the solution:

�8(C) ≈
C→∞

08 ln?̃
(@)(C) C�̃(@) . (A58)

To sum up, we have the following solutions:

�8(C) ≈
C→∞


D8C

�
(@)

if �
(@)

> �̃(@)

D8 ln?̃
(@)+1(C) C�̃(@) if �

(@)
= �̃(@)

D8 ln?̃
(@)(C) C�̃(@) if �

(@)
< �̃(@)

∀8 ∈ �@ , @ > ?1 , (A59)

Comparing this solution with the general one we gave in Eq. (A41), we have (a) �̂(8) = �
(@)

and ?̂(8) = 0 if � > �̃, (b) �̂(8) = �̃(@) and ?̂(8) = ?̃(@) + 1 if � = �̃, and (c) �̂(8) = �̃(@) and

?̂(8) = ?̃(@) if � < �̃.
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In conclusion, when dealing with a network with multiple strength connected

components, we solve the equations for the components that are independent from the

others. Then we consider the SCCs that have links only to previous SCCs, applying

the method just described. This is repeated until every SCC is studied, thus solving

the whole system and describing the pace of discovery of each node of the entire

network analytically, obtaining solutions of the type in Eq. (A41). In the next section this

algorithmic method is applied to simple networks with # = 4 nodes, as we have already

implicitly done above for a two nodes network and for chains.

Pace of discovery - Five small toy graphs

As an application of the analytical results of the previous sections, we study here the

very same five networks depicted in Fig. 5.3 of the main text and reported again here in

Table A1. In particular, we will be able to provide an explicit expression for the growth

of the number of novelties at each of the four nodes of the social networks. The final

results were already reported in Table 5-B of the main text.

Graph a—Let us consider a network where nodes 2, 3, and 4 do not have any outgoing

links, while node 1 has the links 1 → 2, 1 → 3, and 1 → 4 to all other nodes. Let us

observe that the dynamics here is very similar to the case of a couple of urns with the

only link 1→ 2. Nodes 2, 3, and 4 can be considered as three individual urns, for which

the Heaps’ law is the same to the classic one in Eq. (A2), that is:

�2(C) ≈
C→∞

�3(C) ≈
C→∞

�4(C) ≈
C→∞
(� − �)

�
� C

�
� . (A60)

(a) (b) (c) (d) (e)

Table A1: Five small toy graphs.
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As for node 1, the differential equation for the Heaps’ law is approximated by:

3�1(C)
3C

≈ ��1(C)
�C
+
(� + 1)

(
�2(C) + �3(C) + �4(C)

)
�C

≈ ��1(C)
�C
+

3(� + 1)(� − �)
�
� C

�
�

�C
. (A61)

The resolution of Eq. (A61) is the same as the one done for the couple of urns, with only

a multiplicative factor 3. Therefore, the Heaps’ solution for node 1 is:

�1(C) ≈
C→∞

3 � + 1
�
(� − �)

�
� ln(C) C

�
� , (A62)

which means that node 1 has a higher pace of discovery than nodes 2, 3, and 4, but

at asymptotic times they will show the same Heaps’ exponent. Moreover, it is clear

that in star-like networks adding more nodes does not increase significantly the pace of

discovery.

Graph b—The next network we studied is a chain of 4 nodes, with links 1→ 2, 2→ 3,

and 3 → 4. This network has already been studied above in the Appendix, and the

solutions are:

�8(C) ≈
(� − �)�/�
(4 − 8)!

(
� + 1
�

ln(C)
)4−8

C�/� , 8 = 1, 2, 3, 4. (A63)

This analytical result shows us why node 1 has an higher pace of discovery than the other

nodes, with lower Heaps’ exponents for higher nodes. This is due to the presence of

different powers of the logarithm. In the end, however, they all have the same asymptotic

Heaps’ exponent, meaning that the difference is visible only at finite times.

Graph c—Let us consider a network made by a directed cycle between nodes 2, 3 and

4, with links 2 → 3, 3 → 4, and 4 → 2, and another node 1 linked directly to node 2

(1→ 2). In this case, we can distinguish two SCCs, the cycle and node 1. Since there is

no link going out from the cycle, we start solving the Heaps’ law equations related to it.

