
Preprint submitted to Computing (Springer) 11 Nov, 2020 1

The Evolution of Distributed Computing Systems:

From Fundamentals to New Frontiers

Dominic Lindsay1, Sukhpal Singh Gill2, Daria Smirnova1, and Peter Garraghan1
1
School of Computing and Communication, Lancaster University, UK

2
School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

d.lindsay4@lancaster.ac.uk, s.s.gill@qmul.ac.uk, d.smirnova@lancaster.ac.uk, p.garraghan@lancaster.ac.uk

Abstract: Distributed systems have been an active field of research for over 60 years, and has played a

crucial role in Computer Science, enabling the invention of the Internet that underpins all facets of modern

life. Through technological advancements and their changing role in society, distributed systems have

undergone a perpetual evolution, with each change resulting in the formation of a new paradigm. Each new

distributed system paradigm - of which modern prominence include Cloud computing, Fog Computing, and

the Internet of Things (IoT) – allows for new forms of commercial and artistic value, yet also ushers in new

research challenges that must be addressed in order to realize and enhance their operation. However, it is

necessary to precisely identify what factors drive the formation and growth of a paradigm, and how unique

are the research challenges within modern distributed systems in comparison to prior generations of systems.

The objective of this work is to study and evaluate the key factors that have influenced and driven the

evolution of distributed system paradigms, from early mainframes, inception of the global inter-network, and

to present contemporary systems such as Edge computing, Fog Computing and IoT. Our analysis highlights

assumptions that have driven distributed system appear to be changing, including (i) an accelerated

fragmentation of paradigms driven by commercial interests and physical limitations imposed by the end of

Moore’s law, (ii) a transition away from generalized architectures and frameworks towards increasing

specialization, and (iii) each paradigm architecture results in some form of pivoting between centralization

and decentralization coordination. Finally, we discuss present day and future challenges of distributed

research pertaining to studying complex phenomena at scale and the role of distributed systems research in

the context of climate change.

Keywords: Distributed Computing, Computing Systems, Evolution, Green Computing

1. Introduction

Societal prosperity of the latter half of the 21
st
 century has been underpinned by the Internet, formed by

large-scale computing infrastructure composed of distributed systems which have accelerated economic,

social and scientific advancement [1]. The complexity and scale of such systems have been driven by

increased societal demand and dependence on such computing infrastructure, which in turn has resulted in

the formation of new distributed system paradigms. In fact, these paradigms have evolved in response to

technological changes and usage, resulting in alterations to the operational characteristics and assumptions of

the underlying computing infrastructure. For example, early mainframe systems provided centralised

computing and storage interfaced by teletype terminals. Clustering and packet switching alongside

advancement in microprocessor technology and GUIs transferred computing from large mainframes operated

remotely to home PCs [5][6]. Standardisation of network protocols enabled global networks-of-networks to

exchange messages for global applications [1]. Organisations developed frameworks and protocols capable

of offloading computation to remote machine pools of computing resources such as processing, storage and

memory [2][3], eventually incorporating sensing and actuator objectives with embedded network capabilities

[4]. Thus, distributed systems paradigms have evolved to distribute and facilitate service from centralised

2

clusters, extending infrastructure beyond the boundaries of central networks forming paradigms such as IoT

and Fog computing [8][9].

For the past 60 years distributed system paradigms have conceptually evolved to meet challenges introduced

by an ever-changing computing infrastructure and society [47]. From mainframes to clusters, clusters to

Cloud, and Cloud to distributed and decentralised infrastructures encompassing the IoT to Edge

Infrastructure [52]. Yet paradigms still retain the same underlying characteristics and elements that define

their operation [40]. Each is defined by persistent research activities and are often driven by the development

of new capabilities, such as security [76], hardware accelerators [77], edge computing [23] and power

efficiency [60]. Whilst application framework have evolved to meet challenges presented by integrating with

wider eco-systems, ranging from distributed clouds to highly specialised application specific infrastructures

[48][74][75]. As such distributed paradigms require constantly evolving middleware’s, communication

protocols, and secure isolation mechanisms [53].

This work focuses on ascertaining the key characteristics and elements of distributed and networked systems,

critically appraise the historical driving technologies and social behaviour that drove their paradigm

formation, whilst identifying key trends across the paradigms including system architecture fragmentation,

centralisation and decentralisation pivoting, and delays in paradigm conceptualisation to creation by tracing

the impact of networked systems on society. From these findings we discuss how future distributed systems

will support decentralisation of computation services through composition of decentralised computation

platforms specialised to meet workload specific performance goals, forming exponentially larger systems

capable of holistic operational requirements including capability and energy availability. Finally we

summarise how a dynamic centralised/decentralised distributed paradigms may form and will shape the

direction of future computer science research as well as their potential impact within greater society.

The rest of the article is structured as follows: Section 2 presents the background of distributed systems.

Section 3 the evolution of the distributed system paradigms. Section 4 analyses trends and observations

across all paradigms. Section 5 discusses future challenges facing distributed systems, and Section 6 presents

our conclusions.

2. Background

Distributed systems describe a class of computing system in which hardware and software components are

connected by means of a network, and coordinate their actions via message passing in order to meet a shared

objective [11][12]. Whilst paradigms exhibit differing operational behaviour and leverage various

technologies, these systems are defined by their underlying core characteristics and elements that facilitate

their operation.

2.1 Characteristics

Transparent Concurrency: Distributed Systems are inherently concurrent, with any participating resource

accessible via any number of local or remote processes. The capacity and availability of such a system can be

increased by adding resources that require mechanisms for accounting and identification. Such a system is

vulnerable to volatile inter-actor behaviours and must be resilient to node failure as well as lost and delayed

messages [16]. The management and access of objects, hardware or data in a distributed networked

environment is also of particular importance due to potential for physical resource contention [2][6][7][13].

