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A recent experiment [Sadoon AA, Wang Y. 2018 Phys. Rev. E 98, 042411] has 

revealed that nucleoid associated proteins (i.e., DNA-binding proteins) exhibit highly 

heterogeneous diffusion processes in bacteria where not only the diffusion constant but 

also the anomalous diffusion exponent fluctuates for the various proteins. The distribution 

of displacements of such proteins is observed to take a q -Gaussian form, which decays 

as a power law. Here, a statistical model is developed for the diffusive motion of the 

proteins within the bacterium, based on a superstatistics with two variables. This model 

hierarchically takes into account the joint fluctuations of both the anomalous diffusion 

exponents and the diffusion constants. A fractional Brownian motion is discussed as a 

possible local model. Good agreement with the experimental data is obtained. 
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1. Introduction 

Diffusion phenomena in living bacteria pose challenging scientific problems (see, for 

example, Refs. [1-5]). There is a rapidly growing development of the experimental 

techniques of single-particle tracking (see Ref. [6] and references therein) which has made 

new interesting experimental results available. Recently, highly heterogeneous diffusion 

processes have been observed in various experiments (see e.g. Ref. [7] and references 

therein), for example in the experiment of Ref. [8] (see also Ref. [9] for a recent update), 

for the dynamics of histonelike nucleoid-structuring proteins in living Escherichia coli 

bacteria. Such nucleoid associated proteins interact with DNA as well as with themselves 

and they are uniformly distributed over the bacterium. In the experiment, to measure the 

diffusion properties, the trajectories of these proteins, fused to fluorescent proteins, have 

been analyzed at individual level. An interesting observation of Ref. [8] is that the 

displacement, ,x  is not Gaussian distributed but obeys a q -Gaussian distribution [10] 

(sometimes also called a Pearson-type VII distribution [11]):  
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where w  is a positive quantity having the dimension of space and m  is a positive 

exponent. This density asymptotically decays with a power law, .~)(
2m
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This behavior is a priori unexpected, since it implies large probabilities of large 
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displacements (but note that the distribution still has a finite second moment since 

,4.2m  unlike the case of Lévy flights [12].) Accordingly, the behavior is in marked 

contrast to the results obtained in other experimental studies, for example, in Refs. [13-

15], where the distribution of displacements of mRNA or chromosomal locus in living 

bacteria was found to be of exponential form, with a characteristic displacement (see also 

Ref. [16] for other cell types). Thus, the result of Ref. [8] sheds new interesting aspects 

onto the complexity of protein diffusion in living bacteria. 

The analysis of Ref. [8] has shown that there is actually a distribution of different 

anomalous diffusion exponents, as well as a distribution of different diffusion constants 

in the bacterium. In this paper we will provide a theoretical framework for analyzing these 

distributions. 

 

Experimental observations 

Let us write for the mean square displacement of a given protein  

 

,~2 
 tDx                          (1.2) 

 

where 
D  is the diffusion constant,   is the (anomalous) diffusion exponent, and t  

is elapsed time. (Here and hereafter, the notations we use are slightly different from those 
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in Ref. [8].) Normal diffusion implies ,1  whereas the case with 1  ( 0 ) 

corresponds to anomalous diffusion [17-19]. 

A fundamental experimental observation of Ref. [8] is that not only the diffusion 

constants but also the diffusion exponents fluctuate in a wide range. The distribution of 

the diffusion constants is observed to asymptotically follow a power law 

 

1
~)(



 DD                        (1.3) 

 

with ,97.0  whereas the diffusion exponents obey a rather broad distribution in the 

range ,20   see Figs. 1 and 2.  

Regarding the distribution in Eq. (1.3), the following points should be noted: It has 

been obtained for numerical values of 
D  in the sense that the dimension is neglected, 

since the dimension of 
D  changes depending on the values of ,  as can be seen in 

Eq. (1.2). For small elapsed time, only normal diffusion is observed and, remarkably, the 

diffusion constant, ,D  in this case has also been found to asymptotically obey the 

distribution in Eq. (1.3), denoted as ,~)( 1 DD  where the exponent, ,  turns out 

to take the value ,9.1  see Fig. 3. 

It may be worth pointing out that the power-law nature in Eq. (1.3) is nontrivial, since 

it is apparently different from the exponential law reported, for example, in Ref. [14] (see 

also Refs. [20,21] for an entropic approach to this law). 
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The mean square displacement in an ensemble average, i.e., an average of square 

displacement over all of the individual trajectories, has also been obtained in the 

measurements of Ref. [8], where both an average diffusion constant and an average 

diffusion exponent are determined. Then, the bacteria have been classified into three 

groups based on their cell age (or, equivalently cell length). As can be seen in Figs. 6(c) 

and 6(d) in Ref. [8], it has been observed for such groups that, in terms of the cell age, 

the average diffusion constant increases significantly, whereas the average diffusion 

exponent is approximately constant (it increases only slightly).  

