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Abstract 

Recent research makes increasing use of eye-tracking methodologies to generate and test 

process models. Overall, such research suggests that attention, generally indexed by fixations 

(gaze duration), plays a critical role in the construction of preference, although the methods 

employed to support this supposition differ substantially. In two studies we empirically test 

prototypical versions of prominent processing assumptions against one another and several 

base models. We find that general evidence accumulation processes provide a good fit to the 

data. An accumulation process that assumes leakage and temporal variability in evidence 

weighting (i.e. a primacy effect) fits the aggregate data, both in terms of choices and decision 

times, and does so across varying types of choices (e.g., charitable giving and hedonic 

consumption) and numbers of options well. However, when comparing models on the level of 

the individual, for a majority of participants simpler models capture choice data better. The 

theoretical and practical implications of these findings are discussed. 

 

Keywords: eye-tracking, attention, drift-diffusion models, evidence accumulation, choice. 
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Finding the right fit: A comparison of process assumptions underlying popular drift-diffusion 

models 

 Classic economic theory (von Neumann & Morgenstern, 1944) posits that preferences 

are stable and consistent, however a growing body of work indicates that preferences are 

instead dynamic, possibly being constructed in the moment (Slovic, 1995). One class of 

process models known as drift-diffusion models (DDMs) have shown great promise in their 

ability to predict choices of consumer products (Krajbich, Armel, & Rangel, 2011; Krajbich 

& Rangel, 2010), risky prospects (Busemeyer & Townsend, 1993), as well as experts sport 

decisions (Raab & Johnson, 2007). The basic assumption underlying all DDMs is that 

preferences are constructed through a dynamic information acquisition process. Specifically, 

individuals’ preferences are formed by sampling from available options until the evidence - 

generally defined as an options’ value - supporting one option is strong enough to induce a 

judgment.  

While all DDMs share this foundation, the models themselves vary substantially in 

their complexity and formulation, as do the data processing techniques (e.g., how fixations are 

identified) employed to construct and test them. This individualistic approach to process 

modeling presents a direct problem for the advancement of cognitive theory as the ability to 

implement differing models across studies, while directly testing the efficacy of their 

processing assumptions against one another, becomes an arduous task. In the current paper we 

extract the core processing assumptions of such models in order to compare them in terms of 

their ability to predict decisions and decision (reaction) times (Krajbich et al., 2011; Luce, 

1986; Ratcliff & Smith, 2004). 

The Contenders 

Baseline Models 

Before one can argue that attentional allocation (operationalized as fixation durations 

in the current studies) is crucial to predictions of choice it must be shown that directed 
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attention is solely, or in combination with subjective ratings of value, a better predictor than 

simple utility maximization models. In order to test if this is the case we generate and 

compare three baseline models.  

The first (Basev), is a simple utility maximization model predicting that option i will 

be chosen if its value (Vi) is higher than all other options’ values, where Vi is determined 

solely by an individuals’ subjective valuation of that option (si): 

For all options i:     Vi = si  Equation 1     

The second base model (Basea), is a simple DDM that predicts that the option i which 

receives the most attention (i.e., is fixated on for the longest period of time) will be selected. 

Thus, the value (Vi) for an option is equal to the sum of the gaze durations (e) of all fixations 

(f) to this option. We define e to be measured in seconds here and in the following1: 

For all options i:     𝑉𝑖 =  ∑ 𝑒𝑗
𝑓
𝑗=1   Equation 2 

The final baseline model we consider is a Standard Accumulator Model (SAM) which 

predicts that an options’ subjective-value (si) is multiplied by the sum of its gaze durations (e) 

across all fixations (f) and the option i with the highest resulting value (V) is selected: 

For all options i:    𝑉𝑖 =  𝑠𝑖 ∑ 𝑒𝑗
𝑓
𝑗=1   Equation 3 

Primacy-Recency Models 

The first type of process model we explore is the primacy-recency variant (Glöckner et 

al., 2012; Raab & Johnson, 2007). Models of this type suggest that incoming evidence is 

weighted more (recency) or less (primacy) than previously accumulated evidence. The 

underlying theoretical basis for models of this type stems from memory research, which 

consistently reveals robust serial position effects in memory recall (for review see, Laming, 

2010). For example, items encountered earlier and later in a list of to be remembered items 

are recalled more frequently than items presented in the middle of the list (Murdock, 1962). 

                                                           
1Different scalings had no effect. 
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Thus, for this DDM variant, greater weighting for already accumulated information reflects 

the fact that there is an increased likelihood for earlier encountered information to be 

remembered, while greater weighting for incoming information would reflect the fact that 

recently encountered information is more easily recalled. 

For our purposes we generate our Primacy/Recency Model (PRM) for the value of an 

object as a weighted sum of the previous value and the current value using one free weighting 

parameter δ as follows: 

If fixation to object i:     Vi(j) = δVi(j-1) + si*ej  Equation 4a 

For all unattended objects k≠i:  Vk(j) = Vk(j-1)  Equation 4b 

 The value (Vi) for an option i starts with a value of zero prior to the first fixation (Vi(0) 

= 0). The Vi at each subsequent fixation j is calculated by the subjective-value (si) of the 

fixated option multiplied by the gaze-duration in seconds (e) at fixation j to option i, and the 

previous Vi multiplied by δ, which can take any value from 0 to 10 and indicates a primacy or 

recency effect. Specifically, if δ is found to be smaller than one, recency is indicated while if 

δ is larger than one primacy is indicated. For options that are not the focus of attention, Vi 

remains unchanged (Equation 4b). Importantly, the PRM equates to the SAM if δ is set equal 

to one and equates to the Basea if all si had the same value.  

