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Abstract: Distributed systems have been an active field of research for over 60 years, and has played a 

crucial role in Computer Science, enabling the invention of the Internet that underpins all facets of modern 

life. Through technological advancements and their changing role in society, distributed systems have 

undergone a perpetual evolution, with each change resulting in the formation of a new paradigm. Each new 

distributed system paradigm - of which modern prominence include Cloud computing, Fog Computing, and 

the Internet of Things (IoT) – allows for new forms of commercial and artistic value, yet also ushers in new 

research challenges that must be addressed in order to realize and enhance their operation. However, it is 

necessary to precisely identify what factors drive the formation and growth of a paradigm, and how unique 

are the research challenges within modern distributed systems in comparison to prior generations of systems. 

The objective of this work is to study and evaluate the key factors that have influenced and driven the 

evolution of distributed system paradigms, from early mainframes, inception of the global inter-network, and 

to present contemporary systems such as Edge computing, Fog Computing and IoT. Our analysis highlights 

assumptions that have driven distributed system appear to be changing, including (i) an accelerated 

fragmentation of paradigms driven by commercial interests and physical limitations imposed by the end of 

Moore’s law, (ii) a transition away from generalized architectures and frameworks towards increasing 

specialization, and (iii) each paradigm architecture results in some form of pivoting between centralization 

and decentralization coordination. Finally, we discuss present day and future challenges of distributed 

research pertaining to studying complex phenomena at scale and the role of distributed systems research in 

the context of climate change. 
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1. Introduction 

Societal prosperity of the latter half of the 21
st
 century has been underpinned by the Internet, formed by 

large-scale computing infrastructure composed of distributed systems which have accelerated economic, 

social and scientific advancement [1]. The complexity and scale of such systems have been driven by 

increased societal demand and dependence on such computing infrastructure, which in turn has resulted in 

the formation of new distributed system paradigms. In fact, these paradigms have evolved in response to 

technological changes and usage, resulting in alterations to the operational characteristics and assumptions of 

the underlying computing infrastructure. For example, early mainframe systems provided centralised 

computing and storage interfaced by teletype terminals. Clustering and packet switching alongside 

advancement in microprocessor technology and GUIs transferred computing from large mainframes operated 

remotely to home PCs [5][6]. Standardisation of network protocols enabled global networks-of-networks to 

exchange messages for global applications [1]. Organisations developed frameworks and protocols capable 

of offloading computation to remote machine pools of computing resources such as processing, storage and 

memory [2][3], eventually incorporating sensing and actuator objectives with embedded network capabilities 

[4]. Thus, distributed systems paradigms have evolved to distribute and facilitate service from centralised 
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clusters, extending infrastructure beyond the boundaries of central networks forming paradigms such as IoT 

and Fog computing [8][9]. 

For the past 60 years distributed system paradigms have conceptually evolved to meet challenges introduced 

by an ever-changing computing infrastructure and society [47]. From mainframes to clusters, clusters to 

Cloud, and Cloud to distributed and decentralised infrastructures encompassing the IoT to Edge 

Infrastructure [52]. Yet paradigms still retain the same underlying characteristics and elements that define 

their operation [40]. Each is defined by persistent research activities and are often driven by the development 

of new capabilities, such as security [76], hardware accelerators [77], edge computing [23] and power 

efficiency [60]. Whilst application framework have evolved to meet challenges presented by integrating with 

wider eco-systems, ranging from distributed clouds to highly specialised application specific infrastructures 

[48][74][75]. As such distributed paradigms require constantly evolving middleware’s, communication 

protocols, and secure isolation mechanisms [53].  

This work focuses on ascertaining the key characteristics and elements of distributed and networked systems, 

critically appraise the historical driving technologies and social behaviour that drove their paradigm 

formation, whilst identifying key trends across the paradigms including system architecture fragmentation, 

centralisation and decentralisation pivoting, and delays in paradigm conceptualisation to creation by tracing 

the impact of networked systems on society. From these findings we discuss how future distributed systems 

will support decentralisation of computation services through composition of decentralised computation 

platforms specialised to meet workload specific performance goals, forming exponentially larger systems 

capable of holistic operational requirements including capability and energy availability. Finally we 

summarise how a dynamic centralised/decentralised distributed paradigms may form and will shape the 

direction of future computer science research as well as their potential impact within greater society. 

