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Abstract

The paper proposes a parsimonious and flexible semiparametric quantile regression speci-

fication for asymmetric bidders within the independent private value framework. Asymmetry

is parameterized using powers of a parent private value distribution, which is generated by

a quantile regression specification. As noted in Cantillon (2008), this covers and extends

models used for efficient collusion, joint bidding and mergers among homogeneous bidders.

The specification can be estimated for ascending auctions using the winning bids and the

winner’s identity. The estimation is in two stage. The asymmetry parameters are estimated

from the winner’s identity using a simple maximum likelihood procedure. The parent quan-

tile regression specification can be estimated using simple modifications of Gimenes (2017).

Specification testing procedures are also considered. A timber application reveals that weaker

bidders have 30% less chances to win the auction than stronger ones. It is also found that

increasing participation in an asymmetric ascending auction may not be as beneficial as using

an optimal reserve price as would have been expected from a result of Bulow and Klemperer

(1996) valid under symmetry.
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1 Introduction

Asymmetry among bidders may arise from many factors, for example, differences in taste

or specialization, degree of information, productivity, costs, firm size, joint bidding or col-

lusion among a subgroup of buyers. It is, therefore, likely that symmetric bidding is only

a theoretical approximation that may not fit well many auction markets. Within the inde-

pendent private value paradigm (IPV hereafter), the revenue equivalence theorem no longer

holds with asymmetric bidders and first-price auction can be inefficient, see Krishna (2009)

and the references therein. Cantillon (2008) supports the common belief that competition is

reduced by bidders’ asymmetries. She shows that asymmetry decreases the seller expected

revenue in first-price and second-price auctions, when compared to revenues achieved with

a benchmark symmetric private value distribution. The timber auction revenue analysis of

Roberts and Sweeting (2016) shows that reducing the participation of strong bidders can

considerably lower the seller expected revenue.

Myerson (1981) suggests to depart from standard formats and describes an optimal auc-

tion which restores some competition by handicapping strong bidders. This mechanism

critically involves the private value distribution and is difficult to implement. In an em-

pirical study of snow removal contract sealed procurements, Flambard and Perrigne (2006)

considered this optimal auction and an alternative subsidy policy. Krasnokutskaya and Seim

(2011) studied a bid preference program for California highway auction, see also Marion

(2007). Athey, Coey and Levin (2013) focused on set-asides and subsidies for timber auc-

tions.

Among the aforementioned empirical works, the only papers adopting a nonparametric

approach are Flambard and Perrigne (2006) and Marion (2007), who studied first-price

auctions. For first-price auctions, Krasnokutskaya and Seim (2011), Athey, Levin and Seira

(2011) and Athey et al. (2013) all considered parametric specifications, as did Roberts and

Sweeting (2016) for ascending auctions.

There are, however, some works devoted to the nonparametric approach for ascending

auctions with asymmetric bidders. A theoretical nonparametric identification result with a

finite number of asymmetric types, due to Komarova (2013a), shows that the asymmetric
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valuation distributions can be recovered from the winning bid and the identity of the winner

under IPV, see also Athey and Haile (2002). Brendstrup and Paarsch (2006) have proposed

a related semi-nonparametric estimation procedure. Lamy (2012) shows that nonparametric

identification still holds under anonymity for second-price auctions when all the bids are

observed. Set identification results are also available for affiliated models, which are not

point identified as shown by Athey and Haile (2002). For affiliated values and second-

price auction, Komarova (2013b) gives bounds for joint private value distribution, assuming

identities are available. Coey, Larsen, Sweeney and Waisman (2017) consider a more difficult

scenario, where only the winning bid is observed and anonymity is possible. They obtain

bounds for the seller expected revenue and bidder surplus which extends upon the ones of

Aradillas-López, Gandhi and Quint (2013) for the symmetric case.

Developing nonparametric approaches for asymmetric bidders with a discrete number of

types is difficult, because a different value distribution must be estimated for each types, as

in Flambard and Perrigne (2006) or Brendstrup and Paarsch (2006). Dividing the sample

in subsamples defined by a given type may result in small subsamples in addition to poor

nonparametric estimation rates due to the curse of dimensionality. Comparing the valuation

distribution across types is not an easy task. In this paper, we tackle these two issues

through a semiparametric approach allowing for a nonparametric component common to each

type and using a parametric description of type heterogeneity. The common nonparametric

component is a parent private value conditional distribution F (v|x), where x is an auction

product-specific covariate. Following Gimenes (2017), we assume that F (v|x) corresponds to

a quantile regression model, so that this rich and flexible specification can be estimated with

a standard parametric rate independently of the dimension of x. The asymmetry parameter,

say λi, is an exponent specific to bidder i, whose private value distribution is

Fi(v|x) = F λi(v|x).

The exponent λi can be an individual fixed effect which captures unobserved bidder charac-

teristics. As developed in the paper, it can also be a parametric function of some observed

bidder variables and fixed effect parameters. In our timber application, the buyers are either

mill or logger, which are considered as weak and strong bidders respectively in all applica-
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tions.

Cantillon (2008) has used a similar specification for theoretical illustration purpose, not-

ing that it has been used to “model efficient collusion, joint bidding and mergers among

homogeneous bidders”, which can be relevant for many applications. Indeed, when λi is an

integer number, F λi(v|x) is the distribution of the maximum value of λi symmetric bidders

with independent valuations drawn from F (v|x), as relevant, for instance, in joint bidding.

This feature also shows that the asymmetry parameter λi is a measure of the “strength” of

bidder i. A small numerical experiment in the paper parallels Cantillon (2008), adopting an

econometric point of view based on the symmetric private value distribution which would

be estimated ignoring asymmetry by the quantile procedure of Gimenes (2017). Such a mis-

specification may lead to underestimation of the optimal reserve price and seller expected

revenue.

The proposed estimation is in two stage, based upon the winning bid and identity of the

winner. The first stage estimates the parameters appearing in the asymmetry exponent λi

using a maximum likelihood procedure based upon the winner identity. The intuition behind

this procedure is that the distribution of the winner identity only depends upon the relative

buyers’ strength, and hence on asymmetry parameter λi and not upon the common parent

distribution F (v|x). The second stage estimates the quantile regression specification associ-

ated with F (v|x). As in Gimenes (2017), it is based on a quantile regression estimation and

uses individual transformations of quantile levels, which must be estimated under asymmetry.

Accounting for asymmetry leads to considering a transformation which depends upon the

estimated asymmetry parameter. This latter step parallels Arellano and Bonhomme (2017),

who similarly estimate a quantile level transformation in a three stage quantile regression

procedure.

The empirical application illustrates the methodology using USFS timber ascending auc-

tions. Two kinds of firms are competing: firms with manufacturing capacity (mills, usually

considered as strong bidders in the literature) and firms lacking manufacturing capabili-

ties (loggers). We take advantage of recent advances in the quantile-regression specification

literature to illustrate how well the proposed model fits the data. The estimated asymme-

try exponent of the loggers is 30% less than the one of the mills, suggesting that, roughly
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speaking, two mills should be replaced by three loggers to generate an ascending auction

with similar features. The empirical application also studies the seller expected revenue as

a function of the proportion of loggers and the number of buyers. It reveals economically

significant variations, in the range of 9% − 20% between ascending auctions attended only

by loggers or only by mills. In small auctions with two bidders, changing a logger by a mill

can increase the seller optimal expected revenue by 5% in some cases, and still as high as 1%

with 12 bidders. This suggests that seller expected revenue bounds that do not account for

the proportion of each type can be considerably large, and that the ones averaging over types

participation, as in Coey et al. (2017), can be less informative. Another finding relates to an

important result of Bulow and Klemperer (1996) stating that, under symmetry, increasing

participation is more beneficial than using an optimal auction. Several violations of this

result are observed, especially due to the presence of weak bidders.

