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Abstract

The paper proposes a quantile-regression inference framework for first-price auctions

with symmetric risk-neutral bidders under the independent private-value paradigm. It is

first shown that a private-value quantile regression generates a quantile regression for the

bids. The private-value quantile regression can be easily estimated from the bid quantile

regression and its derivative with respect to the quantile level. This also allows to test

for various specification or exogeneity null hypothesis using the observed bids in a simple

way. A new local polynomial technique is proposed to estimate the latter over the whole

quantile level interval. Plug-in estimation of functionals is also considered, as needed for

the expected revenue or the case of CRRA risk-averse bidders, which is amenable to our

framework. A quantile-regression analysis to USFS timber is found more appropriate than

the homogenized-bid methodology and illustrates the contribution of each explanatory vari-

ables to the private-value distribution. Linear interactive sieve extensions are proposed and

studied in the Appendices.

JEL: C14, L70

Keywords : First-price auction; independent private values; dimension reduction; quantile
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1 Introduction

Since Paarsch (1992), many parametric methods have been proposed to estimate first-price

auction models under the independent private-value paradigm. See Laffont, Ossard and

Vuong (1995), Athey and Levin (2001), Hirano and Porter (2003), Li and Zheng (2012),

Paarsch and Hong (2012) and the references therein to name just a few. Validating specifi-

cation choice is difficult and seldom attempted.

On the other hand, the nonparametric approach is very flexible and less subject to mis-

specification of functional form, so that it is commonly considered in applications and the-

oretical studies. See Guerre, Perrigne and Vuong (2000, hereafter GPV), Lu and Perrigne

(2008), Krasnokutskaya (2011), Marmer and Shneyerov (2012), Hubbard, Paarsch and Li

(2012), Campo, Guerre, Perrigne and Vuong (2013), Marmer, Shneyerov and Xu (2013a,b),

Hickman and Hubbard (2015), Enache and Florens (2017), Liu and Luo (2017), Liu and

Vuong (2018), Luo and Wan (2018), Zincenko (2018) and Ma, Marmer and Shneyerov (2019)

among others. But the nonparametric approach comes with the burden of the curse of di-

mensionality, which considerably limits its scope of applications.

Haile, Hong and Shum (2003, HSS hereafter) and Rezende (2008) have proposed to

circumvent the curse of dimensionality using a regression specification that purges the bids

from the covariate effects. The resulting homogenized bids are then used as in GPV to backup

the density of their private-value counterparts. This approach can tackle linear dependence,

but is not appropriate to capture more complex interactions. The present paper proposes to

use instead a more flexible quantile-regression specification.

The use of quantile in first-price auctions is not new. Milgrom (2001, Theorem 4.7)

reformulates the identification relation of GPV using quantile function. See Guerre, Perrigne,

Vuong (2009) and Campo et al. (2013) for the use of quantile in risk-aversion identification

and, for related estimation methods, Menzel and Morganti (2013), Enache and Florens

(2017), Liu and Vuong (2018), Luo and Wan (2018). Marmer and Shneyerov (2012) have

proposed a quantile-based estimator of the private-value probability density function (pdf),

which is an alternative to the two-step GPV method. See also Marmer, Shneyerov and

Xu (2013b) who consider a nonparametric single-index quantile model. Guerre and Sabbah

(2012) have noted that the private-value quantile function can be estimated using a one-step
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procedure from the estimation of the bid quantile function and its first derivative. Gimenes

(2017) has developed a flexible but parsimonious quantile-regression estimation strategy for

ascending auction. The present paper is however the first to develop a quantile inference

framework in a first-price auction setting allowing for many covariates.

Using Koenker and Bassett (1978) quantile regression framework is appealing for several

reasons. First, the quantile-regression specification is flexible enough to capture economi-

cally relevant effects as in Gimenes (2017), which could be ignored using parametric ones

or less interpretable nonparametric models. These parsimonious specifications can be esti-

mated with reasonable nonparametric rates, allowing implementation in small samples with

rich covariate environment. Compared to GPV, this estimation method is one-step and

only requests one bandwidth parameter, which theoretical choice follows from standard bias

variance expansion. As detailed in Appendix A, quantile-regression specification can be

enriched to include more nonparametric features using sieve extensions ranging from the

additive specification of Horowitz and Lee (2005) to fully nonparametric one as in Belloni,

Chernozhukov, Chetverikov and Fernández-Val (2019). Second, the quantile approach comes

with a stability property of linear specifications, which ensures that a private-value quantile

regression generates an bid quantile-regression. This is key for our estimation procedure and

also for testing, as it transfers many null hypotheses of interest for the latent private-value

distribution to the bid quantile-regression slopes. Tests derived from Koenker and Xiao

(2002), Escanciano and Velasco (2010), Rothe and Wied (2013), Escanciano and Goh (2014)

or Liu and Luo (2017) can be used to test correct specification of the quantile-regression or

homogenized-bid models, or exogeneity of the auction format and of entry. Third, the quan-

tile representation used in the paper can play the role of a reduced form generated by a more

complex model, such as the random-coefficient model considered in Berry, Levinsohn and

Pakes (1995), Hoderlein, Klemelä and Mammen (2010), or Backus and Lewis (2019) to name

just a few. In particular, random coefficients drawn from an elliptical distribution generates

a quantile specification which extends homogenized bid and can be easily estimated.

Fourth, the proposed augmented quantile-regression estimation methodology is based

upon local polynomial for quantile levels, and is therefore not affected by asymptotic bound-

ary bias. This permits better estimation of the upper tail distribution than most nonpara-
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metric methods, which is important as the winner’s private value is high for a large number

of bidders. Fifth, it can also be used to recover important parameters such as the probability

or cumulative density functions (pdf and cdf hereafter), mitigating the curse of dimension-

ality that affects most nonparametric methods. Plug in estimation of the seller expected

revenue, optimal reserve price and of agent constant relative risk-aversion parameter are

also considered.

The rest of the paper is organized as follows. The next section 2 introduces our stabil-

ity result for linear quantile specification. Section 2.3 considers the homogenized-bid and

random-coefficient specifications. Section 2.4 reviews some testing strategies based upon the

bid quantile regression. Section 3 explains how to use our quantile specification for estimat-

ing agent’s risk-aversion, seller’s expected revenue, and the cdf and pdf of the private values.

A difficulty of the quantile approach for first-price auction is the need to estimate the bid

quantile derivative with respect to quantile levels, see Guerre and Sabbah (2012) and the

reference therein for related approaches. Section 4 introduces our new augmented quantile

regression estimators, which use a quantile-level local-polynomial approach to jointly esti-

mate the bid quantile regression and its higher-order derivatives. Sections 5 and 5.3 group

our main theoretical results, including Integral Mean Squared Error (IMSE), optimal band-

width choice, optimal uniform convergence rate and Central Limit Theorem for the proposed

private-value quantile-regression estimators.

Our theoretical results are illustrated with a simulation experiment and an application to

USFS first-price auctions in Sections 6 and 7. Some simulation experiments illustrate how the

new estimation procedure improves on the GPV two-step density estimator and homogenized

bids. A preliminary quantile-regression analysis of the bid quantile function suggests that the

homogenized-bid technique should not be applied here because the quantile-regression slopes

are not constant. The private-value quantile-regression slope functions reveal the covariates

impact, and how strongly bidders in the top of the distribution can differ from the bottom.

Section 8 concludes the paper.

The supplementary material groups the sieve extension and proofs. Appendix A details

an interactive localized sieve quantile extension and related theoretical results which are

the counterparts of the ones obtained for the quantile-regression specification. Appendix B
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briefly sketches the main proof arguments and states some preliminary lemmas used for the

proofs of the two key bias and linearization results in Appendix C and Appendix D, from

which our main results follow. The two remaining Appendices group the proofs of our main

and intermediary results.

2 First-price auction and quantile specification

A single and indivisible object with some characteristic X ∈ RD is auctioned to I ≥ 2 buyers.

The number of bidders I and X are known to the bidders and the econometrician. Bids Bi

are sealed so that a bidder does not know the other bids when forming his own bid. The

object is sold to the highest bidder who pays his bid to the seller, and all the bids Bi are

then observed by the econometrician. Under the symmetric IPV paradigm, each bidder is

assumed to have a private value Vi, i = 1, . . . , I for the auctioned object. A buyer knows his

private value but not the other ones, the common distribution of the independent Vi being

common knowledge. The private-value conditional cdf F (·|X, I) is continuous and supported

by a compact interval, implying that the conditional private-value quantile function

V (α|X, I) = F−1 (α|X, I) , α in [0, 1] ,

is finite for α = 0 and α = 1.

The private-value quantile function V (α|x, I) plays an important economic role. The

bidder’s rent at quantile level α is V (α|x, I)−B(α|x, I) where B(·|x, I) is the bid conditional

quantile function, and assuming bids depend in a monotonous way on private values as

considered below. The private-value quantile conditional function is important to compute

counterfactuals, such as the bid quantile function in an alternative auction mechanism. In

particular, it can be used to compute the seller expected revenue achieved with any reserve

price, see (3.5) below. It allows, as a consequence, to compute an optimal reserve price, or

more generally to propose suitable auction designs.

4



2.1 Private value quantile identification

It is well-known that the bidder i private-value rank

Ai = F (Vi|X, I)

has a uniform distribution over [0, 1] and is independent of X and I. It also follows from the

IPV paradigm that the private-value ranks Ai = 1, . . . , I are independent. The dependence

between the private value Vi and the auction covariates X and I is therefore fully captured

by the non separable quantile representation

Vi = V (Ai|X, I) , Ai
iid∼ U[0,1] ⊥ (X, I) , (2.1)

which, when the private values are generated by an economic structural model, can be also

viewed as a nonparametric reduced form. Following Milgrom and Weber (1982) or Milgrom

(2001), V (·|X, I) can be also interpreted as a valuation function, the private-value rank Ai

being the associated signal. In what follows, G (·|X, I) and g (·|X, I) stand for respectively

the bid conditional cdf and pdf.

Maskin and Riley (1984) have shown that Bayesian Nash Equilibrium bidsBi = σ (Vi;X, I)

of symmetric risk-averse or risk-neutral bidders are strictly increasing and continuous in Vi.

It follows that Bi = B (Ai|X, i), where B (·;X, i) = σ (F (·|X, I) ;X, I) can be viewed as a

bidding strategy depending upon the rank Ai. If F (·|X, I) is also strictly increasing, so is

B (·|X, I) and since Ai is uniform it holds

G (b|X, I) = P [B (Ai|X, I) ≤ b|X, I] = P
[
Ai ≤ B−1 (b|X, I) |X, I

]
= B−1 (b|X, I)

showing that the bidding strategy B (·|X, I) is also the bid quantile function.

