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Abstract

For integers n > 2 and k > 0, an (n×n)/k semi-Latin square is an
n × n array of k-subsets (called blocks) of an nk-set (of treatments),
such that each treatment occurs once in each row and once in each
column of the array. A semi-Latin square is uniform if every pair of
blocks, not in the same row or column, intersect in the same positive
number of treatments. It is known that a uniform (n×n)/k semi-Latin
square is Schur optimal in the class of all (n×n)/k semi-Latin squares,
and here we show that when a uniform (n × n)/k semi-Latin square
exists, the Schur optimal (n × n)/k semi-Latin squares are precisely
the uniform ones. We then compare uniform semi-Latin squares using
the criterion of pairwise-variance (PV) aberration, introduced by J. P.
Morgan for affine resolvable designs, and determine the uniform (n ×
n)/k semi-Latin squares with minimum PV aberration when there exist
n − 1 mutually orthogonal Latin squares of order n. These do not
exist when n = 6, and the smallest uniform semi-Latin squares in
this case have size (6 × 6)/10. We present a complete classification
of the uniform (6 × 6)/10 semi-Latin squares, and display the one
with least PV aberration. We give a construction producing a uniform
((n+ 1)× (n+ 1))/((n−2)n) semi-Latin square when there exist n−1
mutually orthogonal Latin squares of order n, and determine the PV
aberration of such a uniform semi-Latin square. Finally, we describe
how certain affine resolvable designs and balanced incomplete-block
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designs can be constructed from uniform semi-Latin squares. From
the uniform (6× 6)/10 semi-Latin squares we classified, we obtain (up
to block design isomorphism) exactly 16875 affine resolvable designs for
72 treatments in 36 blocks of size 12 and 8615 balanced incomplete-
block designs for 36 treatments in 84 blocks of size 6. In particular, this
shows that there are at least 16875 pairwise non-isomorphic orthogonal
arrays OA(72, 6, 6, 2).

Keywords: Design optimality; Block design; Schur optimality; Affine
resolvable design; Balanced incomplete-block design; Orthogonal array

MSC 2020 Codes: 62K05, 62K10 (Primary); 05B05, 05B15 (Sec-
ondary)

1 Introduction

For integers n > 2 and k > 0, an (n × n)/k semi-Latin square is an n × n
array of k-subsets (called blocks) of an nk-set (of treatments), such that
each treatment occurs once in each row and once in each column of the
array. Note that an (n × n)/1 semi-Latin square is the same thing as a
Latin square of order n. We consider two (n × n)/k semi-Latin squares
to be isomorphic if one can be obtained from the other by applying an
isomorphism, which is a sequence of zero or more of: permuting the rows,
permuting the columns, transposing the array, and renaming the treatments.
An automorphism of a semi-Latin square S is an isomorphism mapping S
onto itself. The applications of semi-Latin squares include the design of
agricultural experiments, consumer testing, and via their duals, human-
machine interaction (see Bailey (1992, 2011)).

