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Keynote talks 
 

Keynote 1 - by Prof. Philippe Esling- Associate professor and head of the Artificial Creative Intelligence and Data 

Science (ACIDS) research group at IRCAM 

Title: Creativity at the era of artificial intelligence. 

Abstract : Creativity is a deeply debated topic, as this concept is arguably quintessential to our humanity. Across 

different epochs, it has been infused with an extensive variety of meanings relevant to that era. Along these, the 

evolution of technology have provided a plurality of novel tools for creative purposes. Recently, the advent of 

Artificial Intelligence (AI), through deep learning approaches, have seen proficient successes across various 

applications. The use of such technologies for creativity appear in a natural continuity to the artistic trend of this 

century. However, the aura of a technological artefact labeled as intelligent has unleashed passionate and somewhat 

unhinged debates on its implication for creative endeavors. In this talk, we aim to provide a new perspective on the 

question of creativity at the era of AI, by blurring the frontier between social and computational sciences. To do so, 

we rely on reflections from social science studies of creativity to view how current AI would be considered through 

this lens. As creativity is a highly context-prone concept, we underline the limits and deficiencies of current AI, 

requiring to move towards artificial creativity. We exemplify our argument with several very recent research works 

from our team at IRCAM, called Artificial Creative Intelligence and Data Science (ACIDS). 

 

Keynote 2 - by Prof. Dorien Herremans - Assistant Professor at Singapore University of Technology and Design 

(SUTD) where she leads the AMAAI lab and is Director of SUTD Game Lab. 

Title: Controllable music generation: from MorpheuS to deep networks. 

Abstract: In its more than 60 year history, music generation systems have never been more popular than today. In 

this talk, I will discuss a number of co-creative music generation systems that have been developed over the last 

few years. These include MorpheuS, a tonal tension-steered music generation system guided by tonal tension and 

long-term structure. MusicFaderNets, a variational auto encoder model that allows for controllable arousal and 

rhythmic density of music. Finally, some more recent models by our AMAAI lab which include architectures such 

as controllable transformers and hierarchical RNN. 

 

Keynote 3 - by Dr. Mariana Lopez - Senior Lecturer in Sound Production and Post Production at the Department 

of Theatre, Film, Television and Interactive Media at University of York 

Title: Accessibility through sound design and spatialisation: towards more creative and inclusive practices in film 

and television 

Abstract: Studies on sound design and spatialisation in the creative arts seldom engage with their potential to create 

accessible experiences.  But these strategies can do much more than just entertain and immerse audiences, they 

could be put to the service of the creation of more accessible and inclusive experiences.  This talk will explore 

research on the use of creative sound design for the development of accessible film and television experiences for 

visually impaired audiences. It will do so by exploring the Enhancing Audio Description Methods (EAD Methods), 

as an alternative to traditional Audio Description practices.  The talk will explore the potential of the methods for 

accessibility practices as well as the creative advantages they hold for sound designers as well as film and television 

creators. Attendees will be introduced to notions of integrated access, accessible filmmaking and universal design, 

and how these are key for the creation of creative and accessible film and television productions, in which 

innovation on sound design and spatialisation is focused on their contribution towards social inclusion.  

 

  

https://www.ircam.fr/person/philippe-esling/
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Abstract— We propose a method of joint multi-pitch detection and
score transcription for polyphonic piano music. The outputs of our
system include both a piano-roll representation (a descriptive
transcription) and a symbolic musical notation (a prescriptive
transcription). Instead of further converting MIDI transcriptions to
scores, we use a multitask model combined with Convolutional
Recurrent Neural Networks and Sequence-to-sequence models with
attention mechanisms. We propose a reshaped score representation that
outperforms a LilyPond representation both in prediction accuracy and
time/memory resources, and compare different input audio
spectrograms. The joint model outperforms a single task model in score
transcription.

I. INTRODUCTION
A large part of work in Automatic Music Transcription (AMT)

falls under the tasks of multi-pitch detection and onset/offset
detection. In this work, we discuss the problem of music
audio-to-score transcription (A2S). Unlike in [1] which obtains a
MIDI output in the beginning and transcribes music audio step by
step, we use an end-to-end method that directly converts an audio
input to a score format (see some early stage works in [2]).

In this work, we intend to extend the use of end-to-end A2S to a
more general application scenario of polyphonic piano music with
varying polyphony levels, as well as to support the estimation of
music performance characteristics in a piano-roll format. We propose
a multitask end-to-end model composed of convolutional layers,
recurrent layers and sequence-to-sequence models with an attention
mechanism for A2S, which is, to our knowledge, the first holistic
model that transcribes polyphonic piano music into both a piano-roll
format (corresponding to a descriptive notation of the music audio)
and a score in Western staff notation (corresponding to a prescriptive
notation of the musical audio). Additionally, we propose a new score
representation for modelling polyphonic music that learns and
predicts 7 times faster, uses less memory, and performs better than the
LilyPond format score representation on this model. We also test the
effect of using different input time-frequency representations, and the
effect of combining multi-pitch detection and score transcription with
a multitask model.

II. EXPERIMENTS

We carry out three experiments: 1) comparison of time-frequency
representations, including Short-Time Fourier Transform (STFT),
Mel Spectrogram, Constant-Q Transform (CQT), Harmonic
Constant-Q Transform (HCQT), and Variable-Q Transform (VQT); 2)
comparison of score representations, including a LilyPond format
score representation and a Reshaped score representation (see in
Figure 1); 3) combination of piano-roll and symbolic score in a
multitask model. We use a joint model with shared convolutional
layers, and separate recurrent layers/sequence-to-sequence networks
for multi-pitch detection and score prediction.

*L. Liu is a research student at the UKRI Centre for Doctoral Training in
Artificial Intelligence and Music, supported jointly by the China Scholarship
Council and Queen Mary University of London.

Figure 1. Example music score and corresponding LilyPond and Reshaped
representation

We train and evaluate our system in a dataset with scores
collected from the MusicScore website and audio recordings
synthesized from the scores. Experimental results are shown in
Tables 1 and 2. Among the five spectrogram types, VQT shows the
best performance. The Reshaped representation runs around 7 times
faster, uses around half the memory, and is slightly better than the
LilyPond representation in terms of prediction accuracy. Overall,
the joint model predicts better scores than a single task model.
Table 1. Benchmark F-measure of piano-roll prediction on different input

representations and models.

Table 2. Word error rates and MV2H [3] results in percentage for different
models. LilyPond: Score-only model with LilyPond representation;
Reshaped: Score-only model with Reshaped representation; Joint:

Joint model with Reshaped representation.