 

Two-variable superstatistical treatment 

Generally, in nonequilibrium statistical physics the diffusion constant is proportional 

to temperature through the Einstein relation [22], hence a theory of fluctuating diffusion 

constants is mathematically equivalent to a theory of fluctuating temperatures. This leads 

us naturally to the concept of superstatistics [23]. Superstatistics is a “statistics of statistics” 

with largely separated time scales: a prototype example is a Brownian motion in a fluid 

environment in a variety of nonequilibrium stationary states [24]. The marginal 

distribution of the Brownian particle is written as a superposition of the statistics 

describing the local Brownian motion on a short time scale (where inverse temperature is 

locally fixed) with respect to the statistics associated with slowly fluctuating inverse 

temperatures on a long time scale. The superstatistical idea has been widely used for a 

variety of complex systems/phenomena organized by different dynamics with such a 

separation of time scales (see Ref. [25] for a review and Refs. [26-32] for very recent 
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developments). Among others, the discussions in Refs. [7,33] are suitable for biological 

application: in the former, a fluctuating quantity is the diffusion constant, whereas it is 

the diffusion exponent in the latter.  

The basic idea of this paper is to develop a two variable-superstatistical formalism 

which is then applied to model the stochastic motion of histonelike nucleoid-structuring 

proteins in living Escherichia coli bacteria. In our approach, the time scale of variation 

of the fluctuations of both the diffusion exponent and the inverse temperature is much 

larger than that of the dynamics of the protein in local areas of the bacterium, leading to 

associated statistics with two largely-separated time scales. In fact, the superstatistical 

probability densities can simply be associated with the different types of proteins that 

diffuse in the bacterium, thus there is naturally an ensemble of different diffusion 

constants and different scaling exponents of anomalous diffusion. We describe the 

statistical property of the protein over the bacterium as a superposition of these different 

statistics. For a given protein in given local areas, fractional Brownian motion [34] (a 

simple Gaussian stochastic process where the mean square displacement exhibits 

anomalous diffusion) is used as a simple local stochastic process, see also Ref. [7] and 

references therein. Our approach can be easily generalized to other local stochastic 

models, for example along the lines discussed in Ref. [35], where a Langevin equation 

with fluctuations of both friction and noise intensity has been studied. We show that the 

present theory gives rise to q -Gaussian (Pearson-type) distributions, in agreement with 

the experimental measurements. We also propose a particular form of the distribution of 

the anomalous diffusion exponents, again in agreement with the experimental data. 

Overall, our approach leads to a general characterization and effective thermodynamic 
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description of the most important properties of complex biomolecule diffusion processes, 

applicable in many different contexts (see also Refs. [36-39] for further possible 

applications, where fluctuations of both the diffusion constant and the diffusion exponent 

have been experimentally observed). 

 

2. Results and discussion 

As mentioned earlier, for the experiments discussed here both the diffusion constant 

and the diffusion exponent can fluctuate in a spatio-temporal way. These fluctuations are 

fundamental, they do not just come from insufficient sampling of trajectories. 

Generally, it is well-known that the diffusion constant for ordinary Brownian motion 

is proportional to temperature, the proportionality constant being the mobility of the 

particle. Thus, a distribution of different protein diffusion constants is formally equivalent 

to a distribution of different temperatures, which, by transformation of random variables, 

can be re-formulated as a distribution of inverse temperatures. It is well-known [24] that 

a 
2  distribution of inverse temperatures leads to q -Gaussian distributions. This we 

now apply to the case of protein diffusion in the bacterium with different diffusion 

constants. Instead of talking about a distribution of diffusion constants, we talk about the 

corresponding distribution of (effective) inverse temperatures, which is mathematically 

equivalent. 

The time scale of variation of the fluctuations of both the diffusion exponent, ,  and 

the inverse temperature, ,  is naturally much larger than that of the dynamics of the 
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protein in a given local block (spatial region), see Appendix A. In fact different inverse 

temperatures can correspond to an ensemble of different proteins with different diffusion 

constants. Let us denote the joint distribution of both   and   by ),,( g  which 

we can generally write as 

 

).()|(),(  fgg                      (2.1) 

 

Here, )|( g  is the conditional distribution describing the probability of ,  given a 

value of ,  and )(f  is the marginal distribution describing the probability of ,  

i.e., .),()(   gdf  For the protein (or ensemble of proteins) in a given local 

block, we denote the probability of finding the protein in the interval ],[ xdxx   at time 

t  by .),(, xdtxP   The protein moves from one block to another on a long time scale. 

