
Under review as a conference paper at ICLR 2021

HIGH-CAPACITY EXPERT BINARY NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Network binarization is a promising hardware-aware direction for creating effi-
cient deep models. Despite its memory and computational advantages, reducing
the accuracy gap between such models and their real-valued counterparts remains
an unsolved challenging research problem. To this end, we make the following 3
contributions: (a) To increase model capacity, we propose Expert Binary Convo-
lution, which, for the first time, tailors conditional computing to binary networks
by learning to select one data-specific expert binary filter at a time conditioned
on input features. (b) To increase representation capacity, we propose to address
the inherent information bottleneck in binary networks by introducing an efficient
width expansion mechanism which keeps the binary operations within the same
budget. (c) To improve network design, we propose a principled binary network
search growth mechanism that unveils a set of network topologies of favorable
properties. Overall, our method improves upon prior work, with no increase in
computational cost by ∼ 6%, reaching a groundbreaking ∼ 71% on ImageNet
classification.

1 INTRODUCTION

A promising, hardware-aware, direction for designing efficient deep learning models case is that
of network binarization, in which filter and activation values are restricted to two states only:
±1 (Rastegari et al., 2016; Courbariaux et al., 2016). This comes with two important advantages:
(a) it compresses the weights by a factor of 32× via bit-packing, and (b) it replaces the computation-
ally expensive multiply-add with bit-wise xnor and popcount operations, offering in practice a
speed-up of ∼ 58× on a CPU (Rastegari et al., 2016). Despite this, how to reduce the accuracy gap
between a binary model and its real-valued counterpart remains an open problem and it is currently
the major impediment for their wide scale adoption.

In this work, we propose to approach this challenging problem from 3 key perspectives:
1. Model capacity: To increase model capacity, we firstly introduce the first application of Con-
ditional Computing (Bengio et al., 2013; 2015; Yang et al., 2019) to the case of a binary networks,
which we call Expert Binary Convolution. For each convolutional layer, rather than learning a
weight tensor that is expected to generalize well across the entire input space, we learn a set of N
experts each of which is tuned to specialize to portions of it. During inference, a very light-weight
gating function, dynamically selects a single expert for each input sample and uses it to process
the input features. Learning to select a single, tuned to the input data, expert is a key property of
our method which renders it suitable for the case of binary networks, and contrasts our approach to
previous works in conditional computing (Yang et al., 2019).
2. Representation capacity: There is an inherent information bottleneck in binary networks as only
2 states are used to characterize each feature, which hinders the learning of highly accurate models.
To this end, for the first time, we highlight the question of depth vs width in binary networks, and
propose a surprisingly unexplored efficient mechanism ,based on grouped convolutions, for increas-
ing the effective width of the network by preserving the original computational budget. We show
that our approach leads to noticeable gains in accuracy without increasing computation.
3. Network design: Finally, and inspired by similar work in real-valued networks (Tan & Le, 2019),
we propose a principled approach to search for optimal directions for scaling-up binary networks.
Main results: Without increasing the computational budget of previous works, our method im-
proves upon the state-of-the-art (Martinez et al., 2020) by∼ 6%, reaching a groundbreaking∼ 71%
on ImageNet classification.

1

Under review as a conference paper at ICLR 2021

2 RELATED WORK

2.1 NETWORK BINARIZATION

Since the seminal works of Courbariaux et al. (2015; 2016) which showed that training fully binary
models (both weights and activations) is possible, and Rastegari et al. (2016) which reported the
very first binary model of high accuracy, there has been a great research effort to develop binary
models that are competitive in terms of accuracy when compared to their real-valued counterparts,
see for example (Lin et al., 2017; Liu et al., 2018; Alizadeh et al., 2018; Bulat et al., 2019; Bulat
& Tzimiropoulos, 2019; Ding et al., 2019; Wang et al., 2019; Zhuang et al., 2019; Zhu et al., 2019;
Singh et al., 2020; Bulat et al., 2020; Martinez et al., 2020). Notably, many of these improvements
including real-valued down-sampling layers (Liu et al., 2018), double skip connections (Liu et al.,
2018), learning the scale factors (Bulat & Tzimiropoulos, 2019), PReLUs (Bulat et al., 2019) and
two-stage optimization (Bulat et al., 2019) have been put together to build a strong baseline in Mar-
tinez et al. (2020) which, further boosted by a sophisticated distillation and data-driven channel
rescaling mechanism, yielded an accuracy of ∼ 65% on ImageNet. This method along with the
recent binary NAS of Bulat et al. (2020), reporting accuracy of ∼ 66%, are to our knowledge, the
state-of-the-art in binary networks.

Our method further improves upon these works achieving an accuracy of ∼ 71% on ImageNet,
crucially without increasing the computational complexity. To achieve this, to our knowledge, we
propose for the first time to explore ideas from Conditional Computing (Bengio et al., 2013; 2015)
and learn data-specific binary expert weights which are dynamically selected during inference con-
ditioned on the input data. Secondly, we are the first to identify width as an important factor for
increasing the representational capacity of binary networks and introduce a surprisingly simple yet
effective mechanism ,based on grouped convolutions, to enhance it without increasing complexity.
Finally, although binary architecture design via NAS (Liu et al., 2018; Real et al., 2019) has been re-
cently explored in (Singh et al., 2020; Bulat et al., 2020), we propose to approach it from a different
perspective that is more related to Tan & Le (2019), which was developed for real-valued networks.

2.2 CONDITIONAL COMPUTATIONS

Conditional computation is a very general data processing framework which refers to using different
models or different parts of a model conditioned on the input data. Wang et al. (2018) and Wu
et al. (2018) propose to completely bypass certain parts of the network during inferences using skip
connections by training a policy network via reinforcement learning. Gross et al. (2017) proposes
to train large models by using a mixture of experts trained independently on different partitions of
the data. While speeding-up training, this approach is not end-to-end trainable nor tuned towards
improving the model accuracy. Shazeer et al. (2017) trains thousands of experts that are combined
using a noisy top-k experts selection while Teja Mullapudi et al. (2018) introduces the HydraNet in
which a routing function selects and combines a subset of different operations. The later is more
closely related to online network search. Chen et al. (2019) uses a separate network to dynamically
select a variable set of filters while Dai et al. (2017) learns a dynamically computed offset.

More closely related to the proposed EBConv is Conditional Convolution, where Yang et al. (2019)
propose to learn a Mixture of Experts, i.e. a set of filters that are linearly combined using a routing
function. In contrast, our approach learns to select one expert at a time. This is critical for binary
networks for two reasons: (1) The linear combination of a binary set of weights is non-binary and
as such a second binarization is required giving rise to training instability and increased memory
consumption. In Section 5, we compare with such a model, and show that our approach works sig-
nificantly better. (2) The additional computation to multiply and sum the weights, while negligible
for real-valued networks, can lead to a noticeable computational increase for binary ones. Finally
we note that our single expert selection mechanism is akin to the Gumbel-max trick (Gumbel, 1948)
and the Gumbel-Softmax Estimator (Jang et al., 2016; Maddison et al., 2016) previously used in
various forms for NAS (Chang et al., 2019), multi-task learning (Guo et al., 2020) or variational
auto-encoders (Jang et al., 2016). To our knowledge, the proposed EBConv is the very first adapta-
tion for conditional computing within neural networks.