The rest of the article is structured as follows: Section 2 presents the background of distributed systems. 

Section 3 the evolution of the distributed system paradigms. Section 4 analyses trends and observations 

across all paradigms.  Section 5 discusses future challenges facing distributed systems, and Section 6 presents 

our conclusions. 

2. Background 
 

Distributed systems describe a class of computing system in which hardware and software components are 

connected by means of a network, and coordinate their actions via message passing in order to meet a shared 

objective [11][12]. Whilst paradigms exhibit differing operational behaviour and leverage various 

technologies, these systems are defined by their underlying core characteristics and elements that facilitate 

their operation. 

2.1 Characteristics 
 

Transparent Concurrency: Distributed Systems are inherently concurrent, with any participating resource 

accessible via any number of local or remote processes. The capacity and availability of such a system can be 

increased by adding resources that require mechanisms for accounting and identification. Such a system is 

vulnerable to volatile inter-actor behaviours and must be resilient to node failure as well as lost and delayed 

messages [16]. The management and access of objects, hardware or data in a distributed networked 

environment is also of particular importance due to potential for physical resource contention [2][6][7][13]. 

Lack of Shared Clock Computing: Systems maintain their own independent time, interpreted from a 

variety of sources, and as such Operating Systems (OSs) are susceptible from clock skew and drift. 
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Furthermore, detecting when a message was sent or received is important for ensuring correct system 

behaviour. Therefore, events are tracked by means of conceptual Logical and Vector clocks; by sequencing 

messages, processes distributed across a network are able to ensure total event ordering [10][14][15]. 

Dependable and Secure Operation: Components of a distributed system are autonomous, and service 

requests are dependent on correct transaction of operation between sub-systems. Failure of any subsystem 

may affect the result of service requests   and may manifest in ways that are difficult to effectively mitigate. 

Fault tolerance and dependability are key characteristics towards ensuring the survivability of distributed 

systems and allow services to recover from faults and whilst maintaining correct service [16]. 

2.2 Elements 
 

Physical System Architecture: Physical system architecture identifies physical devices that exchange 

messages in a distributed system and what medium they communicate over. Early distributed systems such as 

mainframes were physically connected to clients. Later packet switching enabled long-haul multi-hop 

communication. Cellular networks incorporate mobile computing systems, whilst modern systems host 

services at specialised hardware between services providers and consumers.  Initial designs of distributed 

systems aimed to provide service across local or campus wide networks of tens to hundreds of machines, and 

were focused on the development of operating systems and remote storage [1] [2]. Early efforts were 

designed to explore potential challenges and demonstrate their feasibility [9] and to enhance their functional 

and non-functional properties (performance, security, dependability, etc). 

Entities: A logical perspective of a distributed system describes several process exchanging messages in 

order to achieve a common goal [17] [18]. Contemporary systems extend this definition by considering 

logical and aggregate entities, such as Objects and Components, used for abstracting resource and 

functionality [19]. Here systems are exposed as well-defined interfaces capable of describing natural 

decomposition of functional software requirements, and enabled exploring the loose-coupling between 

interchangeable components for domain specific problems found in distributed computing [20]. More recent 

systems leverage web services and micro-services, that consider their deployment to physical hardware as 

well as constraints including locality, utilization and stakeholders’ policies [35]. Grid and Cloud computing 

enable distributed computing by abstracting processing, memory and disk space aggregation [21] whereas 

Fog and Edge computing emphasize integrating mobile and embedded devices [22][28]. 

Communication Models: Several communication models support distributed systems [24] [25] [26] 

including (i) Inter-process Communication: Enabling two different processes to communicate with each 

other by means of operating system primitives such as pipes, streams, and datagrams in a client - server 

architecture; (ii) Remote Invocation: Mechanisms and concepts enabling a process in one address space to 

affect execution of operations, procedures and methods in another address space; and (iii) Indirect 

Communication: Mechanisms enabling message exchanges between one to many processes via an 

intermediary. In contrast with previous communication models, senders and receiving processes are 

decoupled, and responsible for facilitating message exchange is passed to the intermediary [37] [38]. 