Therefore, for the entire bacterium let us introduce a superstatistical ensemble of all 

proteins by defining the following integrated probability distribution: 

 

.),(),(),( , txPgddtxP                 (2.2) 

 

Equation (2.2) is in conformity with the viewpoint of a superstatistics with two 

variables: the probability distribution is expressed as a superposition of ),(, txP   with 
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respect to the distribution ).,( g  Thus, a statistical treatment of the fluctuations of 

both   and   is hierarchically introduced in this way. Equation (2.2) describes a kind 

of superstatistical partition function, characteristic for each bacterium. 

Before proceeding, we mention the following: The correlation between   and   is 

supposed to exist at a general statistical level. Accordingly, one may wonder if the 

correlation is connected with a kind of fluctuation-dissipation-like relation, which is 

meant in the sense that 
D  is proportional to temperature and is inversely proportional 

to the friction constant depending on .  Such a relation is motivated by a similar 

approach described in Ref. [40]. If such a relation holds, then one can obtain a 

superposition of joint fluctuations in which correlations are taken into account. In the case 

where an ensemble of different proteins of different shapes is considered, the correlation 

may be non-negligible. But as will be seen in later sections, for the data studied here the 

correlation turns out to be weak.  

Superstatistical techniques are an approximation, and one has to be clear about what 

types of approximations are done, and how well these are experimentally justified. In Ref. 

[41] a large separation of two time scales was explicitly taken into account by the use of 

conditional probabilities, in which the integration over the fast variable (i.e., an effective 

energy concerned with a local region) was taken after that of the slow variable (i.e., the 

inverse temperature). In Ref. [42], it was then pointed out that this procedure is opposite 

to the one in the adiabatic scheme (see, e.g., Ref. [43] for a relevant discussion, where a 

dynamical equation for a slowly fluctuating quantity was studied). In this respect, the 

present procedure of the integration associated with the joint fluctuations in Eq. (2.2) is 

seen to be consistent with the adiabatic scheme.  
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So far Eq. (2.2) is formal, without having determined the distributions appearing there. 

In the following, we discuss distributions that are consistent with the experimental data. 

Since D  is distributed according to )(D  as noted earlier, )(f  is found to be a 

power-law distribution given by ,~)()( 1  DDf  where the relation ,/1 D  

is assumed and the prime denotes, throughout the present work, differentiation with 

respect to .  In contrast to ),(f  the explicit form of )|( g  is unspecified. We 

will propose in the next subsection an example of such a form, allowing us to evaluate 

the marginal distribution describing the fluctuations of ,  i.e., ),,()(  gdg   

which can be compared with distributions observed in the experiment [see Eq. (2.12) 

below and Appendix D]. 

In the following we use the fact that the above experimentally observed power-law 

distribution in bacteria is only describing the behavior for small values of the inverse 

temperature   (i.e. large values of temperature T ). We are free to assume suitable 

behavior for larger values of   to get agreement with q -Gaussians of the displacement 

distributions, by integrating over all .  This is the standard formalism of superstatistics 

for one variable as described in Ref. [24], assuming a 
2 -distributed .  

Therefore, let us suppose that )(f  is given by the following 
2  distribution 
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in the whole range of ),,0(   where 
0  is the average of   and )(  is the 

Euler gamma function. The above functional form exhibits power-law behavior for small 

,  as required, but also provides a cut-off for large .  We also mention that the 

experimental data is seen to be consistent with Eq. (2.3), see Fig. 3 as well as Appendix 

B.   

Regarding ),|( g  let us write it as ,)|( )|(  heg   where )|( h  is a 

suitable function. As mentioned earlier, the average anomalous diffusion exponent 

increases only slightly with respect to the cell age, in contrast to the average diffusion 

constant. This suggests the existence of a weak correlation between   and   at the 

statistical level, i.e. the two variables are not fully statistically independent. Accordingly, 

)|( g  has a weak dependence on   in the sense that )|( h  is approximately 

constant in the whole range of   and accordingly its first derivative with respect to   

is small. So, we expand )|( h  around at 0   up to the first order of :0   

),()()()|( 010   hhh  where )|()( 00  hh   and ).|()( 01  hh   

Thus, with ),)(exp()|( 00  hg   we have the following conditional distribution:  

 

 ],)()(exp[)|(~)|( 100  hgg               (2.4) 
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and the weak correlation is described in this way. The weakness of dependence is 

guaranteed if )(1 h  is assumed to be small.  

