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New spinorial approach to mass inequalities for black holes in general relativity
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A new spinorial strategy for the construction of geometric inequalities involving the Arnowitt-Deser-
Misner (ADM) mass of black hole systems in general relativity is presented. This approach is based
on a second order elliptic equation (the approximate twistor equation) for a valence 1 Weyl spinor.
This has the advantage over other spinorial approaches to the construction of geometric inequalities
based on the Sen-Witten-Dirac equation that it allows to specify boundary conditions for the two
components of the spinor. This greater control on the boundary data has the potential of giving
rise to new geometric inequalities involving the mass. In particular, it is shown that the mass is
bounded from below by an integral functional over a marginally outer trapped surface (MOTS)
which depends on a freely specifiable valence 1 spinor. From this main inequality, by choosing
the free data in an appropriate way, one obtains a new nontrivial bounds of the mass in terms of
the inner expansion of the MOTS. The analysis makes use of a new formalism for the 1 + 1 + 2
decomposition of spinorial equations.

PACS numbers: 04.20.Ex,04.70.Bw,04.20.Jb

I. INTRODUCTION

Geometric inequalities are a prime example of the rich
interplay between general relativity and geometric anal-
ysis. They relate quantities with a clear physical content
with geometric structures of the spacetime. In particu-
lar, they provide important qualitative insight into fun-
damental aspects of black holes.

The most fundamental geometric inequality in general
relativity is, without doubt, the so-called positivity of the
ADM mass. Although a proof of this result (for axially
symmetric spacetimes) can be found in the work of Brill
[5], a first general proof was obtained by Schoen and Yau
[28, 29] using methods of geometric analysis. An alter-
native proof, using spinorial methods, was later given by
Witten [36]. An extension of this last result, showing
the positivity of the mass for black hole spacetimes was
given in [14]. Technical aspects of the spinorial proof, in-
cluding the existence of solutions of the boundary value
problem for the Sen-Witten-Dirac equation have been ad-
dressed in [18, 27]. A further refinement of the positivity
of the mass is given the so-called Penrose inequality. It
provides a lower bound of the mass of a black hole in
terms of (the square root of) its area—see e.g. [25]—and
is closely related to the Cosmic Censorship conjecture.
The Penrose inequality has only been rigorously proved
in the so-called Riemannian case (i.e. when the initial
hypersurface is time symmetric)—see [20], also [24] for a
survey on the subject. This proof makes use of powerful
methods of geometric analysis to study the properties of
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a geometric flow. In the case of axisymmetric black holes,
alternative bounds for the mass in terms of the angular
momentum (mass-angular momentum inequalities) have
been analysed and rigorously proven [7, 9]—see also [10]
for a review on the subject.

The proof of the positivity of the mass for black holes
in [14] suggests that it may be possible to make use of
(an extension of) Witten’s strategy to obtain non-trivial
bounds on the mass and, in particular, obtain a proof
the general Penrose inequality. Indeed, a Penrose-like
inequality has been obtained in [17] by this approach—
however, the classical Penrose inequality remains, so far,
unproven. One of the main advantages of the spinorial
approach to the construction of geometric inequalities is
that it leads to conceptually clearer arguments. For a 4-
dimensional spacetime, the existence of a spin structure
does not introduce any additional restrictions, so working
in the setting of asymptotically flat (or Schwarzschildean)
hypersurfaces, one can obtain bounds on the mass di-
rectly from the existence of solution of a certain spinorial
equation. However, the resulting inequality will depend
heavily on the boundary conditions.

Witten’s argument for the positivity of the mass makes
use of an integral identity for a spinor field κA over a 3-
dimensional hypersurface S. This identity contains both
bulk and boundary integrals. One part of the bulk in-
tegrals is manifestly non-negative while the rest can be
eliminated if κA satisfies the Sen-Witten-Dirac equation
DA

BκB = 0 (see below for an explanation of the no-
tation). If suitable asymptotic conditions for κA are
prescribed then the boundary integral at infinity can be
shown to be related to the mass. Thus, in order to obtain
a non-trivial bound on the latter one is left with the task
of identifying conditions on the inner (black hole) bound-
ary which ensure the solvability of the Sen-Witten-Dirac
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equation and such that the inner boundary integral is
non-negative—e.g. it involves the area. As the analyses
in [14, 15, 27] show, a limitation of Witten’s strategy is
that the Sen-Witten-Dirac equation is first order elliptic
and thus, roughly speaking one can only prescribe one of
the components of κA.

Main results. In this paper we develop a different
spinorial framework for the study of geometric inequal-
ities involving the ADM mass which addresses the dif-
ficulties in Witten’s approach of prescribing boundary
data. This strategy builds on the analysis of the so-
called approximate twistor equation introduced in [2].
The approximate twistor equation is a second order el-
liptic equation for a Weyl spinor κA on a 3-dimensional
asymptotically Euclidean manifold, which is assumed to
be a hypersurface of a vacuum spacetime (M, gab). Us-
ing suitably constructed solutions to the boundary value
problem for the approximate twistor equation we find
that for a MOTS one has the inequality

4πm ≥ κ√
2
H[φA, φ̄A′ ], κ ≡ 8πG/c4,

where m denotes the ADM mass of the spacetime
(M, gab) and H[φA, φ̄A′ ] is the Nester-Witten functional
over the MOTS evaluated on a freely specifiable spinor
φA over the 2-surface. This master inequality can be used
as the starting point for the systematic construction of
geometric inequalities involving the mass. In particu-
lar, a new proof of the positivity of the mass for black
holes follows directly from the above inequality. A couple
of further examples of inequalities which follow directly
from the master inequality are provided in the main text.