Leaky Accumulator Models 

Another popular DDM process is the leaky accumulator, which posits that 

accumulated evidence about a given option diminishes over time (Usher & McClelland, 2001, 

2004). The leaky accumulator variants are also formulated on theories related to memory 

processes, in particular the activation and inhibition of neural networks tasked with processing 

and storing information (Rumelhart & McClelland, 1986). In the current context this implies 

that when information supportive of an option is being accumulated (is the focus of gaze), 

retained information about other options loses some activation in their respective neural 

networks, due to decreases in neuronal firing patterns and inhibitory signals being sent by 
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neurons representing the option currently attended. We implement our Leaky Accumulator 

Model (LAM) to include only one free parameter ω which takes a value between zero and one 

as follows: 

If fixation is to option i:    Vi(j) = Vi(j-1) + si*ej       Equation 5a  

For all unattended options k≠i:  Vk(j) = ωej*Vk(j-1)  Equation 5b 

 Equation 5a posits that the value (Vi) of option i at fixation j is equal to the previous 

accumulated value of option i plus new information about option i, again defined as 

subjective-value (si) multiplied by gaze-duration (ej), but only when option i is the current 

focus of attention. For all other options k≠i that are not the focus of attention, Equation 5b is 

used where ω decreases the value of option k as a function of how long it is not attended to in 

seconds. Thus, values of ω closer to zero indicate stronger information leaks whereas values 

of ω closer to one indicate slower leaks; if ω is set to one then the LAM is equivalent to the 

SAM as well as the PRM if δ was set to one. 

Discounting Models 

The next class of DDM we consider is one which specifies a process where all options 

have evidence about them constantly accumulated, but options that are currently the focus of 

attention have evidence accumulated at an increased rate (Krajbich et al., 2011; Krajbich & 

Rangel, 2010). The discounted accumulator models build on findings that attention appears to 

bias accumulation processes leading to preferences for options which receive more attention 

(Armel, Beaumel, Rangel, 2008; Shimojo et al., 2004), a process linked to modulated 

activation of the ventromedial prefrontal cortex (Hare, Camerer, & Rangel, 2009). Our 

Discounted Accumulator Model (DAM) captures this bias with one free parameter Ɵ which 

can take any value between zero and one: 

If fixation is to option i:    Vi(j) = Vi(j-1) + si*ej  Equation 6a  

For all unattended option k≠i:  Vk(j) = Vk(j-1) + Ɵ*sk*ej  Equation 6b 



THE RIGHT FIT                                              7 

 

 The value (Vi) of option i in the DAM is identical to the LAM when that option is the 

focus of attention (Equation 6a). The DAM and LAM differ when an option is not attended to. 

Specifically, when an option is not being attended to, evidence (sk*ej) is still accumulated but 

at a discounted rate with the discount factor being equal to Ɵ (Equation 6b). Therefore, a Ɵ of 

zero indicates no accumulation of evidence for non-attended to options (a strong bias of 

attention), while a Ɵ of one indicates a constant accumulation of evidence for all options 

irrespective of where attention is directed (no attentional bias). As with the previous models, 

if Ɵ is set to zero the DAM is equivalent to the SAM, as well as the PRM and LAM if their 

parameters (ω and δ) were set equal to one. 

Leaky Primacy-Recency Model 

The last class of model we consider is a novel one which combines the processing 

assumptions underlying the PRM and LAM forming a hybrid Leaky Primacy-Recency Model 

(LPRM). The LPRM can be thought of as a generic neural network model. Like the leaky 

accumulator leakage in the LPRM represents the decrease in activation across a given neural 

network when an option is no longer being reinforced (attended to). The primacy-recency 

parameter can be thought of as reflecting greater (faster) activation for network nodes that are 

already active from previous fixations if primacy is found, while a recency effect might be 

interpreted similarly to the discounting models with there being a boost in information 

processing for currently fixated options. We define the LPRM with two free parameters: 

If fixation is to option i:    Vi(j) = δVi(j-1) + si*ej  Equation 7a  

For all unattended options k≠i:  Vk(j) = ωej*Vk(j-1)  Equation 7b 

 Each option i starts with a value of zero when no fixations have been made (Vi(0) = 0). 

The Vi at each subsequent fixation j is calculated by the subjective-value (si) of the fixated 

option multiplied by the gaze-duration (ej; at fixation j to option i) and the previous Vi 

multiplied by δ (Equation 7a), with δ (bound between 0 and 10) indicating either a primacy (δ 

> 1) or recency (δ < 1) effect. When options do not receive attention, Equation 7b is used with 
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ω (bound between zero and one) indicating that the value of option k decreases as a function 

of how long it is not attended to. 