From Eqs. (2.3) and (2.4), the marginal distribution )(g  is immediately calculated 

to be 

 

,
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where the quantity, ),()/(1 10  h  has been assumed to be positive [which is indeed 

confirmed in the case of Eq. (2.12) below, see Appendix D]. 

 

A possible model  

For ,),(, txP   as supported e.g. by the data in Ref. [8] and examined for the present 

case in Appendix C, we apply the approach of fractional Brownian motion [34] as a 

possible stochastic process. By this we mean that the probability density is given as 

follows [19]: 

 

,
4

exp
4

1
),(

,

2

,

, 






















 tD

x

tD
txP                (2.6) 



13 

 

 

where  ,D  denotes the diffusion constant. As discussed in Appendix A, it is given by 

the relation )(/~,  scD  with s  and c  being a characteristic time and a positive 

constant, respectively, and it corresponds to 
D  in Eq. (1.2). The effective temperature 

dependence of  ,D  can be non-trivial in experiments. Therefore, it is of interest to 

experimentally examine how this dependence is realized.  

Substituting Eqs. (2.1), (2.3), (2.4), and (2.6) into Eq. (2.2), we obtain the following 

distribution: 

 

,))(exp(),(~),( 10   htxPtxP                 (2.7) 

 

where the symbol 

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),|( 0g  i.e., QgdQ )|( 0

2

0


   and ),( txP  is defined by 

 

,
)/(4

)(1
)/(4)(

)2/1(
),(

)2/1(
2

0
1

00






































st

x

c
h

stc
txP  (2.8) 

 



14 

 

provided that, following the formalism in Ref. [24], the integration over   has been 

performed. 

We here discuss some further experimental features of the data in Ref. [8]. Based on 

the experimental data presented in Figs. 6(a), 6(c), and 6(d) in Ref. [8] and Eq. (1.2), we 

estimate the typical spatial scale of the local block as 2x  at the elapsed time of s,2.0  

which gives the first five data points (of the total of ten data points) in the mean square 

displacement. 2x  is found to be of the order of nm100  for the three age groups 

mentioned earlier. Then, as can be seen in Fig. 4(a) in Ref. [8], the displacements of 

nm500x  have been examined via Eq. (1.1) for a larger time, which is supposed to 

approximately be s41.0  in Fig. 2(b) of Ref. [8], and the cell size of bacteria studied in 

Ref. [8] is in the range between m1  and m.6  Therefore, it seems natural to 

consider, for such a large time, that the protein diffuses over a region of a few local blocks 

in the bacterium. This implies that the fluctuations of ,  rather than those of ,  

dominantly contribute to the protein dynamics due to its power-law nature. In the latter, 

we employ the average value, ,̂  of the diffusion exponent for the bacteria in each group 

based on the experimental data in Fig. 6(d) in Ref. [8]. 

Based on these observations, in the region of the local blocks with constant diffusion 

exponent, we can take the conditional distribution in Eq. (2.4) in good approximation as 

follows: ),ˆ()|(  g  for which .0)(1 h  From this, as well as Eqs. (2.7) and 

(2.8), we immediately derive the following distribution: 
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Clearly, Eq. (2.9) has the form of a q -Gaussian distribution. In Fig. 4, we present the 

plot of ),( txP  in Eq. (2.9). The experimental data is nicely described by the q -Gaussian 

distribution in Eq. (2.9). Upon renaming, ,xx   in Eq. (1.1), we therefore have the 

following relations: 

 

,
2

1
 m                           (2.10) 

 

.2/̂tw                             (2.11) 

 

Equation (2.10) tells us how the power-law exponent, the value of which is seen to be 

about 4.2m  (or, 4.1q  in terms of the exponent, ,q  in q -Gaussians), originates 

from the diffusion constant fluctuations, whereas Eq. (2.11) determines the time evolution 

of .w  

Let us briefly pause here to mention the experimental importance of fractional 

Brownian motion models. Golding and Cox [1] experimentally studied the diffusion of 

mRNA molecules inside E. coli bacteria, and already at that early stage proposed the 



16 

 

superposition of fractional Brownian motion processes as a suitable model, which was 

compared with measurements. In Ref. [44], a suitable distribution of the diffusivity was 

employed, and anomalous diffusion with ergodicity breaking [19] was found to emerge. 

The work in Ref. [45] has shown that Weibull-type distributions of the diffusivity give 

rise to mean square displacements similar to those experimentally observed for mRNA 

molecules. Whereas Ref. [44] mainly clarified the mathematical setting, Ref. [45] dealt 

with the experimental fine-tuning.  