III. REFERENCES
[1] K. Shibata et al., “Non-local musical statistics as guides for audio-to-

score piano transcription,” arXiv preprint arXiv:2008.12710, 2020.
[2] M. A. Román et al., “Data representations for autio-to-score

monophonic music transcription,” Expert Systems with Applications,
vol. 162, pp.113769, 2020.

[3] A. Mcleod and M. Steedman, “Evaluating automatic polyphonic music
transcription,” in ISMIR, 2018, pp. 42-49.

Joint Piano-roll and Score Transcription for Polyphonic Piano
Music

Lele Liu*,Veronica Morfi, and Emmanouil Benetos

Centre for Digital Music, Queen Mary University of London, UK, lele.liu@qmul.ac.uk
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A Modular System for Harmonic Structure Analysis of Music
Andrew McLeod and Martin Rohrmeier∗

Digital and Cognitive Musicology Lab, EPFL, Switzerland, andrew.mcleod@epfl.ch

Abstract— Harmonic structure analysis is the task of label-
ing an input musical piece (be it a score, MIDI, or audio) with
chord and local key information. The task involves many inter-
connected dependencies at various levels of granularity (from
low to high: frames, notes, chords, and keys). In this work, we
propose a system with a modular design, allowing each compo-
nent to regard the data at the appropriate level.

Index Terms— Chord, key, harmonic analysis

I. TASK AND SYSTEM

Previous work on full harmonic analysis [1, 2] has treated the
input as a sequence of input frames, assigning a label to each with
various (sequential and non-sequential) neural network architec-
tures. Our modular system, on the other hand, models each as-
pect of the analysis at its corresponding level of granularity. We
hypothesize that such a design will allow our system to be more
interpretable, as well as more adaptable to various use cases.

We use a very large vocabulary of chords and keys taking on a
full characterization as used in music theory. Chord roots and key
tonics may be any pitch A–G, double-flat to double-sharp (35 total).
Chords may be major, minor, augmented (each with no, major, or
minor 7th), or diminished (with no, minor, or diminished 7th) (12
total); in any inversion (3 for triads, 4 for 7th chords). This totals
1540 chords and 70 keys (major or minor for each tonic).

Our system is composed of 6 modules, each with a well-defined
input and output (see Fig. 1). Its input can be a musical score
(notes), a MIDI file (notes), or frames of an audio spectrogram,
though we currently use only musical scores, and its output is a list
of (absolute or relative) chord symbols and local keys, each corre-
sponding to a range of inputs.

The Chord Transition Model (CTM) takes the system’s input
vectors and outputs the probability of each being the start of a new
chord. The Chord Classification Model (CCM) takes as input a list
of input vectors belonging to the same chord, and outputs a distri-
bution over all chords. The Chord Sequence Model takes as input
a sequence of chords (whose root pitch is relative to the current
key’s tonic), and outputs a distribution over the next chord at each
step. The Key Transition Model takes as input a sequence of relative
chords and outputs the probability of each being the start of a new
local key. The Key Sequence Model takes as input the sequence rel-
ative chords from the previous local key section of a piece, plus the
first chord symbol of a new key section (still relative to the previous
tonic), and outputs a distribution over the next local key (as an inter-
val from the previous tonic plus major or minor). The Initial Chord
Model outputs a distribution over the first relative chord symbol of
a piece given the key.

∗Research supported through the Swiss National Science Foundation
within the project “Distant Listening – The Development of Harmony over
Three Centuries (1700–2000)” (Grant no. 182811).

Table 1: Evaluation results.

Chord Key
Root+Triad +7ths +Inv Tonic +Mode Full

0.47 0.32 0.26 0.45 0.34 0.15

Figure 1: Overview of our fully integrated system. Each component depends
on the component directly below it, in addition to the arrows.

II. RESULTS AND DISCUSSION

We train and evaluate the system on a private set of annotated
musical scores from a variety of composers (including the Anno-
tated Beethoven Corpus [3]). Results are shown in Table 1. Each
value is the average proportion of each piece with the correct label.
Although each of our modules is currently very simple (most are a
single-layer LSTM with a softmax), our results are promising.

Our system’s modular allows us to train and improve each com-
ponent independently, treating each as a black box. Noisy training
methods such as scheduled sampling could also be used to make our
model more robust to decoding errors. In future work, we plan to
adapt the system to different input formats (MIDI and audio—only
the CTM and CCM would need to be re-trained), and use the system
in a human-in-the-loop way for annotation where a human can force
the search process to go through particular manually-input labels.

III. REFERENCES

[1] T.-P. Chen and L. Su, “Harmony transformer: Incorporating chord seg-
mentation into harmony recognition,” in ISMIR, nov 2019.

[2] G. Micchi, M. Gotham, and M. Giraud, “Not all roads lead to rome:
Pitch representation and model architecture for automatic harmonic
analysis,” Transactions of the International Society for Music Informa-
tion Retrieval, vol. 3, no. 1, pp. 42–54, may 2020.

[3] M. Neuwirth, D. Harasim, F. C. Moss, and M. Rohrmeier, “The anno-
tated beethoven corpus (ABC): A dataset of harmonic analyses of all
beethoven string quartets,” Frontiers in Digital Humanities, 2018.

DMRN+15: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2020, QUEEN MARY UNIVERSITY OF LONDON, TUE 15 DECEMBER 2020



DMRN+15: DIGITAL MUSIC RESEARCH NETWORK 
ONE-DAY WORKSHOP 2020 
 
QUEEN MARY UNIVERSITY OF LONDON 
TUE 15 DECEMBER 2020 

DMRN+15: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2020, QUEEN MARY UNIVERSITY OF LONDON, TUE 15 DECEMBER 2020 
 

 

 

  

Abstract— Polyphonic vocal recordings are an inherently 
challenging task for source separation due to the melodic 
structure of the vocal parts and unique timbre of its constituent 
parts. In this work we utilize a time-domain neural network 
leveraged for speech separation and modify it to separate 4 
acapella vocals (soprano, alto, tenor and bass) at a high sampling 
rate. To our knowledge this work is the first attempt to use 
permutation invariant training with time-domain neural 
networks for this task with audio data only. The results obtained 
are comparable to the state-of-the-art score-informed separation 
methods. 

Index Terms— Time Domain Source Separation, Choral Music 

I. ARCHITECTURE 
We leverage the Conv-TasNet [1] and Dual-Path RNN [2] 

architecture with Permutation Invariant Training (PIT) to 
separate mixtures of 4 source choral polyphonic vocal 
mixtures. We modify the Conv-TasNet architecture to handle 
22.05kHz sampling rate data by increasing the input window 
to 20 samples and adding 1 dilated convolutional layer to have 
a receptive field of 1.4 second. We use a permutation invariant 
loss function for the 4 source mixtures with scale-invariant 
signal to distortion ratio (SI-SDR) as the loss function. We 
utilize the Asteroid [3] framework for the experiments 
presented here. 