Levels of Comparison 

 We compare each of the models laid out in the previous section in three ways: First, 

each model can be thought of as being deterministic, predicting that the option with the 

highest value (V in Equations 1 – 7) will be selected, thus we compare the models in terms of 

the percentage of choices they correctly predict. Second, each model can be thought of as 

providing a probability that an option will be selected; the value (Vi) of a given option relative 

to all other available options (see Equation 8 below). Thus, we can compare how strong a 

model predicts a given option will be selected both when that prediction is correct and when it 

is incorrect. Finally, to investigate a process measure beyond preference we analyze the 

model’s ability to predict observed decision times (reaction times). The analysis of decision 

time has long been proposed to provide additional insight into the cognitive processes 

involved in decisions (Cartwright & Festinger, 1943; Luce, 1986) and the ability for process 

models to predict decision times has been suggested as one way to further differentiate a 

given model’s ability to reflect or capture underlying processes (Ratcliff & Smith, 2004).  

By analyzing choices and response times, we aim to determine which of the basic 

mechanisms considered accounts best for behavioral data, which should provide important 

hints concerning the cognitive mechanisms involved. Still, it should be noted that the full-

fledged models discussed in the literature contain further auxiliary parameters and 

assumptions which are not tested here. Hence, conclusions concerning the validity of specific 

models cannot be derived from our research. 

Study 1 

 In Study 1 we investigated which model better predicted individuals’ decisions to help 

others. Specifically, we obtained subjective valuations of need (si) for various children then 

measured fixations while participants choose which child to donate to, allowing us to directly 
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compare the models introduced above in a novel domain (i.e., charitable giving, but see Study 

2 for choices involving more common hedonic consumption decisions). We use need ratings 

as our si as perceived need has been shown to be linked to decision to donate (Loewenstein & 

Small, 2007). Awareness of need is the first step proposed to underlie charitable behavior 

(Bekkers & Wiepking, 2010), and together with empathic feelings and perceived impact of a 

donation one of the primary psychological drivers underlying donation decisions (Dickert, 

Sagara, & Slovic, 2011). 

Methods 

Participants and Design. Ninety-two participants (58% Female; Mage = 21) with 

normal to corrected-normal vision participated in Study 1. Two additional participants could 

not be calibrated to the eye-tracker and were not tested. Study 1 preceded two unrelated 

studies and the total time for all studies was one hour. Individuals received 12 Euro for their 

participation.  

Materials and Procedure. The options in the study consisted of 54 images of children 

(~ 3° x 3° of visual angle) obtained from several charitable organizations. Participants were 

first presented with each of the images, one at a time in random order, and provided ratings of 

need for each image (child). Need ratings were indicated by increasing the diameter of a circle 

(0 to 300 pixels) with a larger circle indicating more need2; these ratings served as the si used 

in the models. Participants then engaged in an unrelated experiment lasting approximately 20 

minutes before being calibrated to the eye tracker; eye movements were recorded using the 

Eyegaze binocular system (LC Technologies) with a remote binocular sampling rate of 120Hz 

and an accuracy of 0.45° of visual angle.  

Participants were informed that they would be presented with varying numbers of 

children in need and that for each set of children they should select the one child they would 

                                                           
2si were scaled to be between 1 and 100 in Study 1 and Study 2 for convenience. Scaling had 

no impact on the results reported. 
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most like to donate to if given the chance (donations were hypothetical; see Study 2 for fully 

incentivized decisions). The number of options available within a choice was manipulated as 

a within-subjects factor (random order) and included set sizes of 2, 3, and 4 and the same 

child was never shown more than once. Each set of choices was unique and which children 

were shown in a given choice set was randomly determined for each participant. In total, 

participants made 18 selections (six trials in each set size) by using the mouse to move a 

yellow circle (displayed at the center of the screen at the start of each trial) so that it 

encompassed their selection and clicking the left mouse button (see Figure 1). After choosing 

a child, participants were asked to provide sympathy, need, and donation impact ratings for 

the child they selected using the same response method employed in the pre-test. These 

responses were included for exploratory reasons and we do not report analyses of these 

variables as we had no a priori hypothesis relating them to the processing assumptions tested 

here3. 

-Insert Figure 1 Here- 

Eye Tracking Analyses and Model Fitting Procedure. Regions of interest (ROIs) 

were defined as ~ 4° x 4° visual angle squares centered on each option. Trials in which no 

fixations to any options were detected assumed random choice (e.g., 50% likelihood for an 

option being picked from two options, 33% from three, and 25% from four). Consecutive 

fixations on the same ROI or blank space were collapsed into a single fixation.  

Model parameters were fit on the level of participant using a box-constrained quasi-

Newton method (Byrd, Lu, Nocedal, & Zhu, 1995) as implemented in R (2014) with starting 

values for free parameters determined from a loose grid-search within parameter boundaries. 

                                                           
3The pre-test and post-choice need ratings were strongly related (r = .72, p < .001), as were 

the ratings between pre-test need and post-choice sympathy (r = .46, p < .001) and impact 

ratings (r = .41, p < .001). These convergent correlations provide support for our use of need 

ratings as a subjective measure of the value (si) our participants saw in donating to a given 

child. 
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Formally, for each model we used the Luce choice rule (Luce, 1959) to estimate the evidence 

speaking in favor of a selected option (Equation 8): 

Luce choice rule:   


=

L

1  l

l(f)

i(f)

i(f)

V

V
 =)P(V

  

Equation 8 

 Where the model’s prediction for the probability (P) of option i being picked is its 

value Vi(f) at choice, that is after the final fixation f, divided by the sum of values (Vl(f)) of all 

options L. In the maximum likelihood estimation the set of parameters is determined that 

maximizes (the sum of the log-transformed) likelihoods of all observed choices (i.e., ln(

)P(Vi(f)
). Parameters were searched on the level of participant (per person) simultaneously 

taking into account choices between two, three, and four options4. 