Consensus and Consistency: Distributed systems make decisions amongst groups of cooperating processes 

each possessing possibly inconsistent states. Consensus algorithms are a mechanism in which a majority 

subset of nodes or ‘quorum’ can fulfil a client request negotiate a truth and fulfil a client request. Replication 

and partitioning are common techniques used to improve system scalability, reliability and availability [16] 

when exposed to volatile environments. Consistency is a challenge to both replicated, partitioned storage and 

consensus algorithms [10][16].  
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Table 1. Timeline of Distributed System Paradigms Formation and Key Technological Drivers 

Year Driver Technology & Paradigm Model Elements 
Physical Conceptual Entities Communication 

1960 -

1970 
 

Clustering and 
packet switching 

(1967-1977) 

Inter-process 

Communication (IPC) Mainframe and telnet clients. 

 
Local networks interconnected 

over packet switching 

infrastructure primarily for 
research activity. 

Client terminal connections 

share mainframe resources. 

 
Networks, provide specific  

services to private networks, 

accessible clients across 
geographic and organisational 

boundaries. 

Clients (teletype 

terminals) & servers. 
 

Hosts (servers), switches, 

routers and mainframes  

Datagram transport 

(ATM, X.25) 
 

Client-server 

Supercomputer 

ARPANET and early 

Internet  

1970-

1980 

GUI (WIMP), 

x86 architecture 
Internet protocols 

(1974-1984) 
 

ARPANET Local networks interconnected 
over packet switching 

infrastructure. 

 
Home teletype computers and 

home video games. Early GUI 
based home computer based 

systems.  Increased memory. 

Private networks provide 
services across geographic and 

organisational boundaries. 
 

Domains translated to IP 

addresses for identifying 

networked hosts.  
 

DNS system created. 

Hosts (servers), switches, 
routers and mainframes. 

 
Mainframes provide 

specialised co-processors 

enabling parallel request 
processing from clients 

at scale. 

IP addressable hosts 

are able to 

communicate by 
means of datagrams. 

Unix 

Initial conception of 
TCP/IP and UDP protocols 

Distributed Operating 

Systems 

1980-

1990 
 

POSIX.1 

 

Remote Procedure 
Call (RPC) 

 
HTTP and HTML. 

(1985-1990) 

Home Computer  (Apple 

LISA, ZX Spectrum, etc) 

Mainframe terminals replaced 

with 8086 microprocessor 

architectures.  
 

BBS boards begin to appear 

hosted and & operated by 
consumers. 

 

Move from centralised 
mainframes to decentralised 

computers outside of research. 

Hosts interconnected by IP 

addresses and switches; DNS 

provides address translation; 
networks remain centralised. 

 

Networks ARPANET, 
NSFNET, DECNET made 

obsolete by WAN infrastructure 

via TCP/IP.  

 

Clusters of 
microprocessor machines 

displace monolithic 

mainframes. 

TCP/IP becomes 

standard internet 
protocol of internet. 

Standardized TCP/IP and 

Initial internet 

Generalised OS (drivers) 
 

1990-

2000 

Middleware 

 

Peer to peer 
protocols 

HTTP (TBL) 
WWW leads to form geographic 

internet, services now provided by 

home servers and clustered 

machines. 

 

Home systems connected by dial 

up modems. 

DNS, WWW, and TCP/IP 

enable decentralised internet. 
 

Peer to Peer architecture 

enables highly decentralised file 

sharing, parallel processing, and 
online gaming applications. 

Most services now 
provisioned via off-the-

shelf -machines 

organised into clusters. 
 

Servers provide 

resources described by 
Uniform Resource 

Locators. 

Remote objects and 

procedures, enabled 

development of early 
middleware 

 

HTTP over TCP/IP 
popularise internet. 

 

P2P protocols, group 
communication 

HTML 

WWW 

P2P computing 

Mobile Computing 

2000-

2010 
 

High speed 

broadband 

 
x86 Virtualization 

 

Hypervisors 
 

Web Services 
Educational organizations form 

Grids for scientific goals. 

 
VM para-virtualization 

application mobility. 