Lack of Shared Clock Computing: Systems maintain their own independent time, interpreted from a

variety of sources, and as such Operating Systems (OSs) are susceptible from clock skew and drift.

3

Furthermore, detecting when a message was sent or received is important for ensuring correct system

behaviour. Therefore, events are tracked by means of conceptual Logical and Vector clocks; by sequencing

messages, processes distributed across a network are able to ensure total event ordering [10][14][15].

Dependable and Secure Operation: Components of a distributed system are autonomous, and service

requests are dependent on correct transaction of operation between sub-systems. Failure of any subsystem

may affect the result of service requests and may manifest in ways that are difficult to effectively mitigate.

Fault tolerance and dependability are key characteristics towards ensuring the survivability of distributed

systems and allow services to recover from faults and whilst maintaining correct service [16].

2.2 Elements

Physical System Architecture: Physical system architecture identifies physical devices that exchange

messages in a distributed system and what medium they communicate over. Early distributed systems such as

mainframes were physically connected to clients. Later packet switching enabled long-haul multi-hop

communication. Cellular networks incorporate mobile computing systems, whilst modern systems host

services at specialised hardware between services providers and consumers. Initial designs of distributed

systems aimed to provide service across local or campus wide networks of tens to hundreds of machines, and

were focused on the development of operating systems and remote storage [1] [2]. Early efforts were

designed to explore potential challenges and demonstrate their feasibility [9] and to enhance their functional

and non-functional properties (performance, security, dependability, etc).

Entities: A logical perspective of a distributed system describes several process exchanging messages in

order to achieve a common goal [17] [18]. Contemporary systems extend this definition by considering

logical and aggregate entities, such as Objects and Components, used for abstracting resource and

functionality [19]. Here systems are exposed as well-defined interfaces capable of describing natural

decomposition of functional software requirements, and enabled exploring the loose-coupling between

interchangeable components for domain specific problems found in distributed computing [20]. More recent

systems leverage web services and micro-services, that consider their deployment to physical hardware as

well as constraints including locality, utilization and stakeholders’ policies [35]. Grid and Cloud computing

enable distributed computing by abstracting processing, memory and disk space aggregation [21] whereas

Fog and Edge computing emphasize integrating mobile and embedded devices [22][28].

Communication Models: Several communication models support distributed systems [24] [25] [26]

including (i) Inter-process Communication: Enabling two different processes to communicate with each

other by means of operating system primitives such as pipes, streams, and datagrams in a client - server

architecture; (ii) Remote Invocation: Mechanisms and concepts enabling a process in one address space to

affect execution of operations, procedures and methods in another address space; and (iii) Indirect

Communication: Mechanisms enabling message exchanges between one to many processes via an

intermediary. In contrast with previous communication models, senders and receiving processes are

decoupled, and responsible for facilitating message exchange is passed to the intermediary [37] [38].

Consensus and Consistency: Distributed systems make decisions amongst groups of cooperating processes

each possessing possibly inconsistent states. Consensus algorithms are a mechanism in which a majority

subset of nodes or ‘quorum’ can fulfil a client request negotiate a truth and fulfil a client request. Replication

and partitioning are common techniques used to improve system scalability, reliability and availability [16]

when exposed to volatile environments. Consistency is a challenge to both replicated, partitioned storage and

consensus algorithms [10][16].

4

Table 1. Timeline of Distributed System Paradigms Formation and Key Technological Drivers

Year Driver Technology & Paradigm Model Elements
Physical Conceptual Entities Communication

1960 -

1970

Clustering and
packet switching

(1967-1977)

Inter-process

Communication (IPC) Mainframe and telnet clients.

Local networks interconnected

over packet switching

infrastructure primarily for
research activity.

Client terminal connections

share mainframe resources.

Networks, provide specific

services to private networks,

accessible clients across
geographic and organisational

boundaries.

Clients (teletype

terminals) & servers.

Hosts (servers), switches,

routers and mainframes

Datagram transport

(ATM, X.25)

Client-server

Supercomputer

ARPANET and early

Internet

1970-

1980

GUI (WIMP),

x86 architecture
Internet protocols

(1974-1984)

ARPANET Local networks interconnected
over packet switching

infrastructure.

Home teletype computers and

home video games. Early GUI
based home computer based

systems. Increased memory.

Private networks provide
services across geographic and

organisational boundaries.

Domains translated to IP

addresses for identifying

networked hosts.

DNS system created.

Hosts (servers), switches,
routers and mainframes.

Mainframes provide

specialised co-processors

enabling parallel request
processing from clients

at scale.

IP addressable hosts

are able to

communicate by
means of datagrams.

Unix

Initial conception of
TCP/IP and UDP protocols

Distributed Operating

Systems

1980-

1990

POSIX.1

Remote Procedure
Call (RPC)

HTTP and HTML.

(1985-1990)

Home Computer (Apple

LISA, ZX Spectrum, etc)

Mainframe terminals replaced

with 8086 microprocessor

architectures.

BBS boards begin to appear

hosted and & operated by
consumers.

Move from centralised
mainframes to decentralised

computers outside of research.

Hosts interconnected by IP

addresses and switches; DNS

provides address translation;
networks remain centralised.

Networks ARPANET,
NSFNET, DECNET made

obsolete by WAN infrastructure

via TCP/IP.

Clusters of
microprocessor machines

displace monolithic

mainframes.

TCP/IP becomes

standard internet
protocol of internet.

Standardized TCP/IP and

Initial internet

Generalised OS (drivers)

1990-

2000

Middleware

Peer to peer
protocols

HTTP (TBL)
WWW leads to form geographic

internet, services now provided by

home servers and clustered

machines.

Home systems connected by dial

up modems.

DNS, WWW, and TCP/IP

enable decentralised internet.