A standard best response argument will show how to identify the private-value quantile

function V (·|X, I) from B (·|X, I). Suppose bidder i signal Ai is equal to α, but that her

bid is a suboptimal B (a|X, I), all other bidders bidding B (Aj|X, I). Then the probability
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that bidder i wins the auction is

P
[
B (a|X, I) > max

1≤j 6=i≤I
B (Aj|X, I)

∣∣∣∣Ai = α,X, I

]
= P

[
a > max

1≤j 6=i≤I
Aj

∣∣∣∣Ai = α,X, I

]
= aI−1 (2.2)

because the Aj’s are independent U[0,1] independent of X and I. It follows that the expected

revenue of such a bid is, for a risk-neutral bidder, (V (α|X, I)−B (a|X, I)) aI−1. If B (·|X, I)

is a best-response bidding strategy, the optimal bid of a bidder with signal α is B (α|X, I),

that is

α = arg max
a

{
(V (α|X, I)−B (a|X, I)) aI−1

}
.

As B (·|X, I) is continuously differentiable, it follows that

∂

∂a

{
(V (α|X, I)−B (a|X, I)) aI−1

}∣∣∣∣
a=α

= 0 (2.3)

or equivalently

d

dα

[
αI−1B (α|X, I)

]
= (I − 1)αI−2V (α|X, I)

with
d

dα

[
αI−1B (α|X, I)

]
= (I − 1)αI−2V (α|X, I) + αI−1 d

dα
B (α|X, I) .

Solving with the initial condition B (0|X, I) = V (0|X, I) and rearranging the equation

above gives Proposition 1, which is the cornerstone of our estimation method. From now on

B(1) (α|X, I) = d
dα
B (α|X, I).

Proposition 1 Consider a given (X, I), I ≥ 2, for which α ∈ [0, 1] 7→ V (α|X, I) is contin-

uously differentiable with a derivative V (1) (·|X, I) > 0. Suppose the bids are drawn from the

symmetric differential Bayesian Nash equilibrium. Then,

i. The conditional equilibrium quantile function B (·|X, I) of the I iid optimal bids Bi

satisfies

B (α|X, I) =
I − 1

αI−1

∫ α

0

aI−2V (a|X, I) da with lim
α↓0

B (α|X, I) = V (0|X, I) . (2.4)
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ii. The bid quantile function B (α|X, I) is continuously differentiable over [0, 1] and it

holds

V (α|X, I) = B (α|X, I) +
αB(1) (α|X, I)

I − 1
. (2.5)

A key feature is the linearity with respect to V (·|X, I) of the private-value to bid quantile

functions mapping (2.4), which implies that a private value quantile linear model is mapped

into a similar bid linear model, as detailed below for the well-known quantile regression.

Proposition 1-(ii) shows that the private-value quantile function is identified from the bid

quantile function and its derivative. It is a quantile version of the identification strategy of

GPV, which is based on the identity1

Vi = Bi +
1

I − 1

G (Bi|X, I)

g (Bi|X, I)
. (2.6)

Versions of (2.5) with B(1) (α|X, I) changed into 1/g (B (α|X, I) |X, I) can be found in Mil-

grom (2001, Theorem 4.7), Liu and Luo (2014), Liu and Vuong (2016), Luo and Wan (2016),

Enache and Florens (2017) and, under risk-aversion, in Guerre et al. (2009) and Campo et

al. (2011).

2.2 Private-value quantile regression

The linearity of (2.4) has important model stability implications useful for practical imple-

mentation. Consider a private-value quantile given by the quantile-regression specification

V (α|X, I) = γ0 (α|I) +X ′γ1 (α|I) = X ′1γ (α|I) , X1 = [1, X ′]
′
. (2.7)

As a linear regression is often viewed as an alternative to a nonparametric one which is

difficult to estimate, this quantile regression is simpler to estimate than a general quantile

function which must be estimated nonparametrically. As pointed by a Referee, the quantile

1This can be recovered from (2.5) taking α = Ai as Vi = V (Ai|X, I), Bi = B (Ai|X, I) implying that
Ai = G (Ai|X, I) and B(1) (Ai|X, I) = 1/g (B (Ai|X, I) |X, I) = 1/g(Bi|X, I).
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level α can be viewed as a measure of the bidder efficiency and the slope function γ(·|I)

indicates how this efficiency affects valuation in the covariate dimension. While more flexible

than the homogenized bid specification detailed in Section 2.3.1, the quantile approach only

involves a unique signal: in particular, if each slope entries are increasing, then each covariate

contribution to the value increases with efficiency. More flexibility is possible with the

random coefficient model of Section 2.3.2, which attaches a specific signal to each auction

covariate.

Proposition 1-(i) implies that the conditional bid quantile function satisfies,

B (α|X, I) = X ′1β (α|I) with β (α|I) =
I − 1

αI−1

∫ α

0

aI−2γ (a|I) da, (2.8)

showing that B (α|X, I) belongs to the quantile-regression specification. Hence (2.5) gives

γ (α|I) = β (α|I) +
αβ(1) (α|I)

I − 1
, (2.9)

so that estimating γ (α|I) amounts to estimate β (α|I) and β(1) (α|I).

This approach extends to more flexible nonparametric linear specifications, as developed

in Appendix A which considers a sieve extension V (α|x, I) = P (x)′γ(α|I) + approx. error,

B(α|x, I) = P (x)′ I−1
αI−1

∫ α
0
aI−2γ(a|I)da+ approx. error

(2.10)

where P (·) is a localized sieve vector whose dimension grows with a smoothing parameter h.

The choice of P (·) can be tailored to cover additivity or less stringent interaction restrictions.

As for the quantile-regression estimators proposed below, the sieve approach developed in

Appendix A is not affected by asymptotic boundary issues.
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2.3 Alternative models and specification testing strategies

2.3.1 Homogenized bids

HHS and Rezende (2008) consider a regression specification

Vi = X ′γ1 + vi, i = 1, . . . , I, (2.11)

where the iid vi, the “homogenized” private values, are independent of X and not cen-

tered.2 The corresponding homogenized-bid quantile-regression specification is the following

restriction of (2.7)

V (α|X, I) = X ′γ1 + v(α|I)

where v(·|I) is the quantile function of the vi’s. Since I−1
αI−1

∫ α
0
aI−2da = 1, it follows that the

associated bid quantile function is, by (2.4)

B (α|X, I) = X ′γ1 + b (α|I) , where b (α|I) =
I − 1

αI−1

∫ α

0

aI−2v (a|I) da.

This gives the bid regression model

Bi = X ′γ1 + bi, bi = b (Ai|I) and i = 1, . . . , I (2.12)

where the bi are the homogenized bids of HHS, which are independent of X but depend upon

I. Given a sample X`, I`, B1`, . . . , BI`` of ` = 1, . . . , L first-price auctions, HSS and Rezende

(2008) propose to backup the homogenized bids by regressing the bids Bi` on X1` = [1, X ′`]
′,

so that the estimation of the homogenized bids are b̂i` = Bi` − X ′`γ̂1, where γ̂1 is the OLS

slope estimator. The pdf of vi can be estimated applying the GPV two-step method to

the homogenized-bid estimates. An important feature of this model is that the dependence

of the private values to the covariate is simple enough to allow for accurate estimation of

2Centering the vi’s would amount to introduce an intercept parameter γ0, which would be changed to
a new intercept β0(I) when turning to the bid regression when the vi’s are independent of I. In contrast,
the bid regression slope is γ1, therefore unchanged. Hence (2.11) does not include an intercept to better
focus on the invariant parameter, the purpose being to estimate γ1 and the distribution of vi. Estimating
an intercept in the bid regression is however necessary to consistently estimate γ1 using OLS because the
regression error term in (2.12) is not centered.
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γ1. As noted in Paarsch and Hong (2006), a similar two-step procedure applies for the

nonparametric regression model Vi = m(X|I) + vi where the vi’s are independent of X, I,

see also Marmer, Shneyerov and Xu (2013b).

However this approach requests independence between the regression error term vi and

the covariate X, an assumption which may be too restrictive in practice as found by Gimenes

(2017) and the application below. When γ1 (·) is not a constant and V (α|X, I) = X ′γ1(α|I)+

v(α|I), it holds for β1(α|I) = I−1
αI−2

∫ α
0
aI−2γ1(a|I)da and the OLS limit β1(I) = E[β1(Ai|I)]

obtained when regressing the bids on the constant and X,

Bi = X ′β1(I) + b(Ai|X, I) where b(Ai|X, I) = b(Ai|I) +X ′ [β1(α|I)− β1(I)] .

As b(Ai|X, I) depends upon X, the homogenized-bid approach does not apply. As explained

below, estimating the slope γ1(·) involves nonparametric techniques that cannot deliver the

parametric rate feasible in the homogenized-bid model.

2.3.2 Random-coefficient specification

Consider I private values from

Vi = X ′1Γi, i = 1, . . . , I (2.13)

where the random coefficients Γi are iid 1 × (D + 1) vectors independent of X1. Since

Vi = Γ0i + X ′Γ1i, taking Γ1i constant across bidders gives a homogenized-bid specification,

which is therefore a particular case of random-coefficients regression. Compared to (2.1)

version which involves a unique signal Ai, (2.13) allows for D+1 individual signals Γid which

models the impact of the common covariate Xd on the private value Vi. How a quantile

approach can be useful is first discussed when Γi is drawn from an elliptical distribution.

Elliptical random coefficient. Γi is drawn from an elliptical distribution with transla-

tion parameter γ(I) and symmetric nonnegative dispersion matrix ΣΓ(I) if the characteristic

function E [exp (it′(Γi − γ(I)))] only depends upon t′ΣΓ(I)t. Examples include the multi-

variate normal, lognormal or Student distribution, which can be truncated to satisfy our
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finite support restriction. A convenient representation of Γi involves the Euclidean norm

Ri =
∥∥∥Σ
−1/2
Γ (I) (Γi − γ(I))

∥∥∥ and independent draws Si from the uniform distribution over

the D + 1 dimensional unit sphere. Let Ci be the first coordinate of Si, noticing that t′Si
is distributed as ‖t‖Ci for any (D + 1) × 1 vector t. Then by Fang, Kotz and Ng (2017,

p.29-32), Γi and γ(I) + RiΣ
1/2
Γ (I)Si have the same distribution, for independent Ri and Si.

It then follows by (2.13),
d
= indicating random variables with identical distribution

Vi
d
= X ′1γ(I) +

(
Σ

1/2
Γ (I)X1

)′
RiSi

d
= X ′1γ(I) +

∥∥∥Σ
1/2
Γ (I)X1

∥∥∥RiCi.

Hence the quantile specification generated by (2.13) is

V (α|X, I) = X ′1γ(I) +
∥∥∥Σ

1/2
Γ (I)X1

∥∥∥ v(α|I) (2.14)

where the unknown quantile function v(α|I) is the one of RiCi given I. The generated bids

have a common quantile function

B(α|X, I) = X ′1γ(I) +
∥∥∥Σ

1/2
Γ (I)X1

∥∥∥ b(α|I), b(α|I) =
I − 1

αI−1

∫ α

0

aI−2v(a|I)da (2.15)

by (2.4). Using the normalization b(1/2|I) = 1 for identification purpose gives thatB(1/2|X, I) =

X ′1γ(I) +
∥∥∥Σ

1/2
Γ (I)X1

∥∥∥, so that the conditional bid median can be used to identify γ(I) and

ΣΓ(I). Identification of v(·|I) works as in Proposition 1 as v(α|I) = b(α|I) +αb(1)(α|I)/(I−
1), observing that v(·|I) identifies the common distribution of the Ri’s.