2

Under review as a conference paper at ICLR 2021

3 BACKGROUND ON BINARY NETWORKS

Following Rastegari et al. (2016); Bulat & Tzimiropoulos (2019), a binary convolution is defined as:

BConv(x,θ) = (sign(x)©∗ sign(θ))� α, (1)

where x is the input, θ the weights,©∗ denotes the binary convolutional operation, � the Hadamard
product, and α ∈ RC is learned via back-propagation as in Bulat & Tzimiropoulos (2019).

The binarization is performed in two stages Bulat et al. (2019); Martinez et al. (2020). During Stage
I, we train a network with binary activations and real-valued weights. Note that the accuracy of
Stage I models are very representative to that of the final fully binary model (see Table 4). During
Stage II, we initialize from Stage I to train a network with both weights and activations binary. When
reporting results, if no stage is specified, the model (weights and activations) is fully binary.

We set as baseline the Strong Baseline model (denoted as SBaseline) from Martinez et al. (2020) on
top of which we implemented the proposed method. We denote as Real-to-bin their full model.

θ θ θ

0 01

Gating function

Convolution Op

0 1 n

(a) The proposed Expert Binary Convolution
(EBConv). Note that only 1 expert is active at a
time.

(b) 2D t-SNE embeddings of ImageNet validation
set for a model with 4 experts and Top-1 acc. of
63.8%.

Figure 1: (a) Schematic representation of the proposed EBConv layer, and (b) t-SNE embedding
visualisation of the features before the classifier along with the corresponding expert that was acti-
vated for each sample. Points located closer to each other are more semantically and visually similar.
Each data point is coloured according to the expert selected by the last EBConv from our network.
As multiple clusters emerge in the figure, it can be deduced that the experts learned a preference for
certain classes, or groups of classes from ImageNet. This suggests that the EBConv layer learned
semantically meaningful representations of the data. Best viewed in color.

4 METHOD

4.1 EXPERT BINARY CONVOLUTION

Assume a binary convolutional layer with input x ∈ RCin×W×H and weight tensor θ ∈
RCin×Cout×kH×kW . In contrast to a normal convolution that applies the same weights to all in-
put features, we propose to learn a set of expert weights (or simply experts) {θ0,θ1, ...,θN−1},
θi ∈ RCin×Cout×kH×kW alongside a selector gating function which given input x selects only one
expert to be applied to it. The proposed EBConv layer is depicted in Fig. 1a. To learn the experts,
let us first stack them in matrix Θ ∈ RN×CinCoutkHkW . We propose to learn the following function:

EBConv(x,θ) = BConv(x,
(
ϕ(ψ(x))TΘ

)
r
), (2)

where ϕ(.) is a gating function (returning an N−dimensional vector as explained below) that im-
plements the expert selection mechanism using as input ψ(x) which is an aggregation function of
the input tensor x, and (.)r simply reshapes its argument to a tensor of appropriate dimensions.

3

Under review as a conference paper at ICLR 2021

Gating function ϕ: A crucial component of the proposed approach is the gating function that
implements the expert selection mechanism. An obvious solution would be to use a Winners-Take-
All (WTA) function, however this is not differentiable. A candidate that comes in mind to solve this
problem is the softargmax with temperature τ : as τ → 0, the entry corresponding to the max will
tend to 1 while the rest to 0. However, as τ → 0 the derivative of the softargmax converges to the
Dirac function δ which provides poor gradients and hence hinders the training process. This could
be mitigated if a high τ is used, however this would require hard thresholding at test time which for
the case of binary networks, given that the models are trained using Eq. 2, leads to large errors.

To mitigate the above, and distancing from reinforcement learning techniques often deployed when
discrete decisions need to be made, we propose, for the forward pass, to use a WTA function for
defining ϕ(.), as follows:

ϕ(z) =

{
1, if i = argmax(z)

0, otherwise
(3)

Note that we define ϕ as ϕ : RC → RN i.e. as a function that returns an N−dimensional vector
which is used to multiply (element-wise) Θ in Eq. 2. This is crucial as, during training, we wish
to back-propagate gradients for the non-selected experts. To this end, we propose, for the backward
pass, to use the Softmax function for approximating the gradients ϕ(.):

∂φ

∂z
:=

∂

∂z
Softmax(z). (4)

where k, k′ ∈ {0, 1, ..., N − 1} and δkk′ is the Kronecker delta function. Overall, our proposal,
WTA for forward and Softmax for backward, effectively addresses the mismatch during inference
between training and testing while, at the same time, it allows meaningful gradients to flow to all
experts during training. In Section A.3.3 of the appendix we also explore the impact of adding
a temperature to the softmax showing how its value affects the training process. Note that back-
propagating gradients for the non-selected experts applies to the gating function, only; the binary
activations and weights continue to use the STE introduced in (Courbariaux et al., 2016; Rastegari
et al., 2016).

Aggregation function ψ: The purpose of this function is to give a summary of the input feature
tensor which will be used to select the expert. To avoid overfitting and to keep the computational
cost low, we opt for a simple and fast linear function:

ψ(x) =

[
x̄[0]x̄[1] · · · x̄[C−1]

]
ω, (5)

where x̄[i] = 1
HW x[i] is the spatial average of the i−th channel and ω ∈ RC×N a learnable projec-

tion matrix. Note that no other non-linearity was used as the WTA function is already a non-linear
function.

Table 1: Comparison on ImageNet for
different number of experts. All models
have the same number of BOPs, includ-
ing Martinez et al. (2020).

#experts Accuracy (%)

Top-1 Top-5
1(SBaseline)

(Martinez et al., 2020) 60.9 83.0

4 63.8 85.1
8 64.0 85.3

Data-specific experts: One expected property of
EBConv implied by the proposed design is that the
experts should specialize on portions of data. This is
because, for each data sample, a single expert is chosen
per convolutional layer. Fig. 1b confirms this experi-
mentally by t-SNE embedding visualisation of the fea-
tures before the classifier along with the corresponding
expert that was activated for each sample of the Ima-
geNet validation set.

Optimization policy: As in Bulat et al. (2019), we
adopt a two-stage training policy where firstly the
input signal is binarized while learning real-valued
weights, and then both signal and weights are bina-
rized. Note that the aggregation function ψ is kept real
across all the steps since its computational cost is insignificant. Furthermore, due to the discrete
decision making process early on, the training can be unstable. Therefore, to stabilize the training
we firstly train one expert, and then use this to initialize the training of all N experts. This ensures
that early on in the process any decision made by the gating function is a good decision. Overall,
our optimization policy can be summarized as follows:

4

Under review as a conference paper at ICLR 2021

1. Train one expert, parametrized by θ0, using real weights and binary activations.
2. Replicate θ0 to all θi, i = {1, N − 1} to initialize matrix Θ.
3. Train the model initialized in step 2 using real weights and binary activations.
4. Train the model obtained from step 3 using binary weights and activations.

4.2 ENHANCING BINARY INFORMATION FLOW

While the previous section addressed the issue of model capacity, in this section, we address the
problem of the representation capacity of the binary activations. This issue arises due to the fact
that only 2 states are used to characterize each feature, resulting in an information bottleneck which
hinders the learning of highly accurate binary networks. To our knowledge, there is little prior work
which explicitly tries to solve this problem (Liu et al., 2018).