The paper is organized as follows. Section 2 presents the auction setup and the asym-

metric quantile specification. Sections 2.2 and 2.3 give the identification strategy and discuss

identification of the parameter of asymmetry under several specifications. Section 3 shows

how to design the optimal reserve price policy when bidders are asymmetric and studies the

consequences of a symmetric misspecification for the seller’s expected revenue. The two-step

estimator is proposed in Section 4 and its asymptotic distribution is obtained. An empirical

application using USFS timber ascending auctions is studied in Section 5. The proofs of all

the results of the paper are grouped in the Appendix A. A simulation exercise in Appendix

B illustrates the finite-sample properties of the estimation procedure. Appendix C details

the test procedures used in the application and Appendix D contains tables not displayed in

the application section to save space.

2 Semiparametric quantile specifications

A single and indivisible object with observed characteristics x ∈ Rd is auctioned to N ≥ 2

bidders through an ascending auction. Each bidder has a specific characteristic Zi, i =

1, . . . , N . The auction covariates x, the number of bidders N participating in the auction

and the associated bidder covariates Zi, i = 1, . . . , N are common knowledge to buyers and

sellers, and observed by the analyst. Within the IPV paradigm, each bidder i = 1, · · · , N
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is assumed to have a private value Vi for the auctioned good, which is not observed by

other bidders. The bidder only knows his own private value, but it is common knowledge

for bidders and sellers that each private value has been independently drawn from a c.d.f.

Fi(·|X,Zi) conditional upon (X,Zi), X = (1, x′)′, or equivalently, with a conditional quantile

function

Vi(τ |X,Zi) := F−1
i (τ |X,Zi), τ in [0, 1] . (2.1)

It is assumed later that the analyst observes L identically drawn auctions, where each po-

tential bidder appears with a positive probability. For each auction `, the winning bid W`

and winner’s identity, the number N` of bidders, the product-specific covariate X` and the

bidder characteristics Z` = [Z1`, . . . , ZN``] are observed. As shown later, the assumption that

the identity of the winner is observed can be relaxed when bidders are characterized using

discrete types. In this case, it is sufficient to observe the type of the winner and the numbers

of bidders within a given type.

As in the symmetric private value setting, the dominant strategy for non-winners is to

bid up to their true valuation. It is, therefore, assumed that

Assumption 1 The winning bid is the second-highest bidder’s private value.

See Brendstrup and Paarsch (2006), Aradillas-López et al. (2013), Coey et al. (2017),

and Gimenes (2017) for similar assumptions and related discussions, and Haile and Tamer

(2003) for a more general incomplete game framework.

2.1 Asymmetric private value quantile specification

The proposed model combines an asymmetry function known up to parameters

λi = λ(Zi;αi, β) > 0 (2.2)
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with a parent conditional distribution F (·|X) which only depends upon the product-specific

covariates and is generated by a quantile-regression model1

F−1 (τ |X) = X ′γ (τ) (2.3)

assuming that the first entry of X is a constant term. In (2.2), the αi are bidder fixed

effects parameter which can capture some unobserved bidder heterogeneity. In what follows

α = [α1, . . . , αN ].

The quantile regression specification (2.3) can be interpreted as follows, viewing X as

some production factors and Vi the output that bidder i can achieve fromX. In the symmetric

case where the private values Vi are drawn from the parent distribution, the random quantile

level Ui = F (Vi|X), which indicates the rank of bidder i in the private value distribution, is a

measure of efficiency. For instance, a bidder with Ui = 1 is able to achieve the highest possible

output F−1(1|X), while Ui = 0 gives the worst possible one F−1(0|X). As Vi = X ′γ(Ui),

the quantile regression model postulates an additive but linear contribution of the auction

characteristics to bidder i private value. This contribution is summarized by the slope

coefficient γ(Ui), which does not need to be constant in most of its components as it would

be for a regression model. This adds some flexibility and was found useful in our application.

Under asymmetry, it holds Vi = X ′γ
[
U

1/λi(Zi;αi,β)
i

]
by (2.5) below, so that a larger asymmetry

coefficient λi(Zi;αi, β) gives a U
1/λi(Zi;αi,β)
i closer to 1, increasing the private value for a given

efficiency Ui.

Assumption 2 Suppose (2.2) and (2.3) hold. There are some α, β and a vector function

γ (·) such that

Fi (·|X,Zi) = [F (·|X)]λi (2.4)

for all admissible X,Zi and all i = 1, . . . , N .

Cantillon (2008) refers to distributions of the type of (2.4) as a class of distributions for

which a quasi-ordering of potential bidders is available. This specification accommodates

1Our approach carries over with minor modifications for other quantile semiparametric specifications,
such as the exponential one F−1 (τ |X) = exp (X ′γ (τ)).
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asymmetries that arise from a merger, joint bidding or collusion among homogeneous bidders.

See e.g. Graham and Marshall (1987), Mailath and Zemsky (1991), McAfee and McMillan

(1992), Brannman and Froeb (2000) and Waehrer and Perry (2003).

Assumption 2 is equivalent to the quantile specification

Vi (τ |X,Zi) = X ′γ
[
τ 1/λ(Zi;αi,β)

]
, (2.5)

which shows that asymmetry comes from a bidder specific transformation of the quantile

level τ . As detailed below, the power specification is particularly convenient to establish

identification. Examples of λ(Zi;αi, β) are given later on. The slope coefficient γ (·) is

the nonparametric element of the model. It can, however, be estimated with a parametric

rate as expected from the quantile regression and shown later on. The asymmetric power

exponent 1/λ(Zi;αi, β) measures the bidder strength: if λ(Zi;αi, β) > λ(Zj;αj, β) then

bidder i dominates bidder j in a first-order stochastic dominance sense, i.e. Fi(·|X,Zi) ≤
Fj(·|X,Zj) with a strict inequality inside the common support of these distribution. Note

that the private value distributions have the same support [V (0|X) , V (1|X)] of the parent

distribution. When λ(Zi;αi, β) goes to infinity, Vi (τ |X,Zi) converges to V (1|X) while it

goes to V (0|X) when λ(Zi;αi, β) goes to 0.

Additional standard assumptions on the parent quantile slope function γ (·) and the

function λ (·; ·) are as follows. In the last assumption, Θ is the compact set of admissible

asymmetry parameters (α, β) and Z is the compact support of the bidder characteristic Zi.

Assumption 3 The vector of auction specific variables, X = [1, x′0]′, has a dimension of

(d+ 1) × 1. The random vector x0 has a compact support X0 ⊂ (0,+∞)d. The matrix

E [XX ′] has an inverse.

Assumption 4 V (·|X) is continuously differentiable over (0, 1) with a derivative V (1) (·|X)

which is strictly positive for all X in X = {1} × X0.

Assumption 5 It holds that inf(z,a,b)∈Z×Θ inf1≤i≤N λ (z; ai, b) > 0. The function λ (z; ai, b)

is twice continuously differentiable with respect to ai and b. The true value (α, β) of the

asymmetry parameter lies in the interior of Θ.
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2.2 Identification

The proposed identification procedure is in two steps, which are constructive enough to

develop a simple estimation procedure. The first step aims to identify the bidder asymmetry

parameters α and β from the observed winner’s identity. Let G (w|X,Z,N, i) be the c.d.f.

of the winning bid given that bidder i wins the auction, given covariates X and Z. Define

also

Ψi (τ ;Z,N, α, β) =
ΛN(Z;α, β)τΛN|i(Z;α,β) − ΛN |i(Z;α, β)τΛN (Z;α,β)

λ(Zi;αi, β)
(2.6)

where

ΛN(Z;α, β) =
N∑
j=1

λ(Zj;αj, β),

ΛN |i(Z;α, β) = ΛN(Z;α, β)− λ(Zi;αi, β).

The next Lemma describes the joint distribution of the winner’s identity and the winning

bid.