The general case. Hoderlein et al. (2010) propose a nonparametric method that could

be used to estimate the distribution of the random slope Γi of (2.13) if the private values

were observed. This suggests to implement a two-step method using estimated private values.

Appendix A proposes a sieve method to estimate V (·|x, I), which is not subject to asymptotic

boundary bias. Consider S estimated private values V̂ (As|Xs, I) for arbitrary values Xs of

the covariate and independent uniform draws As, s = 1, . . . , S. Assuming that the Xs/‖Xs‖
are drawn from the uniform distribution on the unit sphere suggests to estimate the density
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fΓ(γ|I) of Γi given I using in the second step the Hoderlein et al (2010) kernel estimator

f̂Γ(γ|I) =
1

n

S∑
s=1

KHKM,h

(
V̂ (As|Xs, I)−X ′sγ

‖Xs‖

)
with (2.16)

KHKM,h(u) =
1

(2π)D+1

∫ 1/h

0

cos(tu)tD (1− (ht)r) dt,

where h > 0 is a bandwidth parameter and 0 < r ≤ ∞.

2.4 Specification testing strategies

The stability of private-value quantile-regression specification allows to use the bid one to

test many hypothesis of interest, see Liu and Luo (2017) for a related point of view. This can

be useful to obtain better performing tests as the presence of the derivative B̂(1)(α|x, I) in

the implementable private-value expression (2.5) makes its use for testing harder. Examples

of tests based on this idea are as follows.

Quantile-regression goodness of fit. There is a recent literature that considers the null

hypothesis of correct specification of a quantile-regression model over an subinterval A of

(0, 1). See Escanciano and Velasco (2010), Rothe and Wied (2013), Escanciano and Goh

(2014) and the references therein. These three papers propose test statistics of the form

T̂ (β̂(·|I)), where β̂(·|I) is a quantile-regression estimator which converges to the true slope

over A with a parametric rate, such as the standard quantile-regression estimator or the

augmented ones proposed in Section 4. See the Application Section 7 for the T̂ (·) used by

Rothe and Wied (2013). Liu and Luo (2017) based an entry exogeneity test on the integral

of the squared difference of two quantile estimators, see (2.17) below.

Homogenized bid and elliptical random coefficient. The correct specification of

(2.11) or (2.15) can be tested using Rothe and Wied (2013) without any restriction on the

quantile alternative. If the alternative is restricted to a quantile-regression model, Koenker

and Xiao (2002) or Escanciano and Goh (2014) can be used to test the homogenized-bid

null hypothesis, as this specification coincides with the location-shift model considered by
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these authors. Following Liu and Luo (2017) suggests to consider, for the same null, a test

statistic

L

∫ 1

0

L∑
`=1

(
X ′1`β̂H0(α)−X ′1`β̂(α)

)2

dα (2.17)

where L is the number of auctions in the sample, X` the auction covariate, β̂(·) a quantile-

regression slope estimator
√
L-consistent over [0, 1] as the one proposed in the next section,

and for instance β̂H0(·) = [β̂0(·), β̂1,OLS, . . . , β̂1D,OLS]′. Confidence bands can also be used,

see Gimenes (2017) and the theory developed in Fan, Guerre and Lazarova (2020).

Exogenous auction format. Let Vj(α|x, I) = x′γj(α|I) be the private-value quantile

function conditionally on participation to an ascending auction (j = asc) or a first-price

one (j = fp). A null hypothesis of interest is exogeneity of the auction format, HF
0 :

Vfp(·|·, I) = Vasc(·|·, I). Gimenes (2017) gives a consistent quantile-regression estimator

γ̂asc(·|I) of γasc(·|I) using ascending auction data. It then follows by (2.4) that β̂H0(α|I) =

(I − 1)α−(I−1)
∫ α

0
aI−2γ̂asc(a|I)da is consistent under the null but not the alternative.3 Then

using first-price auction data to compute a test statistic T̂ (β̂H0(·|I)) from Escanciano and

Goh (2014) or Rothe and Wied (2013) for an arbitrary alternative, or using Liu and Luo

(2017) statistic (2.17) with a quantile-regression alternative, allow to test for auction format

exogeneity.

Participation exogeneity. The participation exogeneity null hypothesis states that the

private values are independent of the number of bidder conditionally on the covariate HE
0 :

V (·|·, I) = V (·|·) for all I, see also Gimenes (2017) for the ascending auction case. Liu and

Luo (2017) use an integral version of HE
0 to eliminate the bid quantile derivative in (2.5).

3As the standard quantile-regression estimator may not be well-defined for quantile levels near 0, it may
be more suitable to use an augmented quantile-regression estimator as in Section 4 to implement Gimenes
(2017).
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In a quantile-regression setup, Proposition 1 implies under HE
0 ,

β(α|I2) =
I2 − 1

αI2−1

∫ α

0

aI2−2

[
β(a|I1) +

aβ(1)(a|I1)

I1 − 1

]
da = βI1(α|I2) (2.18)

where βI1(α|I2) =
I2 − 1

I1 − 1
β(α|I1) +

(I2 − 1)(I1 − I2)

(I1 − 1)αI2−1

∫ α

0

aI2−2β(a|I1)da.

Then tests for entry exogeneity can be obtained using the same construction than for the

auction format exogeneity null, using a sample of first-price auction with I1 bidders to

estimate βI1(α|I2) and another sample with I2 bidders to compute a test statistic.

Under participation exogeneity, private value estimates can be averaged over I to improve

accuracy. Another important motivation for exogenous participation is risk-aversion estima-

tion, see Guerre, et al. (2009). This approach can be modified to cope with an additional

risk-aversion parameter which can be estimated with a parametric rate as shown in Section

5.3.

3 Risk-aversion, expected payoff and other functionals

Many auction parameters of interest can be written using the private-value quantile function

or, by (2.5), the bid quantile function and its quantile derivative. We focus here on the

conditional and unconditional integral functionals

θ (x) =

∫ 1

0

F
[
α, x,B (α|x, I) , B(1) (α|x, I) ; I ∈ I

]
dα, θ =

∫
X
θ (x) dx (3.1)

where F (α, x, b0I , b1I ; I ∈ I) is a real valued continuous function. Three illustrative examples

are as follows.

Example 1: CRRA parameter. For symmetric risk-averse bidders with a concave utility

function, the best-response condition (2.3) becomes

∂

∂a

{
U (V (α|X, I)−B (a|X, I)) aI−1

}∣∣∣∣
a=α

= 0.
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Rearranging as in Guerre et al. (2009) yields that V (α|X, I) = B (α|X, I)+λ−1
(
αB(1)(α|X,I)

I−1

)
where λ (·) = U (·) /U ′ (·). For risk-averse bidders with a CRRA utility function U (t) = tν ,

arguing as for Proposition 1 shows

V (α|X, I) = B (α|X, I) + ν
αB(1) (α|X, I)

I − 1
, (3.2)

B (α|X, I) =
I−1
ν

α
I−1
ν

∫ α

0

a
I−1
ν
−1V (a|X, I) da.

These two formulas show that the stability implications of Proposition 1 for linear private-

value and bid quantile functions are preserved under CRRA. Assuming as in Guerre et al.

(2009) that the number of bidders is exogenous, i.e V (α|X, I) = V (α|X) for all I, gives

that the risk-aversion ν satisfies, for any pair I0 6= I1

ν =
θn
θd

=

∫
X

[∫ 1

0
(B (α|x, I1)−B (α|x, I0))

(
αB(1)(α|x,I0)

I0−1
− αB(1)(α|x,I1)

I1−1

)
dα
]
dx∫

X

[∫ 1

0

(
αB(1)(α|x,I0)

I0−1
− αB(1)(α|x,I1)

I1−1

)2

dα

]
dx

, (3.3)

which gives identification of ν. Following Lu and Perrigne (2008), the risk-aversion parameter

ν can also be identified combining ascending and first-price auctions data. As seen from

Gimenes (2017), the private-value quantile function Vasc (α|X, I) can be easily estimated

from ascending auctions. Equating Vasc (α|X, I) to V (α|X, I) in (3.2) gives that ν satisfies

ν =

∫
X

[∫ 1

0
(Vasc (α|x, I)−B (α|x, I)) αB(1)(α|x,I)

I−1
dα
]
dx∫

X

[∫ 1

0

(
αB(1)(α|x,I)

I−1

)2

dα

]
dx

. (3.4)

Example 2: Expected revenue. Suppose that the seller decides to reject bids lower

than a reserve price R and let αR = αR (X, I) be the associated screening level, i.e. αR =
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F (R|X, I). For CRRA bidders, the first-price auction seller expected revenue is4

ERν (αR|X, I) = ν · I · V (αR|X, I) · α
I−1
ν

R · 1− α
(I−1)(ν−1)+ν

ν
R

(I − 1) (ν − 1) + ν

+
I (I − 1)

(I − 1) (ν − 1) + ν

∫ 1

αR

a
I−1
ν
−1 1− a

(I−1)(ν−1)+ν
ν

(I − 1) (ν − 1) + ν
V (a|X, I) da. (3.5)

This expression includes an integral item

θ (X;αR) =

∫ 1

αR

a
I−1
ν
−1 1− a

(I−1)(ν−1)+ν
ν

(I − 1) (ν − 1) + ν
V (a|X, I) da

which can be estimated by plugging in a risk-aversion estimator ν̂ and an estimator V̂ (α|X, I)

of the private-value quantile function, or estimators of the bid quantile function and its

derivative by (2.5).5

Example 3: Private-value distribution Additional examples of conditional parameter

θ(·) are the private-value conditional cdf and pdf. Note first that (2.1) shows that the

conditional private-value cdf is an integral functional of the private-value quantile function

F (v|X, I) = E [I [V (A|x, I) ≤ v]|X, I] =

∫ 1

0

I [V (α|X, I) ≤ v] dα, A ∼ U[0,1]. (3.6)

Dette and Volgushev (2008) have considered a smoothed version Iη (·) of the indicator func-

tion

Fη (v|X, I) =

∫ 1

0

Iη [v − V (α|X, I)] dα

4In the formula below, 1−a
(I−1)(ν−1)+ν

ν

(I−1)(ν−1)+ν is set to its limit − I
I−1 log a when (I − 1)(ν − 1) + ν vanishes, i.e.

when ν = I−1
I . It is assumed for the sake of brevity that the seller value for the good is 0. The expected

revenue formula for the general case follows from Gimenes (2017).
5Under risk-neutrality, integrating by parts gives that∫ 1

αR

B(1) (α|X, I)αI−1 (1− α) dα = B (αR|X, I)αI−1R (1− αR)−
∫ 1

αR

B (α|X, I)αI−1 (I − 1− Iα) dα,

estimation of θ (X;αR) can also be done using only a bid quantile estimator.
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where Iη (t) =
∫ t/η
−∞ k (u) du, k (·) being a kernel function and η a bandwidth parameter.