So far we have focused our attention on the protein diffusion process in a small region 

of a few local blocks/areas with given local diffusion exponent. On a sufficiently long 

time scale, the protein will diffuse over the entire cytoplasm of the bacterium, and it is 

reasonable to consider that the contributions from the fluctuations of   are important 

as well, in addition to the fluctuations of .  This describes ––in a superstatistical way—

additional fluctuations in the anomalous diffusion exponent. The idea is that in some 

regions, e.g. in very crowded areas with obstacles, subdiffusion is dominant, whereas in 

other regions nearly ballistic motion (superdiffusion) may be possible. These possibilities 

fluctuate spatially over the bacterium, and this also depends on the complexity and shape 

of the particular protein chosen, i.e. the ensemble of all biomolecules. (For a possible 

relevance to the latter, see a recent work in Ref. [46], where fluctuations of size of a 

polymer have been discussed in connection with fluctuating diffusivity.) 

To examine Eq. (2.7) in this situation, all kinds of conditional distributions can be 

considered. In the following we wish to discuss a particular example form of the 

conditional distribution ).|( g  As discussed in Appendix D, this is given by 
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where )(a  is a positive quantity depending weakly on   and )(N  is the 

normalization factor. Only dimensionless numerical values of all quantities appearing  

are treated, since Eq. (2.12) is obtained from the distribution of dimensionless numerical 

values of .D  )(1 h  is calculated in this case to be 
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where 
1a  ( 0 ) is a small constant, representing a weak correlation.  

In Fig. 2, we show the plot of the marginal distribution )(g  as given in Eq. (2.5) 

together with Eqs. (2.12) and (2.13). There, it is observed that this distribution fits the 

experimental data quite well: In particular, it takes on a maximum value near 6.0  

and a local minimum value near ,1.0 respectively.  

We think that for the data we use there is evidence for sufficient sampling of the 

trajectories. According to Ref. [8], trajectories with a minimum length of 10 frames (from 

the total of 20000 frames in the resulting movies) were analyzed for calculating the mean 

square displacements, some of which are based on the trajectories that are quite long, see 
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Fig. 3(a) in Ref. [8]. Fluctuations may sometimes just originate from a lack of precision 

and insufficient statistics, as discussed in Refs. [47-49], where estimation techniques for 

this have been developed. We believe that in our case here we have more fundamental 

fluctuations, not caused by insufficient sampling. The function )(g  in Eq. (2.5) fits 

quite well with the experimental data as mentioned above, under the assumption (see 

Appendix D) that given a value of ,  the distribution of 
D  takes the form in Eq. (B2) 

leading to Eq. (1.3). There is robust and reproducible behavior of the diffusion-constant 

fluctuations caused by medium heterogeneity (similarly, also diffusion-exponent 

fluctuations), with a possible additional correction from ensemble heterogeneity.  

Further experimental data of protein anomalous diffusion dynamics can help to build 

the optimum model for a given experiment, possibly checking for universal and non-

universal properties, i.e. properties that are observed for all bacteria and other properties 

that are very specific to a given specific experiment.  

Importantly, when using superstatistical descriptions one has to check under which 

conditions such a description is valid approximation for given dynamics or experimental 

realization. In Ref. [50] (see also, e.g., Refs. [7,51]), a superstatistical description based 

on a gamma distribution of diffusivity was used for modelling the non-Gaussianity of 

displacements. For the particular dynamical model studied in Ref. [50] it was shown that 

such a description is appropriate only for short time scales, on which the diffusivity is 

considered not to be changing too much. Now, in the present work we see that 

superstatistical modelling seems to make sense also for longer time scales, fitting 

experimental data well, in fact for two simultaneous observables such as the diffusion 

constant and the diffusion exponent, although one still needs to investigate in more detail 
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what the microscopic origin of the observed 2-variable superstatistical behavior in 

bacteria is. Further studies along these lines, and further comparison with further sets of 

experimental data, are needed to ultimately answer this question. 

 

3. Conclusion  

We have developed an effective superstatistical kinetic theory for describing the 

diffusion dynamics of an ensemble of complex biomolecules, in our case applied to the 

specific example of histonelike nucleoid-structuring proteins in living Escherichia coli 

bacteria. This model hierarchically takes into account both the diffusion-exponent 

fluctuations and the temperature (diffusion constant) fluctuations. We have shown that 

the theory naturally contains the q -Gaussian (Pearson-type) distributions often observed 

in experiments, for which the temperature fluctuations play a crucial role, representing 

local changes of the diffusion constant. The approach of fractional Brownian motion has 

been applied as a local stochastic process, representing the presence of an additional 

spectrum of anomalous diffusion exponents, which is important to consider in the most 

general and most complex cases describing the full contents of biomolecules in the 

bacterium. Proposing a concrete statistical form of the diffusion-exponent fluctuations, 

we have discussed the protein diffusion dynamics on a long time scale, for which the 

existence of the weak correlation between both the fluctuations is essential, described by 

a generalized two-parameter superstatistical formalism. We believe this formalism is 

quite generally applicable to a large variety of complex anomalous diffusion processes in 

small biological systems, and experimentally testable in future experiments. 