Table 2: Comparison on ImageNet for different
number of experts and expansion rates. All mod-
els have the same number of BOPs, includ-
ing Martinez et al. (2020).

Expansion # experts Accuracy (%)

Top-1 Top-5
1(SBaseline)

(Martinez et al., 2020) 1 60.9 83.0

2 1 64.6 85.6
4 1 65.1 86.0

1 4 63.8 85.1
1 8 64.0 85.3
2 4 66.0 86.4
2 8 66.3 86.6

Our solution is surprisingly simple yet effec-
tive: the only parameters one can adjust in or-
der to increase the representational power of bi-
nary features are the resolution and the width
(i.e. number of channels). The former is largely
conditioned on the resolution of the data, be-
ing as such problem dependent. Hence, we
propose the latter, which is to increase the net-
work width. For example a width expansion of
k = 2 can increase the number of unique con-
figurations for a 32 × 7 × 7 binary feature ten-
sor from 232×7×7 = 21568 to 22136. However,
increasing the network width directly causes a
quadratic increase in complexity with respect to
k. Hence, in order to keep the number of binary
operations (BOPs) constant, we propose to use
Grouped Convolutions with group size G pro-
portional to the width expansion, i.e. G = k2. Note that we do not simply propose using grouped
convolutions within binary networks as in (Phan et al., 2020; Bulat et al., 2020). We propose width
expansion to address the inherent information bottleneck within binary networks and use grouped
convolutions as a mechanism for increasing the capacity while preserving the computational budget
fixed. Moreover, we note that since we are using grouped convolutions, features across groups need
to be somehow combined throughout the network. This can be achieved at no extra cost through
the 1 × 1 convolutions used for downsampling at the end of each stage where change of spatial
resolution occurs. In Section 4.3, we further propose a more effective way to achieve this, based on
binary 1× 1 convolutions, which however add some extra complexity. Moreover, in Section 4.3, we
will further propose to search for the optimal group size depending on the layer location.

As Table 2 clearly shows, models trained with a width multiplier higher than 1 offer consistent
accuracy gains, notably without increasing complexity. Importantly, these gains also add up with the
ones obtained by using the proposed EBConv. This is not surprising as width expansion improves
representation capacity while the expert increases model capacity.

4.3 DESIGNING BINARY NETWORKS

In general, there is little work in network design for binary networks. Recently, a few binary NAS
techniques have been proposed (Singh et al., 2020; Shen et al., 2019; Bulat et al., 2020). Despite
reporting good performance, these methods have the same limitations typical of NAS methods, for
example, having to search for an optimal cell using a predefined network architecture, or having
to hand pick the search space. Herein, and inspired by Tan & Le (2019), we propose a mixed
semi-automated approach that draws from the advantages of both automatic and manual network
designing techniques. Specifically, setting the standard ResNet-18 (He et al., 2016) network as a
starting point, we focus on searching for optimal binary network structures, gradually exploring a
set of different directions (width, depth, groups, layer arrangement).

5

Under review as a conference paper at ICLR 2021

Effect of block arrangement: Starting from a ResNet-based topology in mind, we denote a network
with Ni, i = {1, 2, 3, 4} blocks at each resolution as N0N1N2N3, with each block having two
convolutional layers. We first investigate if re-arranging the blocks, mainly by using a network
which is heavier at later stages, can have an impact on accuracy. Note that since the number of
features is doubled among stages, this re-arrangement preserves the same complexity. Table 3
shows the results. As it can be observed the accuracy remains largely unchanged while the layers
are re-distributed.

Table 3: Comparison on ImageNet between
stage I models with different block arrange-
ments.

N0N1N2N3
Accuracy (%)

Top-1 Top-5
1133 63.8 86.5
1142 63.8 86.8
1124 63.7 87.4
2222 63.9 87.4

Depth vs width: In Section 4.2, we proposed an effi-
cient width expansion mechanism ,based on grouped
convolutions,, which is found to increase the ac-
curacy of binary networks without increasing com-
plexity. Herein, we evaluate the effect of increas-
ing depth by adding more blocks. Fig. 2a shows the
results of depth expansion. Each constellation rep-
resents a different architecture out of which we vary
only the number of blocks, i.e. the depth. As we may
clearly see, the returns of increasing depth are dimin-
ished as complexity also rapidly increases, resulting
in very heavy models. Note that previous work for
the case of real-valued networks (Zagoruyko & Komodakis, 2016) has shown that wide models can
perform as well as deep ones. Our results show that, for a fixed computation budget, the proposed
wide binary models with grouped convolutions actually outperform the deep ones by a large margin.

Effect of aggregation over groups: Our efficient width expansion mechanism of Section 4.2 uses a
very weak way of aggregating the information across different groups. A better way is to explicitly
use a 1 × 1 binary convolutional layer (with no groups) after each block. The effect of adding that
layer is shown in Fig. 3. Clearly, aggregation across groups via 1× 1 convolutions offers significant
accuracy gains, adding at the same time a reasonable amount of complexity.

Effect of groups: In Section 4.2, we proposed grouped convolutions as a mechanism for keeping
the computations under control as we increase the network width. Herein, we go one step further
and explore the effect of different group sizes and their placement across the network. This, in
turn, allows, with a high degree of granularity, to vary the computational budget at various points
in the network while preserving the width and as such the information flow. To describe the space
of network structure explored, we use the following naming convention: we denote a network with
Ni, i = {1, 2, 3, 4} blocks at each resolution, a corresponding width expansion E (the same E was
used for all blocks) and group sizeGi for each convolution in these blocks as: N0N1N2N3−E−G0 :
G1 :G2 :G3.

As the results from Fig. 2b and Table 4 show, increasing the number of groups (especially for the
last 2 stages) results in significantly more efficient models which maintain the high accuracy (with
only small decrease) compared to much larger models having the same network structure but fewer
groups. Our results suggest that group sizes of 16 or 32 for the last 2 stages provide the best trade-off.

In summary, the network search space used in this work consists of the following degrees of freedom:
a) rearranging the blocks, b) defining the depth of the model, c) defining the width at each stage,
and finally d) selecting the optimal number of groups per each level. In order to search for the
optimal configuration, we gradually search in each direction separately while keeping all the others
fixed. Then, we identify a set of promising search directions which we then combine to train new
candidates. We repeat this step one more time and, then, from the final population of candidates we
select the best models shown in Table 4. This procedure results in models that outperform recently
proposed binary NAS methods (Bulat et al., 2020; Singh et al., 2020) by more than 5% while also
being more computationally efficient.

5 COMPARISON WITH STATE-OF-THE-ART

We compared our method against the current state-of-the-art in binary networks on the ImageNet
dataset (Deng et al., 2009). Additional comparisons, including on CIFAR-100 (Krizhevsky et al.,
2009), can be found in the supplementary material in Section A.2.

6

Under review as a conference paper at ICLR 2021

1.5 2.0 2.5 3.0 3.5 4.0
Bops 1e9

64

65

66

67

68

To
p-

1
(%

)

8

12
13 14 18

19

9

11 13 15

7

8
9

10
14

18

1

2

3

(a) Effect of depth on accuracy. Each constellation
represents a different network from which we vary
only the number of blocks (shown by the annotated
text), i.e. the depth. Increasing depth has diminishing
returns. The specific networks for each constellation
are described in Table 6 of Section A.1.