Differentiating Fη (v|X, I) gives

fη (v|X, I) =
1

η

∫ 1

0

k

(
v − V (α|X, I)

η

)
dα

which converges to the private-value pdf when η goes to 0. Note that Fη (v|X, I) and

fη (v|X, I) can be estimated by plugging in an estimator V̂ (α|X, I) of V (α|X, I). The

resulting cdf and pdf estimators inherit of the dimension reduction property of V̂ (α|X, I).

As the private-value estimator proposed in the next section is consistent over the whole [0, 1],

no boundary trimming is needed. This contrasts with the GPV pdf estimator. As noted by

Escanciano and Goh (2019) in a general context, the integral in fη (v|X, I) can be replaced

by a sample average over iid uniform draws As, as used for the density estimator (2.16).

4 Augmented quantile-regression estimation

Proposition 1 suggests to base the estimation of the private-value quantile function on es-

timations of B (α|x, I) and of its derivative B(1) (α|x, I) with respect to α. The augmented

methodology applies local polynomial expansion with respect to α for joint estimation of

B (α|x, I) and B(1) (α|x, I). To ensure comparability with the auction literature which con-

siders private-value pdf having s continuous derivatives, we assume that the private-value

quantile function V (α|x, I) has s+ 1 continuous derivatives with respect to α. As seen from

(2.4), this implies that the bid quantile function B (α|x, I) has s+ 2 continuous derivatives

with respect to α > 0. Let (X`, I`, B1`, . . . , BI``), ` = 1, . . . , L, be an iid first-price auction

sample with I` bids Bi` and good characteristics X`.

4.1 Augmented quantile estimation without covariate

Estimation. Assume first that V (α|X, I) = V (α|I) so that B (α|X, I) = B (α|I). Let

ρα (·) be the check function

ρα (q) = q (α− I (q ≤ 0)) .
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It is well known that

B (α|I) = arg min
q

E [I (I` = I) ρα (Bi` − q)] , α ∈ (0, 1) .

We now exhibit a functional objective function which achieves its minimum at the restriction

of B(·|I) over [α− h, α + h]∩ [0, 1]. It easily follows that, for a non negative kernel function

K (·) with support [−1, 1] and a positive bandwidth h = hL,

{B (τ |I) , τ ∈ [α− h, α + h] ∩ [0, 1]}

= arg min
q(·)

∫ 1

0

E [I (I` = I) ρa (Bi` − q (a))]
1

h
K

(
a− α
h

)
da, (4.1)

where the minimization is performed over the set of functions q (·) over [α− h, α + h] ∩
[0, 1]. This can be used to estimate the derivative B(1) (α|I), using minimization over Taylor

polynomial of order s+ 1 instead of q(·). A Taylor expansion of order s+ 1 gives

B (a|I) = B (α|I) +B(1) (α|I) (a− α) + · · ·+ B(s+1) (α|I)

(s+ 1)!
(a− α)s+1 +O

(
hs+2

)
= π (a− α)′ b(α|I) +O

(
hs+2

)
where

b(α|I) =
[
B (α|I) , . . . , B(s+1)(α|I)

]′
and π (t) =

[
1, t,

t2

2
. . . ,

ts+1

(s+ 1)!

]′
.

The (s+2)×1 vector b(·|I) stacks the successive bid quantile derivatives, and is the parameter

to be estimated. Let b = [β0, . . . , βs+1]′ ∈ Rs+2 be the generic coefficients of such a Taylor

polynomial function. The sample version of the objective function (4.1), restricted to local

polynomial functions π(·)′b instead of q(·), is

R̂ (b;α, I) =
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

ρa
(
Bi` − π (a− α)′ b

) 1

h
K

(
a− α
h

)
da

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρα+ht

(
Bi` − π (ht)′ b

)
K (t) dt.
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The augmented quantile estimator is b̂ (α|I) = arg minb∈Rs+2 R̂ (b;α, I), β̂0 (α|I) and β̂1 (α|I)

being estimators of B (α|I) and its first derivative B(1) (α|I), respectively.

Homogenized bid and elliptical random coefficients. A two-step version of the aug-

mented method presented above can be used to estimate the homogenized private-value

quantile function v(·|I) from (2.11). Regressing Bi` on X` and an intercept for those auc-

tions with I` = I gives a consistent estimator γ̂1(I) of γ1(I). Let B̂i` = Bi` − X ′`γ̂1 be the

estimated homogenized bids. Then replacing Bi` with B̂i` in the objective function R̂ (b;α, I)

gives estimators β̌(·|I) and β̌1(·|I) of the homogenized-bid quantile function and of its first

derivative. The resulting estimator of the private-value quantile function is then

V̂ (α|X, I) = X ′γ̂1(I) + β̌(α|I) +
αβ̌1(α|I)

I − 1
.

The elliptical random-coefficient quantile specification (2.15) can be estimated similarly.

Studying the asymptotic properties of this two-step procedures is outside the scope of this

paper. Bhattacharya (2019) considers a related two-step procedure that can be useful for

ascending auctions, where estimating quantile derivative is not needed.

4.2 Augmented quantile-regression

An extension of this procedure is the augmented quantile-regression estimator, AQR here-

after, which assumes V (α|x, I) = x′1γ (α|I), recalling x1 = [1, x′]′. Proposition 1-(i) then

gives B (α|x, I) = x′1β (α|I). Define now

P (x, t) = π (t)⊗ x1 =

[
1, x′, t, t · x′, . . . , ts+1

(s+ 1)!
,

ts+1

(s+ 1)!
· x′
]′
∈ R(s+2)(D+1) (4.2)

b(α|I) =
[
β(α|I)′, β(1)(α|I)′, . . . , β(s+1)(α|I)′

]
so that the Taylor expansion of B (α|X, I) writes

B (α + ht|x, I) =
s+1∑
k=0

x′1β
(k)(α|I)

(ht)k

k!
+O

(
hs+2

)
= P (x, ht)′ b (α|I) +O

(
hs+2

)
.
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The corresponding generic parameter is the (s+2)(D+1)×1 column vector b =
[
β′0, β

′
1, . . . , β

′
s+1

]′
where the βj are all of dimension D + 1, and the objective function becomes

R̂ (b;α, I) =
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1

0

ρa
(
Bi` − P (X`, a− α)′ b

) 1

h
K

(
a− α
h

)
da

=
1

LI

L∑
`=1

I (I` = I)

I∑̀
i=1

∫ 1−α
h

−α
h

ρα+ht

(
Bi` − P (X`, ht)

′ b
)
K (t) da (4.3)

which accounts for the covariate X`. The estimation of b (α|I) is

b̂ (α|I) = arg min
b∈R(s+2)(D+1)

R̂ (b;α, I)

and the private-value quantile-regression estimator is

V̂ (α|x, I) = x′1γ̂ (α|I) with γ̂ (α|I) = β̂0 (α|I) +
αβ̂1 (α|I)

I − 1
.

The bid quantile function and its derivatives can be estimated using B̂ (α|x, I) = x′1β̂0 (α|I)

and B̂(1) (α|x, I) = x′1β̂1 (α|I), so that V̂ (α|x, I) = B̂(α|x, I) + αB̂(1)(α|x,I)
I−1

. The rearrange-

ment method of Chernozhukov, Fernández-Val and Gallichon (2010) can be used to obtain

increasing quantile estimators.

AQR estimator properties. Bassett and Koenker (1982) report that standard quantile-

regression estimators are not defined near the extreme quantile levels α = 0 or α = 1, mostly

because the associated objective function has some flat parts. The AQR is better behaved

because the objective function R̂ (b;α, I) averages the check function ρa (·) for quantile levels

a in [α− h, α + h] ∩ [0, 1], ensuring that the AQR objective function is not flat for extreme

quantile levels, as illustrated in Figure 1.6

Therefore the AQR estimator is easier to define for the extreme quantile levels α = 0

and α = 1 than the standard quantile-regression estimator. This is especially relevant for

estimating auction models as the winner is expected to belong to the upper tail as soon

6This averaging effect requests that t 7→ P (X`, ht)
′
b is not constant meaning that the derivative compo-

nents of b should not vanish.
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Figure 1: A path of the AQR objective function R̂ (b·; 1, I) (solid line) and of the objective
function of the standard quantile-regression estimator (dotted line) when b varies in the
direction [1, . . . , 1]′.

as the number of bidders is large enough. It also follows from the theoretical study of the

objective function R̂ (·; ·, I) that the AQR estimator is uniquely defined for all quantile levels

with a probability tending to 1. The bid AQR estimator is also smoother than the standard

quantile-regression one, see Figure 6 in the Application Section and Appendix C for a formal

argument.

5 Main results

Some additional notations are as follows. Let S0 = [1, 0, . . . , 0] and S1 = [0, 1, 0, . . . , 0] be

1 × (s+ 2) selection vectors such that S0π(t) = 1, S1π(t) = t. Let IdD+1 be the (D + 1) ×
(D + 1) identity matrix and set Sj = Sj ⊗ IdD+1, j = 0, 1, so that S0b̂ (α|I) = β̂0 (α|I) and

S1b̂ (α|I) = β̂1 (α|I) are respectively estimators of β(α) and its first derivative β(1)(α). Tr(·)
is the trace of a square matrix and ∂nu stands for ∂n

∂un
. For two sequences {aL} and {bL},

aL � bL means that both aL/bL = O (1) and bL/aL = O (1). The norm ‖·‖ is the Euclidean

one, i.e. ‖e‖ = (e′e)1/2. For a matrix A, ‖A‖ = supb:‖b‖=1 ‖Ab‖. Convergence in distribution

is denoted as ‘
d→’.
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5.1 Main assumptions

Assumption A (i) The auction variables (I`, X`, Vi`, Bi`, i = 1, . . . , I`) are iid across `. The

support X of X` given I` = I is independent of I, compact with non empty interior. The

support I of I` ≥ 2 is finite. The matrices E [I (I` = I)X1`X
′
1`], where X1` = [1, X ′`]

′, have

an inverse for all I of I.

(ii) Given (X`, I`) = (x, I), the Vi`, i = 1, . . . , I` are iid with a continuously differen-

tiable conditional quantile function V (α|x, I) with min(α,x,I)∈[0,1]×X×I V
(1) (α|x, I) > 0 and

max(α,x,I)∈[0,1]×X×I V
(1) (α|x, I) <∞.

Assumption S For some s ≥ 1 and each I ∈ I, V (α|X, I) = X ′1γ(α|I) is as in (2.7),

where X1 = [1, X ′]′ and γ(·|I) is (s+ 1)−times continuously differentiable over [0, 1].

Assumption H The kernel function K (·) with support (−1, 1) is symmetric, continuously

differentiable over the straight line, and strictly positive over (−1, 1). The positive bandwidth

h goes to 0 with limL→∞
log2 L
Lh2

= 0.

Assumption F For all x in X and α in [0, 1], the function F [α, x, b0I , b1I ; I ∈ I] in (3.1)

is twice differentiable with respect to b0I and b1I , I in I. For each I in I, these partial

derivatives of order 1 and 2 are continuous with respect to all the variables.

