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Thermal energy can be conducted by different mechanisms including by single particles or collec-
tive excitations. Thermal conductivity is system-specific and shows a richness of behaviors currently
explored in different systems including insulators, strange metals and cuprate superconductors.
Here, we show that despite the seeming complexity of thermal transport, the thermal diffusivity α
of liquids and supercritical fluids has a lower bound which is fixed by fundamental physical constants
for each system as αm = 1

4π
~√
mem

, where me and m are electron and molecule masses. The newly

introduced elementary thermal diffusivity has an absolute lower bound dependent on ~ and the
proton-to-electron mass ratio only. We back up this result by a wide range of experimental data.
We also show that theoretical minima of α coincide with the fundamental lower limit of kinematic
viscosity νm. Consistent with experiments, this points to a universal lower bound for two distinct
properties, energy and momentum diffusion, and a surprising correlation between the two transport
mechanisms at their minima. We observe that αm gives the minimum on the phase diagram except
in the vicinity of the critical point, whereas νm gives the minimum on the entire phase diagram.

I. INTRODUCTION

Thermal energy can propagate by radiation, convec-
tion and conduction. The latter phenomenon refers to
the travel of heat in matter in the absence of particle
flow. Thermal energy can be carried by phonons and elec-
tronic quasi-particles in solids and liquids or molecular
collisions in gases [1, 2]. Although the two mechanisms
of heat transfer by collective excitations or particles are
conceptually simple, they can interestingly interact with
other processes and give rise to a rich variety of behav-
iors. This is currently explored in a variety of materials
including insulators, strange metals and cuprate super-
conductors, where new mechanisms are invoked to ex-
plain the experimental data (see, e.g., Refs. [3–6]). More
recently, bounds on thermal conductivity and other prop-
erties were discussed, with the view that identifying and
understanding these bounds is important for fundamen-
tal physics, predictions for theory and experiment as well
as searching and rationalizing universal behavior [3–13].
These bounds are based on uncertainty relations and lim-
its due to quantum physics.

Thermal conductivity is defined by the static Fourier
equation, JQ = κ ∂T

∂x , where JQ is the heat current den-

sity and ∂T
∂x is the temperature gradient in the x direc-

tion. This equation is the thermal counterpart of the
Ohm equation and defines κ as a linear response to a
static temperature gradient. Thermal diffusivity is de-
scribed by the heat equation [14, 15]:

∂T

∂t
= α

∂2T

∂x2
(1)

where α = κ
ρcp

is thermal diffusivity, ρ is density and cp
is heat capacity per mass unit. α plays the role of the

diffusion constant quantifying the propagation of thermal
energy.

The transport coefficients κ and α vary in a wide range
and depends strongly on the system, temperature and
pressure. Here, we consider α in liquid and supercritical
states of matter and show that despite these variations,
α at its minimum, αm, universally attains a value

αm =
1

4π

~
√
mem

(2)

where me and m are electron and molecule masses, and
back up this result by experimental data.

We subsequently introduce the elementary thermal dif-
fusivity ι = αmm, similarly to the elementary viscosity
[16], with the universal minimum set by fundamental con-
stants as

ιm =
~

4π

(
mp

me

) 1
2

(3)

where mp is the proton mass.
We finally show that the theoretical minima of ther-