A substantial part of the calculations in this article
have been carried out in the suite of packages xAct

for tensor and spinor manipulations in Mathematica
[23]. In particular, we have profited from the package
SpinFrames allowing computations in the NP and GHP
formalisms.

Organisation of the article. This paper is organized
as follows. In Sec. II we establish the framework of 1+1+
2 space–spinor formalism in which we are working. Next
section is dedicated to the approximate twistor equation,
which together with the appropriate boundary condition
will be used in Sec. IV to establish a new bound on the
ADM mass of the initial data. The role of appendices
is to clarify the arguments used in the main body of the
paper.

Notation and conventions. In the following, 4-
dimensional metrics are taken to have signature (+ −
−−). Consequently, Riemannian 3- and 2-dimensional
metrics are taken to be negative definite. When conve-
nient, we expand spinorial expressions using the Geroch-
Held-Penrose (GHP) formalism. In using spinors and the
GHP formalism, we follow the conventions of [26]. The
Einstein field equations are given by Gab = κTab where
as usual κ ≡ 8πG/c4.

II. THE 1 + 1 + 2 SPACE–SPINOR FORMALISM

Consider initial data sets (S, hij ,Kij) for the vacuum
Einstein field equations satisfying in the asymptotic re-
gion the conditions

hij = −
Å

1 +
2m

r

ã
δij + o∞(r−3/2), (1a)

Kij = o∞(r−5/2), (1b)

with r2 ≡ (x1)2 + (x2)2 + (x3)2, (x1, x2, x3) asymp-
totically Cartesian coordinates and m the ADM mass.
Initial data sets of this type are called asymptotically
Schwarzschildean. In addition, it is assumed that S has
one inner boundary ∂S ≈ S2.

The 1 + 1 + 2 spinor formalism is inspired by the 2-
dimensional Sen connection introduced in [31] which uses
SL(2,C) spinors. Here we adapt these ideas to SU(2,C)
spinors (the so-called space spinors first introduced in
[30]) which allows to work only with spinors with un-
primmed indices. A discussion of the space spinor for-
malism can be found in [35]—see also [1].

A. Basic setting

Let τAA′

and ρAA′

denote, respectively the spinorial
counterpart of the (timelike) normal to the hypersurface
S and the (spacelike) normal to ∂S on S. We consider
spinor dyads {oA, ιA} such that

τAA′τBA′

= δA
B =⇒ τAA′τAA′

= 2,

ρAA′ρBA′

= −δA
B =⇒ ρAA′ρAA′

= −2.

The spinors τAA′

and ρAA′

are Hermitian. We require
τAA′

and ρAA′

to be orthogonal to each other—that is,
τAA′ρAA′

= 0. The complex metric can now be defined
as γAB ≡ τB

A′

ρAA′ . It follows from the definition that

γA
BγB

C = δA
C .

Because of the orthogonality of τAA′

and ρAA′

the com-
plex metric is a symmetric spinor, γAB = γ(AB).

The projector to the 2-dimensional surface ∂S admits
the alternative expressions

ΠAA′

BB′

= PAA′

QQ′

TQQ′

BB′

= δA
BδA′

B′ − 1
2τAA′τBB′

+ 1
2ρAA′ρBB′

= 1
2 (δA

BδA′

B′ − γA
B γ̄A′

B′

),

where

PAA′

BB′ ≡ δA
BδA′

B′

+
1

2
ρAA′ρBB′

,

TAA′

BB′ ≡ δA
BδA′

B′ − 1

2
τAA′τBB′

denote, respectively, the projectors to the distributions
generated by ρAA′

and τAA′

.
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Several of the calculations simplify if one makes use of
an adapted spin dyad {oA, ιA} with oAι

A = 1 such that
ôA = ιA and ι̂A = −oA, where ˆ denotes the Hermitian
conjugation. We have

τAA′

= oAōA
′

+ ιAῑA
′

.

It then follows that

ρAA′

= oAōA
′ − ιA ῑA

′

,

γAB = oAιB + oBιA.

The above construction, restricted to the 2-dimensional
surface ∂S still allows the freedom of a rotation

oA 7→ eiϑoA, ιA 7→ e−iϑιA.

If one defines, following standard conventions, compo-
nents of a spinor κA with respect to {oA, ιA} by

κ0 ≡ oAκA, κ1 ≡ ιAκA,

then

κ̂A = κ0oA + κ1ιA.

B. The 3-dimensional and 2-dimensional Sen

connections

The 3-dimensional and 2-dimensional Sen connections
are defined, respectively, by

DAA′κC ≡ TAA′

BB′∇BB′κC , (2a)

/DAA′κC ≡ ΠAA′

BB′∇BB′κC . (2b)

One can use the spinor τAA′

to obtain SU(2,C) (i.e.
space spinor) versions of the the above derivatives. More
precisely, one has

DAB ≡ τ(B
A′DA)A′ , /DAB ≡ τ(B

A′

/DA)A′ .

From the above expressions one can derive the following
alternative expressions:

DABκC ≡ τ(B
A′∇A)A′κC , /DAB ≡ γB

Qγ(A
PDQ)P .

Moreover, one has the decompositions

∇AA′ = 1
2τAA′P − τQA′DAQ,

DAB = /DAB − 1
2γAB /D,

where

P ≡ τAA′∇AA′ , /D ≡ γABDAB

are directional derivatives in the direction of τAA′ and
γAB, respectively.