1.0 1.2 1.4 1.6 1.8 2.0
Bops 1e9

66.5

67.0

67.5

68.0

To
p-

1
(%

)

1

2
3

4

4:4:8:16
4:8:8:16
4:4:16:16
4:8:16:32

(b) Effect of number of groups and their placement on
accuracy. Networks with the same structure are con-
nected with the same type of line. Increasing group
size drastically reduces BOPs with little impact on ac-
curacy. The specific networks for each constellation
are described in Table 6 of Section A.1.

Figure 2: Effect of depth (a) and groups (b) on accuracy as a function of BOPs on Imagenet. All
results are reported for Stage I models. Best viewed in color.

1.2 1.4 1.6 1.8 2.0 2.2 2.4
Bops 1e9

63

64

65

66

67

To
p-

1
(%

)

with 1 × 1 (ours)
without 1 × 1

Figure 3: Effect of adding the 1 × 1 binary conv. layer after the grouped conv. layers. The dashed
line connects same models with and without the 1× 1 conv. layer.

Table 4: Comparison on ImageNet between a few structures explored. All methods have approxi-
mately the same number of FLOPS: 1.1×108. Ni: number of blocks on stage i, E: width expansion
ratio,Gi: groups on convs at stage i. * - denotes model trained using AT+KD (Martinez et al., 2020).

Architecture Acc. (%) Stage II Acc. (%) Stage I BOPS
N0N1N2N3−E−G0 :G1 :G2 :G3 Top-1 Top-5 Top-1 Top-5 ×109

1242-2-4:4:16:32 66.3 86.5 68.4 87.7 1.3
1262-2-4:4:16:32 66.8 86.8 69.0 88.1 1.5
1282-2-4:4:16:32 67.7 87.4 69.7 88.8 1.7

1242-2-4:4:8:16 67.0 87.1 68.9 88.0 1.6
1262-2-4:4:8:16 67.6 87.3 69.7 88.6 1.9
1282-2-4:4:8:16 67.8 87.5 69.7 88.7 2.2

1262-2-4:8:8:16 67.5 87.5 69.5 88.6 1.7
1262-2-4:8:8:16* 70.0 89.2 71.6 90.1 1.7

Training: The training procedure largely follows that of Martinez et al. (2020). In particular, we
trained our networks using Adam optimizer (Kingma & Ba, 2014) for 75 epochs using a learning
rate of 10−3 that is decreased by 10 at epoch 40, 55 and 65. During stage I, we set the weight decay

7

Under review as a conference paper at ICLR 2021

to 10−5 and to 0 during stage II. Furthermore, following Martinez et al. (2020) during the first 10
epochs we apply a learning rate warm-up Goyal et al. (2017). The images are augmented following
the common strategy used in prior-work (He et al., 2016) by randomly scaling and cropping the
images to a resolution of 224 × 224px. In addition to this, to avoid overfitting on the given expert
filters we used Mixup (Zhang et al., 2017) with α = 0.2. For testing we followed the standard
procedure of scaling the images to a resolution of 256px first and then center cropping them. All
models were trained on 4 V100 GPUs and implemented using PyTorch (Paszke et al., 2019).

Comparison against state-of-the-art: Table 5 shows our results ImageNet. When compared
against methods with similar capacity (Rastegari et al., 2016; Courbariaux et al., 2015; 2016; Bulat
& Tzimiropoulos, 2019; Martinez et al., 2020) (bottom section of the table), our method improves
on top of the currently best performing method of Martinez et al. (2020) by almost 6% in terms of
top-1 accuracy. Furthermore, our approach surpasses the accuracy of significantly larger and slower
networks (upper section) by a wide margin.

Finally, we compared our method against two very recent works that use NAS to search for binary
networks. As the results from Table 5 (middle section) show, our method outperforms them, again
by a large margin, while being significantly more efficient.

In terms of computational requirements our method maintains the same overall budget, having an
equal or slightly lower number of FLOPs and BOps (see Table. 5). Although our method does
increase the storage space taken, by 2x for a model that uses 4 experts, the run-time memory largely
remains the same. For additional details see section A.5 in the supplementary material.

Table 5: Comparison with state-of-the-art binary models on ImageNet. The upper section includes
models that increase the network size/capacity (last column shows the capacity scaling), while the
middle one binary NAS methods. * - denotes models trained using AT+KD (Martinez et al., 2020).
‡ - denotes ours with an improved training scheme, see Section A.6 in supplementary material for
details.

Architecture Accuracy (%) Operations # bits
Top-1 Top-5 BOPS ×109 FLOPS ×108 (W/A)

ABC-Net (M,N = 5) (Lin et al., 2017) 65.0 85.9 42.5 1.3 (1/1)×52
Struct. Approx. (Zhuang et al., 2019) 66.3 86.6 - - (1/1)×4
CBCN (Liu et al., 2019) 61.4 82.8 - - (1/1)×4
Ensemble (Zhu et al., 2019) 61.0 - 10.6 7.8 (1/1)×6
BATS (Bulat et al., 2020) 66.1 87.0 2.1 1.2 (1/1)
BNAS-F (Singh et al., 2020) 58.9 80.9 1.7 1.5 (1/1)
BNAS-G (Singh et al., 2020) 62.2 83.9 3.6 1.5 (1/1)

BNN (Courbariaux et al., 2016) 42.2 69.2 1.7 1.3 1/1
XNOR-Net (Rastegari et al., 2016) 51.2 73.2 1.7 1.3 1/1
CCNN (Xu & Cheung, 2019) 54.2 77.9 1.7 1.3 1/1
Bi-Real Net (Liu et al., 2018) 56.4 79.5 1.7 1.5 1/1
Rethink. BNN (Helwegen et al., 2019) 56.6 79.4 1.7 1.3 1/1
XNOR-Net++ (Bulat & Tzimiropoulos, 2019) 57.1 79.9 1.7 1.4 1/1
IR-Net (Qin et al., 2020) 58.1 80.0 1.7 1.3 1/1
CI-Net (Wang et al., 2019) 59.9 84.2 - - 1/1
Real-to-Bin* (Martinez et al., 2020) 65.4 86.2 1.7 1.5 1/1
Ours 67.5 87.5 1.7 1.1 1/1
Ours* 70.0 89.2 1.7 1.1 1/1
Ours‡ 71.2 90.1 1.7 1.1 1/1

Comparison against CondConv: As mentioned in Section 4.1, a direct application of Cond-
Conv Yang et al. (2019) for the case of binary networks is problematic due to the so-called “double
binarization problem”, i.e. binarization of the weights and then of their linear combination is re-
quired. Herein, we verify this experimentally: when training a fully binarized network using Cond-
Conv, we noticed a high degree of instability, especially during the initial phases of the training. For
example, at the end of epoch 1, the accuracy of the binarized CondConv model is 1% vs 20% for
one using EBConv. The final accuracy of a binarized CondConv on Imagenet was 61.2% vs 63.8%
compared to EBConv.