mal diffusivity coincide with the minima of a physically
distinct quantity, the kinematic viscosity νm discussed
recently [16] and that the experimental ratio νm/αm is
close to 1 and is in the range 0.4-1.7. Fundamentally,
this closeness can be explained by observing that both
α and ν at their minima are governed by the “ultravi-
olet” (UV) properties such as Bohr radius and Debye
frequency. This suggests a wider universality of proper-
ties at their fundamental limit. We finally observe that
(a) νm gives the minimum on the entire phase diagram
of matter and (b) αm gives the minimum on the phase
diagram except in the vicinity of the critical point.
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It is notable that the universal results (2) and (3) fixing
the minimum for each system apply to the liquid state.
Indeed, liquid properties are considered to be system-
specific because interactions are strong and depend on
the system. This circumstance is viewed to disallow a
possibility of calculating liquid properties in general form
[18]. A fundamental problem of liquid description is re-
lated to the absence of a small parameter [19]: interac-
tions and atomic displacements in liquids are both large,
and this combination precludes using theories developed
for gases and solids. For example, the theoretical calcula-
tion and understanding of liquid energy and heat capac-
ity has remained a long-standing problem in research and
teaching [20], and started to lift only recently when new
understanding of collective excitations in liquids came in
[19]. For these reasons, there is no tractable microscopic
theory of thermal conductivity in liquids [21]. In view of
these problems, the existence of universal bound for αm
(2) and ιm (3) in liquids is notable, as is the closeness of
the lower bounds of αm and νm despite the fundamen-
tal physical distinction between energy and momentum
diffusion and very different ways of measuring α and ν.

II. RESULTS AND DISCUSSION

A. Derivation of the thermal diffusivity minimum

In this section, we derive the thermal diffusivity at its
minimum. We start our discussion with the thermal dif-
fusivity due to ionic motion, and will comment on the
electron conductivity later. We will see that Eqs. (2)
and (3) emerge from connecting thermal diffusivity at
the minimum to quantum-mechanical properties of con-
densed matter phases including the Bohr radius and Ry-
dberg energy.

It is useful to first show the experimental data show-
ing the minima. We have collected available experimental
data [22] of κ in several noble (Ar, Ne, He and Kr), molec-
ular (N2, H2, O2, CO2, CH4 C2H6 and CO) and network
fluids (H2O). Our selection includes industrially impor-
tant supercritical fluids such as CO2 and H2O [23]. We
have calculated α = κ

ρcp
using the experimental values

of cp and ρ at respective temperatures and show both
κ and α in Fig. 1. For some fluids, we show the data
at two different pressures. The low pressure was cho-
sen to be far above the critical pressure so that the data
are not affected by near-critical anomalies. The high-
est pressure was chosen to (a) make the pressure range
considered as wide as possible and (b) be low enough in
order to see the minima in the temperature range avail-
able experimentally. We observe that κ and α univer-
sally have minima. We also observe that κ can have
weak maxima at low temperature related to the competi-
tion between the increase of heat capacity due to phonon
excitations in the quantum regime and decrease of the
phonon mean free path l as in solids. In H2O, the broad
maximum is related to water-specific anomalies includ-

ing broad structural transformation between differently-
coordinated states.
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FIG. 1. Experimental thermal conductivity κ (top) and ther-
mal diffusivity α (bottom) of noble, molecular and network
liquids [22] showing minima. κ and α for Kr, O2, H2O, CH4,
C2H6 and CO are shown for pressure P = 30 MPa, 30 MPa,
70 MPa, 20 MPa, 20 MPa and 20 MPa, respectively. κ and α
for Ar, Ne, He, N2, H2 and CO2 are shown at two pressures
each: 20 and 100 MPa for Ar, 50 and 300 MPa for Ne, 20 and
100 MPa for He, 10 MPa and 500 MPa for N2, 50 MPa and
100 MPa for H2, and 30 and 90 MPa for CO2. The minimum
at higher pressure is above the minimum at lower pressure for
each fluid.

We now move to the reason why κ and α have minima
in liquids as a function of temperature. In solids, the
thermal conductivity κ can be written as κ = cvl, where
c is the specific heat per volume unit [1], v is the speed
of sound, l is the phonon mean free path and we dropped
the numerical factor on the order of unity. Then, the
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diffusion constant is given by

α = vl (4)

In gases, α can be written in the same way as (4), but
- and this reflects the difference between heat transfer
in solids and gases - v in (4) corresponds to the average
velocity of gas molecules and l to the molecule free path
[2].