Results 

Correct Prediction Comparison. We first compared each fitted model’s ability to 

make correct predictions in a deterministic implementation. We find that all models perform 

well above the overall chance level of 36% (i.e. [1/2 + 1/3 + 1/4]/3; see Figure 2, upper row). 

However, models containing an influence of attention in addition to value made more correct 

predictions than the Basev model (all t(91)s > 4.83, all ps < .001)5 and Basea model (all t(91)s 

> 3.60, all ps < .001). Comparing the LPRM (the model making the most correct predictions) 

to the LAM (the model making the second most correct predictions) we find the LPRM makes 

significantly more correct predictions on average (t(91) = 3.42, p < .001). Examining the best 

fitting model on the level of the individual we find a similar pattern of results with the LPRM 

making the most correct predictions for 20% of participant followed by PRM (9%), the LAM 

(8%), Basea (8%), Basev (7%), and DAM (1%): Note these totals are rounded and thus sum to 

greater than 100%. For nearly half of the participants (49%) no clear classification was 

                                                           
4Conducting separate fittings for each choice set size returned highly similar results. 
5All of the following t-tests are one-sided paired t-tests. 
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possible since they could be best described by at least two models (LPRM and LAM: 10%, 

LPRM and PRM: 9%, PRM, SAM, and DAM: 4%, LPRM, PRM, LAM DAM, and SAM: 

6%, all else < 4%).  

-Insert Figure 2 Here- 

Controlling for the number of options (2, 3, or 4) presented to participants, the odds 

for a correct prediction of the LPRM increases by a factor of 1.79 in comparison to Basev 

(Table 1) and the Odds for a correct prediction when using LPRM versus the LAM increased 

by a factor of 1.16 (i.e. 1.79/1.54). Thus, in terms of our first measure of comparison we find 

the LPRM makes more correct predictions on the aggregate level and performs as well as 

PRM on the individual level, though its advantage over other models is meager. 

-Insert Table 1 Here- 

Likelihood Comparison. To compare the fit of each model to the data in terms of log-

likelihoods (the strength of prediction) while taking into account the number of free 

parameters, we computed the Akaike Information Criterion (Akaike, 1974) for model k 

according to:  

AICk = 2*paramk - 2*∑(ln( )P(Vi(f)
)) 

The factor param equals the number of parameters of the model k (i.e., either 0, 1 or 2) 

when comparing the fit of models within participants and the number of parameters times the 

number of participants when comparing the overall fit. We then compared AICs using delta 

AIC: Δk = AICk – AICmin. A model k having values less than 2 in comparison to the best 

fitting model with the lowest AIC has substantial support, values between 4 and 7 indicate 

considerable support, while values greater than 10 suggest essentially no support for model k 

(Burnham & Anderson, 2002, p. 446). It is worth noting that the SAM is nested in the LAM 

and the PRM which are both nested in the LPRM. Thus in case a less complex model fits 

better, AIC differences can never be higher than the punishment term for the number of free 
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parameters (i.e., 2 between SAM and LAM/PRM, 4 between SAM and LPRM, and 2 between 

LAM/PRM and LPRM). 

The bottom rows of Figure 2 display the delta LLs and AICs for each model. 

Examining overall AICs we find the LPRM outperforms each of the other models (ΔAICs > 

36), while when considering the best fitting model on the level of the individual the LPRM 

only fits 16% of participants best; the SAM fits the majority best (30%), followed by the 

LAM (21%), Basea (13%), PRM (12%), Basev (8%), and lastly the DAM (0%). Computing 

ΔAIC for those individuals fit best by the LPRM to their next best fitting model we find very 

weak support for the LPRMs superiority (M = 1.92, Median = 1.06); for those fit best by other 

models the LPRM did on average about as good as they did (M = 5.17, Median = 2.36). 

Therefore, in terms of AIC, we find that the LPRM fits the data on the aggregate level best, 

while when categorizing on the level of the individual less complex sub-models of the LPRM 

(i.e., LAM, PRM, SAM) can describe 63% of participants better and models assuming no 

accumulation process can describe the remaining 21% of participants best. 

-Insert Figure 2 Here- 

Decision Time Comparison. To examine the extent to which reaction times reflected 

si in general we first examined whether decision times were faster when the selected option 

had a higher si relative to other options as one would expect that when the selected option 

greatly dominated other options it would lead to faster decisions. Correlating skew corrected 

decision times6 on Basev model’s predicted choice probabilities (PBase_v) per individual we 

find there to be a negative relationship indicating that the more one option dominated another 

in terms of si (i.e., at the start of the decision) the faster a decision was made (see the leftmost 

black dot in Figure 3).  