8

Under review as a conference paper at ICLR 2021

Additionally, as mentioned earlier our proposed EBConv method uses less FLOPs (no multiplica-
tions required to combine the experts) and noticeable less memory at run-time (see Section A.5 in
the appendix).

6 CONCLUSION

We proposed a three-fold approach for improving the accuracy of binary networks. Firstly, we
improved model capacity at negligible cost. To this end, we proposed EBConv, the very first binary
conditional computing layer which consists of data-specific expert binary filters and a very light-
weight mechanism for selecting a single expert at a time. Secondly, we increased representational
capacity by addressing the inherent information bottleneck in binary models. For this purpose, we
introduced an efficient width expansion mechanism ,based on grouped convolutions, which keeps
the overall number of binary operations within the same budget. Thirdly, we improved network
design, by proposing a principled binary network growth mechanism that unveils a set of network
topologies of favorable properties. Overall, our method improves upon prior work, with no increase
in computational cost by ∼ 6%, reaching a groundbreaking ∼ 71% on ImageNet classification.

REFERENCES

Milad Alizadeh, Javier Fernández-Marqués, Nicholas D Lane, and Yarin Gal. An empirical study
of binary neural networks’ optimisation. In ICLR, 2018.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Adrian Bulat and Georgios Tzimiropoulos. XNOR-Net++: Improved binary neural networks. In
BMVC, 2019.

Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and Maja Pantic. Improved training of binary
networks for human pose estimation and image recognition. arXiv preprint arXiv:1904.05868,
2019.

Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. BATS: Binary architecture search.
arXiv preprint arXiv:2003.01711, 2020.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In CVPR, pp. 5918–5926, 2017.

Jianlong Chang, Xinbang Zhang, Yiwen Guo, Gaofeng Meng, Shiming Xiang, and Chun-
hong Pan. Differentiable architecture search with ensemble gumbel-softmax. arXiv preprint
arXiv:1905.01786, 2019.

Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look twice: Gaternet for dynamic filter
selection in cnns. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 9172–
9180, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems, pp. 3123–3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1. arXiv preprint arXiv:1602.02830, 2016.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In IEEE international conference on computer vision, pp. 764–773, 2017.

9

Under review as a conference paper at ICLR 2021

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE conference on computer vision and pattern recognition, pp.
248–255, 2009.

Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribu-
tion for training binarized deep networks. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip HW Leong. Syq: Learning symmetric
quantization for efficient deep neural networks. In CVPR, pp. 4300–4309, 2018.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 4852–4861, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
weakly supervised vision. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
6865–6873, 2017.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series
of lectures, volume 33. US Government Printing Office, 1948.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and Roe-
land Nusselder. Latent weights do not exist: Rethinking binarized neural network optimization.
NeurIPS, 2019.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica,
and Joseph E Gonzalez. Checkmate: Breaking the memory wall with optimal tensor rematerial-
ization. arXiv preprint arXiv:1910.02653, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4350–4359, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
NIPS, pp. 345–353, 2017.

Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin Gu, Jianzhuang Liu, Rongrong Ji, and
David Doermann. Circulant binary convolutional networks: Enhancing the performance of 1-bit
dcnns with circulant back propagation. In CVPR, pp. 2691–2699, 2019.

10

Under review as a conference paper at ICLR 2021

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-Real
Net: Enhancing the performance of 1-bit CNNs with improved representational capability and
advanced training algorithm. In ECCV, pp. 747–763, 2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. ICLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. 2019.

Hai Phan, Yihui He, Marios Savvides, Zhiqiang Shen, et al. Mobinet: A mobile binary network for
image classification. In The IEEE Winter Conference on Applications of Computer Vision, pp.
3453–3462, 2020.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2250–
2259, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang. Searching for accurate binary neural
architectures. In IEEE International Conference on Computer Vision Workshops, 2019.

Kunal Pratap Singh, Dahyun Kim, and Jonghyun Choi. Learning architectures for binary networks.
arXiv preprint arXiv:2002.06963, 2020.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and Kayvon Fatahalian. Hydranets: Special-
ized dynamic architectures for efficient inference. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8080–8089, 2018.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dy-
namic routing in convolutional networks. In European Conference on Computer Vision, 2018.

Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian. Learning channel-wise interactions for
binary convolutional neural networks. In CVPR, pp. 568–577, 2019.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2018.

11

Under review as a conference paper at ICLR 2021

Zhe Xu and Ray CC Cheung. Accurate and compact convolutional neural networks with trained
binarization. arXiv preprint arXiv:1909.11366, 2019.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. CondConv: Conditionally pa-
rameterized convolutions for efficient inference. In Advances in Neural Information Processing
Systems, pp. 1305–1316, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. British Machine Vision Confer-
ence, 2016.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization
for highly accurate and compact deep neural networks. In ECCV, pp. 365–382, 2018.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. ICLR,
2017.

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network or
more networks per bit? In CVPR, pp. 4923–4932, 2019.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Structured binary neural
networks for accurate image classification and semantic segmentation. In CVPR, pp. 413–422,
2019.

12

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 DETAILED NETWORK DEFINITIONS FOR FIG. 2

Table 6: Detailed network definitions for each of the constellations presented in Fig. 2. The location
in each architecture is numbered from left to right (models with more BOPs are located towards the
right).

(a) Network definitions for Fig. 2a

Constell. # Location Configuration

1

1 2222-1-1:1:1:1
2 1182-1-1:1:1:1
3 1282-1-1:1:1:1
4 1184-1-1:1:1:1
5 1188-1-1:1:1:1
6 1288-1-1:1:1:1

2

1 1132-2-4:4:4:4
2 1133-2-4:4:4:4
3 1233-2-4:4:4:4
4 2233-2-4:4:4:4
5 2282-2-4:4:4:4
6 1188-2-4:4:4:4

3

1 1242-2-4:4:8:16
2 1262-2-4:4:8:16
3 1282-2-4:4:8:16
4 1284-2-4:4:8:16

(b) Network definitions for Fig. 2b

Constell. # Location Configuration

1

1 1142-2-4:8:16:32
2 1142-2-4:4:16:16
3 1142-2-4:8:8:16
4 1142-2-4:4:8:16

2

1 1242-2-4:8:16:32
2 1242-2-4:4:16:16
3 1242-2-4:8:8:16
4 1242-2-4:4:8:16

3

1 1162-2-4:8:16:32
2 1162-2-4:4:16:16
3 1162-2-4:8:8:16
4 1162-2-4:4:8:16

4
2 1162-2-4:4:16:16
3 1162-2-4:8:8:16
4 1162-2-4:4:8:16

A.2 ADDITIONAL COMPARISONS

Herein we present an extended comparison with both binary and low-bit quantization methods on
ImageNet. As the results from Table 7 show, our method significantly surpasses both the binary and
the more computationally expensive low-bit quantization networks. Similar results can be observed
on the CIFAR-100 (Krizhevsky et al., 2009) dataset where our approach sets a new state-of-the-art
result.

A.3 ABLATION STUDIES

A.3.1 REAL-VALUED DOWNSAMPLE DECOMPOSITION

Table 9: Comparison on ImageNet be-
tween various types of downsampling lay-
ers (Stage I models). All decompositions
reduce the complexity by 4x.