II. DATASET 
We use a combination of 26 Bach Chorales (BC) and 22 

Barbershop Quartet (BQ) acapella multitracks from [4] for this 
experiment. Both the datasets had a combined duration of 104 
minutes which was split 8:1:1 between training, test and 
validation sets. BC has 2 male (tenor and bass) and 2 female 
vocal sources (soprano and alto) while BQ has all 4 male 
vocalists. Each file is 10-second at with a sampling rate of 
22.05kHz and 16 bits per sample. 

III. TRAINING 
We trained the network 200 epochs on 10-second-long 

segments with early stopping (patience of 10 epochs). The 
initial learning rate is set to 5e-4 and is subsequently halved if 
the validation loss does not improve for 3 consecutive epochs. 
The remaining training parameters are the same as used in the 
original implementation of Conv-TasNet [1].  

 
________________________ 

*S. Sarkar is a research student at the UKRI Centre for Doctoral Training 
in Artificial Intelligence and Music, supported jointly by UK Research and 
Innovation [grant number EP/S022694/1] and Queen Mary University of 
London. This research utilized Queen Mary’s Apocrita HPC facility, 
supported by QMUL Research-IT. http://doi.org/10.5281/zenodo.438045 . 

IV. RESULTS 
We evaluate the performance of our separation using the 

Asteroid implementation of signal-to-distortion ratio (SDR), 
signal-to-interference ratio (SIR), signal-to-artifact ratio 
(SAR) [5] and SI-SDR. We compare our results with reported 
non-PIT and score-informed separation results on choral 
mixtures presented in [6,7]. 

Table 1. Average SIR, SAR and SDR for choral music separation. 

Model SIR SAR SDR 

ConvTasNet @ 22.05 kHz +12.45 dB +7.81 dB +6.18dB 

DPRNN @ 11.025 kHz +11.80 dB +8.14 dB +6.24 dB 

U-Net without score [6] +9.30 dB +5.69 dB - 

Wave-U-Net without score [6] +7.07 dB +5.54 dB - 

C-U-Net with score [6] +12.08 dB +7.21 dB - 

Wave-U-Net with score [7] - - +8.1 dB# 

 
Our preliminary results suggest that time-domain separation 
with permutation invariant training is indeed a suitable tool for 
this task. Audio examples† from our models and our code^ 
based on Asteroid is available online. 

V. REFERENCES 
[1] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time-

frequency magnitude masking for speech separation.” IEEE/ACM 
TASLP, vol. 27, pp. 1256-1266, Aug 2019. 

[2] Y. Luo and N. Mesgarani, “Dual-path RNN: Efficient long sequence 
modelling for time-domain single channel speech separation.” IEEE 
ICASSP, pp. 46-50, May 2020. 

[3] M. Pariente et al. “Asteroid: the PyTorch-based audio source 
separation toolkit for researchers,” in Proc. Interspeech, ISCA, 2020. 

[4] R. Schramm and E. Benetos. “Automatic transcription of a cappella 
recordings from multiple singers”, AES International Conference on 
Semantic Audio, June 2017. 

[5] E. Vincent et al., “Performance measurement in blind audio source 
separation,” IEEE TASLP, vol. 14, no. 4, Jul. 2006.  

[6] D. Petermann et al., “Deep Learning based Source Separation Applied 
to Choir Mixtures”, Proceedings of the 21st International Society for 
Music Information Retrieval Conference (ISMIR), Montreal, Canada 
(Virtual), 2020. 

[7] M. Gover et al., “Score-informed source separation of choral music,” 
Proceedings of the 21st International Society for Music Information 
Retrieval Conference (ISMIR), Montreal, Canada (Virtual), 2020. 

 
- Data not reported in [6, 7]. 
#Median SDR value reported in [7]. 
†http://c4dm.eecs.qmul.ac.uk/ChoralSep/  
^https://github.com/saurjya/asteroid/tree/ChoralSep 
 

 Choral Music Separation using Time-domain Neural Networks  
Saurjya Sarkar*1, Emmanouil Benetos1 and Mark Sandler1 

 
1Centre for Digital Music, Queen Mary University of London, United Kingdom  
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Generating Audio Mosaics with Particle Smoothing
Graham Coleman

Oldenburg, Germany, ravelite@gmail.com

Abstract— Bayesian sampling techniques, such as
particle filters, offer a way to solve state estimation
and optimization problems within audio synthesis and
transformation. By defining a varispeed random tape
that jumps between source audio segments, and a likeli-
hood function expressing harmonic and timbral similar-
ity, particle smoothing was used to generate tape control
sequences that imitate a target music segment.

Index Terms— Particle filters, smoothing, audio mosaic,
concatenative synthesis, sampling synthesis.

I. INTRODUCTION

Sampling synthesis, for example, when imitating a target
music signal, offers alternate views to an audio corpus. As
these create complex multi-step decision problems, there is a
rich mathematical space available for solving them. Previous
systems in these space include [1, 2].

One broad approach, rather than trying to exactly solve
an intractable optimization problem, samples in the proba-
bilistic sense; that is, it runs a procedure with randomized
solutions that tends to produce better solutions as output. [1]
is one of the few concatenative synthesis systems from this
family of approaches.

More specifically, sequential monte carlo (SMC), or par-
ticle filters, offer a principled way to serially decompose the
problem of estimating time-varying state. These were pre-
viously used for musical tempo tracking tasks [3], as they
are admissible even when using complex distributions and/or
non-linear state evolutions.

Thus, SMC offers a simple, idiosyncratic, and perhaps
overlooked inference method for audio synthesis and trans-
formation.

II. PARTICLE SMOOTHING

In order to specify the problem, one chooses the prior
distributions, that is, the initial state distribution as well as
how the state evolves through time. One also chooses a like-
lihood function, a conditional probability of different states
given the observed data, giving a kind of similarity measure.
Lastly, one chooses an importance function, which affects
which states are favored in the sampling process.

Given a variety of choices for the distributions above, the

Figure 1: Typical distribution of smoothing paths (sampling position over
time) produced by SIR smoothing algorithm. Most paths share common
histories.

main algorithm proceeds identically, using the sequential im-
portance resampling (SIR) particle smoother [4]. This pro-
duces a distribution of N sampling paths (like the ones of
Figure 1) that we can sonify.

The author has implemented a prototype framework in
python, allowing for configuration of the different distribu-
tions and SMC smoothing. Once computed, a representative
sampling path is synthesized. Some sound examples will be
presented.