Peer to Peer architecture

enables highly decentralised file

sharing, parallel processing, and
online gaming applications.

Most services now
provisioned via off-the-

shelf -machines

organised into clusters.

Servers provide

resources described by
Uniform Resource

Locators.

Remote objects and

procedures, enabled

development of early
middleware

HTTP over TCP/IP
popularise internet.

P2P protocols, group
communication

HTML

WWW

P2P computing

Mobile Computing

2000-

2010

High speed

broadband

x86 Virtualization

Hypervisors

Web Services
Educational organizations form

Grids for scientific goals.

VM para-virtualization

application mobility.

Services and resource
consolidation to datacenter.

Rise of smart phone adoption and
mobile computing.

Grids computing provides

orchestration across
organizational boundaries.

VMs enables resource isolation
between applications on shared

hardware.

Web services allow further

service abstraction from

physical hardware.

Most services

provisioned via off-the-

shelf-machines organised
into clusters

described by Uniform

Resource Locators.

Grids and Cloud provide

resource pooling (CPU,
memory, storage).

Cluster middleware

REST, WSDL,

XML, JSON,

MQTT, XMPP

(application layer

group comm)

Xen and KVM

hypervisor.

Grid computing

Community Computing

Virtualized Commodity
Clusters

Cloud computing

2010-

2020

Software Defined

Networks

Containerization

IoT
Fog nodes

Smart objects and edge
infrastructure

Edge datacenters

Specialization of computing
tasks and hardware (GPU,

NPU, smart phones, sensors)

Remote resources (Storage,
processing).

Containers become

increasingly prominent

Cloudlets

P4, Openflow Open
SVN.

Edge Computing

Fog Computing

5

Consistency in distributed systems can be defined as strong consistency, where any update to a partition of a

data set is immediately reflect in any subsequent accesses, or weak consistency in which updates may

experience delay before they are propagated through the system and are reflected in subsequent access’s.

3. The Evolution of Distributed Systems

Distributed systems have continued to evolve in response to various scientific, technological and societal

factors. This has given rise to new forms of computer systems, as well as adaptation of paradigms from

Client-Server through to IoT and Fog Computing [26]. However, the core characteristics and model elements

discussed in Section 2 have remained relatively constant, with the precipitating paradigm augmenting (or re-

engineering) technology from prior paradigms. Table 1 provides a detailed a timeline of key distributed

paradigm formation, technologies that enabled their realisation, and a description of their respective

elements. The formation of distributed systems does not occur in a vacuum, and is influenced by factors

spanning other computer science disciplines (e.g. HCI, security), societal exposure, education, and business

strategy [24] [25].

Due to the sheer volume of potential influences, we have focused our discussions pertaining to major

technological advances and impact upon distributed system elements.

The Mainframe (1960-1967): Mainframes machines of the early 1960’s provided time sharing service to

local clients that interacted with teletype terminals [29]. Such system conceptualised the client-server

architecture, prevalent in present day distributed systems design [30]. The client process connects and

requests server processes, enabling a single time-sharing system to multiplex resources amongst clients [31].

Mainframes remained prohibitively expensive and were the focus of supercomputing engineers that lead to

the innovation of early disk-based storage and transistor memory [32].

Cluster Networks (1967-1974): The late 1960s and early 1970’s saw the development of packet switching,

and clusters of off-the-shelf computing components were identified as a cheaper alternative to more powerful

yet more expensive supercomputer and mainframes [61]. New programming environments and resource

abstractions were developed abstracting resource across local networks of machines [1][2]. This time period

also saw the creation of ARPANET and early networks that enabled global message exchange [3], allowing

for services hostable on remote machines across geographic bounds decoupled from a fixed programming

model. Cerf & Karn [3][4] defined the TCP/IP protocol that facilitated datagram and stream orientated

communication over a packet switched autonomous network of networks [39].

Internet & Home PCs (1974-1985): During this era, the Internet was created. Whilst early NCP-based

ARPANET systems were characterised by powerful timesharing systems serving multiple clients over

networks, new technologies such as TCP/IP had begun to transform the Internet into a network of several

backbones, linking local networks to the wider Internet [3]. Thus, the number of hosts connected to the

network began to grow rapidly, and centralised naming systems such as HOSTS.TXT could not scale

sufficiently [5]. Domain Name Systems (DNSs) were formalised in 1985 and were able to transform hosts

domain names to IP addresses; the Unix BIND system was the first public implementation of the DNS.

Computers such as Xerox Star and Apple LISA utilizing early WIMP based GUIs demonstrated the

feasibility of computing within the home, providing applications such as video games and web browsing to

consumers.

6

World Wide Web (1985-1996): During the late 1980s and early 1990s, the creation of HyperText Transport

Protocol (HTTP) and HyperText Markup Language (HTML) [6] resulted in the first web browsers, website,

and web-server
1
. Standardisation of TCP/IP provided infrastructure for interconnected network of networks

known as the World Wide Web (WWW). This enables explosive growth of the number of hosts connected to

the Internet, and was the public’s first large societal exposure to Information Technology [3][6]. Mechanisms

such as Remote Procedure Calls (RPCs) were invented, allowing for the first time applications interfaced

with procedure, functions and method across address spaces and networks [7].

P2P, Grids & Web Services (1994-2000): Peer to Peer (P2P) applications such as Napster and Seti@Home

demonstrated it was feasible for a global networks of decentralised cooperating processes to perform large-

scale processing and storage. P2P enabled a division of workload amongst different peers/computing nodes

whereby other peers could communicate with each other directly from the application layer [8]
2
 without the

requirement of central coordinator. The creation of Web Services enables further abstraction of the system

interface from implementation in the Web [40]. Rather than facilitate direct communication between clients

and servers, Web Services mediated communication via a brokerage service [33]. Scientific communities

identified that creating federations for large pools of computing resources from commodity hardware could

achieve capability comparable to that of large supercomputing systems [41]. Beowulf enables resource

sharing amongst process by means of software libraries and middle-wares, conceptualising clustered

infrastructure as a single system [42]. Grid computing enabled open access to computing resources and

storage by means of open-protocols and middleware. This time period also saw the creation of effective x86

virtualization [43], which became a driving force for subsequent paradigms.