The minimum of α is due to the crossover between
the liquid-like and gas-like regimes of particles dy-
namics which we qualify below. Molecular motion in
low-temperature liquids combines solid-like oscillations
around quasi-equilibrium positions and diffusive jumps
to new positions, enabling liquid flow. These jumps are
due to temperature-induced molecular jumps over an en-
ergy barrier set by the interaction with other molecules,
resulting in the exponential temperature dependence of
viscosity. The jumps are characterised by liquid relax-
ation time, τ , the average time between the molecular
jumps [24]. The collective excitations in liquids (we refer
to these as phonons or phonon-like modes in a wider sense
[19]) consist of one longitudinal mode and two transverse
modes propagating above the threshold value in k-space
[19, 25]. The temperature increase has two effects on α
in Eq.(4). First, the phonon mean free path l decreases.
Second, the speed of sound decreases as it does in solids.
However, the decrease of v and l can not continue indefi-
nitely due to the UV cutoff in condensed matter phases:
l is limited by the interatomic separation a at the Mott-
Ioffe-Regel (MIR) limit and τ is limited by the elementary
vibration period, commonly approximated by the Debye
vibration period τD.

An important effect related to reaching the UV cutoff
is that further temperature increase results in the qual-
itative change of particle dynamics [19, 26, 27]. On fur-
ther temperature increase, the oscillatory component of
molecular motion is lost, and molecules start moving in a
purely diffusive manner. At high temperature and/or low
density, molecules gain enough energy to move distance
lp without collisions with velocity vt, where lp is particle
mean free path and vt is thermal velocity. lp and vt both
increase with temperature. Therefore, α in Eq.(4) has
a minimum. The same argument leading to a minimum
applies to κ = cρα. In the liquid-like regime, ρ and c are
monotonically decreasing functions of temperature [19],
hence the minima of α and κ can take place at different
temperature.

If the temperature is increased at pressure below the
critical point, the system crosses the boiling line and un-
dergoes the liquid-gas transition. As a result, α and κ
undergo a sharp change at the phase transition, rather
than showing a smooth minimum as in Fig. 1. In order to
avoid the effects related to the phase transition, we need
to consider the supercritical state. Here, the Frenkel line
[19, 26, 27] formalises the qualitative change of molecu-
lar dynamics from combined oscillatory and diffusive to
purely diffusive. The Frenkel line touches the boiling line

slightly below the critical point and extends to arbitrarily
high temperature and pressure on the phase diagram. At
sufficiently high pressure and temperature, it runs nearly
parallel to the boiling line in the logarithmic (pressure,
temperature) coordinates [26]. The location of minima
of different properties such as viscosity or thermal con-
ductivity may depend on the path taken on the phase
diagram. As a result, the minima may deviate from the
Frenkel Line depending on the path [19].

Before evaluating αm, we first see how well we can
estimate κ at the minimum, κm, using our approach.
When l becomes comparable to a at the minimum, the
velocity v can be evaluated as v = a

τD
because the time

for a molecule to move distance a in this regime is given
by the characteristic time scale set by τD. Recalling that
c featuring in κ = cvl is the temperature derivative of
energy density [1], c = cv

a3 , where cv is heat capacity
per atom at constant volume (the derivative is taken at
constant volume) and a−3 is the concentration. At the
minimum, cv is close to 2 kB, reflecting the disappearance
of two transverse modes at the dynamical crossover [19,
25]. Setting l = a, v = a

τD
= 1

2πωDa, where ωD is Debye
frequency, gives

κm =
1

π

kB ωD

a
(5)

Taking the typical values of a =3-6 Å and ωD

2π on the

order of 1 THz, we find κm in the range 0.05− 0.09 W
mK ,

providing an order of magnitude estimation of κm consis-
tent with the experimental minima in Fig. 1a. This sets
the stage for our later calculation of thermal diffusivity
at its minimum using fundamental physical constants.

We note that the minima of κ in Fig. 1a is lower
than thermal conductivity in low-κ solids such as SnSe
(κ = 0.23 W

mK ) where it is considered as “ultralow” [28].
We also observe that high pressure reduces a and in-

creases ωD. Eq. (5) predicts that κm increases with
pressure as a result, in agreement with the experimental
behavior in Fig.1. We note that (4) applies in the regime
where l is larger than a, and in this sense our evaluation
of conductivity minimum is an order-of-magnitude esti-
mation, as are our other results below. In this regard, we
note that theoretical models can only describe a dilute
gas limit where perturbation theory applies [2], but not
in the regime where l is comparable to a and where the
energy of inter-molecular interaction is comparable to the
kinetic energy. In view of theoretical issues, we consider
our evaluation useful. In addition to be informative, an
order-of-magnitude evaluation is perhaps unavoidable if
a complicated property such as thermal conductivity is
to be expressed in terms of fundamental constants only.