                                                           
6As would be expected decision times showed significant positive skew (Mardia Skew = 5.34, 

χ(1)2 = 1448.04, p < .001). We corrected for this by employing the following log correction 

equation which reduced skew to ~ .001: ln(Decision Time + .0872227). 
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To see how well each of the accumulator models could predict reaction times we first 

constructed absolute choice probabilities which corrected for the starting probability an option 

would be picked (Pabs = abs|P - PBase_v|). We use Pabs rather than P because as indicated above 

si influences decision times, thus by removing PBase_v we control for this effect allowing the 

Pabs of each model to reflect changes in the value of the selected option over the course of the 

decision rather than initial differences in si
7. We expect that if a model is capturing the 

accumulation process a larger Pabs should predict longer decision times as it reflects greater 

changes in the value of the option relative to its si. The black dots in Figure 3 display the 

median of individual correlations between the Pabs of each model and skew corrected decision 

times. For the SAM and DAM these relationships are negative and weak. While a small 

positive relationship was found between the PRMs Pabs and decision times, both the LAM and 

LPRM showed larger positive relationships between their Pabs and decision times. Thus, in 

terms of the models tested, only the PRM, LAM and LPRM show relationships in line with 

the predictions of the general evidence accumulation framework. For an overall evaluation of 

fit for these three models, we also regressed Pabs as predictor (with a random intercept for 

participants) on normalized decision times. The regression model for LPRM shows the best fit 

in terms of log-Likelihood (LPRM: -1526.69, LAM: -1533, PRM: -1539). 

-Insert Figure 3 Here- 

Estimated Parameters. Figure 4 displays the parameter estimates for each model. 

For the PRM we find that the majority of participants (77%) showed a primacy effect (M = 

2.47; Median = 1.62; CI95% [1.97, 2.95]). In addition, 39% of participants showed very strong 

primacy with estimated δ being greater than two. These primacy effects could be the result of 

                                                           
7Strict interpretation of the drift rate as an options subjective value would predict negative 

relationships between P and decision time for all models. From such a perspective, models 

with the strongest negative relation would provide the best fit to the response time data (i.e., 

the SAM in the current analysis). The last author of this manuscript supports such an 

interpretation. 
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initial fixations driving choice - choosing the first option seen. This is unlikely to be the case 

however, as initial fixations to an option were no more predictive than chance when two (M = 

.50; CI95% [.46, .55]), three (M = .37; CI95% [.33, .41]), or four (M = .22; CI95% [.19, .26]) 

options were available.  

The DAM’s parameter Ɵ was found to be at the lower end of the parameter space (M 

= .06; CI95% [.02, .10]) providing insight into why the DAM fit poorly compared to other 

models, namely since there was limited evidence of discounting with a parameter close to 

zero. The LAMs ω parameter was less than one for 85% of participants (equal to 1 for 15% of 

participants) indicating a leak of information (about 30% per second) over time (M = .71; 

Median = .76; CI95% [.66, .76]). The LPRM model combining a primacy/recency (δ: M = 3.37; 

Median = 2.14; CI95% [2.72, 4.01]) and leakage (ω: M = .66; Median = .69; CI95% [.61, .72]) 

parameter revealed similar parameter estimates as the PRM and LAM: 79% of participants 

showed a recency effect and 86% a leak of information over time. The correlation between 

the δ and ω was negative and strong which might suggest some dependency between them, 

suggesting caution in interpreting their estimated parameters (r(90) = -.47, p < .001).  

-Insert Figure 4 Here- 

Discussion 

 In Study 1 we tested what improvements in fit could be obtained over a simple value 

maximization model by employing models integrating attention and various processing 

assumptions. In line with the general contentions of the DDM framework we find strong 

support for both attention and subjective value being important predictors of choice, with the 

SAM outperforming the other base models. In terms of the various processing assumptions 

tested we do not find very strong support for any single model: Each model captured some 

share of participants’ data better than the others. Nevertheless, the AIC and percentage of 

correct predictions indicate that the LPRM provides the best overall fit, while both the LAM 

and LPRM were able to correctly predict decision times. Thus, while the results are mixed, 
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there is some evidence that leaky processes, perhaps combined with primacy-recency 

processes, provide better fits to the data and increase predictive accuracy. 

Study 2 

 While Study 1 provides support for the general role of attention in the preference 

construction processes, and weaker support for a leaky-primacy process providing the best fit 

(account) of this process, one might question the robustness of these findings and the ability 

of each model to cross-predict fully incentivized choices between different types of decisions 

(choices) and increased numbers of options. Therefore, in Study 2 we test the generalizability 

of the models by: (1) Expanding the number of options to choose from, (2) including different 

types of choices, and (3) making choices consequential (providing incentivization). In 

addition, drawing on the rich literature of out-of-sample predictions (Erev et al., 2010; 

Busemeyer & Wang, 2000) we also examine whether fixed parameter versions of each model 

can capture these new decisions. The fixed parameters were the median parameter values 

from Study 1: PRM (δ = 1.62), LAM (ω = .76), DAM (Ɵ = 0)8, and LPRM (δ = 2.14; ω = 

.69).  