20 

 

 

Authors’ contributions. Y.I. and C.B. jointly designed research and wrote the paper. 

 

Competing interests. The authors declare no conflict of competing interest. 

 

Acknowledgement. The present research has been designed jointly by Y.I. and C.B. and 

it was completed while Y.I. stayed at the Institut für Computerphysik, Universität 

Stuttgart. Y.I. would like to thank the Institut für Computerphysik for their warm 

hospitality. 

 

 

Appendix A  

Superstatistical fluctuations of the diffusion constant 

Consider the stochastic motion of the protein over the bacterium, which is regarded as 

a complex medium for the diffusion of the proteins. This medium is then divided into 

many small spatial regions or “blocks”, in each of which the protein exhibits 

heterogeneous diffusion according to Eq. (1.2), leading to variations of both   and   

depending on the local blocks. These superstatistical fluctuations are considered to give 

rise to the fluctuations of D  as follows. The fact noted earlier that D  is distributed 

according to )(D  suggests that this fluctuation comes from displacement of the protein 

rather than the characteristic time being required for displacement, since such a 

characteristic time is constant in the random walk picture for normal diffusion [52]. The 
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situation may be same for D  due to the same power-law nature of diffusivity. The 

power-law nature implies that D  and D  share a similar origin in their fluctuations. In 

fact it is clear that one can define diffusion constants for both normal and anomalous 

diffusion, just their dimension is different. The diffusion constant for normal diffusion is 

proportional to temperature, i.e., ,/1 D  as in the Einstein relation [22], such an 

origin is expected to be formally related to temperature. To investigate this point in more 

detail for anomalous diffusion, let us note the experimental fact [8] that for the mean 

square displacement in the ensemble average, the numerical value of the diffusion 

constant in the case of normal diffusion observed for small elapsed time is three times 

larger than that in the case of anomalous diffusion observed for large elapsed time, at least 

for the data set that we study here. This indicates, for a given individual trajectory, that 

,3~ 22

  where   (  ) stands for displacement. [This symbol for the displacement 

should not be mixed with the one in Eq. (1.1)]. Therefore, denoting sD /2  and 



 sD /2  with s  being a positive constant describing the characteristic time 

mentioned above, these observations allow us to evaluate .)3/(~ 1 



sDD  Thus, D  

is given by 

 




s

c
DD ~,                       (A1) 

 

with c  being a positive constant.  
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From the above, the value of ,/0 c  which turns out to be relevant through the present 

work, is estimated as follows. In the case of normal diffusion, the average of 
 ,D  over 

the distribution )(f  in Eq. (2.3) is given by  

 

.
1

~)(
0

,1

0



 

s

c
Dfd




                   (A2) 

 

This should take on approximately the value of one third of s,/nm1024 23  for the 

example experiments we look at here, which is the average value of ,D  and s045.0s

[8], hence it is found that .nm109.5~/ 23

0

c  Also, the average of 
 ,D  over the 

joint fluctuations given in Eqs. (2.3) and (2.4) can be calculated and is given by 

 

            .
])()/(1[

))(exp(

1
~),(

1

10

10

0

,

0

2

0 



















 hs

hc
Dgdd     (A3) 

 

Using Eqs. (2.12) and (2.13), the value turns out to be approximately given by 

.s/nm1010 23   This value is close to the average value of D  measured in the 

experiment, which is s/nm100.8 23  [8]. This observation is seen to support the 

relation in Eq. (A1). 
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Appendix B  

The fluctuation distribution of the diffusion constant  

The left-bottom inset in Fig. 2(d) in Ref. [8] is seen to imply that the experimental data 

of the diffusion constant D  [ s/m2 ] can be fitted with a slightly curved line, since the 

data point at 03.0D s/m2  is below the red dashed line presented there, whereas the 

data points around at 1.0D s/m2  are above the red dashed line. Accordingly, we 

suppose that such a curved line is described by the following inverse gamma distribution 

 









 

D

A
DAD


  exp)( 1                  (B1) 

 

in the interval ,  D  where A  is a positive constant having the dimension of the 

diffusion constant,   and   are lower and upper bounds on ,D  respectively, see Fig. 