We are now ready to evaluate α at its minimum, αm.
As discussed above, l at the minimum is l ≈ a. The speed
of sound v in the Debye model is v = a

τD
(at the crossover

where τ becomes comparable to the time it takes the
molecule to move distance a and where τ ≈ τD as dis-
cussed above, v becomes approximately equal to thermal
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velocity). Using l = a and v = a
τD

= 1
2πaωD in (4) gives

αm =
1

2π
ωDa

2 (6)

The energy diffusion constant αm in (6) can now be re-
lated to fundamental physical constants by recalling that
the properties defining the UV cutoff in condensed mat-
ter can be expressed in terms of fundamental constants
[16]. For the benefit of the reader and later discussion, we
reproduce the brief derivation below. Two relevant quan-
tities are Bohr radius, aB, setting the characteristic scale
of inter-particle separation on the order of Angstrom:

aB =
4πε0~2

mee2
(7)

and the Rydberg energy, ER = e2

8πε0aB
[1], setting the

characteristic scale for the cohesive energy in condensed
matter phases on the order of several eV:

ER =
mee

4

32π2ε20~2
(8)

where e and me are electron charge and mass.
The characteristic phonon energy ~ωD is related to the

cohesive energy E, ~ωD

E as:

~ωD

E
=

(me

m

) 1
2

(9)

which, up to a factor close to 1, follows from approxi-

mating ~ωD as ~
(
E
ma2

) 1
2 , taking the ratio ~ωD

E and using
a = aB from (7) and E = ER from (8).

Combining (6) and (9) gives

αm =
1

2π

Ea2

~

(me

m

) 1
2

(10)

The parameters a and E in (10) are set by their char-
acteristic scales aB and ER as discussed earlier. Using
a = aB from (7) and E = ER from (8) in (10) gives a
remarkably simple equation for αm as in Eq. (2), which
we reproduce below for convenience:

αm =
1

4π

~
√
mem

(11)

Eq. (11) is the main result of this paper. The same
result for αm in (11) can be obtained without explicitly
using aB and ER in (10). The cohesive energy, or the
characteristic energy of electromagnetic interaction, is

E =
~2

2mea2
(12)

Using (12) in (10) gives (11).
We now analyze (11) and its implications. αm contains

~ and electron and molecule masses only. m characterises
the molecules involved in heat transfer. me characterises
electrons setting the inter-molecular interactions. The
quantum origin of αm, signified by ~ in (11), is due to
the quantum nature of inter-particle interactions.

The mass m in (11) is m = Amp, where A is the atomic
weight and mp is the proton mass. The inverse square
root dependence αm ∝ 1√

A
interestingly implies that for

different liquids αm varies by a factor of about 10 only.
Setting m = mp (A = 1) for H in (11) (similarly to (7)
and (8) derived for the H atom) gives the fundamental
thermal diffusivity in terms of ~, me and mp as

αm =
1

4π

~
√
memp

≈ 10−7
m2

s
(13)

For the lightest element, H, Eq. (13) gives the maxi-
mal value of αm. It is interesting to ask what quantity
has an absolute minimum. If we define the “elementary
conductivity” ι (“iota”) equivalent to the elementary vis-

cosity [16] as ι = αmm, Eq. (11), gives ι = ~
4π

(
m
me

) 1
2

.

ι has the absolute minimum, ιm, for H where m is the
proton mass mp:

ιm =
~

4π

(
mp

me

) 1
2

(14)

and is on the order of ~.
Eq. (14) interestingly involves the proton-to-electron

mass ratio, one of few dimensionless combinations of fun-
damental constants of importance in a variety of areas
[17]. Together with the fine structure constant, this ratio
has a particular importance from the point of view of gov-
erning nuclear reactions, synthesis in stars and creation of
planets and heavier elements including carbon. The bal-
ance between the two dimensionless constants provides
a narrow “habitable zone” where stars and planets can
form and life-supporting molecular structures can emerge
[17].