Assumption A-(i) is standard. Assumption A-(ii) allows for private values depending on

the number of bidders. Recall that

V (1) (α|x, I) =
1

f (V (α|x, I) |x, I)
, (5.1)

where f (v|x, I) is the conditional private-value pdf. Hence Assumption A-(ii) amounts to as-

sume that f (v|x, I) is bounded away from 0 and infinity on its support [V (0|x, I) , V (1|x, I)]

as assumed for instance in Riley and Samuelson (1981), Maskin and Riley (1984) or GPV.

The condition 0 < f (v|x, I) <∞ is also used for asymptotic normality of quantile-regression

estimator, see Koenker (2005). Assumption S is a standard smoothness condition which, by

(5.1), parallels GPV who assume that the pdf f(v|x, I) is s-times differentiable.
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The bandwidth rate in Assumption H is unusual in kernel or local polynomial nonpara-

metric estimation, where rate conditions as 1/(Lh) = o(1) are more common. This is due

to a key linearization expansion for V̂ (α|x, I), which holds with an OP

(
logL/(L

√
h)
)

error

term that must go to 0, see (5.3) and (5.5) in Theorem 2 below.7

Assumption F holds for most of the examples of functionals above. A notable exception

is the cdf F (v|x, I) in Example 3, which involves an indicator function which is not smooth.

However it holds for the smoothed approximation Fη (v|x, I) of the cdf, although Assumption

F implicitly rules out vanishing bandwidth η in Example 3.

5.2 Private value quantile estimation results

The next sections give our theoretical results for integrated mean squared error, uniform

consistency and asymptotic distribution of the augmented estimator V̂ (·|·, I). These results

are derived using a pseudo-true value framework, in which b̂(·|I) is viewed as an estimator

of the minimizer b(·|I) of the population counterpart of R̂ (b;α, I)

b (α|I) = arg min
b∈R(s+2)(D+1)

R (b;α, I) where R (b;α, I) = E
[
R̂ (b;α, I)

]
which asymptotic existence and uniqueness is established for the proofs of our main results.

Define accordingly β0 (α|I) = S0b (α|I) and β1 (α|I) = S1b (α|I) and

V (α|x, I) = x′1

(
β0 +

αβ1 (α|I)

I − 1

)
. (5.2)

The difference V (α|x, I)− V (α|x, I) can be interpreted as a bias term.

Because V̂ (·|·, I) is defined in an implicit way via the minimization of the objective

function (4.3), its asymptotic study relies on a linearization of b̂(α|I) − b(α|I) which, in a

quantile setup, is called a Bahadur expansion, see Theorem D.1 in Appendix D and Koenker

(2005, Chap. 4). It is shown that, in a vicinity of b(α|I), b 7→ R̂ (b;α, I) is twice differen-

tiable with a first derivative R̂(1) (b;α, I) satisfying E
[
R̂(1)

(
b(α|I);α, I

)]
= 0, and with a

7See also Theorem D.1 in Appendix D, where it is shown more specifically that this bandwidth order is
needed for the linearization of B̂(1)(α|x, I).
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Hessian matrix R(2) (
b(α|I);α, I

)
which is invertible. The leading term of b̂(α|I) − b(α|I)

is −
[
R(2) (

b(α|I);α, I
)]−1

R̂(1)
(
b(α|I);α, I

)
as shown in Theorem D.1, so that the leading

term of V̂ (α|x, I) is

Ṽ (α|x, I) = V (α|x, I)− x′1
(
S0 +

αS1

I − 1

)[
R(2) (

β(α|I);α, I
)]−1

R̂(1)
(
β(α|I);α, I

)
, (5.3)

see (5.5) below. Because direct computations of the moments of V̂ (α|x, I) are difficult due

to its implicit definition and to potential nonlinearities, moments of its linear leading term

Ṽ (α|x, I) are used as an approximation.

5.2.1 Integrated mean squared error and uniform consistency rates

Let us first introduce some notations for the integrated mean squared error (IMSE). Let

Π1 (α) be the second column of the inverse of
∫
π (t) π (t)′K (t) dt, i.e.,

Π1 (α) =

(∫
π (t) π (t)′K (t) dt

)−1

S ′1

and consider the variance terms

v2 (α) = Π1 (α)′
∫ ∫

π (t1) π (t2)′min (t1, t2)K (t1)K (t2) dt1dt2Π1 (α) ,

Σ (α|I) =
α2v2 (α)

(I − 1)2 E
−1

[
X1`X

′
1`I (I` = I)

B(1) (α|X`, I`)

]
E [X1`X

′
1`I (I` = I)]E−1

[
X1`X

′
1`I (I` = I)

B(1) (α|X`, I`)

]
,

ΣI =

∫
X

∫ 1

0

x′1Σ (α|I)x1dαdx,

where E−1
[
X1`X

′
1`I(I`=I)

B(1)(α|X`,I`)

]
is the inverse matrix of E

[
X1`X

′
1`I(I`=I)

B(1)(α|X`,I`)

]
. That v2 (α), and then ΣI ,

is strictly positive follows from the proof of Theorem 2 below, see in particular Lemma B.6

in Appendix B. The bias, and integrated squared bias, of the estimator are asymptotically
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proportional to, respectively8

Bias(α|x, I) =
αB(s+2)(α|x, I)

I − 1
S1

(∫
π (t) π (t)′K (t) dt

)−1 ∫
ts+2π (t)

(s+ 2)!
K (t) dt,

Bias2
I =

∫
X

∫ 1

0

Bias2(α|x, I)dαdx.

The next Theorem deals with the IMSE of V̂ (·|·, I) and with its difference to its linearization

Ṽ (·|·, I) in (5.3).

Theorem 2 Under Assumptions A, H, S and for Ṽ (·|·, I) as in (5.3), it holds for all I in I

E
[∫
X

∫ 1

0

(
Ṽ (α|x, I)− V (α|x, I)

)2

dαdx

]
= h2(s+1)Bias2

I +
ΣI

LIh
(5.4)

+o

(
h2(s+1) +

1

LIh

)
,

with sup
(α,x)∈[0,1]×X

√
LIh

∣∣∣V̂ (α|x, I)− Ṽ (α|x, I)
∣∣∣ = OP

(
logL

h
√
LI

)
= oP(1). (5.5)

It also holds, for each I of I,

sup
(α,x)∈[0,1]×X

∣∣∣V̂ (α|x, I)− V (α|x, I)
∣∣∣ = OP

(√
logL

LIh

)
+O(hs+1), (5.6)

sup
(α,x)∈[0,1]×X

∣∣∣B̂(α|x, I)−B(α|x, I)
∣∣∣ = OP

(√
logL

LI

)
+ o(hs+1). (5.7)

Theorem 2 gives the IMSE of the linearization Ṽ (·|·, I) of V̂ (·|·, I) in (5.4). Then (5.5)

gives the order of the linearization error in a uniform sense, which is negligible with the order

1/
√
Lh + O(hs+1) of the squared root IMSE under Assumption H. The linearization result

(5.5) requests logL/(h
√
LI) = o(1), which is the main motivation for the unusual rate of

bandwidth rate of Assumption H. This condition is driven by the linearization of the bid

quantile derivative estimator B̂(1)(·|·, I).

The bias and variance leading terms in the IMSE expansion (5.4) are from the bid quantile

8The expression above depends upon the derivative β(s+2)(α|I), which exists by (2.4) for all α 6= 0 since
γ(·|I) is (s+1)-th differentiable. Proposition A.1-(iii) in Appendix A shows that αβ(s+2)(α|I) can be defined
over the whole quantile interval [0, 1] since limα↓0 αβ

(s+2)(α|I) = 0.
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derivative estimator αB̂(1)(α|x, I)/(I − 1). As

B(1) (α|x, I) =
1

g [B (α|x, I) |x, I]
,

where g (·|·) is the bid conditional pdf, estimation of this item is similar to estimating a pdf.

The rate 1/Lh of the variance term ΣI/(LIh) is the rate of a kernel density estimator in

the absence of covariate. This is due to the quantile-regression specification. Compared to

GPV density estimation rate 1/
√
LhD+1, the rate of the AQR estimator does not suffer from

the curse of dimensionality. The order O(hs+1) of the bias is given by (2.4), implying that

B(1)(α|x, I) has as many derivatives as V (α|x, I), hence the exponent s+ 1.

Minimizing the leading term of the IMSE expansion (5.4) yields the optimal bandwidth

h∗ =

(
ΣI

2 (s+ 1)Bias2
I

1

LI

) 1
2s+3

. (5.8)

As in kernel estimation, a pilot bandwidth can be computed using a simple private-value

quantile-regression model to proxy ΣI and Bias2
I in a parametric way. The corresponding

square root IMSE rate is L
s+1
2s+3 which corresponds to the optimal minimax rate given in GPV

in the absence of covariate, up to a logarithmic term and an exponent s+1 due to estimation

of the private-value quantile function, instead of s appearing for pdf. In particular, it is L−2/5

for s = 1, with an exponent 2/5 = .4 close to 1/2 suggesting potential good performances in

small samples even in the presence of covariate.

A similar rate can also be derived for the uniform consistency of V̂ (·|·, I) stated in (5.6).

Note also that (5.7) shows that the bid quantile estimator B̂(·|·, I) converges uniformly to

B(·|·, I) with a rate which is nearly parametric.9 All these convergence results take place

over the whole [0, 1]×X , meaning that potential boundary biases disappear asymptotically.

9The uniform consistency rate in (5.7) includes a bias term o(hs+1), which is O(hs+2) for α 6= 0 because
B(·|x, I) = x′1β(·|I) is (s + 2)-th times continuously differentiable over (0, 1]. Because B(·|x, I) may have
only (s+ 1) derivatives at α = 0, the bias order hs+2 may not hold uniformly over [0, 1].
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5.2.2 Bias, variance and Central Limit Theorem

While Theorem 2 reviews the global performance of the AQR estimator, this section details

some of its local features, and in particular its upper boundary behavior. Define

Π1
h (α) =

(∫ 1−α
h

−α
h

π (t) π (t)′K (t) dt

)−1

S ′1,

v2
h (α) = Π1

h (α)′
∫ 1−α

h

−α
h

∫ 1−α
h

−α
h

π (t1) π (t2)′min (t1, t2)K (t1)K (t2) dt1dt2Π1
h (α) ,

Σh (α|I) =
α2v2

h (α)

(I − 1)2 E
−1

[
X1`X

′
1`I (I` = I)

B(1) (α|X`, I`)

]
E [X1`X

′
1`I (I` = I)]E−1

[
X1`X

′
1`I (I` = I)

B(1) (α|X`, I`)

]
,

(5.9)

Biash(α|x, I) =
αB(s+2)(α|x, I)

I − 1
S1

(∫ 1−α
h

−α
h

π (t) π (t)′K (t) dt

)−1 ∫ 1−α
h

−α
h

ts+2π (t)

(s+ 2)!
K (t) dt.

(5.10)

setting Biash(0|x, I) = 0, see Footnote 8. The next Theorem gives some variance and bias

expansions and the pointwise asymptotic distribution of the estimator. Recall that, in our

pseudo true value framework, the bias of V̂ (α|x, I) is given by V (α|x, I)−V (α|x, I). As the

variance of V̂ (α|x, I) is difficult to compute due to the implicit definition of this estimator,

an expansion for the variance of its leading term Ṽ (α|x, I) is given instead.