Cloud, Mobile & IoT (2000-2010): A convergence of cluster technology, virtualization, and middleware

resulted in the formation of the Cloud computing that enabled creating service models for provision

application and computing resource as a service [34]. Driven primarily by large technology organization who

constructed large-scale datacenter facilities, computation and storage began a transition from the client-side

to the provider side more similar to that of mainframes in the 1960s and 1970s [35] [36]. Mobile computing

enabled access to remote resources from resource constrained devices with limited network access [43] [66]

IoT also began to emerge from the mobile computing and sensor network communities providing common

objects with sensing, actuating and networking capabilities, contributing towards building a globally

connected network of ‘things’ [44].

Fog and Edge Computing (2010-present): Whilst data produced by IoT and Mobile computing platforms

continued to increase rapidly, collecting and processing the data in real-time was, and still remains an

unsolved issue [27]. This resulted in forming Edge computing whereby computing infrastructure such as

power efficient processors, and workload specific accelerators are placed between consumer devices and

datacenter providers [66]. Fog computing provides mechanisms that allow for provisioning applications upon

edge devices [45][46], capable of coordinating and executing dynamic workflows across decentralised

computing systems. The composition of Fog and Edge computing paradigms further extended the Cloud

computing model away from centralised stakeholders to decentralized multi-stakeholder systems [45]

capable of providing ultra-low service response times, increased aggregate bandwidths and geo-aware

provisioning [23][27]. Such a system may comprise of one-off federations or clusters, realised to meet single

application workflows or act as intermediate service brokers, and provide common abstractions such as

1 The first webpage --- http://info.cern.ch/hypertext/WWW/TheProject.html

2 History of Distributed Systems --- https://medium.com/microservices-learning/the-evolution-of-

distributed-systems-fec4d35beffd

mailto:Seti@Home

7

utility and elastic computing across heterogeneous, decentralised networks of specialised embedded devices,

contrasting with centralised networks found in clouds [22].

4. Trends & Observations

By appraising the evolution of the past six decades of distributed system paradigms shown in Table 1, it is

apparent that a variety of technological advancements within computer science have driven the formation of

new distributed paradigms. It is thus now possible to observe longer-term trends and characteristics of

particular interest within distributed systems research.

4.1 Diversification of Paradigms

There appears to be an increased diversification of distributed system paradigms as the research area has

matured as shown in Figure 1. This is predominantly driven by two factors: First, it is observable that the

acceleration of paradigm formation was precipitated by the invention of the WWW in 1999. This is intuitive

as this event enabled distributed systems to transition away from specialized research focused activities into

greater society, with each sector requiring specific requirements from entertainment to commercial use. The

second reason is that the maturity of fundamental technologies (TCP/IP, HTTP, Unix) created a platform that

heavily emphasised abstraction to interconnect heterogeneous platforms in an effective manner, hence future

paradigms were able to build upon these concepts. Figure 2 also demonstrates how distributed system

paradigms transitioned from a potentially ‘niche’ research with a development singular track within the

computer science community towards an area spanning a wide variety of paradigms coinciding with the time

the Internet and WWW gained traction.

4.2 Architecture Pivoting from Centralization to Decentralization

The creation of a new technology appears to drive the next distributed system paradigm, and respectively

alter its respective degree of centralization as shown in Figure 1. The creation of a new paradigm results in

researchers revisiting fundamental mechanisms (schedulers, fault tolerance, monitoring) to ensure that they

are capable of effectively operating within the new set of system assumptions. This is exemplified when

considering responsibilities frequently carried out by scientists; a principle purpose of peer-review within the

research community is ascertaining whether proposed approaches exhibit suitable differences from previous

Figure 1. Depiction of distributed system paradigm evolution.

Mainframe
(1955)

Cluster
(1962)

Network Computing
(1967)

Home Computer
(1978)

WWW
(1994)

P2P
(1999)

Grid Computing
(1999)

Cloud Computing
(2006)

Fog Computing
(2009)

Edge Computing
(2009)

IoT (2008)

SOA (2009)

Mobile Computing
(2004)

ARPANET,
Datagram

TCP/IP, UDP,
Unix

HTTP,

HTML

Centralization

Decentralization

8

paradigms to determine their novelty (or whether it is a ‘reinvention of the wheel’). This is apparent when

considering a number of papers created that attempt to clearly distinguish between paradigms that leverage

shared technologies [21]. We observe that the majority of paradigms predominantly are decentralized in

nature, with the exception of Cloud computing which follows many similarities with the centralized

mainframe in terms of the coordination of computational resources within a datacenter facility which users

access via web APIs.

4.3 Time Between System Conception & Creation

The delay between the description of a potential paradigm and actual successful implementation in recent

years appears to be shorter in contrast to previous decades as shown in Figure 2. It is worth noting that

ascertaining the precise publication fully credited in accurately describing the full realization of a paradigm

due to a single individual or group is not necessarily feasible. Thus, we have attempted to seek papers which

first define the appropriate terminology and paradigm description that were later adopted. As shown Figure 2,

the formative years of distributed systems between 1960 - 1996 saw an average delay of 13 years and after

the adoption of the WWW saw an average 8.8-years delay. It is observable that most paradigm are conceived

and created sometime within 3-10 years, with the exception between 1960 – 1990 which is likely due to

insufficient technologies when first envisioned, Later paradigms again appear to be relatively short in

duration to create, and is likely a by-product of increased maturity of the research area, combined with its

pervasiveness within society and growth of research activity within each respective paradigm (i.e. there are a

sizable proportion of distributed researchers whom focus on a particular paradigm).