 

Services and resource 
consolidation to datacenter.  

 

Rise of smart phone adoption and 
mobile computing. 

Grids computing provides 

orchestration across 
organizational boundaries. 

 

VMs enables resource isolation 
between applications on shared 

hardware. 
 

Web services allow further 

service abstraction from 

physical hardware. 

Most services 

provisioned via off-the-

shelf-machines organised 
into clusters 

described by Uniform 

Resource Locators. 

 

Grids and Cloud provide 

resource pooling (CPU, 
memory, storage).  

Cluster middleware 

 
REST, WSDL, 

XML, JSON, 
 

MQTT, XMPP 

(application layer 

group comm) 
 

Xen and KVM 

hypervisor. 

Grid computing 

Community Computing 

Virtualized Commodity 
Clusters 

Cloud computing 

2010-

2020 

Software Defined 

Networks 
 

Containerization 

IoT 
Fog nodes 

 

Smart objects and edge 
infrastructure 

 

Edge datacenters 

Specialization of computing 
tasks and hardware (GPU, 

NPU, smart phones, sensors) 

Remote resources (Storage, 
processing).  

Containers become 

increasingly prominent 
 

Cloudlets 

  

P4, Openflow Open 
SVN. 

 

 

Edge Computing 

Fog Computing 
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Consistency in distributed systems can be defined as strong consistency, where any update to a partition of a 

data set is immediately reflect in any subsequent accesses, or weak consistency in which updates may 

experience delay before they are propagated through the system and are reflected in subsequent access’s.  

3. The Evolution of Distributed Systems 

Distributed systems have continued to evolve in response to various scientific, technological and societal 

factors. This has given rise to new forms of computer systems, as well as adaptation of paradigms from 

Client-Server through to IoT and Fog Computing [26]. However, the core characteristics and model elements 

discussed in Section 2 have remained relatively constant, with the precipitating paradigm augmenting (or re-

engineering) technology from prior paradigms. Table 1 provides a detailed a timeline of key distributed 

paradigm formation, technologies that enabled their realisation, and a description of their respective 

elements. The formation of distributed systems does not occur in a vacuum, and is influenced by factors 

spanning other computer science disciplines (e.g. HCI, security), societal exposure, education, and business 

strategy [24] [25].  

Due to the sheer volume of potential influences, we have focused our discussions pertaining to major 

technological advances and impact upon distributed system elements. 

The Mainframe (1960-1967): Mainframes machines of the early 1960’s provided time sharing service to 

local clients that interacted with teletype terminals [29]. Such system conceptualised the client-server 

architecture, prevalent in present day distributed systems design [30]. The client process connects and 

requests server processes, enabling a single time-sharing system to multiplex resources amongst clients [31]. 

Mainframes remained prohibitively expensive and were the focus of supercomputing engineers that lead to 

the innovation of early disk-based storage and transistor memory [32]. 

Cluster Networks (1967-1974): The late 1960s and early 1970’s saw the development of packet switching, 

and clusters of off-the-shelf computing components were identified as a cheaper alternative to more powerful 

yet more expensive supercomputer and mainframes [61]. New programming environments and resource 

abstractions were developed abstracting resource across local networks of machines [1][2]. This time period 

also saw the creation of ARPANET and early networks that enabled global message exchange [3], allowing 

for services hostable on remote machines across geographic bounds decoupled from a fixed programming 

model. Cerf & Karn [3][4] defined the TCP/IP protocol that facilitated datagram and stream orientated 

communication over a packet switched autonomous network of networks [39].  

Internet & Home PCs (1974-1985): During this era, the Internet was created. Whilst early NCP-based 

ARPANET systems were characterised by powerful timesharing systems serving multiple clients over 

networks, new technologies such as TCP/IP had begun to transform the Internet into a network of several 

backbones, linking local networks to the wider Internet [3]. Thus, the number of hosts connected to the 

network began to grow rapidly, and centralised naming systems such as HOSTS.TXT could not scale 

sufficiently [5]. Domain Name Systems (DNSs) were formalised in 1985 and were able to transform hosts 

domain names to IP addresses; the Unix BIND system was the first public implementation of the DNS. 