B. Comparison to the experimental data

We now compare our bounds to experiments. In Table
I we compare αm calculated according to (11) to the ex-
perimental αm [22] for all liquids shown in Fig. 1. The
ratio between experimental and predicted αm is in the
range of about 0.9− 4. The ratio is the largest for fluids
under high pressure (e.g. N2 at 500 MPa and Ar at 100
MPa) which our Eq. (11) does not account for as dis-
cussed below. For the lightest liquid, H2, experimental
αm is close to the theoretical fundamental thermal diffu-
sivity viscosity (13). We therefore find that (11) predicts
the right order of magnitude of αm.

We observe that α increases with pressure in Table I,
similarly to κ in Fig.1. However, the pressure dependence
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αthm = νthm αexpm νexpm νm/αm

Ar (20 MPa) 3.4 4.5 5.9 1.3

Ar (100 MPa) 3.4 9.3 7.7 0.8

Ne (50 MPa) 4.8 6.4 4.6 0.7

Ne (300 MPa) 4.8 11.9 6.5 0.6

He (20 MPa) 10.7 9.5 5.2 0.6

He (100 MPa) 10.7 17.9 7.5 0.4

Kr (30 MPa) 2.3 4.9 5.2 1.1

N2 (10 MPa) 4.1 4.0 6.5 1.6

N2 (500 MPa) 4.1 17.8 12.7 0.7

H2 (50 MPa) 15.2 22.8 16.3 0.7

H2 (100 MPa) 15.2 27.0 19.4 0.7

O2 (30 MPa) 3.8 5.6 7.4 1.3

H2O (70 MPa) 5.1 10.7 11.9 1.1

CO2 (30 MPa) 3.2 5.4 8.0 1.5

CO2 (90 MPa) 3.2 8.1 9.3 1.2

CH4 (20 MPa) 5.4 7.9 11.0 1.4

C2H6 (20 MPa) 3.9 7.0 12.0 1.7

CO (20 MPa) 4.1 12.0 7.7 0.6

TABLE I. Theoretical (th) and experimental (exp) values for
the thermal diffusivity αm and the kinematic viscosity νm at
the minima. All the quantities are displayed in units of ×108

m2/s except from the last ratio which is dimensionless.

is not accounted in αm in (11) since (11) is derived in
the approximation involving Eqs. (7)-(10) which do not
account for the pressure dependence of ωD and E.

We make three further remarks regarding the compar-
ison of theoretical and experimental results in Table I.
First, the important term in Eq. (11) includes the com-
bination of fundamental constants which sets the char-
acteristic scale of the lower bound of thermal diffusiv-
ity, whereas the numerical factor in (11) may be affected
by the approximations used as discussed earlier. Sec-
ond, Eqs. (7)-(9) assume valence electrons setting strong
bonding such as covalent and ionic. Thermal conduc-
tivity of these systems in the supercritical state is un-
available due to high critical points. The available data
[22] used in Fig. 1 and Table I include weakly-bonded
systems such as molecular, noble and hydrogen-bonded
fluids. Bonding in these systems is also electromagnetic
in origin, although weak van der Waals and dipole in-
teractions result in smaller E and, therefore, smaller α.
However, we note that the dependence of αm on bond-
ing type is weak because (a) αm in (10) contains the

factor Ea2 and (b) a is 2-4 times larger and E
1
2 is 3-10

times smaller in weakly-bonded as compared to strongly-
bonded systems [29]. As a result, the order-of-magnitude
evaluation (11) is unaffected as Table 1 shows. Third, Eq.
(11) for strongly-bonded nonmetallic (covalent and ionic)
fluids gives a prediction for future experimental work.