C. The extrinsic curvature

Following the standard definition adapted to the
present setting, the Weingarten spinor associated with
generator τAA′

is given by

KABCD = τD
C′DABτCC′

We will assume that distribution is integrable, i.e.
KABCD corresponds to the extrinsic curvature of a hy-
persurface orthogonal to τAA′

. This is equivalent to the
condition

KAC
C
B = 1

2KǫAB,

where K = KAB
AB is the mean curvature of S and ǫAB is

the antisymmetric spinor generating symplectic bilinear
form. It will also be convenient to introduce a complete
symmetrisation of extrinsic curvature, ΩABCD. It can be
defined by the following relation

KABCD = ΩABCD − 1
3KǫA(CǫD)B.

D. Levi-Civita connections

The spinor form of the induced metric hij on S can be

obtained from the projector TAA′
BB′

by removing primed
indices using the spinor τAA′ . After using the Jacobi
identity for ǫAB one finds that

hABCD ≡ −ǫA(CǫD)B.

One can verify that

hABCD = hCDAB,

hABCD = h(AB)CD = hAB(CD) = h(AB)(CD).

Similarly, from ΠAA′
BB′

a calculation readily gives the
expression

σABCD = 1
2 (ǫACǫBD + γABγCD)

for the induced metric σab on ∂S. To obtain this last
expression it has been used that γ̂AB = −γAB.

Let DAB and /DAB denote, respectively, the SU(2,C)
form of the Levi-Civita connection of the metrics hab and
σab. One has that

DABǫCD = 0, /DABǫCD = 0.

In addition,

/DABγCD = 0.

The relation between the Sen and Levi-Civita connec-
tions can be worked out using the standard tricks—see
e.g. [26]. One finds that

DABπC = DABπC + 1
2KABC

QπQ,

/DABπC = /DABπC + QAB
Q
CπQ,
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where, for convenience, we have defined the transition
spinor

QAB
C
D ≡ − 1

2γD
Q /DABγQ

C .

Using the GHP formalism [13, 26] one can arrive at

QABCD = σ′oAoBoCoD + σιAιBιCιD

−ρoAoBιCιD − ρ′ιAιBoCoD.

The Levi-Civita covariant derivatives are real in the
sense that

◊�DABπC = −DABπ̂C ,
◊�/DABπC = − /DABπ̂C .

This implies the following formulas for Hermitian conju-
gation of Sen derivatives:

◊�DABπC = −DABπ̂C + KABC
Dπ̂D,

◊�/DABπC = − /DABπ̂C +
Ä
QABC

D + Q̂ABC
D
ä
π̂D.

Finally observe that a direct computation gives

/DABoC = αoAoBoC − βιAιBoC ,

/DABιC = βιAιBιC − αoAoBιC .

However, computing the Hermitian conjugate of the first
expression one readily has that

/DABιC = −ᾱιAιBιC + β̄oAoBιC .

Hence, one concludes that

α + β̄ = 0,

This relation leads to the formula
(
/DAC /DB

C − /DB
C /DAC

)
κB = (ρρ′ − σσ′ + Ψ2)κA,

satisfied in the vacuum spacetime.

E. MOTS

Let la and ka denote future-oriented null vectors span-
ning the normal bundle to ∂S and such that laka = 1.
The expansions associated to la and ka are defined, re-
spectively, by

θ+ ≡ σab∇alb, θ− ≡ σab∇akb.

Our conventions are that la denotes an outgoing null vec-
tor whereas ka is an ingoing one. The 2-surface ∂S is said
to be a MOTS if θ+ = 0 and θ− ≤ 0. Let lAA′

and kAA′

denote the spinorial counterparts of la and ka. A natural
choice for la and ka is given by

la = 1
2 (τa + ρa), ka = 1

2 (τa − ρa),

so that

lAA′

= oAōA
′

, kAA′

= ιA ῑA
′

.

A computation then shows that in terms of the GHP
formalism one has that

θ+ = −ρ− ρ̄, θ− = −ρ′ − ρ̄′.

In the present setting one has, moreover, that both ρ and
ρ′ are real (see [26], Proposition 4.14.2) so that, in fact,
one has that

θ+ = −2ρ, θ− = −2ρ′. (3)

The contraction QA
P
CP will play an important role in

the sequel. An expansion in terms of the dyad readily
shows that

QA
P
BP = ρ oAιB − ρ′ ιAoB,

If ρ and ρ′ are real, then it readily follows that

Q̂A
P
BP = −

(
ρ oBιA − ρ′ ιBoA

)
= −QB

P
AP .

Observing that

oAιB =
1

2
γAB +

1

2
ǫAB

one obtains the more convenient expression

QA
C
BC =

1

2
(ρ− ρ′)γAB +

1

2
(ρ + ρ′)ǫAB.

In particular, for a MOTS one has

QA
C
BC =

1

2
ρ′ (ǫAB − γAB) .

III. THE APPROXIMATE TWISTOR

EQUATION

Let S1, S3 denote, respectively, the spaces of valence
1 and 3 symmetric spinors over the hypersurface S. One
defines the spatial twistor operator

T : S1 → S3, T(κ)ABC = D(ABκC).

The operator T can be easily shown to be overdeter-
mined elliptic. The equation D(ABκC) = 0 arises from
the space-spinor decomposition of the twistor equation
∇A′(AκB) = 0 [2]. The formal adjoint of T, to be de-
noted by T∗, is given by

T∗ : S3 → S1, T∗(ζ)A ≡ DBCζABC−ΩA
BCDζBCD.