Computers such as Xerox Star and Apple LISA utilizing early WIMP based GUIs demonstrated the 

feasibility of computing within the home, providing applications such as video games and web browsing to 

consumers.  
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World Wide Web (1985-1996): During the late 1980s and early 1990s, the creation of HyperText Transport 

Protocol (HTTP) and HyperText Markup Language (HTML) [6] resulted in the first web browsers, website, 

and web-server
1
. Standardisation of TCP/IP provided infrastructure for interconnected network of networks 

known as the World Wide Web (WWW). This enables explosive growth of the number of hosts connected to 

the Internet, and was the public’s first large societal exposure to Information Technology [3][6]. Mechanisms 

such as Remote Procedure Calls (RPCs) were invented, allowing for the first time applications interfaced 

with procedure, functions and method across address spaces and networks [7].   

P2P, Grids & Web Services (1994-2000): Peer to Peer (P2P) applications such as Napster and Seti@Home 

demonstrated it was feasible for a global networks of decentralised cooperating processes to perform large-

scale processing and storage. P2P enabled a division of workload amongst different peers/computing nodes 

whereby other peers could communicate with each other directly from the application layer [8]
2
 without the 

requirement of central coordinator. The creation of Web Services enables further abstraction of the system 

interface from implementation in the Web [40]. Rather than facilitate direct communication between clients 

and servers, Web Services mediated communication via a brokerage service [33]. Scientific communities 

identified that creating federations for large pools of computing resources from commodity hardware could 

achieve capability comparable to that of large supercomputing systems [41]. Beowulf enables resource 

sharing amongst process by means of software libraries and middle-wares, conceptualising clustered 

infrastructure as a single system [42]. Grid computing enabled open access to computing resources and 

storage by means of open-protocols and middleware. This time period also saw the creation of effective x86 

virtualization [43], which became a driving force for subsequent paradigms.  

Cloud, Mobile & IoT (2000-2010): A convergence of cluster technology, virtualization, and middleware 

resulted in the formation of the Cloud computing that enabled creating service models for provision 

application and computing resource as a service [34]. Driven primarily by large technology organization who 

constructed large-scale datacenter facilities, computation and storage began a transition from the client-side 

to the provider side more similar to that of mainframes in the 1960s and 1970s [35] [36]. Mobile computing 

enabled access to remote resources from resource constrained devices with limited network access [43] [66]  

IoT also began to emerge from the mobile computing and sensor network communities providing common 

objects with sensing, actuating and networking capabilities, contributing towards building a globally 

connected network of ‘things’ [44].  

Fog and Edge Computing (2010-present): Whilst data produced by IoT and Mobile computing platforms 

continued to increase rapidly, collecting and processing the data in real-time was, and still remains an 

unsolved issue [27]. This resulted in forming Edge computing whereby computing infrastructure such as 

power efficient processors, and workload specific accelerators are placed between consumer devices and 

datacenter providers [66]. Fog computing provides mechanisms that allow for provisioning applications upon 

edge devices [45][46], capable of coordinating and executing dynamic workflows across decentralised 

computing systems. The composition of Fog and Edge computing paradigms further extended the Cloud 

computing model away from centralised stakeholders to decentralized multi-stakeholder systems [45] 

capable of providing ultra-low service response times, increased aggregate bandwidths and geo-aware 

provisioning [23][27]. Such a system may comprise of one-off federations or clusters, realised to meet single 

application workflows or act as intermediate service brokers, and provide common abstractions such as 

                                                           
1 The first webpage --- http://info.cern.ch/hypertext/WWW/TheProject.html 

2 History of Distributed Systems --- https://medium.com/microservices-learning/the-evolution-of-

distributed-systems-fec4d35beffd 

mailto:Seti@Home
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utility and elastic computing across heterogeneous, decentralised networks of specialised embedded devices, 

contrasting with centralised networks found in clouds [22].  

4. Trends & Observations  

By appraising the evolution of the past six decades of distributed system paradigms shown in Table 1, it is 

apparent that a variety of technological advancements within computer science have driven the formation of 

new distributed paradigms. It is thus now possible to observe longer-term trends and characteristics of 

particular interest within distributed systems research. 