Theorem 3 Under Assumptions A, H, S and for V (·|·, I), Ṽ (·|·, I) as in (5.3), (5.2) re-

spectively, it holds for all α in [0, 1] and all x in X ,

V (α|x, I) = V (α|x, I) + hs+1Biash(α|x, I) + o(hs+1), (5.11)

Var
[
Ṽ (α|x, I)

]
=

x′1Σh(α|I)x1 +O(h)

LIh
, (5.12)

with sup(α,x)∈[0,1]×X |Biash(α|x, I)| = O(1) and supα∈[0,1] ‖Σh(α|I)‖ = O(1).
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If α 6= 0, x′1Σh (α|I)x1 stays bounded away from 0 for all x and

(
LIh

x′1Σh (α|I)x1

)1/2 (
V̂ (α|x, I)− V (α|x, I)

)
converges in distribution to a standard normal.

These expansions give a better understanding of potential boundary effects affecting

V̂ (α|x, I). For Bias(α|x, I) and Σ(α|I) defined before Theorem 2, it holds

Biash(α|x, I) = Bias(α|x, I) and Σh (α|I) = Σ (α|I) for all α in [h, 1− h]

since the support of the kernel K(·) is [−1, 1]. Hence a pointwise optimal bandwidth for cen-

tral quantile levels is h∗(α|x, I) =
(

Σ(α|I)
2(s+1)Bias2(α|x,I)

1
LI

) 1
2s+3

, which is obtained by minimizing

the leading term of the Mean Squared Error obtained from (5.11) and (5.12).

As the asymptotic bias and standard deviation are proportional to α, more bias and

variance are expected for higher quantile levels and smaller I. This follows from the fact

that the leading term of V̂ (α|x, I) is αB̂(1)(α|x, I)/(I−1), which is proportional to α/(I−1).

Boundary effects can only occur for quantile levels in [0, h] or [1 − h, 1], which differ from

this respect. As V̂ (α|x, I) = B̂(α|x, I)+αB̂(1)(α|x, I)/(I−1), V̂ (α|x, I) is close to B̂(α|x, I)

when α is in [0, h]. In particular, V̂ (0|x, I) = B̂(0|x, I) which converges to B(0|X, I) with

the rate 1/
√
LI + o(hs+1) at least.

For upper quantile levels α in [1 − h, 1], the consistency rate of V̂ (α|x, I) is the slower

1/
√
Lh+O(hs+1) as for central quantile levels. Bias and variance also involve the matrix

(∫ 1−α
h

−α
h

π (t) π (t)′K (t) dt

)−1

=

(∫ 1−α
h

−1

π (t) π (t)′K (t) dt

)−1

for h small enough. This matrix increases with α, so that higher |Bias(α|x, I)| and Σh(α|I)

can take place near α = 1 compared to central quantile levels. See Fan and Gijbels (1996)

and the references therein for similar discussions. Accordingly, our simulations show an

increase of the bias and variance for α approaching 1, see Figures 2 and 4 in Section 6.2.
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5.3 Functional estimation

The plug-in estimators of θ (x) and θ in (3.1) are

θ̂ (x) =

∫ 1

0

F
[
α, x, B̂ (α|x, I) , B̂(1) (α|x, I) ; I ∈ I

]
dα, θ̂ =

∫
X
θ̂ (x) dx,

with AQR estimators B̂ (α|x, I) and B̂(1) (α|x, I). Let us now introduce the asymptotic

variances of θ̂ (x) and θ̂. The variances depend upon the matrices

P (I) = E [I (I` = I)X1`X
′
1`] , P0 (α|I) = E

[
I (I` = I)X1`X

′
1`

B(1) (α|X`, I`)

]
,

and of the functions, recalling b0I and b1I stand for B (α|x, I) and B(1) (α|x, I) respectively,

ϕ0I (α, x) = ∂b0IF
[
α, x,B (α|x, I) , B(1) (α|x, I) ; I ∈ I

]
,

ϕ1I (α, x) = ∂b1IF
[
α, x,B (α|x, I) , B(1) (α|x, I) ; I ∈ I

]
.

Let A be a U[0,1] random variable, 1 = [1, . . . , 1]′ a (D + 1)× 1 vector, and define, recalling

x1 = [1, x′]′,

σ2
L (x|I) = Var

[∫ A

0

(ϕ0I (α|x)− ∂αϕ1I (α|x)) 1′P0 (α|I)−1 P (I)1/2 x1dα

]
,

σ2
L (I) = Var

[∫
X

{∫ A

0

(ϕ0I (α|x)− ∂αϕ1I (α|x)) 1′P0 (α|I)−1 P (I)1/2 x1dα

}
dx

]
,

σ2
L (x) =

∑
I∈I

σ2
L (x|I)

I
, σ2

L =
∑
I∈I

σ2
L (I)

I
.

The proof of Theorem 4 in Appendix E shows that the asymptotic variances of θ̂ (x) and θ̂

are σ2
L (x) /L and σ2

L/L respectively provided they are bounded away from 0. This holds if

for all x in X , ϕ0I (α|x) 6= ∂αϕ1I (α|x) for some (α, I) of [0, 1]× I. (5.13)

It may be indeed that σ2
L (x|I) = 0 and σ2

L = 0, in which case θ̂ (x) and θ̂ can converge to

θ (x) and θ with “superefficient” rates, that is faster than 1/L1/2. Why it is possible is better

29



understood in our quantile context, through an example of functionals for which (5.13) does

not hold. Consider, for some given I0 of I,

F
[
α, x,B (α|x, I) , B(1) (α|x, I) ; I ∈ I

]
= 2B (α|x, I0)B(1) (α|x, I0)

which gives (ϕ0I0 (α|x) , ϕ1I0 (α|x)) = 2
(
B(1) (α|x, I0) , B (α|x, I0)

)
. Hence (5.13) does not

hold and σ2
L (x) = σ2

L = 0. Why θ̂ (x) and θ̂ can converge with superefficient rates for these

functionals is in fact not surprising observing that they estimate

θ (x) = B2 (1|x, I0)−B2 (0|x, I0) , θ =

∫
X
θ (x) dx,

respectively. For these examples, the parameters of interest only depend upon extreme

quantiles, in which case superefficient estimation is possible, see e.g. Hirano and Porter

(2003) and the references therein. The next Theorem establishes the asymptotic normality

of θ̂ (x) and θ̂.

Theorem 4 Suppose Assumptions A, H with log2 L
Lh3

= o (1), Assumption S with s ≥ 2 and

(5.13) hold. Then, for all x in X , σ2
L (x) and σ2

L are bounded away from 0 and infinity when

L grows, and √
L
(
θ̂ (x)− θ (x)− biasL,θ(x)

)
σL (x)

,

√
L
(
θ̂ − θ − biasL,θ

)
σL

both converge in distribution to a standard normal, the bias items biasL,θ(x) and biasL,θ being

o(hs).

Note that the conditional functional estimator θ̂(x) converges with a parametric rate,

under a bandwidth condition slightly stronger than in Assumption H. This bandwidth

condition corresponds to the fact that the linearization error term B̂(1)(α|x, I) − B̃(α|x, I)

is of order logL/(Lh3/2) as guessed from (5.5) and must be o(1/
√
L).

The bias term order o (hs) is given by the estimation of B(1) (α|x, I), and is of order

O(hs+1) when F (·) depends upon αB(1) (α|x, I) as in all the Examples. Let Gb1I (·) be the

partial derivative of F (·) with respect to αB(1) (α|x, I), and Biash (α|x, I) be as in (5.10).
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Then

biasL,θ(x) = hs+1 (1 + o (1))

×
∑
I∈I

∫ 1

0

Gb1I
[
α, x,B (α|x, I) , αB(1) (α|x, I) ; I ∈ I

]
Biash (α|x, I) dα

and biasL,θ =
∫
X biasL,θ(x)dx. The estimators θ̂ (x) or θ̂ are therefore asymptotically unbiased

if hs+1
√
Lh = o (1) or hs+1

√
L = o (1) respectively.

Theorem 4 applies to our functional Examples, but the resulting variance can be somehow

involved, so that the use of the bootstrap can be preferred as discussed below. We first detail

the variance obtained for the cdf estimator of Example 3 to illustrate the influence of the

bandwidth η on its variance.

Example 3 (cont’d). For the cdf estimator F̂η (v|x, I) =
∫ 1

0
Iη
[
v − V̂ (α|x, I)

]
dα,

ϕ0I (α|x) = −1

η
k

(
v − V (α|x, I)

η

)
, ϕ1I (α|x) =

α

(I − 1) η
k

(
v − V (α|x, I)

η

)
,

∂αϕ1I (α|x) =
1

(I − 1) η
k

(
v − V (α|x, I)

η

)
− α

(I − 1) η2
k(1)

(
v − V (α|x, I)

η

)
V (1) (α|x, I) .
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When η goes to 0, the dominant part of the variance is, for inner v, integrating by parts and

setting Vx,I = V (A|x, I)

I

L
Tr

{
Var

[(∫ A

0

∂αϕ1I (α|x) P0 (α|I)−1 dα

)
P (I)1/2 x1

]}
=

(1 + o (1)) I

L
Tr
{

Var
[
ϕ1I (A|x) ∂α

[
P0 (A|I)−1]P (I)1/2 x1

]}
=

(1 + o (1)) I

(I − 1)2 L

× Tr

Var

F (Vx,I |x, I)

f (Vx,I |x, I)

k
(
v−Vx,I
η

)
η

∂α
[
P0 (F (Vx,I |x, I) |I)−1]P (I)1/2 x1


=

(1 + o (1)) I
∫
k2 (t) dt

(I − 1)2 Lη

(
F (v|x, I)

f (v|x, I)

)2

× Tr
{
∂α
[
P0 (F (v|x, I) |I)−1]P (I)1/2 x1x

′
1P (I)1/2 ∂α

[
P0 (F (v|x, I) |I)−1]} .

Hence the order of the variance of F̂η (v|x, I) is 1/ (Lη) when η goes to 0. Its bias has two

components: the first is biasL,Fη(v|x,I) due to the bias of V̂ (α|x, I) and is of order O (hs+1),

while the second is Fη (v|x, I) − F (v|x, I) = O (ηs+1) if k (·) is a kernel of order s. Further

work is needed to determine at which rate η can go to 0 in this heuristic.

Bootstrap inference. Earlier theoretical works considering quantile-regression bootstrap

inference are Rao and Zhao (1992), for the weighted bootstrap, and Hahn (1995) for the

pairwise bootstrap. See also Liu and Luo (2017) for quantile-based auction testing proce-

dures. For standard and sieve quantile-regression estimators, Belloni et al. (2019) establish

consistency of several bootstrap procedures for functionals and uniformly with respect to the

quantile levels. It is expected that it carries over to our AQR estimators when bias terms

can be neglected, but is out of the scope of the present paper.