The operator T∗ can be shown to be underdetermined
elliptic. The approximate twistor equation follows from
considering the composition operator L ≡ T∗ ◦T : S1 →
S1 and is given by

L(κA) ≡ DBCD(ABκC) − ΩA
BCDDBCκD = 0. (4)

By construction the operator given by equation (4) is
formally self-adjoint elliptic—i.e. L∗ = L. Given a so-
lution κA to equation (4), it is convenient to define the
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spinors ξA ≡ 2
3DA

QκQ and ξABC ≡ D(ABκC) encoding
the independent components of the derivative DABκC .

Moreover, set ζA ≡ ξ̂A. A key observation is the follow-
ing: if κA satisfies L(κA) = 0, then using the properties
of the Hermitian conjugation one has that L(ζA) = 0.

In the following we consider solutions to equation (4)
with an asymptotic behaviour of the form

κA =

Å
1 +

m

r

ã
xABo

B + o∞(r−1/2) (5)

where given some asymptotically Cartesian coordinates
x = (xα) we set

xAB ≡ 1√
2

Å
−x1 − ix2 x3

x3 x1 − ix2

ã

and the spinor oA is part of a normalised spin dyad
{oA, ιA} adapted to S—that is, ιA = ôA. A computation
reveals that

ξA =

Å
1 − m

r

ã
oA + o∞(r−3/2), (6a)

ξABC = −m

r3
x(ABoC) + o∞(r−5/2). (6b)

A. Relation to the ADM mass

Central to our analysis is the functional

I[κA] ≡
∫

S
D(ABζC)

◊�DABζCdµ ≥ 0,

first considered in [2]. If L(κA) = 0 then integrating by
parts it is possible to rewrite I[κA] in terms of boundary
integrals at the sphere at infinity (∂S∞) and the inner
boundary (∂S):

I[κA] =

∮

∂S∞

nABζC
Ÿ�D(ABζC)dS−

∮

∂S
nABζC

Ÿ�D(ABζC)dS.

As a consequence of the asymptotic expansions (6a)-(6b)
the integral over ∂S∞ can be shown to equal 4πm. Thus,
it follows that

4πm ≥
∮

∂S
nABζC

Ÿ�D(ABζC)dS. (7)

B. A boundary value problem

The inequality (7) suggests considering boundary con-
ditions of the form ζA = φA where φA is a smooth, freely
specifiable spinorial field over ∂S. Written in terms of
κA one obtains the condition

DA
QκQ = − 3

2 φ̂A, on ∂S. (8)

The approximate twistor equation together with the
above transverse boundary condition can be shown to sat-
isfy the Lopatinskij-Shapiro compatibility conditions—see
e.g. [8, 38]. It follows that the boundary value problem
over S given by (4) and (8) is elliptic. In the following we
consider solutions to the associated boundary value prob-
lem with the asymptotic behaviour (5) and the Ansatz

κA = κ̊A + θA, θA ∈ H2
−1/2 (9)

with κ̊A given by the leading term in (5) and where Hs
β

with s ∈ Z+ and β ∈ R denotes the weighted L2 Sobolev
spaces. We follow the conventions for these spaces set in
[4]. In view of the decay conditions (1a)-(1b) the elliptic
operator L is asymptotically homogeneous —see [6, 22].
This is the standard assumption on elliptic operators on
asymptotically Euclidean manifolds.

C. Solvability of the boundary value problem

To discuss the solvability of the approximate twistor
equation we need to consider Green’s identity for the ap-
proximate twistor operator L. That is,

∫

S
L(κA)π̂Adµ−

∫

S
κA
÷L(πA)dµ

=

∮

∂S

(
D(ABκC)n

ABπ̂C − nABκCŸ�D(ABπC)

)
dS,

where in the above expression it has explicitly been used
that L is self-adjoint. The first task is to rewrite the
boundary conditions in terms of the boundary opera-
tor DA

QκQ so that one can identify the natural adjoint
boundary conditions. One aims for an identity of the
form

∫

S
L(κA)π̂Adµ−

∫

S
κA÷L(πA)dµ

=

∮

∂S

(
B(κA)π̂A − κA

◊�B∗(πA)
)

dS,

where B is some natural boundary operator yet to be
identified and B∗ is its formal adjoint over ∂S. Now,
the decomposition of the 3-dimensional Sen connection
yields

√
2D(ABκC)n

ABπ̂C = /DκC π̂
C + ξAγ

A
C π̂

C .

A further computation shows that the normal derivative
/DκC can be expressed in terms of ξA and the intrinsic
derivative /DA

QκQ as

/DκC = 2γC
P /DQ

PκQ − 3γC
QξQ.

Combining the above expressions one obtains

D(ABκC)n
ABπ̂C =

√
2
Ä
γC

P /DQ
PκQπ̂

C − γC
P ξP π̂

C
ä
.
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For convenience, define the boundary operator

B(κA) ≡ −
√

2γA
P ξP = − 2

√
2

3 γA
PDQ

PκQ.

Notice that ξA = 0 if and only if B(κA) = 0. Thus, one
can write

D(ABκC)n
ABπ̂C =

(
B(κC) +

√
2γC

P /DQ
PκQ

)
π̂C .

A similar calculation as before shows that

nABκCŸ�D(ABπC) = −κC
(÷B(πC) +

√
2
¤�
γCP /DQ

PπQ

)
.