4.1 Diversification of Paradigms 

There appears to be an increased diversification of distributed system paradigms as the research area has 

matured as shown in Figure 1. This is predominantly driven by two factors: First, it is observable that the 

acceleration of paradigm formation was precipitated by the invention of the WWW in 1999. This is intuitive 

as this event enabled distributed systems to transition away from specialized research focused activities into 

greater society, with each sector requiring specific requirements from entertainment to commercial use. The 

second reason is that the maturity of fundamental technologies (TCP/IP, HTTP, Unix) created a platform that 

heavily emphasised abstraction to interconnect heterogeneous platforms in an effective manner, hence future 

paradigms were able to build upon these concepts. Figure 2 also demonstrates how distributed system 

paradigms transitioned from a potentially ‘niche’ research with a development singular track within the 

computer science community towards an area spanning a wide variety of paradigms coinciding with the time 

the Internet and WWW gained traction. 

4.2 Architecture Pivoting from Centralization to Decentralization 

The creation of a new technology appears to drive the next distributed system paradigm, and respectively 

alter its respective degree of centralization as shown in Figure 1. The creation of a new paradigm results in 

researchers revisiting fundamental mechanisms (schedulers, fault tolerance, monitoring) to ensure that they 

are capable of effectively operating within the new set of system assumptions. This is exemplified when 

considering responsibilities frequently carried out by scientists; a principle purpose of peer-review within the 

research community is ascertaining whether proposed approaches exhibit suitable differences from previous 

Figure 1. Depiction of distributed system paradigm evolution. 

Mainframe 
(1955)

Cluster 
(1962)

Network Computing 
(1967)

Home Computer 
(1978)

WWW 
(1994)

P2P 
(1999)

Grid Computing 
(1999)

Cloud Computing 
(2006)

Fog Computing 
(2009)

Edge Computing 
(2009)

IoT (2008)

SOA (2009)

Mobile Computing 
(2004)

ARPANET, 
Datagram 

TCP/IP, UDP, 
Unix

HTTP, 

HTML

Centralization

Decentralization
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paradigms to determine their novelty (or whether it is a ‘reinvention of the wheel’). This is apparent when 

considering a number of papers created that attempt to clearly distinguish between paradigms that leverage 

shared technologies [21]. We observe that the majority of paradigms predominantly are decentralized in 

nature, with the exception of Cloud computing which follows many similarities with the centralized 

mainframe in terms of the coordination of computational resources within a datacenter facility which users 

access via web APIs.  

4.3 Time Between System Conception & Creation 

The delay between the description of a potential paradigm and actual successful implementation in recent 

years appears to be shorter in contrast to previous decades as shown in Figure 2. It is worth noting that 

ascertaining the precise publication fully credited in accurately describing the full realization of a paradigm 

due to a single individual or group is not necessarily feasible. Thus, we have attempted to seek papers which 

first define the appropriate terminology and paradigm description that were later adopted. As shown Figure 2, 

the formative years of distributed systems between 1960 - 1996 saw an average delay of 13 years and after 

the adoption of the WWW saw an average 8.8-years delay. It is observable that most paradigm are conceived 

and created sometime within 3-10 years, with the exception between 1960 – 1990 which is likely due to 

insufficient technologies when first envisioned, Later paradigms again appear to be relatively short in 

duration to create, and is likely a by-product of increased maturity of the research area, combined with its 

pervasiveness within society and growth of research activity within each respective paradigm (i.e. there are a 

sizable proportion of distributed researchers whom focus on a particular paradigm). 

 

 

 
Figure 2. Time gap between paradigm conception and creation. 

1955     1962     1955      1952     1965     1969     1973     1989     1994     1996     2003      2009     2011  
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5. Future of Large-Scale Computing Infrastructure 

5.1 Accelerated Paradigm Specialization 

It is observable that specific distributed system paradigms have a particular affinity for tackling different 

objectives; whilst Cloud computing is capable of handling generalized application workload, paradigms such 

as edge computing and fog computing have been envisioned to be particularly effective for sensor actuation 

and increasingly important latency requirements. A growing number of microprocessors are being designed 

to accelerate specific tasks (such as graphics and machine learning using GPUs and NPUs, respectively). In 

tandem, the end of Moore’s law indicates that by 2025 chip density will reach a scale where heat dissipation 

and quantum uncertainty make transistors unreliable [54]. When combining all of these factors together, it is 

apparent computing systems are in the process of undergoing massive diversification. This diversification is 

not solely limited to hardware but can also be observed in software.  