Decomposition Accuracy (%)

Top-1 Top-5
None 67.4 87.2
Linear 66.5 86.6
Non-linear (ReLU) 67.2 87.2
Non-linear (PreLU) 67.5 87.3

The efficient width expansion mechanism of Sec-
tion 4.2 preserves the amount of BOPs constant for
binary convolutions. However, width expansion also
affects the real-valued downsampling (linear) layers.
To preserve the number of FLOPs constant, as width
expands, for such a layer too, we propose to decom-
pose it into two smaller ones so that the connection
between them is reduced by a factor r = k2, i.e. in-
stead of using [Conv(Cin, Cout)], we propose to use
[Conv(Cin,

Cin

r → Conv(Cin

r , Cout)]. Herein, we ex-
plore a few variations by adding non-linearities be-
tween them. Our results, reported in Table 9, show that
the non-linear versions are more expressive and bridge
the gap caused by the decrease in the layer’s size. The
proposed adaption and the original one are depicted in Fig. 4.

13

Under review as a conference paper at ICLR 2021

Table 7: Comparison with state-of-the-art binary models on ImageNet, including against methods
that use low-bit quantization (upper section) and ones that increase the network size/capacity (second
section). The third section compares against binary NAS methods. Last column shows the capacity
scaling used, while * - denotes models trained using AT+KD (Martinez et al., 2020). ‡ - denotes
ours with an improved training scheme, see section A.6.

Architecture Accuracy (%) Operations # bits
Top-1 Top-5 BOPS ×109 FLOPS ×108 (W/A)

BWN (Courbariaux et al., 2016) 60.8 83.0 - - 1/32
DSQ (Gong et al., 2019) 63.7 - - - 1/32
TTQ (Zhu et al., 2017) 66.6 87.2 - - 2/32
QIL (Jung et al., 2019) 65.7 - - - 2/2
HWGQ (Cai et al., 2017) 59.6 82.2 - - 1/2
LQ-Net (Zhang et al., 2018) 59.6 82.2 - - 1/2
SYQ (Faraone et al., 2018) 55.4 78.6 - - 1/2
DOREFA-Net (Zhou et al., 2016) 62.6 84.4 - - 1/2

ABC-Net (M,N = 1) (Lin et al., 2017) 42.2 67.6 1/1
ABC-Net (M,N = 5) (Lin et al., 2017) 65.0 85.9 42.5 1.3 (1/1)×52
Struct. Approx. (Zhuang et al., 2019) 66.3 86.6 - - (1/1)×4
CBCN (Liu et al., 2019) 61.4 82.8 - - (1/1)×4
Ensemble (Zhu et al., 2019) 61.0 - 10.6 7.8 (1/1)×6
BATS (Bulat et al., 2020) 66.1 87.0 2.1 1.2 (1/1)
BNAS-F (Singh et al., 2020) 58.9 80.9 1.7 1.5 (1/1)
BNAS-G (Singh et al., 2020) 62.2 83.9 3.6 1.5 (1/1)

BNN (Courbariaux et al., 2016) 42.2 69.2 1.7 1.3 1/1
XNOR-Net (Rastegari et al., 2016) 51.2 73.2 1.7 1.3 1/1
CCNN Xu & Cheung (2019) 54.2 77.9 1.7 1.3 1/1
Bi-Real Net (Liu et al., 2018) 56.4 79.5 1.7 1.5 1/1
Rethink. BNN (Helwegen et al., 2019) 56.6 79.4 1.7 1.3 1/1
XNOR-Net++ (Bulat & Tzimiropoulos, 2019) 57.1 79.9 1.7 1.4 1/1
IR-Net (Qin et al., 2020) 58.1 80.0 1.7 1.3 1/1
CI-Net (Wang et al., 2019) 59.9 84.2 - - 1/1
Real-to-Bin* (Martinez et al., 2020) 65.4 86.2 1.7 1.5 1/1
Ours 67.5 87.5 1.7 1.1 1/1
Ours* 70.0 89.2 1.7 1.1 1/1
Ours‡ 71.2 90.1 1.7 1.1 1/1

Table 8: Comparison with state-of-the-art binary models on CIFAR100. Last column shows the
capacity scaling used, while * - denotes models trained using AT+KD (Martinez et al., 2020).

Architecture Accuracy (%) # bits (W/A)
XNOR-Net (ResNet18) (Rastegari et al., 2016) 66.1 1/1
XNOR-Net (WRN40) (Rastegari et al., 2016) 73.2 1/1
CBCN (Liu et al., 2019) 74.8 (1/1)×4
Real-to-Bin* (Martinez et al., 2020) 76.2 1/1
Ours 76.5 1/1
Ours* 77.8 1/1

A.3.2 DATA AUGMENTATION

Table 10: Impact of temperature τ on ac-
curacy (Stage I models) on ImageNet.

τ 0.02 1 5 25

Top-1 acc. 65.4 65.5 65.4 64.6

Network binarization is considered to be an extreme
case of regularization Courbariaux et al. (2015). How-
ever, recent work suggests that data augmentation
remains an important, necessary aspect for success-
fully training accurate binary networks Martinez et al.
(2020). Due to their lower representational power,
Martinez et al. (2020) argues that, for the binarization
stage, a weaker augmentation, compared to real-valued networks, should be used on large datasets
such as ImageNet.

14

Under review as a conference paper at ICLR 2021

AveragePooling

C_in → C_out, 1x1

BN + PReLU

(a) The vanilla downsample block.

AveragePooling

C_in/4 → C_out, 1x1

C_in → C_in/4, 1x1

BN + PReLU

BN + PReLU

(b) The proposed non-linear decomposition: We use
2 layers, with a non-linearity in-between, that maps
C in to C in/n (here n=4) and then back to C out.

Figure 4: The (a) vanilla and (b) proposed downsample block. This module is used in 3 places
inside the network where the number of channels change between macro-modules.

As opposed to this, we found that more aggressive augmentation, similar to the one used for real-
valued networks in He et al. (2016) or mixup Zhang et al. (2017), leads to consistently better results.
For example, using mixup on top of random scaling and cropping improves the results by 0.4%. In
comparison, when we trained Real-to-Bin Martinez et al. (2020) with mixup, the accuracy dropped
by 0.25% for Stage I, and 0.8% for Stage II. This suggests that, thanks to the proposed methods, we
are getting closer than ever to the capacity of a real-valued model (which is amenable to stronger
augmentations).

A.3.3 EFFECT OF TEMPERATURE

One important component that influences the training efficiency of the gating mechanism is the
softmax temperature τ . As mentioned earlier, lower temperatures will produce spikier gradients
while lower ones will induce the opposite. We explore the effect of various temperatures in Table 10.
It can be seen our results are stable over a wide range τ = [0.02, 5]. Moreover, to validate the
importance of using Eq. 4 for computing the gradients for back-propagation, we did an experiment
where we replaced it with that of sigmoid. Unsurprisingly, Stage I accuracy drops from 65.5% to
62.7%. This further highlights that the proposed form of the gating function is a key enabler for
training higher performing models using EBConv.