Lemma 1 Suppose Assumptions 1 and 2 hold. Then for any i = 1, . . . , N

P (Bidder i wins the auction|X,Z) = λ(Zi;αi,β)∑N
j=1 λ(Zj ;αj ,β)

, (2.7)

G (w|X,Z,N, i) = Ψi [F (w|X) ;Z,N, α, β] . (2.8)

Suppose that the system of equations with unknowns a and b in Θ

λ(Zi; ai, b)∑N
j=1 λ(Zj; aj, b)

=
λ(Zi;αi, β)∑N
j=1 λ(Zj;αj, β)

, i = 1, . . . , N, (2.9)

has a unique solution, α and β. Then, Lemma 1 shows that the winner’s identity distribution

identifies the asymmetry parameters α and β. Identification on a case by case basis with

examples of functions λ(·; ·, ·) and parameter set Θ ensuring identification of the asymmetry

parameters is given in the next section. The probability of winning is very often used to

assess the presence of asymmetry among the bidders, see Laffont, Ossard and Vuong (1995),

Flambard and Perrigne (2006) for first-price sealed bid auctions and Brendstrup and Paarsch
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(2006) for ascending auctions.

Identification of the parent quantile regression slope γ (·) follows in a second step, using

the winning bid c.d.f. given that bidder i wins the auction in (2.8). The proof of Proposition 2

yields that Ψi (·;Z, α, β) is strictly increasing. Therefore the conditional winning bid quantile

function W (τ |X,Z, i) given that i wins is

W (τ |X,Z, i) = F−1
[
Ψ−1
i (τ ;Z, α, β) |X

]
= X ′γ

[
Ψ−1
i (τ ;Z, α, β)

]
and then

W [Ψi (τ ;Z, α, β) |X,Z, i] = X ′γ (τ) . (2.10)

Identification of γ (·) easily follows as stated in the next Proposition.

Proposition 2 Suppose that Assumptions 1-3 hold, and that the asymmetry parameters

(α, β) are identified. Then the parent slope function γ (·) is also identified.

2.3 Identified bidder asymmetry specifications

Establishing identification of the asymmetry parameter is essential, which holds for the

following standard choice of the function λ (·; ·, ·) under proper standardization of the asym-

metry parameter. For the third and fourth examples given below, it is useful to assume that

the bidder covariate Zi` varies across auctions.

Example 1: Bidder fixed effects. In this example λ(Zi;αi, β) = αi, and (2.9) shows that

asymmetry parameter identification holds provided the system of equations with unknown

a = [a1, . . . , aN ] in Θ
ai∑N
j=1 aj

=
αi∑N
j=1 αj

, i = 1, . . . , N,

has a unique solution. As well known, this is ensured when

Θ =
{
a ∈ RN

+∗|a1 = 1
}
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that is, the parent private value distribution is the first bidder private value distribution.2

Alternatively the simplex Θ =
{
a ∈ RN

+∗|
∑N

i=1 ai = 1
}

is also possible. �

Example 2: Linear regression. The case of the regression specification λ(Zi;αi, β) =

Z ′iβ is particularly useful when the covariate Zi codes bidder types.3 An example of contin-

uous Zi is provided by construction procurement, where Zi can group the bidder’s distance

to the construction site and her capacity. When β 6= 0, (2.9) gives the system

Z ′ib∑N
j=1 Zjb

=
Z ′iβ∑N
j=1 Z

′
iβ
, i = 1, . . . , N,

which is equivalent to Z ′ibZ
′
jβ = Z ′iβZ

′
jb or b′ZiZ

′
jβ = β′ZiZ

′
jb for all bidder pair {i, j}. If

the range of ZiZ
′
j has a non-empty interior, differentiating with respect to the entries of this

matrix gives bp1βp2 = βp1bp2 for all pair (p1, p2). Hence, β is identified up to a multiplicative

constant and imposing that the first entry of β is 1 or that β′β = 1 ensures identification.�

Example 3: Linear regression with bidder fixed effects. The case of λ(Zi`;αi, β) =

αi + Z ′i`β can be dealt as in Example 2, augmenting Zi` to code bidder identities. �

Example 4: Exponential linear regression with bidder fixed effects. When the

Zi` entries can take negative values, a possible choice of the positive function λ (·; ·, ·) is

λ(Zi`;αi, β) = αi exp (Z ′i`β). For this choice, taking logarithm in (2.9) implies

ln aj − ln ai − (lnαj − lnαi) + (Zj` − Zi`)′ (b− β) = 0, for all 1 ≤ i < j ≤ N .

If Var (Zj` − Zi`) 6= 0 for some pair (i, j), it must hold that b = β and then aj/ai = αj/αi

for all 1 ≤ i < j ≤ N . Restricting the parameter space of the αi as in Example 1 then gives

identification. �

2It is however possible to identify α1, strengthening Assumption 4 to ensure V (1)(·) exists and is strictly
positive near 0. If so and setting V1(τ) = V (τ1/α1), it holds that V1(τ) − V1(0) = V (1)(0)τ1/α1(1 + o(1)),
showing that α1 is identified from the lower tail of the V1(·). This is left for further research.

3Alternatively, a fixed effects specification as in Example 1 can be used provided the fixed effects αi can
only take K unknown values µ1, . . . , µK , where K is the number of types.
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3 Seller revenue and asymmetry misspecification

The proposed specification is convenient to compute and analyze the seller revenue. The

presence of a reserve price R = R (X,Z, V0), where V0 is the seller private value, requires

changing Assumption 1 into

Assumption 6 There is no transaction if all private values are below the reserve price.

Otherwise, the winning bid is the greater of the second-highest bidder’s private values and

the reserve price.

For a reserve price in the common support [V (0|X) , V (1|X)], consider the quantile

level r = r (X,Z, V0) = F (R|X) of R in the parent distribution. Under Assumption 4 it

therefore holds that R = V (r|X). It is convenient to abbreviate λ (Zi;αi, β), ΛN (Z;α, β),

ΛN |i (Z;α, β) into λi, ΛN and ΛN |i, respectively. The seller payoff in an auction with reserve

price R is

π (r) = W I (W ≥ R) + V0I (W < R) ,

where W is the winning bid. The corresponding expected seller revenue is

Π (r|X,Z, V0) = E [π (r) |X,Z, V0] .

3.1 Expected revenue and optimal reserve price

The next Proposition gives a quantile expression for the expected revenue and characterizes

the optimal reserve price. Let ΛN = ΛN(Z;α, β) and ΛN |i = ΛN |i(Z;α, β) be as (2.6).

Proposition 3 Suppose Assumptions 2, 4 and 6 hold. Then

(i) The probability of selling the auctioned good is (1− rΛN ).
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(ii) The seller expected payoff is

Π (r|X,Z, V0) = V0r
ΛN +R

N∑
i=1

rΛN|i
(
1− rλi

)
+

∫ 1

r

V (t|X)

{
(1−N) ΛN t

ΛN−1 +
N∑
i=1

ΛN |it
ΛN|i−1

}
dt. (3.1)

(iii) The optimal reserve price R∗ = V (r∗|X) satisfies

V0 = R∗ − V (1)(r∗|X)
r∗
ΛN

N∑
i=1

(
r−λi∗ − 1

)
. (3.2)

Compared to the case of symmetric bidders, Proposition 3-(ii) shows that the optimal

reserve price depends upon the number N of bidders and upon the bidder characteristics.

The impact of the asymmetry coefficients λi on the expected seller revenue and on the

optimal reserve price seems unclear. For Π (r), the ambiguity is due to the term −rΛN|i+λi

which increases with λi, while the other terms decrease. Observe similarly that, in (3.2),

1/ΛN decreases with λi while r−λi increases. Cantillon (2008, Theorem 2) gives condition

that allows to rank two sets of asymmetry coefficients λi according to seller revenue.