Thus, one finds that
∫

S
L(κA)π̂Adµ−

∫

S
κA
÷L(πA)dµ

=

∮

∂S

(
B(κA)π̂A − κA

÷B(πA)
)

dS + I,

where

I ≡
√

2

∮

∂S

(
γC

P /DP
QκQπ̂

C + κC ¤�γCP /DP
QπQ

)
dS.

In order to simplify the integral I it is convenient to write
the 2-dimensional Sen connection DAB in terms of the
Levi-Civita connection DAB as

/DABκC = /DABκC + QAB
S
CκS,

where QAB
S
C is the associated transition spinor between

the connections. It follows then, after some calculations,
that

I =
√

2

∮

∂S

(
γC

P /DP
QκQπ̂

C + κCγC
P /DP

Qπ̂Q

+γC
PQP

QS
QκS π̂

C − κCγC
P Q̂P

QS
Qπ̂S

)
dS,

=
√

2

∮

∂S

(
− γC

PκQ /DP
Qπ̂C + κCγC

P /DP
Qπ̂Q

+γC
PQP

QS
QκS π̂

C − κCγC
P Q̂P

QS
Qπ̂S

)
dS,

where in the second equality integration by parts on a
manifold without boundary has been used on the first
integrand. Remarkably, using the Jacobi identity for ǫAB

one has that

γC
PκQ /DP

Qπ̂C = −γQ
PκQ /DPC π̂

C ,

from where one concludes that

I =
√

2

∮

∂S

(
γC

PQP
QS

QκS π̂
C − κCγC

P Q̂P
QS

Qπ̂S

)
dS.

Thus, the integrand in I contains no differential operators
acting on κC or π̂C . Accordingly, the boundary operator
B is, up to the vanishing of I, self-adjoint. Now, it can
be shown that, in fact, one has that

QA
P
BP = −Q̂B

P
AP = ρ oAιB − ρ′ιAoB, (10)

where the GHP coefficients ρ and ρ′ are closely related
to the expansions of the boundary ∂S—see (3). From
the expression (10) one readily concludes that I = 0.
Consequently, it follows that

B∗(πA) = B(πA).

Hence, we conclude that the boundary operator B is self-
adjoint.

Substituting the Ansatz (9) into the approximate
Killing spinor equation (4) one obtains the following in-
homogeneous equation for θA:

L(θA) = FA, FA ≡ −L(̊κA). (11)

As by construction D(ABκ̊C) ∈ H∞
−3/2, one concludes

that FA ∈ H∞
−5/2. To analyse the solvability of equation

(11) we make use of a boundary value problem version
of the Fredholm alternative adapted to weighted Sobolev
spaces—see e.g. [37]. More precisely, as L and B are
self-adjoint, one has that

L(θA) = FA, with B(θA)|∂S = GA (12)

has a solution if and only if
∫

S
FAν̂

Adµ +

∮

∂S
GAν̂

AdS = 0,

for all νA ∈ H2
−1/2 such that

L(νA) = 0, with B(νA)|∂S = 0. (13)

Thus, in the following we analyse the conditions under
which the adjoint problem (13) has a trivial Kernel.

D. Analysis of the Kernel of the adjoint problem

From the ellipticity of the operator (L,B) it follows
that the Kernel of the boundary value problem (13) is fi-
nite dimensional. Assume one has νA ∈ H2

−1/2 satisfying

(13). Using integration by parts and the fall-off of νA it
follows that

∫

S
D(ABνC)

◊�DABνCdµ =

∮

∂S
nABνCÿ�D(ABνC)dS

= H[νA, ν̄B′ ] ≥ 0, (14)

where following the discussion in the introduction we
write

H[νA, ν̄B′ ] ≡
∮

∂S
ν̂CγC

P /DQ
P νQdS ≥ 0

and to obtain the second equality we have used the iden-
tity

nAB ν̂CD(ABνC) =
(
B(νC) +

√
2γC

P /DQ
P νQ

)
ν̂C . (15)
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Crucial in the sequel is that the eigenspinors of the 2-
dimensional (Levi-Civita) Dirac operator /DB

AνB form
a base of the space of smooth valence 1 spinors over ∂S
which is orthonormal with respect to L2 inner product
induced by the Hermitian conjugation—this follows from
the ellipticity and self-adjointness of the operator—see
e.g. [11, 12, 21]. Now, if the Kernel of (L,B) is non-
trivial, it must contain spinors whose restriction to ∂S are
eigenspinors of the 2-dimensional Dirac operator. Now,
if /DB

AνB = λνA then for a MOTS (ρ = 0, ρ′ ≥ 0) a
calculation readily gives that

H[νA, ν̄B′ ] = λ

∮

∂S
ν̂CγC

P νPdS

+
1

2

∮

∂S
ρ′
(
ν̂CγC

P νP − ν̂CνC
)
dS.

A remarkable property of the kernel of the problem (13)
is that

∮

∂S
ν̂CγC

P νPdS = 0,

which is obtained by integration by parts of the approx-
imate twistor equation (4). From the latter and making
use of the expansion νA = ν0ιA − ν1oA, one concludes
that

0 ≤ H[νA, ν̄B′ ] = −
∮

∂S
ρ′|ν0|2dS.

This can only occur, for ρ′ > 0, if νA = 0 over ∂S.
It follows then from (14) that if ∂S is a MOTS then
D(ABνC) = 0 on S. That is, νA is a solution to the spa-
tial twistor equation that goes to zero at infinity. Using
Proposition 5 in [3] then it follows that νA = 0 on S. This
implies that there are no obstructions to the existence of
solutions to the system (12). The previous argument can
be summarised in the following:

Proposition. If ρ′ ≥ 0 and ρ = 0 over ∂S, then the
boundary value problem

L(κA) = 0, B(κA)|∂S =
√

2γA
P φ̂P ,

with φA a smooth spinorial field over ∂S admits a unique
solution of the form (9). Accordingly, there exists a
spinor ζA such that in the asymptotic end it satisfies

ζA = −
Å

1 − m

r

ã
ιA + o∞(r−3/2).