A (v, b, r, k)-design is a binary block design for v treatments in b blocks
of size k (considered as k-subsets of the set of treatments), such that each
treatment is in exactly r blocks. If we ignore the block structure of an
(n×n)/k semi-Latin square S then we obtain an (nk, n2, n, k)-design called
the underlying block design of S. A (v, b, r, k)-design with k < v and r > 1
is resolvable if its collection of blocks can be partitioned into r partitions of
the treatments (called parallel classes), and such a resolvable design is affine
resolvable if every pair of blocks in distinct parallel classes intersect in the
same positive number µ of treatments. A (v, b, r, k)-design is a (v, b, r, k, λ)-
balanced incomplete-block design (BIBD) if 1 < k < v and every pair of dis-
tinct treatments occur together in exactly λ blocks. Two (v, b, r, k)-designs
are isomorphic (as block designs) if there is a bijection from the treatments
of the first to those of the second which maps the list of blocks of the first
onto that of the second in some order. Such a bijection is called a (block
design) isomorphism, and an automorphism of a (v, b, r, k)-design is an iso-
morphism from that block design to itself.
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An orthogonal array of strength t with N rows, r columns (r ≥ t), and
based on s symbols (s ≥ 2), here taken to be 1, 2, . . . s, or an orthogonal
array OA(N, r, s, t), is an N × r array whose entries are symbols, such that
for every N × t subarray, each of the possible st t-tuples of symbols occurs
as a row equally often (which must be N/st times). As Hedayat et al.
(1999) point out, there are many trivial constructions of orthogonal arrays
of strength one, so we ignore this case. Two orthogonal arrays OA(N, r, s, t)
are isomorphic if one can be obtained from the other by permuting the rows,
permuting the columns, and permuting the symbols separately within each
column. It is known that orthogonal arrays of strength 2 and affine resolvable
designs are equivalent combinatorial objects. In particular, Bailey et al.
(1995) describe how to construct an equivalent OA(v, r, s, 2) from an affine
resolvable (v, b, r, v/s)-design (see also Morgan (2010)), such that two affine
resolvable (v, b, r, v/s)-designs are isomorphic if and only if their equivalent
orthogonal arrays are isomorphic. We remark that affine resolvable designs
were introduced by Bose (1942) (in the context of BIBDs), and orthogonal
arrays were introduced by Rao (1947).

An (n×n)/k semi-Latin square S is uniform if every pair of blocks, not
in the same row or column, intersect in the same positive number µ = µ(S)
of treatments (in which case k = µ(n− 1)). For example, here is a (3× 3)/4
uniform semi-Latin square with µ = 2:

1 4 7 10 2 5 8 11 3 6 9 12

3 6 8 11 1 4 9 12 2 5 7 10

2 5 9 12 3 6 7 10 1 4 8 11

(1)

Uniform semi-Latin squares were introduced, constructed, and studied
by Soicher (2012), where it was shown that a uniform (n× n)/k semi-Latin
square is Schur optimal (defined later) in the class of all (n×n)/k semi-Latin
squares.

In this paper, we further the study of uniform semi-Latin squares. We
show that, if a uniform (n × n)/k semi-Latin square exists, then the Schur
optimal (n× n)/k semi-Latin squares are precisely the uniform ones.

We then compare uniform (n× n)/k semi-Latin squares using the crite-
rion of pairwise-variance (PV) aberration, introduced by Morgan (2010) for
affine resolvable designs, and determine the uniform (n × n)/k semi-Latin
squares with minimum PV aberration when there exist n − 1 mutually or-
thogonal Latin squares (MOLS) of order n. These do not exist when n = 6,
and the smallest uniform semi-Latin squares in this case have size (6×6)/10.
We describe a complete classification of the uniform (6 × 6)/10 semi-Latin
squares, and find that, up to isomorphism, there are exactly 8615 such de-
signs. We compare their PV aberrations, and display the one with least PV
aberration.
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We give a construction producing a uniform ((n+1)×(n+1))/((n−2)n)
semi-Latin square when there exist n− 1 MOLS of order n, and determine
the PV aberration of such a uniform semi-Latin square.

Finally, we describe how a uniform (n×n)/(µ(n−1)) semi-Latin square
can be used to construct two (possibly isomorphic) affine resolvable (µn2, n2, n, µn)-
designs and an (n2, µn(n+ 1), µ(n+ 1), n, µ)-BIBD. From the uniform (6×
6)/10 semi-Latin squares we classified, we obtain (up to block design iso-
morphism) exactly 16875 affine resolvable (72, 36, 6, 12)-designs and 8615
(36, 84, 14, 6, 2)-BIBDs. In particular, this shows that there are at least
16875 pairwise non-isomorphic orthogonal arrarys OA(72, 6, 6, 2).

2 Schur optimality

Let ∆ be a (v, b, r, k)-design. The concurrence matrix Λ of ∆ is the v × v
matrix whose rows and columns are indexed by the treatments of ∆, and
whose (α, β)-entry is the number of blocks containing both α and β (this
entry is the concurrence of treatments α and β).