For example, the last decade has seen resource management undergo a transition from centralized monolithic 

scheduling to decentralized model architecture [47, 48, 66]. Centralized schedulers maintain a global view of 

cluster state and are therefore able to make high quality placement decisions at the cost of latency [3][4][49] 

[50]. However, decentralized schedulers maintain only partial state about the cluster, and so they are able to 

make low latency decision at the cost placement quality [51].  As a result, we envision that further 

diversification and fragmentation of the distributed paradigm will continue to accelerate and affect all of its 

respective elements. For example, it is not hard to envision that the system that enables an infrastructure 

autonomous vehicle operation being substantially different to that of remote sensor networks and smart 

phones; we are already seeing such diversification with making custom OSs and applications for these 

scenarios. In the case of cluster resource management there have been an increased research activity in 

hybrid schedulers, capable of multiplexing centralized and decentralized architectures [52,53], and we expect 

that future distributed systems must be capable of architectural adaptivity in response to changes to 

operation.  

5.2 Generalization against Specialization 

Related to paradigm specialization discussed in Section 5.1, the distributed systems research area appears to 

be at a particularly interesting cross-roads; ensure that system paradigms are designed to be generalizable to 

handle a wide variety of operational conditions and scenarios (at the cost of performance and efficiency), or 

alternatively focus on creating more specialized and bespoke distributed system more suitable to a particular 

task at the expense of generalization and portability. While the wide-spread adoption of the x86 architecture, 

middleware, and virtualization have reinforced that historically the community has championed generalizable 

and portability, continued diversification of paradigms and technological limitations have begun discussion 

whether the axis is pivoting in the other direction [55]. This is further reinforced by increasing customization 

of microprocessors, OSs, and power management techniques for particular use case scenarios. For example, 

the increased uptake of deep learning has resulted in further increase into research into GPU and NPUs inside 

and outside of the datacentre, as well as creation of cluster resource schedulers specifically for deep learning 

[65].  

5.3 Complexity at Scale & the Role of Academic Research 

An area of potential future research challenge moving forward is how to understand these future distributed 

systems at scale. For many years Computer scientists have leveraged well-structured system abstractions in 

order to reduce the complexity to understand component interactions and assumptions. However increasingly 

there have been difficulties in handling unseen emergent behaviour within massive-scale distributed systems 
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[62] that require rethinking well-established assumptions for system mechanisms [63]. Moreover, with the 

rapid uptake of new technologies such as deep learning and reinforcement learning to conduct decision 

making of system operation [64], whilst introduction of temporal applications and mobile compute will likely 

lead to increased complexity of distributed system operation at scale. In relation to the academic research 

community, where there is a substantive reliance on simulation or small to medium-scale distributed systems, 

it will continue to become increasingly difficult to evaluate effectiveness of their approaches when exposed 

to emergent behaviour within systems at scale. Whilst production systems from industry can greatly support 

understanding of distributed systems at scale, it does not provide an avenue to conduct experiments within a 

controller environment to test hypothesis effectively. 

5.4 The Green Agenda 

Growing end-use demand for applications and subsequent data generation in the regions of Exabyte will 

usher in the first system at Exascale by 2020, and eventually Zettascale by 2035 [56]. Whilst an achievement 

in itself, it also brings a variety of associated challenges. One challenge which is particularly problematic is 

the enormous power requirements that will be necessary for operation. ICT presently consumes more than 

10% of the global electricity annually [57]. The creation of ever larger systems through efficiency 

improvements is in fact detrimental due to the Rebound Effect [58] that causes even greater demand and 

consumption. At a time where climate change and a 1.5°C increase in global temperatures by 2100 due to 

Greenhouse Gas Emissions [59], we foresee energy and GHG emissions being increasingly important for 

future distributed system paradigms. This is not solely increasing energy-efficiency as we see today, but more 

fundamental concerns related to systems assuming operate constant stable power sources, integration with 

renewable energy sources, and alternative methods for reducing energy consumption but also computation 

itself. An area of particular interest is that of holistic coordination of energy management (asynchronous 

computing, voltage scaling, Wake-on-LAN, cooling, etc.) [60] towards studying and treating systems as 

living eco-systems, as opposed to individual components in isolation. 