The above proposition holds even in the case that ∂S has
several connected components each one being a MOTS
—that is, in the case (S, hij ,Kij) is a multiple back hole
initial data set.

E. Main inequality in terms of boundary data

The right-hand side of the main inequality (7) can be
written in terms of the boundary data. The key obser-

vation is that the boundary condition ξ̂A = φA together

with the the approximate twistor equation (4) and its
alternative form

DBCDBCκA + ΩABCDDBCκD +
1

3
KDABκ

B = 0 (16)

allow to systematically eliminate all the transverse
derivatives /DκC in the integral over ∂S. We can write
the right-hand side of main inequality as

1√
2

∮

∂S
γABζC

Ÿ�D(ABζC)dS

=
1√
2

∮

∂S
γABφC

Ä
φ̂DΩABCD + 2

3
/DACφ̂B

ä
dS

−
√

2

3

∮

∂S
φC /DξCdS.

The alternative form of the approximate twistor equation
given by equation (16) yields

DBCξBCA − /DA
BξB +

1

2
γA

B /DξB +
1

2
Kφ̂A

+ ΩABCDDBCκD = 0,

but from approximate twistor equation the first and the
last terms cancels each other out, so that

/DξC = −2γC
A /DA

Bφ̂B −KγC
Aφ̂A.

After performing integration by parts, the main inequal-
ity (7) reads

4πm ≥
√

2

∮

∂S
φ̂AγA

B /DBCφ
CdS.

IV. MASS INEQUALITIES

We are now ready to state the main result of this paper.
Given a hypersurface S and smooth spinor φA defined
over a MOTS ∂S one has that

4πm ≥ κ√
2
H[φA, φ̄A′ ], (17)

where

H[φA, φ̄A′ ] ≡ 2

κ

∮

∂S
φ̂AγA

B /DBCφ
CdS.

Given two spinors κA and ωA, the functional H[κA, ωB]
coincides with the Nester-Witten functional—see e.g.
[19, 27, 33]—which plays a role in various quasilocal en-
ergy constructions. If the spinor φA could be chosen in
such a way that H[κA, ωB] is manifestly non-negative, one
would have obtained a non-trivial bound on the ADM
mass of the black hole. Consequently, inequality (17) can
be used as the starting point for the construction of new
geometric inequalities involving the mass. As examples
of interesting choices of φA consider:
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(i) The simple choice φA = 0 over ∂S leads to a new proof
of the positivity of the mass of a black hole, i.e. m ≥ 0.

(ii) Choosing φA to be an eigenspinor of the 2-
dimensional Dirac operator, i.e. /DA

BφB = λφA, it fol-
lows from the fact that the eigenvalue must be pure imag-
inary, i.e. λ = −λ, and the reality of H[φA, φ̄A′ ] that

∮

∂S
|φ0|2dS =

∮

∂S
|φ1|2dS. (18)

Moreover, inequality (17) takes the form

4πm ≥
√

2

∮

∂S
ρ′|φ0|2dS. (19)

Now, on generic topological spheres the eigenspace asso-
ciated to a given eigenvalue is 2-dimensional. The pair

{φA, φ̂A} can be shown to be a basis of the eigenspace and
to be non-zero everywhere on ∂S—see e.g. [16], Theo-
rems 6.2.5 and 6.2.6. Now, choosing the (pointwise) nor-

malisation φAφ̂
A = 1, it readily follows from (18) that

∮

∂S
|φ0|2dS = 1

2 |∂S|,

where |∂S| denotes the area of ∂S. Combining this last
observation with inequality (19) one concludes that

4πm ≥
√

2

2
(min

∂S
ρ′) |∂S|.

It is worth to notice that for a MOTS ρ′ coincides with
the mean curvature h of the ∂S, such that this inequality
is equivalent with

4πm ≥
√

2

2
(min

∂S
h) |∂S|.

To the author’s best knowledge, this inequality is new.

(iii) Relation to the area variation [34]. Let HAA′ =
ριAῑA′ + ρ′oAōA′ denote the spinorial counterpart of the
mean curvature vector to ∂S. The variation of the area
|∂S| in the direction of a vector va on M is given by the
formula

δv|∂S| = −
∮

∂S
vAA′

HAA′dS,

where vAA′

is the spinorial counterpart of va. In the
space-spinor formalism the mean curvature vector reads

HAB = −ριAoB + ρ′oAιB.

Making the choice φA = −φ0ιA (i.e. φ1 = 0) one then
has that

vAB ≡ −φ(Aφ̂B) =
1

2
|φ0|2γAB

can be interpreted as the spinorial counterpart of the
(outwardpointing) radial vector to ∂S. For this choice

the right-hand side of (17) for a MOTS can be written
in terms of a variation of its area with respect to flow
generated by va. More precisely, one has that

4πm ≥ 2
√

2δv|∂S|.

For the sake of simplicity, the above statements have
been formulated for ∂S consisting of a single connected
component. However, the methods presented here also
applies to an inner boundary consisting of several com-
ponents, each one with the topology of S2 and satisfying
the MOTS condition.