In many cases, the seller must decide a reserve price before observing the number N of

bidders and the asymmetry parameter of the entrants. The expected revenue formula (3.1) is

conditional on N and on the asymmetry parameters of the entrant, an information which is

not available but can be integrated out to produce a relevant expected revenue and optimal

reserve price.

3.2 The effect of a symmetric misspecification

To analyse the effect of a symmetric misspecification on the optimal reserve price and seller

revenue, we perform a numerical experiment with no covariate and two asymmetric bidders

with private values Fi (v) = (vκ)λi , 0 ≤ v ≤ 1 and i = 1, 2. Higher κ gives private values

closer to 1 and values of the curvature parameter κ ranging from 1 to 50 are considered. High

and moderate asymmetry scenarios, with (λ1, λ2) set to (0.1, 3.9) and (0.1, 0.9) respectively

are considered.
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To evaluate the effect of estimating a symmetric misspecified model, we derive the limiting

symmetric private value distribution by matching the distribution of winning bids with the

symmetric winning bid distribution. Under Assumption 1, the winning bid is equal to the

minimum between (V1, V2), therefore, the winning bid distribution is

Fλ,W (w) = P (min (V1, V2) ≤ w) = wκλ1 + wκλ2 − wκ(λ1+λ2), w ∈ [0, 1] .

For symmetric bidders, the function Ψi (·) does not depend upon i and is equal to

Ψ (τ) = 2τ − τ 2 = 1− (1− τ)2 .

Therefore, the symmetric private value c.d.f. Fλ,S (·) which generates the winning bid distri-

bution Fλ,W (·) must satisfy Ψ [Fλ,S] = Fλ,W so that

Fλ,S (v) = 1−
(
1− vκλ1 − vκλ2 + vκ(λ1+λ2)

)1/2
, v ∈ [0, 1] .

The c.d.f. Fλ,S (v) is the limit of any nonparametric estimator obtained by matching the

winning bid distribution of a misspecified symmetric bidder model with the observed one,

see for instance Gimenes (2017). An optimal reserve price assuming symmetric bidders,

Rλ,S = Vλ,S (rλ,S) where Vλ,S (·) = F−1
λ,S (·), solves the symmetric version of (3.2)

Rλ,S − V (1)
λ,S (rλ,S) (1− rλ,S) = 0

where the seller private value V0 is set to 0 for the sake of simplicity. The expected seller

revenue achieved with Rλ,S under the true asymmetric private value distribution can then be

computed using (3.1). The reserve price Rλ,S and the corresponding expected seller revenue

are reported in the columns labeled “Misspecified” in Tables 1-2. The optimal reserve price

and seller revenue using the true private value distribution are reported under the label

“Asymmetry”.

Table 1 reveals that ignoring ex-ante asymmetry is always associated with lesser expected

seller revenue, with substantial revenue loss when the curvature parameter κ is high or in the

high asymmetry scenario. The optimal reserve price is also substantially higher in the correct
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Table 1: Misspecified symmetric versus true asymmetric models

Optimal Reserve Price Expected Seller Revenue

λ1 λ2 κ Asymmetry Misspecified Asymmetry Misspecified Percentage Loss
0.1 3.9 1 0.6630 0.5451 0.5389 0.5059 6.12%

2 0.7550 0.5995 0.6800 0.6054 10.97%
5 0.8558 0.6403 0.8223 0.6738 18.06%
10 0.9092 0.6671 0.8927 0.7230 19%
50 0.9730 0.7785 0.9707 0.7173 26.10%

0.1 0.9 1 0.4830 0.4420 0.2550 0.2535 0.59%
2 0.5559 0.4901 0.3948 0.3887 1.55%
5 0.6768 0.5773 0.5987 0.5767 3.67%
10 0.7676 0.6450 0.7336 0.6930 5.53%
50 0.8710 0.7785 0.9283 0.7148 23%

model with strong asymmetry. It is worth noting that our analysis differs from Cantillon

(2008)’s who establishes revenue order for asymmetric auctions with the same symmetric

benchmark and concludes that “the expected revenue is lower the more asymmetric bidders

are”. Table 2 considers various asymmetry scenarios such that λ1 + λ2 = 1 with κ = 1.

The results support Cantillon’s finding: higher asymmetry of (λ1, λ2) = (0.1, 0.9) has lesser

revenue than the symmetric case of (0.5, 0.5). However, given ex-ante asymmetry among

bidders, a misspecified symmetric model always has smaller expected revenue and higher the

asymmetry, more is the potential loss in revenue due to misspecification.

Table 2: Varying asymmetry levels

Optimal Reserve Price Expected Seller Revenue

λ1 λ2 Asymmetry Misspecified Asymmetry Misspecified Percentage Loss
0.1 0.9 0.4830 0.4420 0.2550 0.2535 0.59%
0.2 0.8 0.4680 0.4433 0.2593 0.2590 0.14%
0.3 0.7 0.4550 0.4442 0.2627 0.2627 0.003%
0.4 0.6 0.4470 0.4440 0.2648 0.2648 0.0003%
0.5 0.5 0.4440 0.4449 0.2655 0.2655 0.00%
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4 Estimation and asymptotic inference

Suppose that for each auction `, the analyst observes the winning bid W`, the product-specific

covariate X`, the number of bidders N`, the bidder covariate Z` and the identity I∗` of the

winner.

4.1 Two step estimation

As stated in Lemma 1, the probability that bidder i wins is

P (i|Z`, N`, α, β) =
λ(Zi`;αi, β)∑N`
j=1 λ(Zj`;αj, β)

so that the asymmetry parameter (α, β) can be estimated using the maximum likelihood

estimator (
α̂, β̂

)
= arg max

(α,β)∈Θ

L∑
`=1

lnP (I∗` |Z`, N`, α, β) . (4.1)

The second step consists in the estimation of the parent quantile slope and is based upon

(2.10), which identifies γ (·) as shown in Proposition 2. Define, for Ψi (τ ;Z,N, α, β) as in

(2.6),

Φ̂` (τ) = Φ`

(
τ ; α̂, β̂

)
= ΨI∗`

(
τ ;Z`, N`, α̂, β̂

)
.

The quantile level Φ̂` (τ) is an estimation of the (random) quantile level ΨI∗`
(τ ;Z`, α, β)

which is such that the quantile function of the winning bid given X`, Z`, N` and I∗` satisfies

W
[
ΨI∗`

(τ ;Z`, α, β) |X`, Z`, N`, I
∗
`

]
= X ′`γ (τ) ,

(see (2.10)). It suggests the quantile regression estimator

γ̂ (τ) = arg min
γ

L∑
`=1

ρΦ̂`(τ) (W` −X ′`γ) (4.2)

where ρΦ (u) = u (Φ− I (u < 0)), see e.g. Koenker (2005).

15



4.2 Asymptotic distribution

While a joint estimation of the parameters α, β and γ(·) may offer some potential efficiency

gains, the proposed two step procedure is simple to implement. In addition, the first stage

estimation of (α, β) is not affected by a possible mispecification of the parent c.d.f. Note

the second step slope estimator involves an estimated quantile level. As well known since

Murphy and Topel (1985), the first step estimation can affect the second step asymptotic

distribution, but not the rate of γ̂(·) which is still the parametric
√
L rate. However, this

can be easily captured using the proof techniques in Pollard (1991). Useful assumptions and

notations are as follows. In the sequel, (α, β) will be abbreviated in θ when convenient. Let

P θ (i|Z`, N`, θ) be θ derivative of P (i|Z`, N`, θ). Under Assumption 5, the Fisher information

matrix for the asymmetry parameters can be defined as

I (θ) = Var

(
P θ (I∗` |Z`, N`, θ)

P (I∗` |Z`, N`, θ)

)
or by using the Bartlett identity when Z` has a compact support as assumed below.

Assumption 7 The auction variables (X`, N`, Z`, I
∗
` ,W`) are drawn identically and inde-

pendently. The support Z of Z` is compact.