3. Clearly, this distribution decays as a power law for large .D   

Here, we employ the assumption that the range of   in Eq. (2.3) is unbounded, 

although the values of   and   in practice (i.e. in true experiments) are of course 

small and large, respectively, but still finite. To illustrate this aspect, we examine the 

influence of   in our present theory. Let us compare the average value of D  in the 

two cases with s/m011.0 2A  and s/m025.0 2   (see Fig. 3), which is given by  
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s/m051.0 2  in the case of s,/m205.0 2   and by s/m062.0 2  in the limit 

,  showing that these two values are close to each other. Since D  appears in the 

denominator in the exponential factor in Eqs. (2.4), (2.6), and (2.12), the contribution 

from D  becomes small as it increases. From this we conclude that the influence of   

is quite negligible. 

From the experimental data in Fig. 2(d) in Ref. [8], the situation seems to be similar 

for the dimensionless numerical values of D  [
 s/m2

]. That is, it is seen that the data 

point at 01.0D
 s/m2

 is below the red dashed line presented there, whereas almost 

of the data points between 02.0D
 s/m2

 and 1.0D
 s/m2

 are above the red 

dashed line, implying that the experimental data can be fitted by a slightly curved line. 

As this curved line, we shall take the inverse gamma distribution given by 

 














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













D

A
DAD

~

exp
~

)(
1                   (B2) 

 

in the interval ,~~    D  where A
~

 is a dimensionless positive constant, ~  and ~  

are lower and upper bounds of ,D  respectively. As shown in Fig. 1, this distribution is 

seen to fit well, exhibiting the power-law behavior in Eq. (1.3) for large .D  

As will be shown in Appendix D, the distribution in Eq. (B2) turns out to play a key 

role for obtaining the form of the conditional distribution ).|( g  
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Appendix C  

A possible local stochastic process  

Fractional Brownian motion [34,53] has been employed as the underlying process 

describing anomalous diffusion observed in a wide class of crowded fluid/biological 

systems, see Refs. [54-57], for example. This fact naturally motivates us to examine if the 

approach of fractional Brownian motion is appropriate as a model for the typical local 

diffusion dynamics in a bacterium, providing a concrete formula for .),(, txP    

A process of fractional Brownian motion is described ––based on that of the ordinary 

Brownian motion denoted by )(tB –– in such a way that past increments of )(tB  are 

incorporated into the process:  ,])([])([)( 2/1

0

2/12/1

0 tItIttB HH

t

H

H  








  where 

0t  is a positive constant having the dimension of time, )(t  is the unbiased Gaussian 

white noise satisfying  ),()( tdBdtt   and 

)()())(/1(])([ 1   


   tdtI

t

t
 is the Riemann-Liouville fractional integral 

operator [58] with 0 . Here, H  is referred to as the Hurst exponent and it satisfies 

.10  H  Normal diffusion is realized in the case of ,2/1H  whereas the case of 

2/1H  describes anomalous diffusion. So, if )(tBH
 describes the individual 

trajectory in a given local region, then H2  should hold in Eq. (1.2), [where it is 

understood that the case of 0  ( 2 ) is realized in the limit, 0H  ( 1H )]. In 

our present discussion, the following three features of the process of fractional Brownian 

motion are relevant. Firstly, the velocity autocorrelation function in the process becomes 
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negative (positive) if 2/10  H  ( 12/1  H ) [19]. This is consistent with the 

experimental result presented in Fig. 5(a) in Ref. [8], where it is clearly seen that the 

velocity autocorrelation function of the proteins becomes negative for small elapsed time. 

It should be also noticed that the case of 10   has been predominantly observed. 

Secondly, the diffusion processes are assumed to be ergodic, since the protein can diffuse 

almost anywhere, in the sense [19,59] that the mean square displacement obtained 

through the position autocorrelation function is equivalent to the one derived based on 

the probability distribution. Lastly, the process does not exhibit any aging phenomenon, 

since the sequence of the increments of )(tBH
 is stationary [19]. Regarding this point, 

we should say that for the experimental data [8] there is a dependence on cell age, but this 

can be incorporated in the choice of the effective temperature relevant for each cell age 

group.  

In Ref. [60], the displacement autocorrelation function has been calculated for the 

process of fractional Brownian motion. For large elapsed time, the function becomes 

negative (positive) if 10   ( 21  ). Therefore, the corresponding fractional 

approach is suitable if such a behavior is observed for the experimental data. 

Taking into account all of these considerations, we see that the model of local fractional 

Brownian motion is a good one for the local dynamics modelling in bacteria and other 

small complex systems. It simply needs to be amended by the detailed properties of the 

diffusion constant distribution and diffusion exponent distribution. 