V. CONCLUSIONS

In this article we have developed a new strategy for
the construction of geometric inequalities involving the
ADM mass of a black hole spacetime. This approach re-
lies heavily on the use of spinors and has the remarkable
property of allowing the specification of the two compo-
nents of a valence-1 spinor φA defined over a MOTS. The
use of the MOTS condition is central in the solvability of
the boundary value problem for the approxmate twistor
equation. However, it is not necessary in the argument
showing that the rigth-hand side of inequality (17) can
be expressed purely in terms of boundary data.

The main question is whether the methods developed
in this article can be used to make inroads towards a
general proof of Penrose’s inequality. In [17] Witten’s ap-
proach to the positivity of the mass was used to obtain a
Penrose-like inequality—i.e. an inequality involving the
ADM mass and the square root of the area which, in ad-
dition, contains further constant which is hard to control
given the rigidity in the specification of boundary data.
The main idea in that article was to study the change
of the mass under conformal rescalings of the 3-metric.
A similar strategy can be followed with the framework
presented in the present article. The further flexibility
given by the possibility of prescribing full boundary data
could prove crucial in controlling constants appearing in
the analysis.

Finally, it is pointed out that it would also be interest-
ing to analyse whether the methods in this article can be
adapted to settings with different asymptotic boundary
conditions—e.g. hyperboloidal ones so that a connection
with the Bondi mass can be established.

The ideas expressed in the previous paragraphs will be
pursued elsewhere.
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VI. APPENDIX

A. Irreducible decompositions

Given a spinor κA define

ξA ≡ 2
3DA

QκQ, ξABC ≡ D(ABκC).

One then has the decomposition

DABκC = ξABC − ξ(AǫB)C .

B. Integration by parts

Integration by parts on the 3-manifold S with respect
to the Sen connection DAB is carried out according to
the identity

∫

U
DABκC ζ̂

ABCdµ =

∮

∂U
ñABκC ζ̂

ABCdS

+

∫

U
κC

( ¤�ΩC
ABDζABD −⁄�DABζABC

)
dµ,

with U ⊂ S and where dS denotes the area element of
∂U , ñAB its outward pointing (”outside” of U) normal
and ζABC is an arbitrary symmetric spinor.

Integration by parts on ∂S proceeds in the same lines
as on S with the added simplification of not giving rise
to boundary terms. Thus, for symmetric spinors κA and
ζABC one has that

∮

∂S
/DABκCζ

ABCdS = −
∮

∂S
κC /DABζ

ABCdS.

In some cases it is necessary to use integration by parts on
expressions involving components. The following identi-
ties have been proven in [26]:

∮

∂S
χðηdS = −

∮

∂S
ηðχdS

if the GHP types of χ and η add up to {−1, 1}, and

∮

∂S
χð′ηdS = −

∮

∂S
ηð′χdS

if the type of χ and η add up to {1,−1}.

C. Commutators

Several of the calculations require the commutators be-
tween the various covariant derivatives. The commutator

between the 3-dimensional Sen connection on an hyper-
surface, assuming the vacuum Einstein field equations
hold, can be expressed as

[DAB,DCD]κE = 1
2

(
ǫA(C�D)B + ǫB(C�D)A

)
κE

+KCDQ(ADB)
QκE −KABQ(CDD)

QκE ,

see e.g. [2], where �AB denotes the usual Penrose box—
see [26]. Now, using the above commutator one can write

DAQDB
Q = 1

2ǫABDPQDPQ + ∆AB

where

∆AB ≡ DC(ADB)
C .

A calculation using the expression for [DAB,DCD] readily
yields that

∆ABκC = �ABκC−KAPQBDPQκC−KP (A|Q|
PDB)

QκC .

One can rewrite the action of ∆AB as

∆AB = 1
2�AB − 1

2ΩABPQDPQ + 1
3KDAB.

Similarly, for the 2-dimensional Sen connection one can
define

/∆ ≡ /DAB /DAB
, /∆AB ≡ /DC(A /DB)

C .

In particular, we have that

/DCA /DB
C = 1

2ǫAB /∆ + /∆AB.

D. The Lopatinskij-Shapiro conditions

To establish the compatibility of the approximate
twistor equation and the transverse boundary condition-
none needs to consider the so-called Lopatinskij-Shapiro
conditions—see e.g. [8, 38]. Using the decomposition of
DAB in terms of /D and /DAB, the principal part of the
approximate twistor equation takes the form

DPQDPQκA = /DPQ /DPQκA − 1
2
/D2

κA, (20)

while for the transverse boundary condition one gets

DP
AκP = /DP

AκP − 1
2γ

P
A /DκP . (21)

In a neighbourhood of ∂S one chooses coordinates so
that the location of the boundary is given by the condi-
tion ρ = 0 and /D = ∂ρ. To verify the Lopatinskij-Shapiro
conditions one considers decaying solutions to the auxil-
iary ordinary differential equations problem

κ′′
A − 2|ξ|2κA = 0, (22a)(
γP

Aκ
′
P − 2iξPAκP

)∣∣
ρ=0

= 0, (22b)

obtained from the principal parts (20) and (21) by the
replacements /D 7→′, /DAB 7→ iξAB where ξAB = ξ(AB)
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is an arbitrary non-zero real rank 2 spinor —i.e. ξ̂AB =

−ξAB, |ξ|2 ≡ ξPQξ̂
PQ, γABξAB = 0. Moreover, ′ denotes

differentiation with respect to ρ. The decaying solutions
of equation (22a) are given by

κA = κA⋆e
−|ξ|2ρ,

where κA⋆ is constant. Substitution of the latter into
equation (22b) leads to the condition

(2iξPA + γP
A|ξ|2)κP⋆ = 0 on ∂S,

from which, taking into account that both ξAB and γAB

are real spinors, it follows that κA⋆ = 0. Thus, the ap-
proximate twistor equation with the transverse boundary
condition satisfies the Lopatinskij-Shapiro condition, so
the associated boundary value problem is elliptic.