Assumption 8 The identification equations (2.7) and (2.10) hold. The asymmetry param-

eters are identified and the Fisher information matrix I (θ) has an inverse.

Assumption 7 is standard. Assumption 8 imposes that the auction model is correctly

specified and that the asymmetry parameters are identified.

Consider now some additional notations for the second step estimator γ̂ (τ). Let the

τ derivative of ΨI∗`
(τ ;Z`, N`, θ) be denoted by Ψτ

I∗`
(τ ;Z`, N`, θ), which exists and is strictly

positive on (0, 1) as shown in the proof of Proposition 2. As the conditional quantile function

of the winning bid is

W (τ |X`, Z`, I
∗
` , N`) = X ′`γ

[
Ψ−1
I∗`

(τ ;Z`, N`, θ)
]
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the conditional p.d.f. of the winning bid is, under Assumption 4,

fW (w|X`, Z`, I
∗
` , N`) =

1

W (1) [W−1 (w|X`, Z`, I∗` , N`) |X`, Z`, I∗` , N`]

=
Ψτ
I∗`

(
Ψ−1
I∗`

(W−1 (w|X`, Z`, I
∗
` , N`) ;Z`, N`, θ) ;Z`, N`, θ

)
X ′`γ

(1)
[
Ψ−1
I∗`

(W−1 (w|X`, Z`, I∗` , N`) ;Z`, N`, θ)
]

which is continuous and bounded away from infinity over (V (0|X`) , V (1|X`)). Let the θ

derivative of ΨI∗`
(τ ;Z`, N`, θ) be denoted by Ψθ

I∗`
(τ ;Z`, N`, θ) and define

H (τ) = E [X`X
′
`fW (X ′`γ (τ) |X`, Z`, I

∗
` , N`)] ,

J (τ) = E
[
X`X

′
`

(
I (W` ≤ X ′`γ (τ))−ΨI∗`

(τ ;Z`, N`, θ)
)2
]

C (τ) = E

[(
X`

(
I (W` ≤ X ′`γ (τ))−ΨI∗`

(τ ;Z`, N`, θ)
))
I−1 (θ)

(
P θ (I∗` |Z`, N`, θ)

P (I∗` |Z`, N`, θ)

)′]
,

D (τ) = −E
[
Ψθ
I∗`

(τ ;Z`, N`, θ)X
′
`

]
.

The matrices H (τ) and J (τ) are specific to the infeasible quantile regression estimator γ̃ (τ)

of γ (τ) which uses the true asymmetry parameters (α, β) instead of their estimates,

γ̃ (τ) = arg min
γ

L∑
`=1

ρΨI∗
`

(τ ;Z`,N`,θ) (W` −X ′`γ) .

In particular, H−1 (τ) J (τ)H−1 (τ) is the asymptotic variance of γ̃ (τ), see Koenker (2005).

The matrix C (τ) is the asymptotic covariance of the infeasible γ̃ (τ) and
(
α̂, β̂

)
. Finally

D (τ) =
∂

∂θ∂γ′
E
[
ρΨI∗

`
(τ ;Z`,N`,θ) (W` −X ′`γ (τ))

]
is the θγ derivative of the population version of the objective function which is used for γ̃ (τ).

The asymptotic variance of the asymmetry parameter estimator
(
α̂, β̂

)
and of the feasible

17



γ̂ (τ) are given by the matrices I−1 (θ) and

Cγγ(τ) = H−1 (τ)
{
J (τ) +D (τ) I−1 (θ)D (τ)′ +D (τ)C (τ)′ + C (τ)D (τ)′

}
H−1 (τ)

Cγθ (τ) = H−1 (τ)
{
−C (τ)−D (τ) I−1 (θ)

}
The next Theorem gives the asymptotic joint distribution of γ̂ (τ) and

(
α̂, β̂

)
.

Theorem 4 Suppose Assumptions 2-5, 7 and 8 hold. Then, for any quantile level τ in (0, 1),

γ̂ (τ) and θ̂ =
(
α̂′, β̂′

)′
are asymptotically normal with

√
L

(
(γ̂ (τ)− γ (τ))′ ,

(
θ̂ − θ

)′)′ d→ N

0,

Cγγ(τ) Cγθ (τ)

Cγθ (τ)′ I(θ)−1

 .

While the asymptotic normality of the MLE θ̂ is standard, the one of γ̂ (τ) follows from

modifying the approach of Pollard (1991) to account for the first step estimation. The

asymptotic variance of these estimators can be estimated but it may be more suitable to

rely on bootstrap, especially for the parent slope function γ (·). Indeed, bootstrap is more

reliable for inference in quantile regression, see Koenker (2005) and the reference therein.

4.3 Seller revenue and optimal reserve price estimation

Let λ̂i = λi(Z; α̂, β̂), Λ̂N = ΛN(Z; α̂, β̂) and Λ̂N |i = ΛN |i(Z; α̂, β̂) be as (2.6). The estimated

seller expected payoff derived from Proposition 3 is

Π̂ (r|X,Z, V0) = V0r
Λ̂N +X ′γ̂(r)

N∑
i=1

rΛ̂N|i
(

1− rλ̂i
)

+

∫ 1−ε

r

X ′γ̂(t)

{
(1−N) Λ̂N t

Λ̂N−1 +
N∑
i=1

Λ̂N |it
Λ̂N|i−1

}
dt.

In the integral upper bound above, ε > 0 is a small truncation index, set to .1 in the

Application Section, which accounts for the fact that the quantile regression estimator may

not be defined for extreme quantiles. It follows that the argument r must vary in [ε, 1−ε]. As

in Li, Perrigne and Vuong (2003), an optimal reserve price estimation R̂∗ = X ′γ̂ (r̂∗) could
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be based on the maximization

r̂∗ = arg max
r∈[ε,1−ε]

Π̂ (r|X,Z, V0)

instead of (3.2), as the latter would request an additional estimation of the derivative of

V (·|X). Note that the use of a truncation may affect the estimation of the optimal reserve

price. As the values of r̂∗ relevant in our application were close to .5, we do not think it

affects our empirical results.4

A Functional Central Limit Theorem can be established for
{

Π̂ (r|X,Z, V0) , r ∈ [ε, 1− ε]
}

combining arguments used for Theorem 4 with empirical process theory as reviewed in van der

Vaart (1998). The Argmax Theorem can then be used to obtain the asymptotic distribu-

tion of r̂∗ and of R̂∗. In the application, pairwise bootstrap is used to derive (pointwise)

confidence intervals as proposed in Koenker (2005).

5 Application

In this section, we investigate asymmetry in USFS timber auctions, as reported on Phil

Haile’s website http://www.econ.yale.edu/∼pah29/timber/timber.htm, using the method-

ology developed in this paper. Bidders are classified as mill, abbreviated as M (with manu-

facturing capacity to process the timber) and logger, abbreviated as L (lacking manufacturing

capabilities). The dataset aggregates 7,462 ascending auctions (i.e., winning bids) that oc-

curred in the western part of the US between 1982-90. Timber tracts are characterised by

a set of variables including the estimated volume of the timber (measured in thousand of

board feet - mbf) and its estimated appraisal value (given in Dollar per unit of volume). Mills

won in about 72% of the auctions. Table 3 reports the descriptive statistics. The auctioned

tract exhibits significant heterogeneity in quality and size. Bidder participation is high. On

average, there are 6 bidders attending the auctions in a range of 2 to 12.