A.4 NETWORK ARCHITECTURE NAMING CONVENTION

This section clarifies the naming convention used in our paper: We define a network using the
following notation N0N1N2N3−E−G0 :G1 :G2 :G3. Here E is the expansion rate, defined as a
multiplier with respect to a vanilla ResNet. For example a network with the first block having 128
output channels will have an expansion rate of 2. Ni andNi, i = {0, 1, 2, 3} represent the number of
convolutional blocks, and respectively number of groups used by all convolutions and each ResNet
stage. Note that a ResNet has 4 stages. We graphically show the correspondence between this
notation and the network structure in Fig. 5.

A.5 MEMORY USAGE ANALYSIS

Model storage size: Current network binarization methods preserve the first and the last layer
real-valued (Rastegari et al., 2016; Liu et al., 2018; Bulat & Tzimiropoulos, 2019). As such, for a
ResNet-18 binary model trained on Imagenet, predicting 1000 classes, more than 2MB of the total
space is taken by this parameters. As a result of this our 4 experts model takes only 2x more space on
a device. This is still noticeable less than binary models that attempt to increase their performance
by increasing their model size (Lin et al., 2017) or by using an ensemble of binary networks (Zhu
et al., 2019). Full results are shown in Table 11.

Run-time memory: In a typical deep network, the memory consumed by activations far outweigh
that of the parameters (Jain et al., 2019). As such even a ≈ 4× fold increase in the number of
binary parameters (for the case of 4 experts) results in a small difference due to the above effect.

15

Under review as a conference paper at ICLR 2021

1
2

8
, g

ro
u

p
s

=
4

2
5

6
, g

ro
u

p
s

=
 8

2
5

6
, g

ro
u

p
s

=
 8

5
1

2
, g

ro
u

p
s

=
8

5
1

2
, g

ro
u

p
s

=
 8

5
1

2
, g

ro
u

p
s

=
 8

5
1

2
, g

ro
u

p
s

=
8

5
1

2
, g

ro
u

p
s

=
 8

5
1

2
, g

ro
u

p
s

=
 8

10
2

4,
 g

ro
u

p
s

=
1

6

10
2

4,
 g

ro
u

p
s

=
16

In
it

ia
l b

lo
ck

FC

N
00

N
0

N
11

N
1

N
22

N
2

N
33

N
3

G
00

G
0

G
11

G
1

G
22

G
2

G
33

G
3

Figure 5: The overall network architecture of our final model defined as 1262-2-4:8:8:16. Inline
with the current practice (Rastegari et al., 2016) the first (dark-red) and last layer (light-blue) are
kept real. The yellow and dark-blue rectangles represent the binary residual blocks described in
Sections 4.2 and 4.3 of the main paper with the text indicating the number of output channels and
the number of groups. All blocks inside a macro-module, represented by a rectangle with dashed
lines, operate at the same resolution, with the downsample operation taking place in the first layer
via strided convolution (dark-blue).

Table 11: Comparison with state-of-the-art binary models on ImageNet, including against methods
that use low-bit quantization (upper section) and ones that increase the network size/capacity (second
section). The third section compares against binary NAS methods. Last column shows the capacity
scaling used, while * - denotes our model trained using AT+KD (Martinez et al., 2020). ‡ - denotes
ours with an improved training scheme, see section A.6.

Architecture Accuracy (%) Operations Model size # bits

Top-1 Top-5 BOPS
×109

FLOPS
×108 (MB) (W/A)

ABC-Net (M,N = 5) (Lin et al., 2017) 65.0 85.9 42.5 1.3 37.1 (1/1)×52
Struct. Approx. (Zhuang et al., 2019) 66.3 86.6 - - 7.7 (1/1)×4
Ensemble (Zhu et al., 2019) 61.0 - 10.6 7.8 21 (1/1)×6
BNN (Courbariaux et al., 2016) 42.2 69.2 1.7 1.3 3.5 1/1
XNOR-Net (Rastegari et al., 2016) 51.2 73.2 1.7 1.3 3.5 1/1
Real-to-Bin (Martinez et al., 2020) 65.4 86.2 1.7 1.5 4.0 1/1
Ours (num. experts = 4) 67.5 87.5 1.7 1.1 7.8 1/1
Ours* (num. experts = 4) 70.0 89.2 1.7 1.1 7.8 1/1
Ours‡ (num. experts = 4) 71.2 90.1 1.7 1.1 7.8 1/1

Furthermore, since only one expert is active for a given input this effect is further reduced. This
is confirmed by our measurements reported below. As a simple test bed for the later we leverage
the built-in memory profiler from PyTorch: we measure and report the memory consumption for a
convolutional layer with 512 input and output channels and a kernel size of 3× 3. We set the input
tensor to be of size 1× 512× 16× 16. As it can be seen, since a single expert is active for a given
image, our EBConv layer has a minimal impact on the memory usage. Bellow we show the profiler
output with the operations sorted in descending order, based on memory. For brevity we show only
the top 10 contributors.

Memory profiling output for a normal convolutional layer, in descending order, based on memory:

---------------------- --------------- ---------------
Name CPU Mem Self CPU Mem
---------------------- --------------- ---------------
conv2d 512.00 Kb 0 b
convolution 512.00 Kb 0 b
_convolution 512.00 Kb 0 b

16

Under review as a conference paper at ICLR 2021

mkldnn_convolution 512.00 Kb 0 b
empty 512.00 Kb 512.00 Kb
size 0 b 0 b
contiguous 0 b 0 b
as_strided_ 0 b 0 b
---------------------- --------------- ---------------

Memory profiling output for EBConv (ours), in descending order, based on memory:

----------------------- --------------- ---------------
Name CPU Mem Self CPU Mem
----------------------- --------------- ---------------
empty 514.02 Kb 514.02 Kb
conv2d 512.00 Kb 0 b
convolution 512.00 Kb 0 b
_convolution 512.00 Kb 0 b
mkldnn_convolution 512.00 Kb 0 b
adaptive_avg_pool2d 2.00 Kb 0 b
mean 2.00 Kb 0 b
sum_out 2.00 Kb 0 b
addmm 16 b 16 b
softmax 16 b 0 b
_softmax 16 b 0 b
---------------------- --------------- ---------------

Memory profiling output for CondConv (Yang et al., 2019), in descending order, based on memory:

----------------------- --------------- ---------------
Name CPU Mem Self CPU Mem
----------------------- --------------- ---------------
matmul 9.00 Mb 0 b
mm 9.00 Mb 0 b
resize_ 9.00 Mb 9.00 Mb
empty 514.02 Kb 514.02 Kb
conv2d 512.00 Kb 0 b
convolution 512.00 Kb 0 b
_convolution 512.00 Kb 0 b
mkldnn_convolution 512.00 Kb 0 b
adaptive_avg_pool2d 2.00 Kb 0 b
mean 2.00 Kb 0 b

Furthermore as the above profiler outputs shows, for the case of CondConv (Yang et al., 2019) the
additional multiplication operations required to combine the experts together significantly increase
the run-time memory consumption, dominating it in fact for low batch sizes - a typical scenario for
models deployed on mobile devices. This further showcases the efficiency of the proposed method.
We note that the numbers of BOPs and FLOPs of our binary model will remain constant as the batch
size increases because the number of operations itself does not change (with the exception of the
linear increase induced by the number of samples within the batch). Additionally, for batch sizes
larger than 1, there will be a small cost incurred for the actual reading (fetching) of the weights from
the memory. However, this cost is insignificant. Finally, we note that, in most cases, when BNNs
are deployed on edge devices, a batch size of 1 is expected.