Figure 2. Time gap between paradigm conception and creation.

1955 1962 1955 1952 1965 1969 1973 1989 1994 1996 2003 2009 2011

9

5. Future of Large-Scale Computing Infrastructure

5.1 Accelerated Paradigm Specialization

It is observable that specific distributed system paradigms have a particular affinity for tackling different

objectives; whilst Cloud computing is capable of handling generalized application workload, paradigms such

as edge computing and fog computing have been envisioned to be particularly effective for sensor actuation

and increasingly important latency requirements. A growing number of microprocessors are being designed

to accelerate specific tasks (such as graphics and machine learning using GPUs and NPUs, respectively). In

tandem, the end of Moore’s law indicates that by 2025 chip density will reach a scale where heat dissipation

and quantum uncertainty make transistors unreliable [54]. When combining all of these factors together, it is

apparent computing systems are in the process of undergoing massive diversification. This diversification is

not solely limited to hardware but can also be observed in software.

For example, the last decade has seen resource management undergo a transition from centralized monolithic

scheduling to decentralized model architecture [47, 48, 66]. Centralized schedulers maintain a global view of

cluster state and are therefore able to make high quality placement decisions at the cost of latency [3][4][49]

[50]. However, decentralized schedulers maintain only partial state about the cluster, and so they are able to

make low latency decision at the cost placement quality [51]. As a result, we envision that further

diversification and fragmentation of the distributed paradigm will continue to accelerate and affect all of its

respective elements. For example, it is not hard to envision that the system that enables an infrastructure

autonomous vehicle operation being substantially different to that of remote sensor networks and smart

phones; we are already seeing such diversification with making custom OSs and applications for these

scenarios. In the case of cluster resource management there have been an increased research activity in

hybrid schedulers, capable of multiplexing centralized and decentralized architectures [52,53], and we expect

that future distributed systems must be capable of architectural adaptivity in response to changes to

operation.

5.2 Generalization against Specialization

Related to paradigm specialization discussed in Section 5.1, the distributed systems research area appears to

be at a particularly interesting cross-roads; ensure that system paradigms are designed to be generalizable to

handle a wide variety of operational conditions and scenarios (at the cost of performance and efficiency), or

alternatively focus on creating more specialized and bespoke distributed system more suitable to a particular

task at the expense of generalization and portability. While the wide-spread adoption of the x86 architecture,

middleware, and virtualization have reinforced that historically the community has championed generalizable

and portability, continued diversification of paradigms and technological limitations have begun discussion

whether the axis is pivoting in the other direction [55]. This is further reinforced by increasing customization

of microprocessors, OSs, and power management techniques for particular use case scenarios. For example,

the increased uptake of deep learning has resulted in further increase into research into GPU and NPUs inside

and outside of the datacentre, as well as creation of cluster resource schedulers specifically for deep learning

[65].

5.3 Complexity at Scale & the Role of Academic Research

An area of potential future research challenge moving forward is how to understand these future distributed

systems at scale. For many years Computer scientists have leveraged well-structured system abstractions in

order to reduce the complexity to understand component interactions and assumptions. However increasingly

there have been difficulties in handling unseen emergent behaviour within massive-scale distributed systems

10

[62] that require rethinking well-established assumptions for system mechanisms [63]. Moreover, with the

rapid uptake of new technologies such as deep learning and reinforcement learning to conduct decision

making of system operation [64], whilst introduction of temporal applications and mobile compute will likely

lead to increased complexity of distributed system operation at scale. In relation to the academic research

community, where there is a substantive reliance on simulation or small to medium-scale distributed systems,

it will continue to become increasingly difficult to evaluate effectiveness of their approaches when exposed

to emergent behaviour within systems at scale. Whilst production systems from industry can greatly support

understanding of distributed systems at scale, it does not provide an avenue to conduct experiments within a

controller environment to test hypothesis effectively.

5.4 The Green Agenda

Growing end-use demand for applications and subsequent data generation in the regions of Exabyte will

usher in the first system at Exascale by 2020, and eventually Zettascale by 2035 [56]. Whilst an achievement

in itself, it also brings a variety of associated challenges. One challenge which is particularly problematic is

the enormous power requirements that will be necessary for operation. ICT presently consumes more than

10% of the global electricity annually [57]. The creation of ever larger systems through efficiency

improvements is in fact detrimental due to the Rebound Effect [58] that causes even greater demand and

consumption. At a time where climate change and a 1.5°C increase in global temperatures by 2100 due to

Greenhouse Gas Emissions [59], we foresee energy and GHG emissions being increasingly important for

future distributed system paradigms. This is not solely increasing energy-efficiency as we see today, but more

fundamental concerns related to systems assuming operate constant stable power sources, integration with

renewable energy sources, and alternative methods for reducing energy consumption but also computation

itself. An area of particular interest is that of holistic coordination of energy management (asynchronous

computing, voltage scaling, Wake-on-LAN, cooling, etc.) [60] towards studying and treating systems as

living eco-systems, as opposed to individual components in isolation.

5.5 Shifting from Centralised Systems to Decentralised Edge

The evolution of centralised systems towards decentralised system transformed many industries and

organisations which have resulted in significant contributions towards economic growth worldwide [80].