E. Proofs of various properties of the Kernel of the

adjoint problem

1. The Kernel of (L,B) includes the Kernel of D

To show that an element of the kernel of the adjoint
problem is also a solution to the Sen-Witten-Dirac equa-
tion one starts by considering the L2-norm of the Sen-
Witten-Dirac operator acting on the element of the Ker-
nel of (L,B). Then, using integration by parts it follows
that

0 ≤
∫

S
DA

BνB◊�DACνCdµ

=

∮

∂S
ν̂Cn

ACDA
BνBdS −

∮

∂S∞

ν̂Cn
ACDA

BνBdS

+

∫

S

Å
ν̂CDACDA

BνB − 1
2Kν̂ADA

BνB

ã
dµ.

Now, the boundary integral at ∂S vanishes as a conse-
quence of B(νA) = 0 while that at the sphere at infinity
also vanishes as ν̂ADACνC = o(r−2) in the asymptotic
end. Now, making use of the decomposition

DACDB
A = 1

2ǫCB∆ + ∆CB

one has, further, that
∫

S
DA

BνB◊�DACνCdµ = 1
2

∫

S
ν̂C∆νCdµ

−
∫

S
ν̂C∆CBν

Bdµ + 1
2

∫

S
Kν̂CDCBνBdµ.

Observing that in vacuum one has

∆CBν
B = −1

2
ΩCBADDADνB +

K

3
DCBν

B

and using the expression for ∆νC ≡ DABDABνC given
by the approximate Killing spinor equation one concludes

that the right-hand side of the last equality vanishes and
thus

∫

S
DA

BνB◊�DACνCdµ = 0

so that DA
BνB = 0 on S.

2. Norms of ν0 and ν1 on ∂S

Starting from

0 =

∫

S
ν̂ADA

BνBdµ,

integrating by parts one readily arrives at the condition

∮

∂S
ν̂AγA

BνBdS = 0.

The latter, expanding in terms of an adapted dyad gives

∮

∂S

(
|ν0|2 − |ν1|2

)
dS = 0,

or, in fact, that

||ν0||L2(∂S) = ||ν1||L2(∂S),

for any element in the Kernel.

F. Properties of the 2-dimensional

Sen-Witten-Dirac operator

A calculation readily shows that in GHP notation the
equation /DA

BνB = 0 implies that

ð
′ν0 + ρ ν1 = 0,

ðν1 + ρ′ ν0 = 0.

Using the methods of the Appendix in [32] one can show
that if either ρ = 0 or ρ′ = 0 then necessarily ν0 = ν1 = 0
so that νA = 0—that is, the Kernel of /DA

BνB is trivial.
Now, a computation readily shows that

∮

∂S
/DA

BκBdS =

∮

∂S

(◊�
/DB

AπB − 2QB
C
AC π̂

B
)
κAdS

so that /DA
BνB is not self-adjoint unless ρ = ρ′ = 0.

Expanding the adjoint operator

/DA
BπB − 2QA

CB
CπB

in terms of a dyad yields the components

ð
′π0 − ρπ1,

ðπ1 − ρ′π0.
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Of particular interest in the present analysis is the
eigenvaule problem for the 2-dimensional Sen-Witten-
Dirac operator—i.e.

/DA
BκB = λκA.

Applying the operator once more and integrating gives

∮

∂S
κ̂C /DC

B /DA
BκAdS = λ2

∮

∂S
κC κ̂

CdS.

Integration by parts plus some further manipulations
eventually leads to

0 ≤
∮

∂S

(
/DP

AκP

)Ÿ�(
/DQA

κQ

)
dS

= −λ2

∮

∂S
(|κ0|2 + |κ1|2)dS

+2λ

∮

∂S
(ρ|κ0|2 + ρ′|κ1|2)dS.

From the above inequality it follows the (classic) obser-
vation that if ρ = ρ′ = 0 then the eigenvalues of the Dirac
operator are pure imaginary. If, for example, ρ = 0 and
ρ′ > 0 (MOTS) then this is no longer true a the eigen-
values are general complex numbers.

G. Nester–Witten functional

Sparling’s form is defined as

Γ(λA, µ̄B′) ≡ i∇BB′λA∇CC′ µ̄A′dxAA
′∧dxBB

′∧dxCC
′

.

It is Hermitian in the sense that

Γ(λA, µ̄B′) = Γ(λA, µ̄B′).

In vacuum Sparling’s form is exact—i.e. du = Γ for some
2-form u = uµνdxµ ∧ dxν . This 2-form is used, in turn,
to define the Nester-Witten functional over a 2-surface
∂S via

H[λR, µ̄S′ ] ≡ 2

κ

∮

∂S
uµν(λ, µ̄)dxµ ∧ dxν .

In [32] it has been shown that the above functional can
be rewritten as

H[λR, µ̄S′ ] =
2

κ

∮

∂S
γ̄R′S′

µ̄R′ /DS
S′λSdS,

A calculation shows that, in terms of SU(2,C) (i.e. space
spinors), the above expression is equivalent to

H[λR, µ̄S′ ] =
2

κ

∮

∂S
γ̂R

Sφ̂R /DP
SφSdS.
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