As we do not observe individual bidders characteristics, we consider the private value

4Note also that the function t 7→ (1−N) Λ̂N t
Λ̂N−1 +

∑N
i=1 Λ̂N |it

Λ̂N|i−1 vanishes at t = 0 as long as

Λ̂N > 1, and at 1, since Λ̂N =
∑N
i=1 λ̂i and Λ̂N |i = Λ̂N − λ̂i. This also suggests that the lower and upper

tails have a moderate contribution in the expected revenue integral, at least for reasonable value of N .
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Table 3: Descriptive Statistics

Mean Std. Dev. Max Min
Winning bids ($ per tbf) 126.43 136.22 5,145.71 0.14
Appraisal value ($ per tbf) 58.65 60.35 793.62 0.25
Volume (tbf) 4,466.89 4,418.41 39,920 8
Contract Length (years) 1.96 1.3 42 0.1

Number of bidders 5.77 3.09 12 2
Number of loggers 1.74 2.10 11 0
Number of mills 4.03 3.02 12 0
Bidders in the winner’s class 4.52 2.73 12 1

quantile regression model

Vmill(τ |x) = V (τ |x) = x′γ (τ) , Vlogger(τ |x) = x′γ
(
τ

1
λ

)
, (5.1)

where x stacks the constant, appraisal value and volume of the auctioned tract. In what

follows, a median auction is an auction where the appraisal value and the volume are set to

their median value. With the exception of Figure 2, all the figures and tables of this section

and Appendix D are for a median auction.

5.1 Specification analysis

The fitted model (5.1) combines a power asymmetry specification, i.e. Flogger(v|x) = [Fmill(v|x)]λ

with a quantile regression for the parent distribution, which is identical here to the mill

private value distribution. These two components are in fact quite different. Many op-

tions, such as adding interaction terms or adopting a sieve approach as in Belloni, Cher-

nozhukov, Chetverikov and Fernández-Val (2019) can be used to improve the fit of the

parent quantile regression. As Flogger(v|x) = Asy [Fmill(v|x)|x] for the “asymmetry” function

Asy(τ |x) = Flogger (Vmill(τ |x)|x), the considered asymmetry power specification is quite re-

strictive and may fail to provide a good approximation for Asy(τ |x). It is therefore of interest

to develop a two-step analysis where the asymmetry specification is considered first, as this

component of the model is the most likely to be misspecified. The correct joint specification

of the two components in (5.1) is analyzed later.
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5.1.1 Asymmetry power specification

Let P and Q be the number of mills and loggers attending the auction. An implication of

the asymmetry power specification already used for estimating λ is

HAsy
0 (p, q) : P (The winner is a mill|X, (P,Q) = (p, q)) =

p

p+ λq
.

Our power specification analysis is based on a test for Ĥ
Asy

0 = ∪p,qHAsy
0 (p, q), where the union

is over the proportions (p, q) with asymmetric auctions (i.e. pq > 0, as the winner type

distribution is degenerated otherwise), and with a number Lp,q =
∑L

`=1 I [(P`, Q`) = (p, q)]

of auctions larger than 30. A t statistic for HAsy
0 (p, q) is

ξ̂p,q =
√
Lp,q

ω̂p,q − p

p+qλ̂

σ̂p,q
(5.2)

where ω̂p,q =
1

Lp,q

L∑
`=1

I (Auction ` winner is a mill and (P`, Q`) = (p, q)) and

σ̂2
p,q =

(
ω̂p,q(1− ω̂p,q)∑

s,t
Ls,t
LAsy

ω̂s,t(1− ω̂s,t)
Lp,q
LAsy

− 1

)2

ω̂p,q(1− ω̂p,q)

+

(
ω̂p,q(1− ω̂p,q)∑

s,t
Ls,t
LAsy

ω̂s,t(1− ω̂s,t)

)2
Lp,q
LAsy

∑
s,t:(s,t) 6=(p,q)

Ls,t
LAsy

ω̂s,t(1− ω̂s,t)

where LAsy is the number of asymmetric auctions in the sample, i.e. with P` 6= 0 or Q` 6= 0.

In (5.2), ω̂p,q is the sample estimator of the probability that a mill wins in an auction with

p mills and q loggers. The t-statistic ξ̂p,q is the studentized difference of ω̂p,q to its model

counterpart, which converges to a standard normal as shown in Proposition C.1 in Appendix

C under standard assumptions.

Our asymmetry specification analysis relies on the maximum statistic over asymmetric

auctions

max |ξ̂| = max
(p,q):Lp,q>30,pq 6=0

∣∣∣ξ̂p,q∣∣∣ ,
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which is used to test Ĥ
Asy

0 . The p value of max |ξ| is computed by the pairwise bootstrap

as detailed in Appendix C. The result of this test is reported in Table 4. Appendix C also

Table 4: Asymmetry power specification

Test statistic p-value

max |ξ̂| 2.90 0.54

reports the pairwise bootstrap ξ̂p,q p-values, which are all reasonably high.

5.1.2 Power and parent distribution specifications

Our estimation strategy is built on the winning bid quantile function given the type pro-

portion (P,Q), the winner type, say T , and the auction characteristic X. More specifically,

(2.10) shows that the conditional winning bid quantile is

W (τ |X,P,Q, T, γ(·), λ) = X ′γ
(
Ψ−1(τ |P,Q, T, λ)

)
(5.3)

where, for λT = 1 if the winner is a mill and λT = λ if a logger wins and ΛP,Q = P + λQ,

Ψ(τ |P,Q, T, λ) =
ΛP,Qτ

ΛP,Q−λT − (ΛP,Q − λT ) τΛP,Q

λT
.

A recent literature considers quantile regression specification tests over a quantile interval

T , see Escanciano and Velasco (2010), Rothe and Wied (2013), Escanciano and Goh (2014)

and the references therein. Their approach can be used to test whether the quantile re-

gression (5.3) is correctly specified for each value of (P,Q, T ), building on a collection of

statistics as done in the previous section for the winner type distribution. We adopt instead

a more aggregated approach which follows Rothe and Wied (2013) and avoids to estimate

the conditional winning bid cdf given (P,Q, T ). Let G(w, x) = E [I (W ≤ w and X ≤ x)]5

be the joint cdf of the winning bid W and X, which is estimated using the empirical cdf

5For a vector, X ≤ x means that Xj ≤ xj for all j.
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Ĝ(w, x) = 1
L

∑L
`=1 I (W` ≤ w,X` ≤ x). The null hypothesis is

H0 : There exists γ(·) and λ such that G(w, x|γ(·), λ) = G(w, x) for all w, x.

The null winning bid distribution is estimated using the winning bid quantile function (5.3)

via

Ĝ(w, x|γ̂(·), λ̂) =
1

L

L∑
`=1

I (X` ≤ x)

∫ 1

0

I
[
W
(
t|X`, P`, Q`, T`, γ̂(·), λ̂

)
≤ w

]
dt. (5.4)

The Rothe and Wield (2013) statistic for H0 is

RW =
L∑
`=1

(
Ĝ(W`, X`|γ̂(·), λ̂)− Ĝ(W`, X`)

)2

. (5.5)

We have conducted in parallel a conditional testing procedure reported in Appendix C, which

computes a statistic RW as above for each type proportion observed in the sample, as done

when analyzing the power specification. This was motivated by Aradillas-López et al. (2013),

who mentioned that auctions with N = 12 bidders may have more bidders.6 We therefore

compute several versions of RW depending on whether auctions with N = 12 were used or

not to estimate the parent distribution and λ, and in empirical cdf summations. Appendix

C details how to compute (5.4) in practice and to apply the bootstrap procedure of Rothe

and Wied (2013) to obtain the p-values of the next table.

Table 5: Asymmetry power and parent distribution specification

λ̂, γ̂(·): all sample λ̂, γ̂(·): without N = 12 λ̂, γ̂(·): without N = 12

Ĝ: all sample Ĝ: all sample Ĝ: without N = 12
Test statistic p-value Test statistic p-value Test statistic p-value

RW .098 0.043 .120 .094 .085 .170

Table 5 shows that the Rothe and Wied (2013) test does not reject H0 at the 1% level but

rejects at 5%. Removing auctions with twelve bidders from the sample gives much higher p-

6See their Footnote 26. This was also pointed to us by an anonymous Referee. These auctions represent
slightly less than 8% of the sample.
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values, which suggests that the proposed testing procedure supports the correct specification

of the model. Further analysis reported in Appendix C shows that including or not auctions

with twelve bidders gives a nearly identical estimation of λ as well as the intercept and

appraisal value coefficients, and only slightly increases the estimation of the volume slope.