As we have seen in the dedicated section above in the Appendix, the solution is given by
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Eq. (A26) with N = 3, that is:

�8(C) ≈
C→∞
(� − 2� − 1)

2�+1
� C

2�+1
� , 8 = 2, 3, 4. (A64)

Now let us consider the remaining SCC, namely node 1. Its equation is the same as

Eq. (A6) for the case of two coupled urns , with the only difference that here the solution

of �2(C) has a higher exponent. Then, if we search for a solution like �1(C) = �(C)�1(C),

with �1(C) ≈ (� − �)
�
� C

�
� being the solution of the associated homogeneous equation, we

get:

3�(C)
3C

=
� + 1
�C

�2(C)
�1(C)

≈ � + 1
�C

(� − 2� − 1)
2�+1
� C

2�+1
�

(� − �)
�
� C

�
�

=
� + 1
�

(� − 2� − 1)
2�+1
� C

�+1
� −1

(� − �)
�
�

, (A65)

whose solution is:

�(C) ≈ � + 1
�

(� − 2� − 1)
2�+1
� C

�+1
�

(� − �)
�
�

, (A66)

which gives the asymptotic solution:

�1(C) ≈
� + 1
�
(� − 2� − 1)

2�+1
� C

2�+1
� . (A67)

We could have obtained the same result using the algorithm developed in the last section.

In this case, node 1 gets the same dynamics of the nodes in the cycle, with just a scaling

factor (� + 1)/�, since the maximum eigenvalue of its SCC (node 1 itself) is lower than

the maximum eigenvalue of the SCCs he is linked to (the cycle).

Graph d—In this case we consider the same network as the last graphwe just analysed

swapping the direction of the link 4→ 2. Therefore, the cycle is broken (see network

representation in Table 5-B), and as we are about to see, the dynamics is much more

similar to a chain. We could give a detailed solution as done for the chain; instead, we

are going to use directly the algorithm we developed to assess all the exponents in the

Heaps’ laws for every node. Let us start from node 4, which has no outgoing links. This
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node is hence an individual urn, with the usual solution:

�4(C) ≈
C→∞
(� − �)

�
� C

�
� . (A68)

Let us move on to the SCC with outgoing links only towards previously studied SCCs,

that is the SCC composed by node 3. If this SCC had no outgoing links, then it would be

an isolated urn, therefore with the same exponent of the other SCC studied (node 4),

meaning that the actual solution for node 3 has that exponent and a logarithmic factor.

Indeed, the dynamics of node 3 is the same derived for the couple of urns in Sec. 1.2,

which is:

�3(C) ≈
C→∞

� + 1
�
(� − �)

�
� ln(C) C

�
� . (A69)

Proceeding with node 2, we compare its exponent if it was isolated to the maximum of

the exponents of node 3 and 4, which are all the same. Moreover, since node 3 has a

higher power in the logarithm than node 4, in the asymptotic solution, we can disregard

the presence of the link 4→ 2. Thus, the solution for node 2 has another logarithmic

factor and another constant multiplicative factor than those of node 3, that is we have the

solution:

�2(C) ≈
C→∞

(
� + 1
�

)2

(� − �)
�
� ln2(C) C

�
� . (A70)

To complete, similarly we obtain the solution for node 1, i.e.:

�1(C) ≈
C→∞

(
� + 1
�

)3

(� − �)
�
� ln3(C) C

�
� . (A71)

We can hence see that the solutions are equal to those of the chain in Sec. 1.7.b, and there

are only some slight differences at finite times due to the presence of another link, but

not significantly.

Graph e—The last case to be examined is again similar to Graph c, but this time we

swap the direction of the link between nodes 1 and 2 (see network representation in

Table 5-B). Here the order with which we study the SCCs is inverted, because now only



Appendix . 193

node 1 has no outer links. Therefore, the Heaps’ law for node 1 is the classic individual

one in Eq. (1.7). Then we have to solve the equations for the cycle, which in this case are:



3�2(C)
3C

≈ ��2(C)
�C

+ (� + 1)�3(C)
�C

+ (� + 1)�1(C)
�C

3�3(C)
3C

≈ ��3(C)
�C

+ (� + 1)�4(C)
�C

3�4(C)
3C

≈ ��4(C)
�C

+ (� + 1)�2(C)
�C

.

(A72)

In this system, we can consider �1(C) known, working at large time-scales. Therefore,

following the algorithm described in Sec. 1.6.2, we first solve this system without the

external sources (i.e. node 1), in order to find the leading solution and then compare the

exponents with the external sources ones. The solution of the associated homogeneous

system is the same of a directed cycle as in Eq. (A26), i.e. a power-law function with

exponent 2� + 1/�. Now, we observe that the Heaps’ exponent of the cycle is higher than

the exponents of outer SCCs it is linked to, that is just node 1 with exponent �/�. Then,

the asymptotic solution for the nodes in the cycle corresponds to the solution of the cycle

as if it had no outer links. Explicit solutions are given in Table 5-B.
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