6 Simulation experiments

The first simulation experiments compare the AQR estimation method with GPV and its

homogenized-bid extension. Other simulations illustrate its performances for estimation of
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the private-value quantile function, expected seller revenue and optimal reserve price, or

risk-aversion parameter. All experiments involve L = 100 auctions with I = 2 or I = 3

bidders, so that small samples of 200 or 300 are considered. In most of the experiments,

three auction-specific auction covariates are considered. The number of replications is 1, 000

in all experiments. AQR are computed over the estimation grid α = 0, 0.01, . . . , 0.99, 1.

The AQR local polynomial order s+ 1 is set to 2 and the AQR kernel is the Epanechnikov

K (t) = 3
4

(1− t2) I (t ∈ [−1, 1]).

Since the asymptotic bias and variance of V̂ (α|x, I) tend to decrease with I, choosing a

small number I of bidders is challenging. Hickman and Hubbard (2015) used 5 bids while

I = 3 or 5 in Marmer and Shneyerov (2012) and Ma, Marmer and Shneyerov (2019). The

number of bids LI ranges from 1, 000 for Hickman and Hubbard (2015) to 4, 200 for Marmer

and Shneyerov (2012). In a simulation experiment focused on nonparametric estimation of

the utility function of risk-averse bidders, Zincenko (2018) considers I = 2 with L = 300

and I = 4 with L = 150. These references do not consider covariate, with the exception of

Zincenko (2018) for L = 900 auctions with one or two covariates. Therefore our simulation

setting correspond to rather demanding small sample situations.

6.1 Comparison with GPV and homogenized-bid

The simulation experiments of this Section makes use of a “trigonometric” quantile function

T (α) =
1

2
((π + 1)α + cos(πα)) (6.1)

whose probability density function has a compact support and is bounded away from 0, with

a shape similar to a peaked Gaussian one as seen from the left panel of Figure 2.10

Comparison with GPV. This experiment considers private values drawn from T (·) and

does not include covariate. It compares first the boundary bias corrected GPV two-step

10The pdf graph is obtained noting that T (1)(α) = 1/f(T (α)), so that the graph α ∈ [0, 1] 7→
(T (α), 1/T (1)(α) is the one of the pdf f(·). The associated bid quantile function can be obtained using
(2.4), which is used to simulate bids via a quantile transformation of uniform draws, as performed elsewhere
in our simulation experiments.
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Figure 2: Private value pdf estimation using Hickman and Hubbard (2015) bias corrected
version of GPV (left), Private value pdf estimation based upon AQR and Hickman and

Hubbard (2015) (center), and AQR V̂ (·) (right) , L = 100 and I = 2. Black line: true
functions. Dashed red and dotted lines: pointwise median and 2.5% − 97.5% quantiles of
the estimated functions across 1, 000 simulations.

pdf estimator with triweight kernel and rule of thumb bandwidth of Hickman and Hubbard

(2015) with the AQR pdf estimator

f̂(v) =

∫ 1

0

1

hAQR
K̃tri

(
v − V̂ (α)

hAQR

)
dα, hAQR =

3

(LI)1/5

(∫ 1

0

(
V̂ (α)−

∫ 1

0

V̂ (t)dt

)2

dα

)1/2

,

where the AQR bandwidth is h = .3, I = 2 and K̃tri(·) is the Hickman and Hubbard (2015)

boundary bias corrected triweight kernel.

The results are reported in Figure 2, which illustrates how much harder estimating a pdf

can be compared to estimating a quantile function. The variance and the bias of the two

private-value pdf estimators look much higher, especially just after the density peak. This

peak causes a small AQR bias for central quantiles.

Other features are common to the two pdf estimation procedures. The first stage of the

GPV procedure is based upon an estimation of the private values from (2.6), which is likely

to have more bias and variance for small bids than for large ones. Accordingly, the left
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panel of Figure 2 reveals that the GPV pdf estimator performs quite well before the density

peak, but that both its bias and variance increase for higher private values. The AQR pdf

estimator in the center panel looks less affected by these issues. By contrast, the quantile

estimation procedure in the right panel of Figure 2 is only affected by a variance increase

for upper quantiles as expected.

Figure 3: Private value cdf estimation using the homogenized bids and GPV version of
Hickmann and Hubbard (2005) (left), AQR with homogenized bids (center) and AQR (right).
Black line: true functions. Dashed red and dotted lines: pointwise median and 2.5%−97.5%
quantiles of the estimated functions across 1, 000 simulations.

Cdf estimation with homogenized bids and AQR The bids considered in this exper-

iment are associated with private values satisfying

Vi` = X1` +X2` +X3i` + vi`

where the Xj`’s are independently drawn from the uniform, independent from vi`, whose

quantile function is T (·) in (6.1). The bids are regressed on the covariate and the constant

to obtain the homogenized bids b̂i`. The latter are used as in the first-stage of Hickman

and Hubbard (2015) to obtain homogenized pseudo private values v̂i`, and the estimated
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private-value conditional cdf at x1 = x2 = x3 = 1/2 is

F̂ (v|x) =
1

LI

L∑
`

I∑
i=1

I
(

1

2
(β̂1 + β̂2 + β̂3) + v̂i` ≤ v

)
,

where the β̂j are the OLS slope estimators computed in the homogenized-bid regression.

Two AQR conditional estimators are computed. The first uses the homogenized bids and

(3.6) while the second is based on the standard AQR V̂ (α|x, I), both using the bandwidth

h = .3. The performances of these three cdf estimators are reported in Figure 3.

As expected, considering estimation of the private-value cdf gives smaller bias and vari-

ance than estimating pdf. All procedures have a similar variability. However the homogenized-

bid GPV procedure has a larger bias, dominating its variability in the right centre part of

the private-value distribution, than its AQR counterparts. Applying the AQR to the ho-

mogenized bids seems to slightly dominate the other AQR procedure.

6.2 Private value and expected revenue

Quantile-regression model and estimation details. The private-value quantile func-

tion is given by a quantile-regression model with an intercept and three independent covari-

ates with the uniform distribution over [0, 1],

V (α|X) = γ0 (α) + γ1 (α)X1 + γ2 (α)X2 + γ3 (α)X3

with

γ0 (α) = 1 + 0.5 exp(5(α− 1)), γ1 (α) = 1,

γ2 (α) = 0.5(1− exp(−5α)), γ3 (α) = 0.8 + 0.15((2π + 1)α + cos(2πα)).

The coefficient γ0 (·) is flat near 0 and strongly increases near 1 while γ2 (·) strongly increases

near 0 and is flat after. The slope γ3 (·) is as the trigonometric quantile function (6.1), but

with stronger oscillations which makes it harder to estimate.

The performances of the private-value quantile estimation procedure are evaluated through
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the individual estimation of each slope function or estimation of V (α|x) when the xj are set

to their median 1/2. The curvature of the expected revenue is mostly due to γ2(·), the other

coefficients having a rather flat contribution. The performances of the expected revenue

estimation procedure are therefore evaluated removing the intercept, setting x1 and x3 to 0

and taking x2 = 0.8. This choice gives a unique optimal reserve price achieved for α∗ = .3,

which is not too close to the boundaries so that the expected revenue function has a sub-

stantial concave shape which is suppose to make estimation more difficult. This is also used

for evaluating estimation of the optimal reserve price R∗ = .8γ2(α∗).

Simulation results. Table 1 summarizes the simulation results for the estimation of the

private-value quantile function, the expected revenue and the optimal reserve price. The

Bias and square Root Integrated Mean Squared Error (RIMSE) lines for V̂ (·|·) gives the

simulation counterparts of, respectively

(
1

4

3∑
j=0

∫ 1

0

(E [γ̂j (α)]− γj (α))2 dα

)1/2

and

(
1

4

3∑
j=0

∫ 1

0

E
[
(γ̂j (α)− γj (α))2] dα)1/2

.

The Bias and RIMSE for the expected revenue are computed similarly. Table 1 also gives the

Bias and square Root Mean Squared Error (RMSE) of the optimal reserve price estimator.

All these quantities are computed for bandwidths .2, .3, . . . , .9.

h .2 .3 .4 .5 .6 .7 .8 .9

V̂ (·|·) Bias .131 .141 .143 .145 .150 .159 .166 .176
RIMSE .433 .386 .355 .332 .322 .309 .303 .305

ÊR (·) Bias .036 .044 .049 .050 .051 .049 .047 .045
RIMSE .109 .104 .102 .100 .099 .098 .097 .096

R̂∗ Bias -.036 -.031 -.014 -.002 .009 .022 .037 .043
RMSE .129 .099 .075 .067 .062 .064 .066 .066

Table 1: Private value quantile function, expected revenue, and optimal reserve price

Estimation of the private-value slope coefficients seems more sensitive to the bandwidth

parameter than the expected revenue or optimal reserve price. It has also a much higher

RIMSE. The bandwidth behavior of V̂ (α|x) is also illustrated in Figure 4, which considers
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Figure 4: Private value quantile estimation for h = 0.3 (left) and h = 0.8 (right) for average
covariate. True V (α|x) = γ0 (α)+(γ1 (α) + γ2 (α) + γ3 (α)) /2 in black. Dashed red and dot-

ted lines: pointwise median and 2.5%− 97.5% quantiles of V̂ (α|x) across 1, 000 simulations.

the small bandwidth h = 0.3 and the larger h = 0.8. As expected from Theorem 3, the

dispersion of V̂ (α|x) increases with α and decreases with h, while the bias increases with α

and h. Figure 4 also suggests that choosing a large bandwidth as recommended by Table

1 may lead to important bias issues, including underestimating the private-value quantile

function for high α. This is mostly due to the slope γ3(·) which is an important source of

bias.

This contrasts with estimation of the expected revenue and optimal reserve price, which

seems mostly unaffected by the bandwidth. This is partly because the expected revenue

depends upon (1− α)V (α|x): multiplying the private-value quantile function by (1− α)

mitigates larger bias and variance near the boundary α = 1, see also Figure 5. For the

considered experiment, the true expected revenue is always in the 95% band of Figure 5

while the true private-value quantile function is out for large α when h = 0.8.

6.3 Risk-aversion parameter

Two risk-aversion estimators are considered. The first estimator ν̂fp is based upon (3.3) and

uses two independent samples of size L = 100 with 2 and 3 bidders from the model above,
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Figure 5: Expected revenue estimation for h = 0.3 (left) and h = 0.8 (right). True ER (α|x)
in black. Dashed red and dotted lines: pointwise median and 2.5% − 97.5% quantiles of
ÊR (α|x) across 1, 000 simulations.

which corresponds to a CRRA utility function tν with ν = 1.11 Integrals with respect to

α are computed using Riemann sums whereas integrals with respect to x are replaced with

sample means over the two auction samples. The second estimator ν̂asc is based upon (3.4)

and uses an additional sample of size L = 100 of ascending auctions with two bidders. In this

case, it is possible to consider various values of ν and the simulation experiment considers the

values 0.2, 0.6 and 1. Indeed, if B (α|X) is the first-price auction quantile bid function with

I = 2, the observed bids drawn from B (α|X) are rationalized by a CRRA utility function

tν if the private-value quantile function is set to

Vν (α|X) = B (α|X, 2) + ναB(1) (α|X, 2)

provided V
(1)
ν (·|X) > 0 for all X. As V

(1)
ν (·|·) > 0 holds in our case, we use Vν (α|X)

to generate two ascending bids for each auction. Following Gimenes (2017), Vν (α|X) can

be estimated from winning bids in these ascending auctions using AQR for quantile level

2α− α2.