The lower bound setting αm in (11) is consistent with

the uncertainty principle. As discussed earlier, the min-
imum of α can be evaluated as αm = va = pa

m , where p
is particle momentum. Using the uncertainty relation
applied to a particle localised in the region set by a,
αm ≥ ~

m . ~
m is smaller than αm in (11) by the factor

F = 1
4π

(
m
me

) 1
2

. F ≈ 22 in Ar and becomes smaller for

lighter systems. Therefore, the minimum (13) provides a
stronger bound as compared to the uncertainty relation.

An important difference of our lower bound (11) and
bounds based on the uncertainty relations in earlier dis-
cussions [3–10] is that (11) corresponds to a true mini-
mum of thermal diffusivity as seen in Fig. 1 (in a sense
that the function has an extremum), whereas the uncer-
tainty relation compares a product (px or Et) to ~ but the
product does not necessarily correspond to a minimum
of a function and can apply to a monotonic function.

C. Energy and momentum diffusion

We now discuss the relationship between the minima
of α and the minima of kinematic viscosity ν, νm.

Interestingly, the question of viscosity minima was
raised before. Purcell observed [30] that “viscosities have
a big range but they stop at the same place.” In the ear-
lier work, we have ascertained the lower limit of kinematic
viscosity in terms of fundamental constants [16].

We plot the experimental α and ν for two noble and
two molecular liquids in Fig. 2 at the same pressure as
in Fig. 1. We observe the closeness of the minima of
both properties. This is unexpected and is surprising, in
view that the two properties are physically distinct and
are measured very differently. We compare αm and νm
below in detail.

There are interesting and important similarities and
differences between the two properties. The first anal-
ogy is that Eq. (1), which describes energy diffusion, is
analogous to that determining momentum diffusion if T
is replaced by the velocity field and α is replaced by ν.
Second, recall that the minimum of thermal conductivity
is due to v and l changing from the phonon speed and
phonon mean free path in the low-temperature liquid-like
regime to particle thermal speed and particle mean path
in the high-temperature gas-like regime. The minimum
of liquid viscosity is due to the crossover between the
exponential decrease of viscosity in the low-temperature
liquid-like regime η ∝ exp

(
U
T

)
to η ∝ ρvl in the high-

temperature gas-like regime, where U is the activation
barrier for diffusive particle rearrangements, v and l are
particle thermal speed and mean free path, respectively.
Therefore, the temperature dependence of the thermal
conductivity and the viscosity is the same in the gas-
like regime at high temperature but is different in the
liquid-like regime at low temperature. Third and finally,
the dominant contribution to thermal conductivity in the
low-temperature liquid-like regime is due to phonons as
in solids. In the high-temperature gas-like regime, ther-
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FIG. 2. Experimental α (solid lines) and ν (dashed lines) for
He (20 MPa), N2 (10 MPa), Ar (20 MPa) and CO2 (30 MPa)
[22].

mal conductivity is due to particle collisions. Viscosity,
on the other hand, is due to the dynamics of individual
particles and momentum they transfer in both liquid-like
and gas-like regimes. Therefore, thermal conductivity
and viscosity are set by the same process at high tem-
perature but by different processes at low. Consistent
with this picture, Fig. 2 shows that temperature behav-
ior of α and ν is more similar at high temperature as
compared to low.

Despite the above differences between α and ν, theo-
retical values at their minima are the same. Indeed, we
have previously shown [16] that the minima of ν, νm,
are given by Eq. (6), or Eq. (11) involving fundamental
physical constants, implying

νm = αm (15)

Therefore, the closeness between νm and αm is ex-
plained by observing that both α and ν at their minima
are governed by UV properties such as Bohr radius and
Debye frequency in Eq. (6).

We have calculated ν = η
ρ using the experimental val-

ues of viscosity η and density ρ [22] for all liquids at
the same pressure as thermal conductivity in Fig. 1 and
show the minima of ν, νm in the third column in Table I.
We observe that the experimental values of αm and νm
are close to each other. This agreement is also seen in
the last column of Table I where the ratio νm/αm is in
the range 0.4-1.7. We note that the temperatures of the
minima of αm and νm are somewhat different, neverthe-
less the closeness of αm and νm implies that the Prandtl
number, ν

α , is on the order of 1 at temperatures close to
the minima. This is seen in the last column of Table I.