III. REFERENCES

[1] M. D. Hoffman, P. R. Cook, and D. M. Blei, “Bayesian Spectral Match-
ing: Turning Young MC into MC Hammer via MCMC Sampling,” in
Proceedings of ICMC 2009, 2009.

[2] G. Coleman, “Descriptor Control of Sound Transformations and
Mosaicing Synthesis,” Ph.D. dissertation, Universitat Pompeu Fabra,
Barcelona, 2016. [Online]. Available: http://mtg.upf.edu/node/3449

[3] S. W. Hainsworth and M. D. Macleod, “Particle Filtering Applied to
Musical Tempo Tracking,” EURASIP Journal on Advances in Signal
Processing, vol. 2004, no. 15, pp. 1–11, Dec. 2004, number: 15 Pub-
lisher: SpringerOpen. [Online]. Available: https://asp-eurasipjournals.
springeropen.com/articles/10.1155/S1110865704408099

[4] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University
Press, Sept. 2013.
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How to automatically calculate tonal tension using AuToTen

Germán Ruiz-Marcos, Robin Laney and Alistair Willis1

1School of Computing and Communications, Open University, UK, german.ruiz-marcos@open.ac.uk

Abstract— AuToTen, as in Automatic Tonal Tension,
is a Python-based system which automatically calculates
the contributions to tonal tension of a piece of music ac-
cording to Lerdahl’s model of tonal tension. We will
present a demo to illustrate how to use AuToTen. We
believe many research projects could benefit from Au-
ToTen’s capabilities.

Index Terms— Tonal tension, Automation, GTTM, TPS

I. INTRODUCTION

In music, the sense of tension created by melodic and
harmonic motion is often referred to as tonal tension [1].
From the existing models of tonal tension, Lerdahl’s [1] has
shown strong correlations against human judgements of ten-
sion. Lerdahl’s Model of Tonal Tension (MTT) provides us
with a method to estimate the degrees of tonal tension a West-
erner may perceive when listening to a piece of tonal music.
However, the application of MTT needs to be done manu-
ally. In order to automate its application, we have developed
AuToTen.

II. LERDAHL’S MODEL OF TONAL TENSION

MTT relies on the Generative Theory of Tonal Music
(GTTM) [2], which consists of a collection of rules to extract
the metrical components of a piece of music, its inner groups
and patterns, and its hierarchical relations. From GTTM’s
outputs, MTT calculates two components. First, a value of
harmonic tension, which concerns the vertical arrangement
of chords and the cognitive distances between them within
the Tonal Pitch Space (TPS) [3]. Second, a value of attrac-
tion, which concerns the horizontal arrangement of chords
and the voice-leading paths between chords.

III. AUTOTEN

What is AuToTen?

AuToTen [4], as in Automatic Tonal Tension, is a publicly
available system1 capable of automatically calculating the
degrees of tonal tension, of a given piece of music, accord-
ing to Lerdahl’s MTT. As input, AuToTen needs to be fed
with a piece of music and its GTTM representations, all in

1https://doi.org/10.21954/ou.rd.13026578.v1

MusicXML format. The latter can be calculated using the
Interactive GTTM Analyser [5] .

How has AuToTen been implemented?

AuToTen consists of five sub-systems: (1) the metre anal-
yser, which produces a list of the input piece’s offsets from
the input GTTM representations; (2) the matrix calculator,
which calculates a representation of the input piece’s hier-
archical relations according to the input GTTM representa-
tions; (3) the harmonic analyser, which calculates the most
suitable key and chord labels of the input piece of music; (4)
the parameter calculator, which calculates the parameters
needed to apply the rules in Lerdahl’s MTT; and (5) the ten-
sion calculator, which calculates the input piece’s values of
harmonic tension and attraction according to Lerdahl’s MTT.

How to use AuToTen?

AuToTen includes the file run.py, which automatically
calls all five AuToTen’s sub-systems. When running this
file, the user will be asked to select a piece of music and
its GTTM representations, all in MusicXML format. The
user will also be asked to select a location to save AuToTen’s
outputs. These will consist of two CSV files which include
the quantitative values of the piece’s harmonic tension and
attraction according to Lerdahl’s MTT.

What else can AuToTen be used for?

AuToTen’s built-in functions can also be called indepen-
dently and may be useful in other projects which do not con-
cern musical tension. It is worth mentioning two of these
functions. First, distance(), which can be used to cal-
culate the distance between two chords within TPS. Second,
generator(), which can be used to transform a piece’s
GTTM hierarchical representation into a more readable rep-
resentation in the form of a matrix.
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Abstract— Many neural audio synthesis models learn a
representational space which can be used for control or ex-
ploration of the sounds generated. It is unclear what relation-
ship exists between this space and human perception of these
sounds. In this work, we compute configurational similarity
metrics between an embedding space learned by a neural au-
dio synthesis model and conventional perceptual and seman-
tic timbre spaces. These spaces are computed using abstract
synthesised sounds. We find significant similarities between
these spaces, suggesting a shared organisational influence.

Index Terms— Neural audio synthesis, psychoacoustics,
timbre, representation learning

I. INTRODUCTION

Many neural audio synthesis models use representation
learning techniques to enable interpretable control. For example,
Kim et al learned an instrument embedding when training their
Mel2Mel model, in a manner that required only reconstruction
loss [1]. In this work, we compare the organisation of a Mel2Mel
embedding space with perceptual and semantic timbre spaces
computed from human ratings.

II. METHOD

We use a set of twelve sounds created with frequency modula-
tion (FM) synthesis in a previous study [2]. Participants (n=30)
provided pairwise dissimilarity ratings on these stimuli, and an En-
glish speaking subset (n=24) provided semantic ratings along 30
adjective scales. Adjectives were sourced by text-mining a corpus
from a popular modular synthesis forum.* A 3D timbre space was
constructed by performing multidimensional scaling (MDS) on
the dissimilarity scores, and a 2D semantic space was computed
with exploratory factor analysis (EFA) on the semantic ratings.

The organisation of Mel2Mel’s embedding space is guided by
the network’s overall reconstruction objective [1]. Two versions
of the model were trained, with 2D and 3D embedding spaces.

III. RESULTS

The two semantic factors showed strong loadings for terms as-
sociated with mass and texture, respectively. The mass factor cor-

This work was supported by UKRI [grant number EP/S022694/1]
*MuffWiggler: https://www.muffwiggler.com/forum/

Table 1: Configurational Similarity Metrics

Space Embed. T.C.C. m2 RVmod

EFA 2D 0.884 0.439* 0.683
MDS 3D 0.923 0.721 0.325

*PROTEST significance p<0.001

related strongly with the first dimension of the 3D timbre space.