 

Appendix D  
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The conditional fluctuation distribution of the diffusion exponent  

Here, we present a particular form of the distribution ),|( g  which allows us to 

derive the form of the marginal distribution ).(g  Given a value of ,  an allowed 

range of dimensionless numerical values of D  can be determined through the diffusion 

exponent   in Eq. (A1). Let us assume that the normalized probability distribution of 

such values takes on the form of the inverse gamma distribution in Eq. (B2). Accordingly, 

)|( g  is given by ),(/)|( ,   DDg   where   is considered to be 

distributed in the interval 20   due to the fact [8] that the average diffusion 

exponent is approximately constant in terms of the cell age, which implies that the interval 

to be taken does not drastically change. Since )|( g  should have a weak dependence 

on ,  we consider that A
~

 in this case depends on   in such a way that 

,/)()(
~

 aA   where )()( 010   aaa  with )( 00 aa   and ).( 01 aa   

Here, 
1a  should be small, realizing the weakness. Thus, )|( g  can be expressed as 

the distribution in Eq. (2.12) with )(N  being the normalization factor given by 

 

 
,

)/)(,()/)(,(

ln/)(
)(

2 casca

sca
N
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



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             (D1) 
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where ),( yk  is the incomplete gamma function defined by .),( 1





y

uk euduyk  

Using this, 


s  in Eq. (2.13) is found to be given by 
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)|( g  in Eq. (2.12) is peaked at ,ln/]))(/ln([)( sac   
 and the center of 

this distribution should tend to approach the origin 0  as   increases, since the 

average diffusion exponent slightly increases with respect to the cell age [8]. Accordingly, 

the condition, ,0  requires 
1a  to be negative.  

Keeping this in mind, it is found that the marginal distribution )(g  in Eq. (2.5) with 

Eqs. (2.12) and (2.13) takes on a maximum value and a local minimum value, respectively, 

at   and :)(     
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and  
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where   and   (  ) are defined by 
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where the quantity inside the square root in Eqs. (D3) and (D4) is assumed to be positive 

(which is confirmed in the present case, see below).  

In Fig. 2, 
0a  and 

1a  are taken in such a way that  6.0  and ,05.0  

which is very similar to the experimental result [8], see the histogram in Fig. 2.  
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The experimental data imply that the quantity )()/(1 10  h  with Eq. (2.13) in Eqs. 

(2.5), (2.8), and (A3) takes on values between 12.0  and ,16.1  whereas the quantity 

inside the square root in Eqs. (D3) and (D4) has approximately the value of ,38  i.e. it is 

positive, as required.   
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Figures  

 

Figure 1  

 

 

Log-log plot of the normalized distribution )(  D  of the numerical values of D

[
 s/m2

]. The histogram is based on the experimental data of Fig. 2(d) in Ref. [8]. The 

solid line shows the inverse gamma distribution, Eq. (B2), with 0072.0
~
A

 s/m2
 in 

the interval  
~~  D  with 005.0~ 

 s/m2
 and 155.0~  .s/m2   The bin size 

is taken to be 0001.0 .s/m2   Dimensionless numerical values of all quantities are used.  
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Figure 2 

 

 

 

The normalized marginal distribution ).(g  The histogram describes the probability to 

find a given value of the anomalous diffusion coefficient   and is based on the 

experimental data of Fig. 2(c) in Ref. [8]. The solid line shows the distribution of Eq. 

(2.5) with Eqs. (2.12) and (2.13): 2

0 m5.6/ ca  and .m03.2/ 2

01

ca   The bin 

size is taken to be 001.0 . 
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Figure 3 

 

 

 

Log-log plot of the normalized distribution )(D  of the diffusion constant D  in units 

of [ s/m2 ]. The histogram is based on the experimental data in the left-bottom inset in 

Fig. 2(d) of Ref. [8]. The solid line shows the inverse gamma distribution of Eq. (B1) 

with 011.0A s/m2  in the interval   D  with 025.0 s/m2  and 

205.0 s./m2  The bin size is taken to be 0001.0 s/m2 . 
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Figure 4 

 

 

 

Semi-log plot of the normalized distribution ),( txP  with variables x [ nm ] and t [ s ]. 

This histogram uses the experimental data of Fig. 4(a) in Ref. [8]. The three lines show 

the q -Gaussian distributions of Eq. (2.9): 53.0ˆ   for the dashed line, 57.0ˆ   for 

the solid line, and 59.0ˆ   for the dotted line [8]. nm500x  and st 2.9  

( s41.0 ) are considered.   

 