Methods 

 Thirty-two new participants (59% female; Mage = 21) with normal or corrected to 

normal vision participated in Study 2 which lasted approximately 45 minutes. Participants 

first provided ratings of need for 70 children and appetitiveness ratings for 70 candy bars 

using a horizontal slider (500 pixels wide). As in Study 1, these ratings served as the 

subjective values (si) used in each model. Following a short filler task participants made 

choices between sets of either two, four, or eight candy bars (consumption choices) or 

children (donation choices as in Study 1): Five trials of each choice set size and type, 

amounting to 30 choices in total were made and trails were presented in random order for 

                                                           
8Note that DAM with Ɵ = 0 is identical to SAM; thus both models fit the data equally well 

when parameters are fixed. 
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each participant. Participants were informed that one of the children they chose would be 

selected at random and have 2.00 Euro donated to them on their behalf and one of the candy 

bars they chose would be randomly selected and given to them at the end of the experiment. 

Choices were made by moving a mouse wheel up/down - highlighting the options one by one 

with a white outline - and clicking the left mouse button once the option they wished to select 

was highlighted: Post-choice questions were not included. All other aspects were identical to 

Study 1.  

Results 

 We fit each model using the same procedures described in Study 1. In addition, we 

assessed the fits of each model using the estimated median values of the parameter values 

from Study 1. 

Correct Prediction Comparison. As in Study 1, we find that the LPRM makes the 

most correct predictions for both consumption and donation decisions (Figure 2, second and 

third column upper row). We find that all models perform well above overall chance level 

29% (i.e., [1/2 + 1/4 + 1/8]/3) (see Figure 2, upper row). Comparing the LPRM to the next 

best fitting model, the LAM, the LPRM makes significantly more correct predictions for 

donation, t(31) = 1.95, p < .05, and consumption decisions, t(31) = 2.79, p < .005. In terms of 

each model’s ability to predict on the level of the individual we find the LPRM makes the 

most correct predictions for the largest share of participants for donation decisions (25%) 

followed by LAM (9%), PRM (3%), and Basev (3%). The majority of participants donation 

decisions (59%) could be best described by at least two models (LPRM and LAM: 13%, 

LPRM and Basea: 6%, LPRM, LAM, and PRM: 6%, all else < 4%). For consumption choices, 

the LPRM also predicts most participants’ choices best (19%) followed by Basea (6%), and 

PRM (3%). However, the majority of participants consumption choices (72%) could be best 

described by at least two models (LPRM and LAM: 16%, LPRM and PRM: 9%, LPRM, 

LAM, and PRM: 9%, SAM, PRM, and DAM: 6%, all else < 4%). We find that the LPRM 
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provides the most correct predictions (83%) when using the median values of the parameters 

estimated in Study 1 for consumption choices and performs similarly to the best model LAM 

(76% for LPRM versus 77% for LAM) for donation choices. The percentage of correctly 

predicted choices is almost identical between models with fitted versus fixed parameters 

providing some evidence that the current results are not simply the result of over-fitting. Thus, 

in line with the results of Study 1, we find the LPRM makes more correct predictions on the 

aggregate, using both estimated and out-of-sample parameter values, though on the level of 

the individual its support is relatively small over simpler models.  

Likelihood Comparison. The bottom row, second and third column, of Figure 2 

displays the Delta AICs (i.e. the lowest AIC subtracted from values) for each model 

separately for consumption and donation decisions. As in Study 1 the LPRM outperforms 

each of the other models for consumption (ΔAICs > 2.80) and donation decisions (ΔAICs > 

25.41). While the LAM fits the most participants best for consumption decisions (44%), the 

LPRM fit the most participants best for donation decisions (44%). Nevertheless, the 

improvements in fit for those fit better by the LAM in consumption decisions (M = 1.15; 

Median = 1.19) and those fit better by the LPRM in donation decisions (M = 1.94; Median = 

1.02) over the next best fitting model was barely worth mention. For participants fit best by 

other models little decrease in fit was found comparing the best fitting model to the LAM in 

consumption (M = 2.30; Median = 1.73) and LPRM in donation (M = 2.15; Median = 1.70) 

decisions. 

Examining the fits of each model using the median values of parameters estimated in 

Study 1 we also find that the LPRM provides the best fit for both consumption and donation 

decisions in terms of log-Likelihoods (shaded bars, Figure 2, second row). Thus, the LPRM 

provides the best overall fit in Study 2 whether parameters were fitted individually to choices 

or used median values of parameters from Study 1. Importantly, this again suggests that the 

good fit of the LPRM does not result from over-fitting. 
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Decision Time Comparison. As in Study 1 we examined whether decision times were 

faster when the selected option had a higher si by correlating skew-corrected decision times9 

per person on PBase_v (black triangles and diamonds in Figure 3). As in Study 1, a negative 

relationship emerged such that decisions were made faster when the selected option had 

higher si. 

For the SAM and DAM, the median of the individual correlations was only 

significantly different from 0 for consumption decisions. The PRM, LAM, and LPRM all 

showed positive relationships between their Pabs and decision times. For an overall evaluation 

of fit we also regressed Pabs as predictor (with a random intercept by participant) on 

normalized decision times as in Study 1 for donation and consumption choices separately. 

Similar to Study 1, the LPRM had the highest log-Likelihood value in comparison to all other 

evidence accumulation models (all differences above 14 for consumption choices and above 4 

for donation choices). Importantly, these results replicate when using the median values of 

parameters estimated in Study 1 (Figure 3, grey symbols).  