To compare the perceptual and neural spaces, three configu-
rational similarity metrics were used. Tucker’s congruence coeffi-
cient (TCC) is related to the cosine similarity between factors. A
TCC of 0.83−0.95 is considered significant, and >0.95 nearly
identical [3]. m2 is the minimisation objective of Procrustes
rotation. The modified RV coefficient is an extension of Pear-
son’s r to matrices. Table 1 shows these metrics for each timbre
space and the embedding space of corresponding dimensionality.
We see strong similarity across all metrics in the semantic EFA
space, and very strong similarity in only TCC in the MDS space.

IV. CONCLUSION

The similarities between the timbre spaces and the Mel2Mel
embedding spaces suggest that both systems rely on similar
attributes to discriminate timbres. Whilst not conclusive, our
results warrant further investigation. This will include inquiry
into whether these results generalise to other sonic domains and
NAS architectures, including those with different representational
spaces. The finer structure of these spaces can also be studied
by observing the positioning of latent space interpolations in
perceptual and semantic timbre spaces.
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Creating and Evaluating an Annotated Corpus Using the Library
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Abstract— This contribution focuses on the production of an
annotated dataset, supported by the Python library ms31. The
process is centered around the open-source notation software
MuseScore 3 and resulted in the first digital edition of W.A.
Mozart’s 18 piano sonatas according to the Neue Mozart Aus-
gabe [1]. The 54 MuseScore files are annotated with harmony,
phrase, and cadence labels, and the first section focuses on how
ms3 was exploited to extract, manipulate, and add annotations.
The second section presents an example of how the extracted
data may be combined and evaluated in order to map out the
harmonic make-up of the roughly 1,100 cadences contained in
the dataset.

Index Terms— corpus research, corpus creation, dataset, Vien-
nese Classic, solo sonatas, music theory, music annotation, expert
analyses, harmony, cadence, data validation

I. OVERVIEW

Within Digital Musicology, the computer-aided analysis of
large annotated corpora is one of the prevailing methods for gaining
music theoretical insights into the musical language of a particu-
lar composer and/or of a particular style (for an example, see [2]).
The structural aspects of a musical language are often considered
as emerging from an interplay between harmony (vertical relation-
ships) and voice-leading (horizontal relationships). Harmonic anal-
yses encoded by human experts therefore make up the majority of
annotated datasets in this domain (for an approach to annotating
voice-leading, cf. [3]). There are, however, only few datasets where
more high-level, formal analyses are encoded which account for
phrase structure, modulation plans, or formal patterns (for a sug-
gested form annotation standard, see [4]). The Annotated Mozart
Sonatas [5] described in this contribution address this issue by in-
cluding analytical labels for Roman numerals, phrase boundaries,
and cadences. The annotated corpus currently represents one of
the largest datasets allowing for the investigation of the Classical
cadence [6] and other morphogenetic features such as phrases and
their relation to a piece’s tonal hierarchy.

II. CORPUS CREATION

The 54 MuseScore files were partly downloaded and converted
from online sources and the missing movements were typeset in
MuseScore. All scores have been checked for accordance with the
Neue Mozart Ausgabe. The harmony and phrase annotations were
added to and reviewed in the respective scores, and extracted as
tabular files (TSV format) with ms3. The cadence labels were man-
ually created in a tabular format and can be automatically added to
the MuseScore files using the Python library’s interface. Further-
more, the data has been verified using a novel data triangulation
procedure based on expert consensus.

∗Research generously funded by the Swiss National Science Foundation
and Claude Latour.

1https://pypi.org/project/ms3/
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Figure 1: Flow chart aggregating the progressions of dominant
chords in Perfect Authentic Cadences. The height of a coloured
node expresses the chord’s relative frequency. Any flow leaving
on the right side shows the proportion of its progressions to other
chords.

III. EVALUATION

In order to investigate the harmonic make-up of the five an-
notated cadence types, ms3 was used for merging the TSV files
representing the annotation sets. The harmony labels preceding
each cadence label were grouped by chordal roots and aggregated.
For example, Figure 1 shows, for all 517 Perfect Authentic Ca-
dences (PACs), the progressions between different dominant chords
(chordal root V) that precede the tonic ultima. The plot reveals
that in this repertoire the typical dominant progressions of a PAC
starts on a cadential six-four chord V(64) and proceeds to only
one other chord, namely V7 or V. In contrast, dominants featuring a
fourth suspension (e.g. V(4) or V7(4)) are rare events. Compar-
ing equivalent plots for other cadence types and chordal roots may
shed light on the question whether their harmonic make-up differs.
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Abstract— Music Recommender Systems and the al-
gorithms they encapsulate have become central to elicit
efficient navigation of the vast informational landscapes
of popular music streaming platforms. Questions have
been raised as to the extent to which recommender algo-
rithms may function as tools or rather act to distort ones
initial input preference and subsequent behaviour. Re-
cent multi-disciplinary endeavours have appraised this is-
sue by drawing comparison to an organic reference point
i.e., absent of algorithmic influence. Whilst the focus
of such debates often revolves around distributions of
underlying features of recommended items –most often,
some measure of their diversity– this work takes a novel
approach of exploring temporal variations in organic, al-
gorithmic and editorial content access through a user-
side analysis. By classifying users based upon aggregated
item access type histories, we characterise the inherent
properties of users within each set to trace factors con-
nected to temporal changes in access types.

Index Terms— Music Recommender System, human
and algorithmic curation, user behaviour, ROM-COM

I. CONTEXT

Music Recommendation algorithms are designed to elicit
personalisation thereby alleviating choice overload - a prod-
uct of the vast collections of music now at the disposal
of modern music streaming platforms. Whilst this define-
ment implies recommendation algorithms to act as cogni-
tive helpers, recent years have given rise to substantial lit-
erature critiquing recommendation algorithms for distorting
a user’s organic (absent of algorithmic influence) preference.
Extending this line of work, we perform a user-side assess-
ment of temporal changes in item access modes on the pop-
ular music streaming platform - Deezer. On most music
streaming platforms, users are indeed able to access songs
by three main modes: organic (e.g. manual search, plays
from personal library), editorial (e.g. curated playlists) and
algorithmic (e.g. Flow or Daily playlists). Utilising such
content access histories, our work defines distinct user tax-
onomies which capture evolving behavioural dynamics – to
our knowledge a novel approach in this domain and a key
prior step to disentangle the joint influence of organic and
recommendation-based usage on the formation of taste.