The agreement between experimental αm and νm as
well as their agreement with the theoretical estimation
in the first column in Table I importantly reinforces our
analysis of the minima and adds to its consistency.

Our final comparison of the theoretical result and ex-
perimental data concerns the inverse square-root depen-
dence of αm and νm: according to Eqs. (11) and (15),
αm, νm ∝ 1√

m
. Fig. 3 shows the experimental αm and

νm of all systems in Table 1 at low pressure as a function
of the molecule mass, together with the solid line repre-
senting the theoretical result (11). We observe a trend
of both αm and νm reducing with molecular mass. We
also observe that nearly all experimental plots are above
the theoretical prediction of the lower bound. We note
that the inverse square-root dependence is expected for
strong electromagnetic interactions where energy and in-
teratomic distance do not depend on the ion mass. For
weak interactions, the energy depends on the size of the
atom or molecule [29]. This contributes to the scatter of
points in Fig. 3.

We note that the above discussion applies to systems
where the dominant contribution to thermal diffusivity is
related to the motion of ions rather than electrons (the
electron mass me enters Eq. (11) because me enters the
Bohr radius (7) and Rydberg energy (8). The minima of
α due to electrons will be discussed elsewhere. Here, we
note that thermal conductivity of both high-temperature
solid and liquid metals is typically in the range 10-100 W

mK
and 2-3 orders of magnitude higher than in insulators
[31] due to the electronic contribution (this is related to
smaller electron mass compared to ion mass.) Hence the
minimum discussed here applies to conducting systems
too.

D. Minima on the phase diagram

αm provides a useful guidance for the minimal value
of thermal diffusivity achieved for a given material. This
can be important, for example, in the area of thermal
insulation. Small values of thermal conductivity are also
important in other areas such as enhancing the thermo-
electric effect. As already noted, the exceptionally low
thermal conductivity reported in Ref. [28] for the solid
with high thermoelectric figure is still larger than the
minima of κ in Fig. 1a.

It is interesting to ask whether the minima of νm and
αm discussed for the liquid and supercritical states apply
to other parts of the phase diagram. In solids, α = vl
in Eq. (4) is larger because (a) the speed of sound v is
faster and (b) the mean free path l is larger than that in
liquids and is typically larger than a at the UV cutoff.
It can be seen that vl similarly increases in gases if we
recall that the minima at the UV cutoff approximately
correspond to the Frenkel line [19, 26, 27]. The speed
of sound is approximately equal to the thermal speed of
particles at the line and increases above the line in the
gas-like state as thermal velocity ∝

√
T . l becomes the
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FIG. 3. Points show experimental αm (top) and νm (bot-
tom) as a function of molecular mass. The solid line is the
prediction of Eq. (11).

particle mean free path above the line in the gas-like state
and similarly increases with temperature. Hence, α = vl
increases in gases, and the minimum of α, αm at the UV
cutoff, applies to all three states of matter.

The minima αm and νm behave differently in close
proximity to the critical point. Indeed, viscosity diverges
at the critical point [32], and νm increases close to the
critical point. Therefore, νm gives the global minimum
on the entire phase diagram. On the other hand, isobaric
heat capacity diverges much faster than κ [33], and α at
the critical point tends to zero as a result. Therefore, αm
gives the minimum on the phase diagram except in the
vicinity of the critical point.

III. CONCLUSIONS

In summary, we have shown that thermal diffusivity
of liquids and supercritical fluids has a lower bound
which is fixed by fundamental physical constants for
each fluid. The newly introduced elementary thermal
diffusivity has an absolute lower bound dependent
on ~ and the proton-to-electron mass ratio only. We
have also shown that (a) the lower bound of thermal
diffusivity theoretically coincides with the lower bound
of kinematic viscosity and (b) the ratio between experi-
mental minima of the two properties is close to 1. This
finding implies a universal lower bound for two distinct
properties, energy and momentum diffusion which, to
the best of our knowledge, has not been discussed before.
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