With the emergence of Big Data, centralised cloud systems have played an important role to process both

structured and unstructured data in an efficient manner [67]. With the rapid adoption of IoT technology, these

systems are able to process large amount data using various machine learning algorithms. It is difficult to

process real-time jobs on centralised cloud systems due to increases in latency and response time, and incurs

various complexities: New distributed applications (cryptocurrencies, the machine economy etc.) require

computing models which are not compatible with existing centralised cloud systems [66]. As the adoption of

edge computing is increasing, decentralised edge systems have been positioned to be particularly effective

process user workloads immediately on powerful edge devices without the reliance upon large cloud

datacenters [68], thus reducing round trip communication times at the cost of reduced computational

performance. The evolution from centralised cloud systems to decentralised edge is growing among various

industries while executing IoT based decentralised applications [69]. It is likely that given sufficient time and

technological innovations, this pendulum will swing in the opposite direction, whereby computationally

powerful decentralised systems will in turn form centralised architectures (and possibly an assortment of

centralised systems coordinated via federation).

11

5.6 Distributed Green Computing

Rapid growth in large scale distributed application servicing paradigms ranging from Big Data and Machine

Learning to the Internet of Things, are increasingly responsible for the world’s energy consumption and as

such a major contributor to environmental pollution [79]. One such example includes distributed Machine

Learning systems [73] – comprising of clusters of GPUs dedicated to Deep Learning applications; require

effective energy management aware scheduling policies [70]. As such new orchestration mechanism capable

of capturing GPU, CPU, and memory energy characteristics [71] informing new scheduling algorithms

prioritising energy consumption in contrast with traditional performance and fairness scheduling objectives

[60] [77] [78]. Such scheduler should holistically consider energy consumption and account for out of band

costs including impact of workload consolidation on cooling systems [60] [78]. Furthermore, exergy and

energy source can be utilised to further inform datacentre operators about the carbon impact of their

infrastructure. Whilst, hybrid energy grids utilizing green intermittent decentralised energy sources including

solar and wind can provide clean energy whilst brown energy source can be utilized at peak time, minimized

reliance of fossil fuels energy sources, and achieve new sustainable computing standards [72].

6. Conclusions

In this paper, we have discussed and evaluated the evolution of the distributed paradigm over the past six

decades by focussing on the development and decentralised pivoting of networked computing systems. We

have identified core elements of distributed systems by describing their physical infrastructure, logical

entities and communication models. We examine how cross cutting factors such conceptual and physical

models influence centralisation and decentralisation across various paradigms. We observe long term trends

in distributed systems research, by identifying influential links between system paradigms, and technological

breakthroughs. Of particular interest, we have observed that distributed system paradigms have undergone a

long history of decentralisation up until the inception of the World Wide Web. In the following years,

pervasive computing paradigms --- such as the Internet of Things --- brought about by advancements and

specialisation of microprocessor architecture, operating systems designs, and networking infrastructure

further diversified both infrastructure and conceptual systems. Furthermore, it is apparent that the

diversification of distributed systems paradigms that begun at conception of the World Wide Web is likely to

further accelerate due to increased emphasis on decentralisation and prioritization of specialized hardware

and software for particular problems within domains such as machine learning and robotics. This is

somewhat removed from the past few decades which has emphasized generality and portability of distributed

system operation and as such will be the focus of research efforts over the coming years. Moreover, there are

potentially difficult challenges on the horizon related to the upfront cost of operating large systems testbeds

out of reach for most academic laboratories, and the impact of climate change and how it shapes future

system design.

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council (EP/P031617/1).

References

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud Computing,” EECS Dep. Univ.

California, Berkeley, no. JANUARY, pp. 1–25, 2009.

[2] A. Botta, W. De Donato, V. Persico, and A. Pescap, “Integration of Cloud Computing and Internet of

Things : A Survey”, Future Generation Computer Systems, Vol. 56, pp. 684-700, 2016.

12

[3] M. I. Xinghuo Yu, Fellow IEEE, and Yusheng Xue, “Smart Grids: A Cyber–Physical Systems Perspective,”

Proc. IEEE | Vol. 104, vol. 104, no. 5, pp. 1058–1070, 2016.

[4] Cisco Systems, “Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are,”

Www.Cisco.Com, p. 6, 2016.

[5] Leslie Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun. ACM, vol. 21,

no. 7, pp. 558–565, 1978.

[6] K. W. Chow Yuan-Chieh, “Models for dynamic load balancing in a heterogeneous multiple processor

system,” IEEE Trans. Comput., vol. C, no. 5, pp. 354–361, 1979.

[7] A. D. Birrell and B. J. A. Y. Nelson, “Implementing Remote Procedure Calls,” vol. 2, no. 1, pp. 39–59,

1984.

[8] T. G. Walker Bruce, Popek Gerald, English Robert, Kline Charles, “The LOCUS Distributed Operating

System,” pp. 49–70, 1983.

[9] A. D. Birrell, R. Levin, M. D. Schroeder, and R. M. Needham, “Grapevine: an exercise in distributed

computing,” Commun. ACM, vol. 25, no. 4, pp. 260–274, 1982.

[10] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Trans. Program. Lang.

Syst., vol. 4, no. 3, pp. 382–401, 1982.

[11] P. H. Enslow, “What is a Distributed Data Processing System?,” vol. 11, no. 1, pp. 13–21, 1978.

[12] L. Gerard, “Distributed Systems - Towards a Formal Approach,” IFIP Congr., 1977.

[13] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: The Condor experience,”

Concurr. Comput. Pract. Exp., vol. 17, no. 2–4, pp. 323–356, 2005.

[14] C. Figde, “Logical Time in Distributed Computing systems,” Computer (Long. Beach. Calif)., pp. 28–33,

1991.

[15] M. Friedemann, “Virtual Time and Global States of Distributed Systems,” SIAM J. Comput., vol. 28, no. 5,

pp. 1829–1847, 1999.

[16] L. C. Algirdas Avižienis, Laprie Jean-Claude, Randell Brian, “Basic Concepts and Taxonomy of Dependable

and Secure Computing,” IEEE Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[17] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek, “The PVM concurrent computing system:

Evolution, experiences, and trends,” Parallel Comput., vol. 20, no. 4, pp. 531–545, 1994.