∗Research supported by the ANR-funded RECORDS project, grant
agreement number ANR-2019-CE38-0013

II. RELEVANT WORK

Beuscart et al. [1] study the impact of algorithmic rec-
ommendation on user autonomy. Their findings show the
influence of algorithmic recommendation to be minimal sup-
porting the theory that algorithms act as tools to be utilised.
Nonetheless, Anderson et al. [2] find users of Spotify become
more diverse in their listening by shifting away from algo-
rithmic and towards organic music consumption suggesting
the impact of algorithmic influence is not be understated.
Notwithstanding, Munson & Resnick [3] show users to var-
iously seek diversity. In this sense, the ”average user” does
not exist and a more fine-grained approach must be deployed
to capture a certain number of families of user behaviour, es-
pecially in terms of recommendation usage and its temporal
evolution.

III. PROPOSED METHODOLOGY

We work with a snapshot of user activity on Deezer, fo-
cusing on users who registered in September 2017 and re-
mained active over a two year observation period. This yields
approximately 17K users, a substantial user base we deem
meaningful to perform a temporal assessment of changes in
user access types.

We perform a temporal clustering to define a small num-
ber of typical user types which exhibit markedly distinct dy-
namics in the composition of their access modes in terms
of organic, editorial and algorithmic content. For each user
type we compute gender, age (binned) and activity level
to characterise defining attributes which may be implicit of
evolving user behaviours.
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d’un panel d’utilisateurs de streaming, 2019, vol. 213, no. 1.

[2] A. Anderson, L. Maystre, I. Anderson, R. Mehrotra, and M. Lalmas,
“Algorithmic Effects on the Diversity of Consumption on Spotify,”
vol. 2, pp. 2155–2165, 2020.

[3] S. A. Munson and P. Resnick, “Presenting diverse political opinions:
How and how much,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 1457–1466.
[Online]. Available: https://doi.org/10.1145/1753326.1753543

DMRN+15: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2020, QUEEN MARY UNIVERSITY OF LONDON, TUE 15 DECEMBER 2020



DMRN+15: DIGITAL MUSIC RESEARCH NETWORK 

ONE-DAY WORKSHOP 2020 

 
QUEEN MARY UNIVERSITY OF LONDON 

TUE 15 DECEMBER 2020 

DMRN+15: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2020, QUEEN MARY UNIVERSITY OF LONDON, TUE 15 DECEMBER 2020 
 

 

 

  

Abstract— Joint music-making has been found to promote 

prosocial tendencies (i.e. empathy) across various populations. 

However, experimental study of prosociality resulting from 

everyday musical engagement is lacking. We conducted an 

online experiment to investigate whether mere perceived 

presence of a partner during playlist-making activated core 

social processes implicated in empathy. Preliminary results 

suggest that in younger individuals, some of the social processes 

involved in joint music-making and implicated in empathy are 

likely to be elicited.  

Index Terms— Prosociality, collaborative playlisting 

I. BACKGROUND 

Joint music-making has been empirically shown to 
activate core social processes and result in prosocial transfer 
effects [1]. Similar empirical study of everyday musical 
behaviors is lacking. Collaborative playlisting, a growing site 
of everyday musical engagement [2], likely elicits some of the 
social processes involved in joint music-making and may also 
shed light on technologically mediated musical interaction. 

II. AIMS AND METHOD 

We designed an online experiment using PsychoPy [3] to 
investigate whether perceived presence of a partner during 
playlist-making is sufficient in eliciting social processes and 
prosocial consequences known to occur with face-to-face joint 
music-making, and how these effects may differentially hinge 
on music and demographic background.  

Participants were asked to answer questionnaire items 
assessing demographic and musical backgrounds and assigned 
to either an algorithm (ALG) or a fake partner (FP) condition. 
Participants were then told to create 3 fixed-length playlists 
with song clips provided by the experimenter, and that either 
another participant (FP) or a song recommendation algorithm 
(ALG) would add additional clips to each playlist; in reality, 
clip additions were random. Participants were played back 
each resultant playlist (shuffled). A recognition task 
subsequently assessed participants’ memory of who selected 
each clip provided in the previous sessions (‘Q1’ items = 
added by participant, ‘Q2’ items = added by FP/ALG, 
‘Q3’items = added by neither). Finally, participants answered 
self-report items assessing inclusion of other in self (IOS) and 
trait empathy (interpersonal reactivity index; IRI) [4, 5]. 

 
_____________________ 

†Thanks to Herchel Smith Scholarship, Emmanuel College Cambridge, 
and University of Cambridge Faculty of Music for funding. 

 

III. RESULTS AND CONCLUSIONS 

Participants in the FP condition showed decreased 
memory sensitivity for recognition of their own clip selections 
in comparison with those in the ALG condition. Further, a 
significant main effect of age (>=25 or <25) on IRI and IOS 
scores was found. We conclude that for younger individuals 
perceived presence of a partner may increase activation of 
social processes during, and promote prosocial tendencies 
resulting from, online everyday musical engagement. 

Table 1. Memory sensitivity scores for Recognition Task (25 trials total) 

Recognition Task: Sensitivity Scores 

 ALL (n=90) ALG (n=44) FP (n=46) 

Q1 1.31 1.42 1.21 

Q2 .55 .54 .56 

Q3 .98 .92 1.03 

 

Figure 1.  Mixed Repeated Measures ANOVA (n=90) showed main 

between-subjects effect of age on IOS and IRI scores (α= .02). 
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Abstract— We present auraloss1, a PyTorch package that
implements time and frequency domain loss functions designed
for audio generation tasks. The package provides a straight-
forward interface, as well as multichannel support. We demon-
strate its application by using each loss function to train a model
on the task of emulating an analog dynamic range compressor.

I. LOSS FUNCTIONS

Error-to-signal ratio — The error-to-signal ratio (ESR) [1] is
equivalent to the squared error between the input ŷ and target y,
both N samples in length, normalized by the energy of the target.

`ESR(ŷ, y) =

∑N−1
i=0 |ŷi − yi|2∑N−1

i=0 |yi|2
(1)

Following [2], we also provide perceptually motivated pre-emphasis
filters. These include an FIR first-order highpass filter, folded dif-
ferentiator, as well as an approximation of the A-weighting filter.

Log hyperbolic cosine — The log hyperbolic cosine (log-cosh) [3]
aims to strike a balance between the L1 and L2. It is similar to the
L2 for small values, providing a level of smoothness, and similar to
the L1 for large values, providing robustness. It is defined in Eq. 2,
where a is a hyperparameter that controls the overall smoothness.

`log-cosh(ŷ, y) =
1

a

N−1∑
i=0

log(cosh(a(ŷi − yi))) (2)

Short-time Fourier transform — The Short-time Fourier trans-
form (STFT) loss is composed of the spectral convergence (Eq. 3),
and spectral log-magnitude (Eq. 4), where || · ||F is the Frobenius
norm, || · ||1 is the L1 norm, and N is the number of STFT frames.
The overall STFT loss is defined as the sum of these two terms [4].