A.6 IMPROVED TRAINING SCHEME WITH STRONGER TEACHER

A key improvement proposed by Martinez et al. (2020) is the real-to-binary attention transfer and
knowledge distillation mechanism. There, the authors suggest that using a stronger teacher doesn’t
improve the accuracy further, hence they use a real-valued ResNet-18 model as a teacher. Here, we
speculate that the increase in representational capacity offered by the proposed model could benefit
in fact from a stronger teacher. To validate this hypothesis, we train two real-valued teacher models
of different capacity (controlled by depth): one scoring 72.5% Top-1 accuracy on ImageNet and a

17

Under review as a conference paper at ICLR 2021

larger one scoring 76.0%. As the results from Table 12 show, our model can exploit the knowledge
contained in a stronger teacher network, improving the overall performance by 1.2%. Throughout
the paper, we mark the results obtained using the stronger teacher with ‡.
We note that for training we largely preserve the gradual distillation approach described in (Martinez
et al., 2020): In particular, at Step I, we train a full precision model with a structure that matches
that of our binary network. At Step II, we use the previous model as a teacher and train a student
with binary activations and real-valued weights. At the end of this step, we also perform our weights
expansion strategy, propagating the trained weights across all experts following the optimization
procedure described in Section 4.1. Finally, we use the model produced at the previous step as a
teacher, training a fully binary network.

Table 12: Impact of the teacher used on the final accuracy of the model on ImageNet.

FP32 Teacher Binary Student

72.5% 70.0%
76.0% 71.2%

B SUMMARY OF PRIOR WORK COMPONENTS USED

Herein we detail some of the methodological improvements proposed in prior works and also
adopted for our strong baseline. We note, that most of these improvements are put together to
create the strong baseline introduced in (Martinez et al., 2020) which is also the starting point of our
work.

B.1 PER-CHANNEL SCALING FACTORS

In order to minimize the reconstruction error between the full precision and binary convolution,
in Rastegari et al. (2016), channel-wise real-valued scaling factors are used to modulate the output
of the binary convolutions. In Rastegari et al. (2016), the authors proposed to calculate their values
using an analytical solution that attempts to minimize the quantization error. The subsequent work
of Bulat & Tzimiropoulos (2019) advocates for scaling factors learned via back-propagation by
minimizing the task loss. In this work, we adopted the later, learning one scalar per channel via
back-propagation.

B.2 DOUBLE-SKIP CONNECTIONS

Originally proposed by Liu et al. (2018), the double-skip connection mechanism adds a skip (i.e.
an identity) connection around each binary convolutional layer. This is in contrast with a typical
ResNet block (He et al., 2016) where the skip connection is applied at a block level. The main
idea behind it is to preserve a real-valued signal alongside the binary one, improving overall the
network’s capacity. We also note that a network with skip connections around all binary layers will
also preserve a full precision data path that can improve both the gradients and the information flow.

B.3 PRELU ACTIVATIONS

Rastegari et al. (2016) showed that despite the non-linear nature of binary networks, ReLU non-
linearities added after the binary convolutions can further improve the model’s accuracy. However,
a ReLU completely eliminates negative values which in Bulat et al. (2019) is found to cause training
instabilities. To alleviate this, Bulat et al. (2019) proposes to use a PReLU (He et al., 2015) activation
instead. Thanks to its negative slope it can better preserve the full spectrum of values produced by a
binary convolution.

B.4 2-STAGE BNN TRAINING

18

Under review as a conference paper at ICLR 2021

Binary neural networks are notably harder to optimize in comparison with their full precision coun-
terparts (Rastegari et al., 2016; Courbariaux et al., 2015; 2016). Since most of the performance
degradation comes from binarizing the signal itself (i.e. activations), (Bulat et al., 2019) proposes
a two-staged optimization strategy where the network is gradually binarized. During Stage I a net-
work with full precision weights and binary activations is trained. Then, in Stage II, a fully binary
network is trained by initializing the model from the previous stage. As detailed in Section 5, the
training scheduler in both stages is identical, with the exception of the weight decay, which for Stage
II is set to 0 Martinez et al. (2020).

B.5 REAL-TO-BINARY KNOWLEDGE DISTILLATION

A reasonable objective for training highly accurate binary networks is that the features learned by
a binary network should closely match those of a full precision one up to an approximation error
induced by the quantization process (Rastegari et al., 2016; Martinez et al., 2020). In order to explic-
itly enforce this, Martinez et al. (2020) proposes to add after each block a `2 loss between attention
maps calculated from the binary and full precision activations. The full precision guiding signal
typically comes from an identically structured pretrained real-valued model. To further enhance the
efficacy of this process, Martinez et al. (2020) introduces, in addition to this, a trainable data-driven
scaling factor for modulating the output of the output of the binary convolution. We note that this
process is used only on top of our best models, and is marked in the tables using an ”*”.

Finally, we note that the gap between the real-valued and binary models is∼ 3.5−4% (depending on
the configuration). In comparison, the next best method, Martinez et al. (2020) has a gap of ∼ 5%.
This shows that while the proposed structure is tuned for binary networks, it will also perform well
for the case of full precision networks. This is perhaps not too surprising since a model easy to
binarize should be also easy to train in full precision, the opposite however is not always true.

C OVERALL BINARY NETWORKS STRUCTURE

Herein, we would like to add a few general notes about how a Binary Network is typically con-
structed. Following (Rastegari et al., 2016) and Courbariaux et al. (2016) most works binarize all
convolutional layers except for the first and last ones (i.e. the classifier) alongside the batch normal-
ization layers and the per-channel scaling factors (Rastegari et al., 2016; Lin et al., 2017; Liu et al.,
2018; Liu et al., 2019; Zhu et al., 2019; Bulat & Tzimiropoulos, 2019; Qin et al., 2020; Wang et al.,
2019; Martinez et al., 2020). Rastegari et al. (2016) notes that the first layer is not binarized because
due to the low number of channels (i.e. 3) the speed-ups offered by binarization is not considerable
high. Furthermore, because the input to the network is typically real-valued, it is more natural to
process it initially using real-valued operations. Similarly, the last layer sees smaller speedups in
practice when binarized (Rastegari et al., 2016; Courbariaux et al., 2016) and often, depending on
the task requires outputting continuous values instead of discrete ones. Finally, the batch normaliza-
tion layers are left real too since they significantly improve the training stability, and also implicitly
adjust the quantization point.

We note that, as shown in Table 5, the vast majority of the operations are binary, with only a small
proportion of them remaining real valued.

19

	Introduction
	Related work
	Network binarization
	Conditional computations

	Background on binary networks
	Method
	Expert Binary Convolution
	Enhancing binary information flow
	Designing Binary Networks

	Comparison with state-of-the-art
	Conclusion
	Appendix
	Detailed network definitions for Fig. 2
	Additional comparisons
	Ablation studies
	Real-valued downsample decomposition
	Data augmentation
	Effect of temperature

	Network architecture naming convention
	Memory usage analysis
	Improved training scheme with stronger teacher

	Summary of prior work components used
	Per-channel scaling factors
	Double-skip connections
	PReLU activations
	2-stage BNN training
	Real-to-binary knowledge distillation

	 Overall Binary networks structure