11The optimal bid functions can be computed explicitly under the risk-neutral case ν = 1. Considering
other values of ν would request to use numerical computations of the bid functions.
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ν h .2 .3 .4 .5 .6 .7 .8 .9

ν̂fp 1 Bias -.795 -.564 -.412 -.288 -.178 .-.080 .003 .053
RMSE .891 .681 .545 .471 .404 .380 .393 .436

ν̂asc 1 Bias -.016 -.019 -.037 -.061 -.085 -.100 -.109 -.111
RMSE .240 .247 .248 .254 .260 .267 .276 .282

.6 Bias .028 .023 .009 -.008 -.025 -.035 -.040 -.042
RMSE .172 .176 .174 .175 .175 .179 .184 .188

.2 Bias .088 .083 .075 .066 .058 .053 .052 .053
RMSE .135 .133 .126 .122 .117 .116 .116 .118

Table 2: Risk-aversion estimation

Table 2 shows that ν̂asc dominates ν̂fp in this experiment. While the RMSE and bias

of ν̂asc do not seem sensitive to h, this is not the case for ν̂fp which has a high down-

ward bias, and then RMSE, for small h. Further investigations suggest this is due to an

unbalanced variable issue, the difference B̂ (α|X, 3) − B̂ (α|X, 2) being very smooth while

α
(
B̂(1) (α|X, 3) /2− B̂(1) (α|X, 2)

)
is more erratic, especially when α is close to 1. This

issue is addressed in the application by restricting α to [0, .8] for risk-aversion estimation.

7 Timber data application

Timber auctions data have been used in several empirical studies (see Athey and Levin

(2001), Athey, Levin and Seira (2011) Li and Zheng (2012), Aradillas-Lopez, Gandhi and

Quint (2013) among others). Some other works have investigated risk-aversion in timber

auctions (e.g., Lu and Perrigne (2008), Athey and Levin (2001), Campo et al. (2011)). This

section uses data from timber auctions run by the US Forest Service (USFS) from Lu and

Perrigne (2008) and Campo et al. (2011), which aggregates auctions of 1979 from the states

covering the western half of the United States (regions 1–6 as labeled by the USFS). It

contains bids and a set of variables characterizing each timber tract, including the estimated

volume of the timber measured in thousands of board feet (mbf) and its estimated appraisal

value given in dollars per unit of volume. We consider the 107 first-price auctions with two

bidders, the first-price auctions with three bidders (L = 108) and ascending auctions with two

bidders (L = 241). The considered covariates are the appraisal value and the timber volume

taken in log. AQR is implemented with bandwidth h = .3 and the Epanechnikov kernel.
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Figure 6: Two bidders first-price auction bid quantile slope coefficients: Intercept (left),
volume (center) and appraisal value (right). AQR with h = .3 (blue), standard QR (red)
and OLS regression (black), and pointwise 90% confidence intervals for the AQR-regression
difference (black dashed line) centered at the regression coefficients. A regression or AQR
estimated slope coefficients outside the confidence band indicates a potential misspecification
of the homogenized-bid regression model.

Pointwise confidence intervals are computed using 10,000 pairwise bootstrap replications. As

in the simulation experiments, the CRRA parameter estimator has a high variance, and risk-

neutrality cannot be rejected, see Gimenes and Guerre (2019). The rest of the application

therefore assumes risk-neutral bidders.

Specification testing. Table 3 reports first the results of Rothe and Wied (2013) test for

the four following null hypotheses: correct specification of the quantile-regression (QR), of

the homogenized-bid (HHS) model, exogeneity of the auction format (Format), participation

exogeneity (Entry). The three last null hypotheses are also tested using quantile-regression

coefficients comparison tests. Quantile-regression coefficient test statistics are based upon a

discretized version of Liu and Luo (2017) integral statistic (2.17), using Riemann sum over a

grid α = 0, 1/100, . . . , 1. For HHS, the intercept of β̂H0(·) is from the AQR estimator while

the slope are OLS. For the Format null hypothesis, β̂H0(·) = α−1
∫ α

0
γ̂asc(a|2)da, γ̂asc(·|2)

being an AQR version of Gimenes (2017) using the ascending auction sample with two
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bidders. For Entry, β̂H0(·) is an AQR version of (2.18) using first-price auction with three

bidders data. The Rothe and Wied (2013) statistic uses the unconstrained and constrained

cdf estimators computed from the two bidder sample

Ĝ(b, x) =
1

2L

L∑
`=1

2∑
i=1

I (Bi` ≤ b and X` ≤ x) ,

ĜH0(b, x) =
1

2L

L∑
`=1

2∑
i=1

I (X` ≤ x) Ĝ
(
Bi`

∣∣∣X`, β̂H0(·)
)

with

Ĝ
(
b
∣∣∣x, β̂H0(·)

)
=

∫ 1

0

I
[
x′1β̂H0(α) ≤ b

]
dα

which are compared using the Cramer-von Mises statistic

1

2L

L∑
`=1

2∑
i=1

(
ĜH0(Bi`, X`)− Ĝ(Bi`, X`)

)2

.

The p-values of the tests based upon Rothe and Wied (2013) use 10,000 replications of the

Tests QR HHS Format Entry

Rothe-Wied (2013) Stat. value .022 .084 .031 .031
p-value .07 .00 .22 .58

Test stat. (2.17) Stat. value x 2.95 0.70 0.42
p-value x .03 .01 .07

Table 3: Specification tests

bootstrap procedure proposed by these authors, while the other p-values are from 10,000

pairwise bootstrap replications. The Rothe and Wied (2013) procedure does not reject the

quantile-regression specification at the 5% level. This test also gives very high p-values

for the Format and Entry null hypotheses, which both correspond to quantile-regression

models, estimated in a different way than from the null hypothesis QR.12 Both tests reject

12Rothe and Wied (2013) testing procedure seems very sensitive to the estimation variance of the con-
sidered quantile model. Attempts not reported here show that it also holds for the Escanciano and Goh
(2014) bootstrap procedure, which gives smaller p-values. However, it does not include a re-estimation of
the quantile-regression specifications, which may underestimate p-values in small samples. While Rothe
and Wied (2013) bootstrap combines pairwise bootstrap, which draws auctions with replacement, with a
semiparametric one, which draws bids from the considered model, only the semiparametric bootstrap is
implemented here.
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the homogenized-bid specification at 5% level. The coefficient-based test also rejects at this

level exogeneity of the auction format, disagreeing with Rothe and Wied (2013).

Figure 7: Volume (top) and appraisal value (bottom) estimated private-value slope function
for first-price auctions with two bidders (left), three bidders (center) and ascending auctions
(right), for h = .3. AQR estimation (full line), regression (full straight line) and 5%, 50%, 95%
bootstrapped quantile (dashed line).

Bid quantile functions. Table 4 gives the results of bid OLS regressions. The dependent

variables are the bids for first-price auctions and the winning bid for the ascending auction.

The appraisal value coefficient is close to 1 in all auctions, but is found significantly distinct

Auctions Intercept Volume Appraisal value R2

First-price I = 2 −1.06
(6.67)

4.07
(1.12)

1.01
(0.04)

0.77

I = 3 −20.79
(9.55)

7.10
(1.34)

1.15
(0.06)

0.70

Ascending I = 2 2.76
(15.05)

3.76
(1.85)

1.12
(0.06)

0.67

Table 4: Auction bid regressions

at the 5% level when comparing the first-price auction with I = 2 with the one with I = 3

and the ascending auction. Similarly the volume coefficient of the first-price auction with
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Figure 8: Estimated expected revenue as a function of the screening level for first-price (full
line) and ascending (diamond) auctions with two bidders (h = .4). Volume and appraisal
value set to median of the first-price auctions. 5%−95% bootstrap quantiles in dashed lines.

I = 2 differs from the one with I = 3 at the 10% level. The appraisal value and volume

coefficients of the first-price auctions with I = 2 and I = 3 are statistically distinct at the

5% level. This is not compatible with a homogenized-bid regression model assuming entry

exogeneity.

Figure 6 gives the estimated slope for the first-price auction bids with I = 2. The volume

OLS coefficient is consistently outside the pointwise 90% bootstrap confidence interval of

its AQR counterpart. The appraisal value OLS estimate lies outside the AQR confidence

intervals for high quantile level in [.9, 1]. Figure 6 also reports standard quantile-regression

estimators, which exhibit a similar pattern. The intercept function does not look significant.

Therefore, the intercept will be kept constant and estimated using OLS in the rest of the

application. Comparison of the augmented and standard quantile-regression estimation also

shows that the former produces smoother slope coefficients.

Private value quantile function and expected revenue. Figure 7 gives the private-

value slope function of the volume and appraisal variables. The shape of the volume slope

varies across the type of auctions: while convex and in the [20, 100] range for high α in the

first-price case, it is in the [8, 15] range and more oscillating for ascending auctions. This

suggests that the private-value distribution and the auction mechanism are not independent,

as also reported in Table 3 for the test based upon (2.17).
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The appraisal value slope seems statistically different from its OLS counterpart for as-

cending auctions. For all auctions, the estimated appraisal value slopes start at 1 for α

near 0, suggesting that low type bidders do not get added value from the appraisal value.

This contrasts with high type bidders with higher α, which markup can be very high, in a

significant way for the case of ascending auction. This illustrates the important difference

between low type and high type bidders.

A possible discrepancy between first-price and ascending auctions with two bidders also

appears in the expected revenue computed for median values of the two explanatory variables,

see Figure 8. The ascending auction expected revenue is always below the first-price one.

This seems statistically significant for high screening levels. However, this may not be

relevant for the seller as the optimal revenue is achieved for a wide range [0, .5] of screening

levels over which the two expected revenue curves seem flat.

8 Final remarks

This paper proposes a quantile-regression modeling strategy for first-price auction under

the independent private value paradigm, which applies quantile-level local-polynomial to

estimate the private-value quantile regression. This new framework can also be used to

estimate some private-value random-coefficient models and to test some specification and

exogeneity hypotheses of economic interest. This approach is found to work well both in

simulations, and in a timber auction application where a strong low type/high type bidder

heterogeneity is detected. Another empirical finding is that the seller expected revenue in

a median auction is higher in first-price than in ascending auctions, but flat in a large zone

around the optimal reserve prices. This suggests that the choice of a reserve price and of an

auction mechanism may not be so important, at least for the median auction considered in

the application.

Many aspects of the paper deserve further investigations. The estimated constant rela-

tive risk-aversion exhibits a quite large variance, suggesting that a better understanding of

efficiency issues is needed. Various extensions can also be considered, such as endogenous

entry as in Marmer, Shneyerov and Xu (2013a) or Gentry and Li (2014). Our quantile ap-
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proach can be extended to exchangeable affiliated values as considered in Hubbard, Li and

Paarsch (2012), see also Gimenes and Guerre (2020) for the more involved case of interde-

pendent values. The approach of Wei and Carroll (2009) can be used to tackle unobserved

heterogeneity as in Krasnokutskaya (2011).
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