`SC(ŷ, y) =
‖ |STFT(y)| − |STFT(ŷ)| ‖F

‖ |STFT(y)| ‖F
(3)

`SM(ŷ, y) =
1

N
‖log (|STFT(y)|)− log (|STFT(ŷ)|)‖1 (4)

Multi-resolution STFT — The STFT loss can be extended by
computing the loss at multiple different resolutions [5]. This im-
proves robustness and avoids potential bias arising from the STFT
parameters. The multi-resolution STFT (MR) loss is defined in
Eq. 5 as the average of the error at each of the M resolutions.

`MR(ŷ, y) =
1

M

M∑
m=1

(`SC(ŷ, y) + `SM(ŷ, y)) . (5)

For optimal performance, the appropriate frame size, window type,
and hop size must be selected. Often there is no clear choice. To
address this we introduce the random-resolution STFT (RR), which
randomly selects these parameters each time the loss is computed,
ensuring the model is not biased by a fixed set of parameters.

Sum and difference loss — A loss function for stereo music was
proposed in [6], which achieves left-right invariance by computing
the sum and difference signals (Eq. 6) before applying the MR loss
(Eq. 7), instead of directly operating on the left and right channels.

1 https://github.com/csteinmetz1/auraloss

ysum = yleft + yright ydiff = yleft − yright (6)
`S/D(ŷ, y) = `MR(ŷsum, ysum) + `MR(ŷdiff, ydiff) (7)

II. EVALUATION

To demonstrate the package, we train the same model each time
using a different loss function. We employ a conditional temporal
convolutional network (TCN) based on [7] for the task of modeling
an analog dynamic range compressor [8]. The model is composed
of 10 layers, each with kernel size 15, 32 channels, and exponen-
tially increasing dilation factors for a receptive field of 324 ms at
44.1 kHz. We use Adam with a learning rate of 1 ·10−3 and a batch
size of 128, training each model for 20 epochs. We evaluate on the
test set using all of the losses as error metrics as shown in Table 1.

Interestingly, we find that the lowest error for a given metric is
not always achieved by optimizing that metric. It appears that train-
ing with a time domain loss leads to better performance on time do-
main metrics, with comparatively worse performance on frequency
domain metrics, and vice versa. No formal conclusions can be made
from this experiment, as differences in scaling of the losses during
training may make comparisons challenging. We present this only
as a demonstration of the package. Further work will examine these
losses, and others, across more diverse audio generation tasks.

Model
Test error

L1 ESR Logcosh STFT MR RR

L1 4.87e-3 0.0085 2.78e-5 0.824 0.797 0.558
ESR 5.56e-3 0.0099 3.23e-5 0.806 0.779 0.549
Logcosh 5.30e-3 0.0093 3.03e-5 0.831 0.805 0.566
STFT 9.00e-3 0.0542 1.76e-4 0.451 0.432 0.339
MR 8.98e-3 0.0553 1.80e-4 0.440 0.420 0.331
RR 1.55e-2 0.2187 7.05e-3 0.525 0.504 0.392

Table 1: Test error across a model trained with different loss functions.
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[4] S. Ö. Arık, H. Jun, and G. Diamos, “Fast spectrogram inversion us-
ing multi-head convolutional neural networks,” IEEE Signal Processing
Letters, vol. 26, no. 1, pp. 94–98, 2018.

[5] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast wave-
form generation model based on generative adversarial networks with
multi-resolution spectrogram,” in IEEE ICASSP, 2020, pp. 6199–6203.

[6] C. J. Steinmetz et al., “Automatic multitrack mixing with a differen-
tiable mixing console of neural audio effects,” arXiv:2010.10291, 2020.

[7] C. J. Steinmetz, “Learning to mix with neural audio effects in the
waveform domain,” Master’s thesis, Universitat Pompeu Fabra, 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.4091203

[8] S. Hawley, B. Colburn, and S. I. Mimilakis, “Profiling audio compres-
sors with deep neural networks,” in AES, 2019.

DMRN+15: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2020, QUEEN MARY UNIVERSITY OF LONDON, TUE 15 DECEMBER 2020

https://github.com/csteinmetz1/auraloss
https://doi.org/10.5281/zenodo.4091203


DMRN+15: DIGITAL MUSIC RESEARCH NETWORK
ONE-DAY WORKSHOP 2020

QUEEN MARY UNIVERSITY OF LONDON
TUE 15 DECEMBER 2020

Development of an Audio Quality Dataset Under Uncontrolled
Conditions

Alessandro Ragano1, Emmanouil Benetos2 and Andrew Hines1

1School of Computer Science, University College Dublin, Ireland, alessandro.ragano@ucdconnect.ie
2School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

Abstract— A curated dataset for assessing the perceived au-
dio quality of sound archives has not yet been compiled or re-
ported in the literature. In this study, we present the ongoing
development of a perceived audio quality dataset using real-
world recordings from the NASA Apollo mission audio.

Index Terms— Audio quality, corpus, Apollo missions.

I. INTRODUCTION

Computer technologies provide a more interactive access to his-
torical audio archives and improve the exploration of mankind’s
historical moments. One of the factors that has been poorly investi-
gated is the sound quality of digitised and restored sound archives.
These operations are generally conducted by expert staff as the ex-
isting computer-based solutions are few and inefficient. This ap-
proach shows two main problems: 1) quality assessment is biased
by subjective judgments of staff member experts; 2) given that
sound archives are vast, a careful sound quality assessment can-
not be conducted on every recording [1]. As a first step, we iden-
tify suitable real-world recordings that can be curated for building
a dataset. In this work, we show how to build a dataset using data
from the audio archive of the Apollo missions. This corpus doc-
uments one of mankind’s greatest achievements and shows unique
signal characteristics, constituted by field recordings.

II. DATASET DEVELOPMENT

The Apollo audio archive has been curated for several deep
learning-based speech processing tasks [2] but not for speech and
audio quality assessment. To create a quality dataset, some issues
were identified before annotating the data with quality scores. Ex-
tracting random clips from Apollo recordings might cause the pres-
ence of repetitive data i.e., data that will cause unbalanced regres-
sion. Therefore, a mechanism to control the distribution of the final
dataset has been proposed. First, it has been studied whether exist-
ing non-intrusive metrics can predict quality in the Apollo record-
ings. A pilot study with 32 participants and using speech intelligi-
bility as a proxy for quality has been conducted 1. Results found no
correlation between objective and subjective intelligibility [3] ex-
cept for the word-error-rate (WER) computed on transcriptions of
the Google speech-to-text API, which has led to 0.630 and 0.679 for
the Pearson and Spearman respectively. Results are shown in Table
1. Therefore, repetitive data can be avoided by controlling the dis-
tribution through the Google STT WER. An example of repetitive
data is shown in Figure 1, where more than 100 clips show similar
objective quality.