5.5 Shifting from Centralised Systems to Decentralised Edge 

The evolution of centralised systems towards decentralised system transformed many industries and 

organisations which have resulted in significant contributions towards economic growth worldwide [80]. 

With the emergence of Big Data, centralised cloud systems have played an important role to process both 

structured and unstructured data in an efficient manner [67]. With the rapid adoption of IoT technology, these 

systems are able to process large amount data using various machine learning algorithms. It is difficult to 

process real-time jobs on centralised cloud systems due to increases in latency and response time, and incurs 

various complexities: New distributed applications (cryptocurrencies, the machine economy etc.) require 

computing models which are not compatible with existing centralised cloud systems [66]. As the adoption of 

edge computing is increasing, decentralised edge systems have been positioned to be particularly effective 

process user workloads immediately on powerful edge devices without the reliance upon large cloud 

datacenters [68], thus reducing round trip communication times at the cost of reduced computational 

performance. The evolution from centralised cloud systems to decentralised edge is growing among various 

industries while executing IoT based decentralised applications [69]. It is likely that given sufficient time and 

technological innovations, this pendulum will swing in the opposite direction, whereby computationally 

powerful decentralised systems will in turn form centralised architectures (and possibly an assortment of 

centralised systems coordinated via federation). 
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5.6 Distributed Green Computing 

Rapid growth in large scale distributed application servicing paradigms ranging from Big Data and Machine 

Learning to the Internet of Things, are increasingly responsible for the world’s energy consumption and as 

such a major contributor to environmental pollution [79]. One such example includes distributed Machine 

Learning systems [73] – comprising of clusters of GPUs dedicated to Deep Learning applications; require 

effective energy management aware scheduling policies [70]. As such new orchestration mechanism capable 

of capturing GPU, CPU, and memory energy characteristics [71] informing new scheduling algorithms 

prioritising energy consumption in contrast with traditional performance and fairness scheduling objectives 

[60] [77] [78]. Such scheduler should holistically consider energy consumption and account for out of band 

costs including impact of workload consolidation on cooling systems [60] [78]. Furthermore, exergy and 

energy source can be utilised to further inform datacentre operators about the carbon impact of their 

infrastructure. Whilst, hybrid energy grids utilizing green intermittent decentralised energy sources including 

solar and wind can provide clean energy whilst brown energy source can be utilized at peak time, minimized 

reliance of fossil fuels energy sources, and achieve new sustainable computing standards [72].  

6. Conclusions 

In this paper, we have discussed and evaluated the evolution of the distributed paradigm over the past six 

decades by focussing on the development and decentralised pivoting of networked computing systems. We 

have identified core elements of distributed systems by describing their physical infrastructure, logical 

entities and communication models. We examine how cross cutting factors such conceptual and physical 

models influence centralisation and decentralisation across various paradigms. We observe long term trends 

in distributed systems research, by identifying influential links between system paradigms, and technological 

breakthroughs. Of particular interest, we have observed that distributed system paradigms have undergone a 

long history of decentralisation up until the inception of the World Wide Web. In the following years, 

pervasive computing paradigms --- such as the Internet of Things --- brought about by advancements and 

specialisation of microprocessor architecture, operating systems designs, and networking infrastructure 

further diversified both infrastructure and conceptual systems. Furthermore, it is apparent that the 

diversification of distributed systems paradigms that begun at conception of the World Wide Web is likely to 

further accelerate due to increased emphasis on decentralisation and prioritization of specialized hardware 

and software for particular problems within domains such as machine learning and robotics. This is 

somewhat removed from the past few decades which has emphasized generality and portability of distributed 

system operation and as such will be the focus of research efforts over the coming years. Moreover, there are 

potentially difficult challenges on the horizon related to the upfront cost of operating large systems testbeds 

out of reach for most academic laboratories, and the impact of climate change and how it shapes future 

system design. 
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