Estimated Parameters. The parameter estimates for both consumption and donation 

decisions are shown in Figure 5. For the PRM (δ) we find that the majority of participants 

show a primacy effect in both consumption (88%; M = 4.44; Median = 3.06; CI95% [3.28, 

5.60]) and donation decisions (91%; M = 3.51; Median = 2.17; CI95% [2.43, 4.58]), though the 

relationship between parameter values across choice types was non-significant, r(30) = -.09, p 

= .63. As in Study 1, many participants (75% in consumption and 50% in donation decisions) 

showed very strong primacy with δ being estimated as > 2. Also as in Study 1, initial fixations 

were no more predictive than chance for consumption (49%, 24%, and 10%) and donation 

decisions (44%, 18%, and 12%) in each set size suggesting they were not driving the strong 

primacy estimates. The estimates of the DAMs Ɵ were found to be at the lower end of the 

                                                           
9Decision times showed significant skew (Mardia Skew = 56.78, χ(1)2 = 9141.85, p < .001) 

which we corrected for as in Study 1: ln(Decision Time - 1.018482).  
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parameter space for consumption (0 for all participants) and donation decisions (M = .003; 

Median = 0; CI95% [-.001, .007]) as in Study 1. The LAMs ω parameter was less than one for 

the vast majority of participants for consumption (94%; M = .43; Median = .44; CI95% [.33, 

.54]) and donation decisions (100% M = .41; Median = .39; CI95% [.30, .51]) indicating a leak 

of information over time as in Study 1; the relationship in parameters across domains was 

non-significant, r(30) = .19, p = .30. For the LPRMs δ all participants showed a primacy 

effect for both consumption (100%; M = 5.59; Median = 4.60; CI95% [4.44, 6.73]) and most 

for donation decisions (91%; M = 5.56; Median = 5.05; CI95% [4.23, 6.87]) though the 

relationship across domains was non-significant, r(30) = .18, p = .34. For the ω parameter the 

majority of participants in both consumption (94%; M = .46; Median = .49; CI95% [.35, .56]) 

and donation (100%; M = .45; Median = .46; CI95% [.35, .55]) decisions had parameter values 

below one indicating an information leak over time; the relationship across domains was non-

significant, r(30) = .17, p = .36. The correlations between δ and ω were negative and 

significant for consumption decisions (r(30) = -.65, p < .001), but non-significant for donation 

decisions (r(30) = -.28, p = .12. Thus, in terms of parameter values we find estimated 

parameters are similar across domains, fall in line with the average estimates of Study 1, but 

are not highly stable within an individual across domains for any model. 

-Insert Figure 5 Here- 

Discussion 

 In Study 2 we replicate the finding that models which include an impact of attentional 

allocation provide a better fit than those relying on subjective values alone, for consumption 

and donation decisions, providing support for the proposition that attentional allocation plays 

a role in the preference construction process. In terms of our process comparisons for fitted 

models we find that overall the LAM and LPRM provide the best fits to the data, for both 

consumption and donation decisions, though their improvement in fit was not very large on 

the level of the participant. For the fixed parameter values estimated from Study 1 we find the 
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LPRM provides the best fit, even outperforming the PRM and DAM using parameters 

estimated from the data, though again the increase in fit was rather small. Furthermore, while 

we find average parameter values to be similar for both kinds of decisions in each model the 

within-participant stability was not strong across choice types. In terms of the ability to 

predict decisions times we again find that the LAM and LPRM provide the most predictive 

power. Thus, while a leaky accumulation process provides the best fit overall only minimal 

support is provided as to its superiority over simple accumulation processes. 

General Discussion 

 In two studies we find evidence for the role of directed attention in the preference 

construction process, with models incorporating attentional allocation providing large 

increases in predictive accuracy for choices and a superior fit to decision times. These 

findings bolster assertions that DDMs can increase predictive accuracy for choices over 

classic value maximization models, and that evidence accumulation processes can at least in 

part be captured (reflected) by directed visual attention (i.e. fixation durations; Just & 

Carpenter, 1984).  

In each study we find that a process which assumes a leak of accumulated evidence for 

options that are not currently the focus of attention, and an increased weight for earlier 

accumulated evidence, fits both pro-social and hedonic consumption decisions and decision 

times better on average, even when using parameters estimated from a different data set (i.e., 

out of sample prediction; Erev et al., 2010) and incentivizing decisions. Nevertheless, in terms 

of our results speaking directly to the superiority of leaky plus primacy processes (i.e., the 

LPRM model) it must be noted that the improvement in fit they provided was not very large 

and its greater fit on the aggregate was primarily driven by the result that the LPRM fit 

between 16% (Study 1) to 44% (Study 2 donation) participants better than any other model. 

Furthermore, the majority of participants in both studies was described best by a less complex 

evidence accumulation model that either did not include the primacy/recency process (LAM), 
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the leaky process (PRM), or both (SAM). As such we do not wish to suggest that the LPRM 

model is “better” than all other models, or that any of the models we examined here are 

superior for that matter. Instead, each model appears to capture some participants’ behavior 

better than others and less complex accumulation models (i.e., LAM, PRM, SAM) can 

generally describe a majority of participants best, indicating that there is some variation in the 

types of cognitive processes underlying individuals’ decisions. Thus, the current results 

suggest that future explorations comparing DDMs, or any other computational models for that 

matter, are best examined on the level of the individual rather than on the aggregate. 