We therefore use the whole sample in the rest of the empirical analysis.

Figure 1: Private Value Conditional Quantile Function of Loggers and Mills

A median auction is considered, with mills in red and loggers in blue. The 95% confidence intervals for the quantile regression
estimates were computed by resampling with replacement the (X`,W`)-pair.

5.2 Private value quantile functions

We use a type fixed effect specification for the asymmetry parameter λi`, with λi` = λM

if bidder i at auction ` is a mill and λi` = λL if it is a logger. For identification, we

normalize λM = 1. The first step estimation gives λ̂L = 0.6988 with a 95% confidence

interval computed by pairwise bootstrap given by [0.6516, 0.7554], which shows that loggers

are indeed significantly weaker than mills. In particular, the logger winning probability is

41.1% when the types are in equal proportions, 70% of the probability that a mill wins the

ascending auction, which is 58.8%.
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This is confirmed by Figure 1, which gives the estimated private value quantile functions

of mills (red) and loggers (blue) and their 95% confidence bands computed via pairwise

bootstrap method for a median auction. The private value conditional distribution of mills

first-order stochastically dominates the one of loggers, especially in the upper part of the

distribution.

Figure 2: Private Value Parent Quantile Regression Coefficients

The 95% confidence intervals for the quantile regression estimates were computed by resampling with replacement the
(X`,W`)-pair. Top intercept, middle appraisal value and bottom volume estimated slope functions.

The power specification of the private value quantile functions allows to highlight which

variable generates asymmetry. Indeed, a constant slope function in the parent private value

quantile regression means that the impact of the associated variable is identical for each

type of bidders. Figure 2 gives the quantile regression coefficients of the private value parent

distribution. The estimated volume slope function looks constant, and possibly not signifi-

cant. As the power transformation will not make bidders to differ in terms of volume slope

functions, this suggests that capacity constraint is not binding for both types. In contrast,

the parent appraisal value slope function does not look constant, and this variable therefore

generates differences across mills and loggers. Figure 2 suggests that asymmetry is driven

by qualitative (e.g. ability to improve on the appraisal value of the timber) and unobserved
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factors (captured by the intercept), instead of capacity constraints. Interestingly, coping

for asymmetry gives appraisal value slope estimated functions that vary much less across

quantile levels than in Gimenes (2017).

5.3 Expected revenue and optimal reserve price

We now investigate the effect of asymmetry on the seller’s expected revenue and optimal

reserve price. Given that we recover all the primitives of the game, we can evaluate the seller

expected revenue as the proportion of types changes. This contrasts with Coey et al. (2017)

who averages over the type proportion. In sections 5.3 and 5.4, the seller’s outside option

value V0 appearing in Proposition 3 is set to 0. Plotting r ∈ [0, 1] 7→
(
V̂ (r|X), Π̂ (r|X)

)
gives

a graph of the estimated seller’s expected revenue achieved with a reserve price R = V̂ (r|X).

Figure 3 shows estimates of the expected revenue as a function of the reserve price for

each N and type proportion. The dotted vertical lines give the optimal reserve price for

each proportion of types. As the colors of the curves become warmer (from blue to red and

yellow), loggers are replaced by mills and the revenue level increases in a parallel way. The

expected revenue functions have clear maximas for small numbers of bidders (typically N = 2

or N = 3), contrasting with the estimation obtained with symmetric bidders in Gimenes and

Guerre (2020). For larger N , the expected revenues look flat in their central part, a fact that

cannot be seen from the estimation set strategy of Coey et al. (2017).

As a consequence, implementing an optimal reserve price is mostly useful when the prob-

ability of observing a small number of bidders is high. The optimal reserve prices shown in

Figure 3 and detailed in the Appendix Table D.3 depend upon N and type proportion, but

exhibit a moderate 7% variation, staying in the interval [104.7, 111.9] and slightly increasing

with the number of mills. As the expected revenues are flat around their maxima, using a

reserve price in the range [104.7, 111.9] gives an expected revenue close to its maxima. This

includes the optimal reserve price 107.9$ estimated from a symmetric specification, as in

Gimenes (2017), given in D.3. As the expected revenue with no reserve price is mostly below

100$ when N ≤ 5, as seen from Table 6 below, using such a reserve price may mean not

selling the auctioned lot if a small number of bidders participates.7

7To see this, observe that the probability of selling is the probability that the maximum private value
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Figure 3: Strategical Expected Revenue and Optimal Reserve Price

5.4 Type variation and additional bidder effects

In this section, we study the effects of changes in the bidder’s type proportion and additional

bidders on the expected revenue. For that, we set the largest N to its maximal observed value

12, see tables D.1 and D.2 in Appendix D. The 95% boostrapped confidence intervals for the

expected revenue given in these tables have a length ranging from 2$ to 6$, corresponding

to revenues varying between 48$ and 137$ 8. The bootstrapped 95% confidence intervals of

the strategical seller expected revenue, achieved using an optimal reserve price, and the non

strategical one, obtained with a non binding reserve price, does not overlap up to N = 6.

Similarly, the revenue gain achieved when an additional bidder of any type enters looks

significant, at least for auctions with up to 7 initial bidders for additional logger and, for

V(N) is above the reserve price R. The Markov inequality gives the bound E[V(N)]/R for the latter. A proxy
for E[V(N)]/R is the non strategical revenue Π(0) when the seller value is 0, suggesting to use the bound
Π(0)/R for the probability of selling.

8The bootstrap 95% confidence intervals for the optimal reserve price have a larger length, between 12$
and 14$ for an optimal reserve price between 104$ and 112$. As a matter of comparison, Coey et al. (2017)’s
set identified confidence bounds for the seller revenue and optimal reserve price look huge, but they also
allow for affiliated values.
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mill, up to some auctions with N = 10. Setting the largest N to 12 is therefore expected to

capture all the statistically significant policy effects delivered by the sample. We now focus

on each of these effects.

Revenue and types. Point estimation of bidders’ private value distributions permits in-

vestigation of changes in the number of bidders of a given type. Tables 6, 7 and 8 give a

summary of all universe of changes, see also Tables D.1 and D.2 in Appendix D.

Table 6: Non Strategical Expected Revenue

One logger replaced by one mill
Min ER Max ER Max %∆ [ Min %, Max % ]

N = 2 48.02 57.65 19.61% [ 8.84%, 9.89% ]
[46.37, 50.42] [56.20, 59.70]

N = 3 63.59 75.04 18.01% [ 5.42%, 5.83% ]
[61.61, 66.03 [73.30, 77.47]

N = 5 84.25 98.64 17.08% [ 2.78%, 3.63% ]
[81.82, 87.14] [96.51, 101.45]

N = 8 105.28 120.17 14.14% [ 1.35%, 2.02% ]
[102.57, 108.42] [117.68, 123.34]

N = 10 115.22 129.55 12.44% [ 0.93%, 1.48% ]
[112.45, 118.58] [126.59, 132.95]

N = 12 123.05 136.52 10.95% [ 0.66%, 1.12% ]
[120.23, 126.19] [133.61, 139.96]

The 95% confidence intervals for the quantile regression estimates were computed by resampling with replacement the
(X`,W`)-pair.