[18] W. Gropp, “An Introduction to MPI Parallel Programming with the Message Passing Interface,” pp. 1–48,

1998.

[19] P. K. Gummadi, S. D. Gdbble, and U. Washington, “A Measurement Study of Napster and Gnutella as

Examples of Peer-to-Peer File Sharing Systems,” Comput. Commun. Rev., no. January, p. 2002, 2002.

[20] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@home An Experiment in

Public-Resource Computing,” Commun. ACM, vol. 45, no. 11, pp. 56–61, 2002.

[21] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-degree compared,” Grid

Comput. Environ. Work. GCE 2008, pp. 1–10, 2008.

[22] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations of the National

Institute of Standards and Technology,” Nist Spec. Publ., vol. 145, p. 7, 2011.

[23] R. K. Naha et al., “Fog Computing: Survey of Trends, Architectures, Requirements, and Research

Directions,” vol. X, pp. 1–31, 2018.

[24] R. Baheti and H. Gill, “Cyber-physical Systems,” Impact Control Technol., no. 1, pp. 161--166, 2011.

[25] S. Karnouskos, “Cyber-physical systems in the SmartGrid,” 2011 9th IEEE Int. Conf. Ind. Informatics, vol.

1 VN-re, 2011.

[26] D. Evans, “The Internet of Things - How the Next Evolution of the Internet is Changing Everything,”

CISCO white Pap., no. April, pp. 1–11, 2011.

[27] S. S. Gill, P. Garraghan, and R. Buyya. "ROUTER: Fog enabled cloud based intelligent resource

management approach for smart home IoT devices." Journal of Systems and Software 154 (2019): 125-138.

13

[28] S. Singh and I. Chana. "A survey on resource scheduling in cloud computing: Issues and challenges."

Journal of grid computing 14, no. 2 (2016): 217-264.

[29] M. J. Flynn, “Very High-speed Computing Systems,” vol. 54, no. 12, pp. 1901–1909, 1966.

[30] S. Singh, I. Chana and M. Singh. "The journey of QoS-aware autonomic cloud computing." IT Professional

19, no. 2 (2017): 42-49.

[31] J. K. Casavant Thomas, “A Taxonomy of Scheduling in General-Purpose Distributed Computing Systems,”

vol. 14, no. 2, 1988.

[32] K. Compton and S. Hauck, “Reconfigurable Computing : A Survey of Systems and Software,” vol. 34, no. 2,

pp. 171–210, 2002.

[33] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing,” pp. 1–31.

[34] S. Singh and I. Chana, “QoS-Aware Autonomic Resource Management in Cloud Computing: A Systematic

 Review,” vol. 48, no. 3, 2015.

[35] A. Celesti, “Open Issues in Scheduling Microservices in the Cloud the types of devices that might,” pp. 81–

88, 2016.

[36] B. M. Leiner et al., “Internet Society (ISOC) All About the Internet : A Brief History of the Internet Internet

Society (ISOC) All About the Internet : A Brief History of the Internet,” pp. 1–18, 2000.

[37] Cerf VG; RE Icahn, “A Protocol for Packet Network Intercommunication,” ACM SIGCOMM Comput.

Commun. Rev. 71 Vol. 35, Number 2, April 2005, vol. 35, no. 2, pp. 71–82, 1974.

[38] D. K. Mockapetris Paul, “Development of the Domain Name System,” SIGCOMM ’88 Symp. Commun.

Archit. Protoc., 1988.

[39] D. Lindsay, S. S. Gill, and P. Garraghan. "PRISM: an experiment framework for straggler analytics in

containerized clusters." In Proceedings of the 5th International Workshop on Container Technologies and

Container Clouds, pp. 13-18. 2019.

[40] C. Peltz, “Web services orchestration and choreography,” IEEE Internet Comput., 36 (10), 46–52, 2003.

[41] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid,” Hand Clin., vol. 17, no. 4, pp. 525–532,

2001.

[42] T. Sterling, D. J. Becker, D. Savarase, J. E. Dorband, U. A. Ranawake, and C. V Packer, “BEOWULF: A

parallel workstation for scientific computation,” Proceedings of the 24th International Conference on

Parallel Processing. pp. 2–5, 1995.

[43] S. S. Gill, X. Ouyang, and P. Garraghan. "Tails in the cloud: a survey and taxonomy of straggler

management within large-scale cloud data centres." The Journal of Supercomputing (2020): 1-40

[44] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things — A survey of topics and trends,” no.

March 2014, pp. 261–274, 2015.

[45] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to Place Your Apps in the Fog - State of the Art and Open

Challenges,” 2019.

[46] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet

Things J., vol. 3, no. 5, pp. 637–646, 2016.

[47] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica,

“Mesos: A platform for fine-grained resource sharing in the data center.,” in NSDI, 2011, vol. 11, pp. 22–22.

[48] V. Vavilapallih, A. Murthyh, C. Douglasm, M. Konarh, R. Evansy, T. Gravesy, J. Lowey, S. Sethh, B. Sahah,

C. Curinom, O. O’Malleyh, S. Agarwali, H. Shahh, S. Radiah, B. Reed, and E. Baldeschwieler, “Apache

Hadoop YARN,” in SoCC , 2013, pp. 1–16.

[49] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster

management at google with Borg,” in Proceedings of the Tenth European Conference on Computer Systems,

EuroSys ’15, (New York, NY, USA), ACM, 2015, pp. 18:1–18:17.

[50] I. Gog, M. Schwarzkopf, A. Gleave, R. M. N. Watson, and S. Hand, “Firmament: Fast, centralized cluster

scheduling at scale,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement., 2016, pp. 99–115.