In addition, it is important to note that we reduced previously developed models to 

their central processing assumptions. Thus, these models were not tested in their more 

complex implementations. This was done as we were most interested in providing a clear 

comparison of their fundamental processing mechanisms rather than specific model 

implementations (e.g., inclusion of temperature or noise parameters, or decision thresholds). 

However, it is possible that with more complex implementations other processes might 

perform as well, or even outperform, the processes underlying the LAM and LPRM. 

Therefore, future comparisons of these processes, which further refine the models housing 

them, are necessary before strong conclusions are drawn about the processes that underlie 

these types of decisions. It is also important to examine how well these models and their 

underlying processes perform when options are defined by multiple attributes (see for review, 

Gwo-Hshiung, 2010). Such investigations would allow for greater insight into the abilities of 

each model to capture the information accumulation and storage of both positive and negative 

attribute information in addition to capturing the impact of attributes with differing degrees of 

importance. 

 The studies presented here provide a test of the process assumptions underlying 

popular accumulation models (Krajbich, et al., 2011; Raab & Johnson, 2007; Usher & 

McClelland, 2001) and find that on average a process in which accumulated information 
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diminishes over time, and weights earlier accumulated information heavier provides a fairly 

good account for choices and decision times. This finding is relevant not only for those 

interested in process models, but more generally to anyone interested in the accumulation, 

storage, and use of information during choice. For instance, the leaky process combined with 

greater weighting for earlier accumulated evidence is roughly in line with the findings of 

decreasing excitation and inhibitory/excitatory activations in neural networks (McClelland et 

al., 2010; Thagard, 1989; Glöckner & Betsch, 2008). Thus, the current findings not only 

provide support for the general DDM framework and the ability of directed attention to 

capture the preference construction process, they motivate continued comparisons of such 

processes, particularly on the level of the individual, and the neurological aspects that underlie 

them.  
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Table 1. Logistic regression with random intercept per participant (Bates et al. 2014) with 

correct prediction (1 = yes, 0 = no) regressed on models and number of options presented. 

 b se(b) z Factor Odds (i.e., eb) 

Intercept 0.62 0.08 7.95*** 1.86 

Model (control = Basev)     

  Basea 0.03 0.07 0.48 1.03 

  SAM 0.28 0.07 3.75*** 1.32 

  PRM 0.39 0.08 5.19*** 1.48 

  LAM 0.43 0.08 5.72*** 1.54 

  DAM  0.29 0.07 3.90*** 1.34 

  LPRM 0.58 0.07 7.58*** 1.79 

Set size (control = Two options)     

  Three options -0.21 0.050 -4.26*** 0.81 

  Four options -0.28 0.049 -5.72*** 0.76 

 

Note. Regression weights bs are log(Odds) for a correct prediction. BaseV and two options are 

set as controls for dummy coding. *** p < .001. 
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Figure 1. Screenshot of a selection trial with four options in Study 1; white outlines indicate 

ROIs which were not visible to participants; photographs were presented in color. 
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Figure 2. Bar charts displaying Percentage of Correctly Predicted Choices (first row; black 

horizontal lines indicating overall chance-performance across choice set sizes), Delta Minus 

Log-Likelihoods (second row), and Delta Akaike Information Criterion (third row) for 

Base_v, Base_a, the Standard Accumulator Model (SAM), Primacy Recency Model (PRM), 

Leaky Accumulator Model (LAM), Discounted Accumulator Model (DAM), and the Leaky 

Primacy-Recency Model (LPRM), for fits to decisions in Study 1 (left column), Study 2 

Consumption (middle column), and Study 2 Donation (right column). Grey bars indicate 

evaluations of models with fitted parameters and overlapping shaded bars indicate evaluations 

of models when free parameters in Study 2 are fixed using best-fitting median parameters 

from Study 1. Note that Delta Minus Log-Likelihoods for models with no parameters also 

change when parameters are fixed since values result from subtraction with LPRM. 



THE RIGHT FIT          30 

 

 
 

 

Figure 3. Estimator of the median and a nonparametric 95%-confidence intervals of 

individual correlations between normalized decision times and predicted decision times for 

models in both studies with fitted (black symbols) and fixed (grey symbols) parameters 

estimated from Study 1. 
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Figure 4. Histograms of best fitting parameters for each model in Study 1. Proportion (y-axis) 

of participants fit best by a given parameter value (x-axis) for the Primacy Recency Model 

(PRM), the Leaky Accumulator Model (LAM), the Discounted Accumulator Model (DAM), 

and the primacy recency parameter (LPRM  - Primacy/Recency) and leakage parameter 

(LPRM – Leak) for the Leaky Primacy Recency Model. 
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Figure 5. Histograms of best fitting parameters for each model in Study 2 over donation 

(shaded bars) and consumption (grey bars) decisions. Proportion (y-axis) of participants fit 

best by a given parameter value (x-axis) for the Primacy Recency Model (PRM), the Leaky 

Accumulator Model (LAM), the Discounted Accumulator Model (DAM), and the primacy 

recency parameter (LPRM  - Primacy/Recency) and leakage parameter (LPRM – Leak) for 

the Leaky Primacy Recency Model. 