Table 6 considers a non strategical expected revenue, which means that reserve price is

non binding, whereas Table 7 focuses on the optimal revenue9. All the results are obtained

for a given N . The second and third columns of both tables give the minimum and maximum

values of the seller expected revenue across type proportions. The minimum and maximum

9As suggested in Coey, Larsen and Sweeney (2019), a comparison between a strategical and non strategical
expected revenue can be fruitful to the seller due to the costs that a policy of setting an optimal reserve price
may impose in practice. Recent works have highlighted the asymmetric effects on seller’s revenue due to
mistakes in choosing reserve prices (see e.g. Kim (2013), Ostrovsky and Schwarz (2016), Coey et al. (2019)
and Gimenes (2017))
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Table 7: Strategical Expected Revenue

One logger replaced by one mill
Min ER Max ER Max %∆ [ Min %, Max % ]

N = 2 69.65 76.44 9.75% [ 4.57%, 4.95% ]
[68.64, 70.92] [75.45, 77.77]

N = 3 77.97 86.95 11.52% [ 3.44%, 3.98% ]
[76.60, 79.67] [85.62, 88.73]

N = 5 92.16 103.9 12.74% [ 2.14%, 2.75% ]
[90.27, 94.45] [102.06, 106.30]

N = 8 108.63 121.86 12.18% [ 1.20%, 1.73% ]
[106.32, 111.36] [119.54, 124.84]

N = 10 117.16 130.37 11.28% [ 0.86%, 1.33% ]
[114.70, 119.99] [127.76, 133.61]

N = 12 124.2 136.92 10.24% [ 0.63%, 1.03% ]
[121.63, 127.20] [134.11, 140.35]

The 95% confidence intervals for the quantile regression estimates were computed by resampling with replacement the
(X`,W`)-pair.

values of the revenue in both cases are obtained when only loggers and only mills are par-

ticipating, respectively. The percentage change in revenue when changing all loggers into

mills is given in the fourth column and is an additional measure of asymmetry. It is, on

average, 15.4% in the non strategical case and 11.3% in Table 7. These order of magnitude

are similar to the one found in Roberts and Sweeting (2016) who employ a parametric spec-

ification.10 The fifth column gives the maximum and minimum percentage changes obtained

when replacing one logger by one mill. All these results suggest that the seller should either

incentivize mills participation or subsidize higher loggers bid as studied in Flambard and

Perrigne (2006), Marion (2007) or Krasnokutskaya and Seim (2011) for the latter.

Revenue and additional bidders. An important result by Bulow and Klemperer (1996)

states that the seller expected revenue achieved in an ascending auction with no reserve

price but an additional bidder is higher than the one of any allocation mechanism, which

includes the case of an ascending auction with an optimal reserve price, under symmetry

10These authors also allow for entry decision but their estimate “indicate a moderate effect of selection”.
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Table 8: Violations of Bulow and Klemperer (1996), N = 2, 3, 4

N (Logger,Mill) Non strat. ER Strat. ER Additional Logger Additional Mill
N = 2 (2,0) 48.02 69.65 63.59∗ 67.30

(1,1) 52.46 73.10 67.30∗ 71.18
(0,2) 57.65 76.44 71.18∗ 75.04

N = 3 (3,0) 63.59 77.97 74.82 78.23
(2,1) 67.30 81.07 78.23 81.63
(1,2) 71.18 84.06 81.63 84.96
(0,3) 75.04 86.95 84.96 88.17

N = 4 (4,0) 74.82 85.44 84.25 87.31
(3,1) 78.23 88.24 87.31 90.30
(2,2) 81.63 90.93 90.30 93.19
(1,3) 84.96 93.53 93.19 95.97
(0,4) 88.17 96.03 95.97 98.64

An underlined revenue indicates a violation of Bulow and Klemperer (1996), ie the considered non strategical revenue obtained
by adding a bidder of a given type is below the strategical one. A “*” indicates that the 95% bootstrapped confidence interval
of the strategical revenue and the non strategical one with an additional bidder of the considered type do not overlap.

and a downward sloping marginal revenue condition.11 Table 8 reports several violations of

Bulow and Klemperer (1996) arising in our asymmetric framework. The “Strat. ER” column

of Table 8 indicates the estimated optimal expected revenue achieved with N = 2, 3 and 4

bidders, with number of loggers or mills as indicated in the second column. The last two

columns give the estimated non strategical expected revenue obtained when adding a logger

or a mill.

Table 8 shows that using an optimal reserve price is always more profitable than adding

a weak logger bidder. Adding a mill bidder is also less profitable than using the optimal

auction but only when N = 2 and in a much less significant way than adding a logger.

Table 8 shows that the difference of revenue using the optimal auction and adding a logger

decreases with N , in average across type proportion. By contrast the revenue difference

using the optimal auction and adding a mill increase with N .12 The systematic violations

11See Coey et al. (2019) for a recent econometric application to entry exogeneity.

12Tables D.1 and D.2 in Appendix D also report the revenues obtained for an estimation of a symmetric
private value model as in Gimenes (2017). Interestingly violations of Bulow and Klemperer (1996) occur for
N = 2, 3 but not for larger N .
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of Bulow and Klemperer (1996) when adding a logger suggests that the logger private value

distribution does not satisfy the downward sloping marginal revenue condition.13 When

N ≥ 4, using the optimal reserve price is less profitable than participation of an additional

bidder of any type, up to few minor exceptions. However, the differences of expected revenue

between an optimal reserve price and an additional bidder are at best in the range of 3$,

which is close to the half length of the boostrapped 95% confidence interval for the strategical

and non strategical seller’s expected revenues.

6 Conclusion

The paper considers a semiparametric specification for asymmetric private value distribution

under the independent private value distribution setup. The bidders share a common parent

distribution, which is generated by a quantile regression model. Asymmetry is driven by

powers applied to the parent distribution. These powers can depend upon individual and/or

group fixed effects, bidder and/or auction specific variables. The specification can be esti-

mated by a two stage procedure from the winning bid and winner’s identity. This quantile

regression specification is not affected by the curse of dimensionality and can cope with data-

rich environment. Unlike common parametric specifications, it is expected to be less affected

by misspecification due to its nonparametric nature. Usual parametric rates nevertheless

apply and estimation techniques remain standard. The parametric power component of the

model allows for a simple evaluation of bidder’s asymmetry and of its economic implications.

A timber auction application has been used to illustrate the implication of asymmetry.

The proposed specification tests do not reject the model. The estimated asymmetry param-

eter means that weaker bidders have 30% less chances to win the auction than stronger ones.

The quantile regression specification allows to detect the variables that affect the bidders in

13The downwards sloping marginal revenue condition of Bulow and Klemperer (1996) requires that

− d

dt
[Vi(t)(1− t)] = V

(
t1/λi

)
− (1− t) t

1/λi−1

λi
V (1)

(
t1/λi

)
increases with t. If V (1)(0) > 0 and 1/2 < λi < 1, the leading term when t goes to 0 of the derivative of this

function is −(1/λi − 1) t
1/λi−2

λi
V (1)(0) which is negative, so that the considered condition is not compatible

with our estimation of λL.
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a symmetric way, here volume, suggesting that bidders face similar capacity constraints, and

the other variables that represent characteristics of asymmetry. The shape of the expected

revenue varies a lot with the number N of bidders, being mostly flat for N > 5, with an

optimal revenue close to the one achieved in the absence of a reserve price. For small N ,

the choice of a reserve price does matter, but the estimated optimal one does not vary too

much with N and type proportion. The effect of asymmetry is mild here, and using the one

estimated from a misspecified symmetric model should protect the seller against revenue loss

occurring for small N . On the other hand, and as expected, the proportion of small bidders

may importantly affect the seller expected revenue. This suggests that the seller can benefit

from preference policies which would strengthen the weak bidders. A striking finding is that,

in small auctions with less than four bidders, increasing participation, as recommended by

Bulow and Klemperer (1996) in a symmetric environment, may give a smaller revenue than

using an optimal reserve price, due to the presence of weak bidders. As a consequence, the

choice of a proper reserve price may be a more important tool under asymmetry than when

the bidders are symmetric.
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