An unsupervised cluster exploration has been also conducted to

1Dataset available at 10.5281/zenodo.3969507

Table 1: Inferential statistical tests for assessing the correlation between
subjective WER and objective metrics [3].

Metric Pearson coeff. Pearson P-value Spearman coeff. Spearman P-value
Google STT WER 0.630 0.0001 0.679 1.93e-5
SRMR 0.081 0.658 0.112 0.538
ITU-T P563 -0.246 0.173 -0.295 0.100
MOSNet -0.073 0.691 -0.163 0.371
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Figure 1: Google WER distribution on Apollo recordings [3].

control audio stimuli during the preparation of the listening test used
for labelling the final dataset and to split the dataset in a stratified
fashion to avoid bias towards particular features when training the
model. 253 audio features clustered with HDBSCAN are shown in
Figure 2.

-30.0-20.0-10.0 0.0 10.0 20.0 30.0 40.0
t-SNE 1

-40.0
-30.0
-20.0
-10.0

0.0
10.0
20.0
30.0

t-S
N

E
 2

CLUSTERS
0
1
2
3
4
5
6
RECORDING
Onboard A11
Commentary A11
Commentary A17

Figure 2: Google WER distribution on Apollo recordings [3].

III. CONCLUSIONS AND FUTURE WORK

In this study, we have shown that simple techniques can be used
for preventing the development of an unbalanced dataset. In the
future, we will study the relationship between overall quality and
intelligibility and we will use the tools shown in this study to curate
the extended dataset. The curated dataset will be annotated with
subjective quality ratings.
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Abstract— We create a chord progression network us-
ing guitar chord tabs. By representing chords as nodes
and transitions between chords as edges, we obtain a net-
work suitable for the plethora of analysis methods that
have been developed in the field of network science. We
use the network to analyze communities, identify influen-
tial chords and compare differences between chord pro-
gressions across genre and decade. Finally, we apply
stochastic walks to generate new chord progressions.

Index Terms— chord progression, network science,
symbolic music generation

I. CHORD PROGRESSION NETWORKS

A large number of chord progression annotation datasets
are available online. However, the alignment of data from
multiple sources is not trivial. The work of Bien et al. is one
of the few efforts in using network science methodology to
analyze musical data [1]. However, the dataset used in the
study contains only 360 songs and only two genres. To ad-
dress this limitation, we collect data from the largest guitarist
community website - Ultimate Guitar.1 To create a represen-
tative and balanced dataset, we scrape the most popular songs
by decade (from the 1960s to 2010s) and by genre. After fil-
tering out noisy data, approximately 12,000 songs remain.

We define a chord progression network as a directed,
weighted graph G = (V,E). Each node v ∈ V represents a
chord, while an edge e ∈ E from node u to node v indicates
a transition between the chords. Additionally, edge weights
correspond to the number of times the transition occurred in
the dataset. This means that a chord progression is simply a
path in the network.

Once the chord progression network was generated, we
applied computational methods unique to graphs: commu-
nity detection [2] and node influence metrics [3]. The result
is presented in Figure 1. By analyzing multiple networks
created from specific genres or decades, we can detect the
differences between styles of music.

II. GENERATING CHORD PROGRESSIONS

To address the challenge of symbolic music generation,
we experiment with graph traversal methods. We either spec-

1Ultimate Guitar: https://www.ultimate-guitar.com

Figure 1: Chord progression network where nodes are chords and edges are
transitions between chords. Node size corresponds to the PageRank. Node
color corresponds to the communities.

ify the starting chord of the progression or choose randomly
from a probability distribution derived from centrality mea-
sures, e.g. PageRank [3]. Next, we traverse the network by
choosing the subsequent chord randomly, while taking into
account the weights of the transitions and the community as-
signed to the previous chord. Thereby, we guarantee that the
output progression is not always the most probable one in
the network, while the weights ensure it sounds reasonable.
The network and the implementation of the approach can be
accessed online.2

To build upon this, we intend to utilize several neural net-
work architectures, such as LSTMs, attention models, and
graph neural networks. To harvest the power of these mod-
els, we plan on including all available data from Ultimate
Guitar and building a bigger feature set based on knowledge
hosted in open-source music databases.
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Abstract— As a subset of music information retrieval (MIR), 

predominant musical instruments recognition (PMIR) has 

attracted substantial interest in recent years due to its 

uniqueness and high commercial value in key areas of music 

analysis research such as music retrieval and automatic music 

transcription, etc. With the attention paid to deep learning 

technology and artificial intelligence technology, they have been 

more and more widely applied in the field of MIR, thus making 

breakthroughs in some sub-fields that have been stuck in the 

bottleneck. In this paper, the Hilbert-Huang Transform (HHT) 

is employed to map one-dimensional audio data into 

two-dimensional matrix format and then a deep convolutional 

neural network is developed to learn affluent and effective 

features for PMIR. In the experiment, 6705 audio pieces 

including 11 musical instruments are used to validate the 

efficacy of our proposed approach. The results are compared to 

four benchmarking methods and show significant 

improvements in terms of precision, recall and F measures. 

Index Terms— Predominant musical instrument recognition, 

Convolutional neural network, Hilbert-Huang Transform. 

I. METHODOLOGY 

 

Figure 1.  The flowchart of the proposed PMIR system.  

In the proposed framework (Error! Reference source not 
found.), we use the HHT [1] to generate the Hilbert spectrum 
for each instrument in the polyphonic music pieces. Then we 
build a deep convolutional neural network (DCNN) to take the 
Hilbert spectrum as input and produce the classification label 
as the output.  

 

Figure 2.  Flowchart of the proposed DCNN.  

Our DCNN was inspired by the VGG-16 model[2], which 

 
 
 

contains 16 hidden layers (13 convolutional and 3 fully 

connected). The polling size is always set as 2 × 2 and the 

filter size is set as 3 × 3, and the VGG-16 shows that when 

deepening the network layers can improve performance. 

II. EXPERIMENTS 

To further evaluate the effectiveness of the proposed PMIR 

framework, three conventional approaches are used to 

benchmark in terms of precision, recall and F1-measurement. 

Three conventional frameworks are based on Audio Content 

Analysis (ACA) system [3, 4] and three machine learning 

model (i.e. random forest (RF)[5], SVM[6] and shallow 

neural network (SNN)[7]).  

 

Figure 3.  F1-measurement of each instruments of five methods.  
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