14

[51] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica, “Sparrow: distributed, low latency scheduling”,

Proceedings of the 24th ACM Symposium on Operating Systems Principles, 2013, pp. 69-84.

[52] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk: Hybrid datacenter scheduling,” in

USENIX ATC, 2015, pp. 499–510.

[53] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola, S. Heddaya, R.

Ramakrishnan, and S. Sakalanaga, “Mercury: Hybrid centralized and distributed scheduling in large shared

clusters,” in USENIX ATC, 2015, pp. 485–497.

[54] M. Waldrop “The Chips are Down for Moore’s Law”, Nature, 2016.

[55] G. Blair “Complex Distributed Systems: The Need for Fresh Perspectives”, IEEE ICDCS, 1410-1421, 2018.

[56] X. Liao, “Moving from Exascale to Zettascale Computing: Challenges and Techniques”, Froniters of

Information Technology & Electronic Engineering, pp. 1236-1244, 2018.

[57] W. V. Heddeghem, et al. “Trends in Worldwide ICT Electricity Consumption from 2007 to 2012”, Computer

Communications, 2014.

[58] C. Gossart, “Rebound Effects and ICT: A Review of the Literature”, ICT Innovations for Sustainability,

pp.435-448, 2014.

[59] IPCC, “Global Warming of 1.5 °C”, Intergovernmental Panel on Climate Change, 2018.

[60] X. Li, et al “Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy”,

IEEE Transactions on Parallel and Distributed Systems, pp. 1317-1331, 2018.

[61] G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,”

AFIPS spring Jt. Comput. Conf., pp. 1–4, 1967.

[62] S. S. Gill and A. Shaghaghi. "Security-Aware Autonomic Allocation of Cloud Resources: A Model, Research

Trends, and Future Directions." Journal of Organizational and End User Computing (JOEUC) 32, no. 3

(2020): 15-22.

[63] P. Garraghan, et al “Emergent Failures: Rethinking Cloud Reliability at Scale”, IEEE Cloud Computing, vol.

5, pp. 12-21, 2018.

[64] J. Gao, “Machine Learning Applications for Data Center Optimization”, Google White Paper, 2014.

[65] W. Xiao, et al, “Gandiva, Introspective Cluster Scheduling for Deep Learning” OSDI, 2018.

[66] S. S. Gill et al. "Transformative Effects of IoT, Blockchain and Artificial Intelligence on Cloud Computing:

Evolution, Vision, Trends and Open Challenges." Internet of Things (2019): vol. 8, 100118.

[67] A. J. Ferrer, J. Manuel Marquès, and J. Jorba. "Towards the decentralised cloud: Survey on approaches and

challenges for mobile, ad hoc, and edge computing." ACM Computing Surveys 51, no. 6 (2019): 1-36.

[68] M. A. Khan, F. Algarni, and M. T. Quasim. "Decentralised Internet of Things." In Decentralised Internet of

Things, pp. 3-20. Springer, Cham, 2020.

[69] I. Psaras. "Decentralised edge-computing and iot through distributed trust." In Proceedings of the 16th

Annual International Conference on Mobile Systems, Applications, and Services, pp. 505-507. 2018.

[70] S. S. Gill, P. Garraghan, V. Stankovski, G. Casale, R. K. Thulasiram, S. K. Ghosh, K. Ramamohanarao, and

R. Buyya. "Holistic resource management for sustainable and reliable cloud computing: An innovative

solution to global challenge." Journal of Systems and Software 155 (2019): 104-129.

[71] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, H. Peng, J. Xu, and C. Li. "Performance-aware

speculative resource oversubscription for large-scale clusters." IEEE Transactions on Parallel and

Distributed Systems 31, no. 7 (2020): 1499-1517.

[72] S. S. Gill, S. Tuli, A. N. Toosi, F. Cuadrado, P. Garraghan, R. Bahsoon, H. Lutfiyya et al. "ThermoSim: Deep

learning based framework for modeling and simulation of thermal-aware resource management for cloud

computing environments." Journal of Systems and Software 164 (2020): 110596.

[73] W. Xiao, R.Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang, F.

Yang, L. Zhou. 2018. Gandiva: introspective cluster scheduling for deep learning. In Proceedings of the 13th

javascript:void(0)

15

USENIX conference on Operating Systems Design and Implementation (OSDI’18). USENIX Association,

USA, 595–610.

[74] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega, and kubernetes,” Commun.

ACM, vol. 59, no. 5, pp. 50–57, 2016.

[75] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams: Fault-tolerant

streaming computation at scale,” SOSP 2013 - Proc. 24th ACM Symp. Oper. Syst. Princ., no. 1, pp. 423–

438, 2013.

[76] S. Arnautov et al., “SCONE: Secure linux containers with Intel SGX,” Proc. 12th USENIX Symp. Oper.

Syst. Des. Implementation, OSDI 2016, pp. 689–703, 2016.

[77] I. R. Z. Michael Kaufmann, IBM Research Zurich, Karlsruhe Institute of Technology; Kornilios Kourtis,

“The HCl Scheduler: Going all-in on Heterogeneity,” 9th {USENIX} Work. Hot Top. Cloud Comput.

(HotCloud 17), pp. 1–7, 2017.

[78] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “GreenGPU: A holistic approach to energy efficiency in

GPU-CPU heterogeneous architectures,” Proc. Int. Conf. Parallel Process., pp. 48–57, 2012.

[79] A. Alqahtani, E. Solaiman, P. Patel, S. Dustdar, R. Ranjan (2019). Service level agreement specification for

end-to-end IoT application ecosystems. Software: Practice and Experience, 49, 12, pp. 1689-1711

[80] A. Chandra, J. Weissman, and B. Heintz. "Decentralized edge clouds." IEEE Internet Computing 17, no. 5

(2013):