The scaled information matrix of ∆ is

F (∆) := Iv − (rk)−1Λ,

where Iv denotes the v × v identity matrix. The eigenvalues of F (∆) are
all real and lie in the interval [0, 1]. The all-1 vector is an eigenvector of
F (∆) with corresponding eigenvalue 0. The remaining eigenvalues (counting
repeats) are called the canonical efficiency factors of ∆. It is well known
that these canonical efficiency factors are all non-zero if and only if ∆ is
connected (that is, its treatment-block incidence graph is connected), and
they are all equal to 1 if and only if k = v.

Now suppose that ∆ has canonical efficiency factors δ1 ≤ · · · ≤ δv−1. We
say that ∆ is Schur optimal in a class C of (v, b, r, k)-designs containing ∆
if for each design Γ ∈ C, with canonical efficiency factors γ1 ≤ · · · ≤ γv−1,
we have ∑̀

i=1

δi ≥
∑̀
i=1

γi,

for ` = 1, . . . , v − 1. A Schur optimal design need not exist within a given
class C, but, when it does, that design is optimal in C with respect to a very
wide range of statistical optimality criteria, including being Φp-optimal, for
all p ∈ (0,∞), and also A-, D-, and E-optimal (see Giovagnoli and Wynn
(1981); see also Bailey and Cameron (2009) or Shah and Sinha (1989) for
definitions of these optimality criteria).

As recommmended by Bailey (1992), for the purposes of statistical opti-
mality, we compare (n×n)/k semi-Latin squares as their underlying (nk, n2, n, k)-
designs. Thus, we take the canonical efficiency factors of a semi-Latin square
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to be those of its underlying block design, and to say that an (n×n)/k semi-
Latin square S is Schur optimal means that its underlying block design is
Schur optimal in the class of underlying block designs of (n×n)/k semi-Latin
squares.

The dual of the (v, b, r, k)-design ∆ is the (b, v, k, r)-design ∆′ obtained
by interchanging the roles of treatments and blocks, so the point-block inci-
dence matrix of ∆′ is the transpose of that of ∆. As the canonical efficiency
factors of ∆′ differ from those of ∆ only in the number of times 1 occurs, it
follows that ∆ is Schur optimal in a class C of (v, b, r, k)-designs if and only if
∆′ is Schur optimal in the class of the duals of the elements of C (see Bailey
and Cameron (2009)). We take the treatments of the dual S′ of an (n×n)/k
semi-Latin square S to be the Cartesian product {1, . . . , n}×{1, . . . , n}, with
treatment (i, j) corresponding to the (i, j)-cell of S, and then, for each treat-
ment α of S, the corresponding block in S′ is the set of those (i, j) such that
α is in the (i, j)-cell of S. In particular, S′ is an (n2, nk, k, n)-design. See
Bailey (2011) for more on duals of semi-Latin squares, including applica-
tions. Also relevant are parts of Suen (1982) and Suen and Chakravarti
(1986).

Bailey et al. (1995) studied and constructed affine resolvable designs and
proved:

Theorem 1. Let ∆ be an affine resolvable (v, b, r, k)-design with r > 2, and
let s = v/k > 1. Then:

1. the canonical efficiency factors of ∆ are 1 − 1/r, with multiplicity
r(s− 1), and 1, with multiplicity v − 1− r(s− 1);

2. the affine resolvable (v, b, r, k)-designs are precisely the Schur optimal
designs in the class of all resolvable (v, b, r, k)-designs.

We prove the following analogous result for uniform semi-Latin squares:

Theorem 2. Let n > 2 and let S be a uniform (n×n)/k semi-Latin square.
Then:

1. the canonical efficiency factors of S are 1−1/(n−1), with multiplicity
(n− 1)2, and 1, with multiplicity nk − 1− (n− 1)2;

2. the uniform (n× n)/k semi-Latin squares are precisely the Schur op-
timal designs in the class of all (n× n)/k semi-Latin squares.

Proof. Soicher (2012) determined the canonical efficiency factors of S and
its Schur optimality. Here, we complete the proof of the theorem.

Let T be any Schur optimal (n × n)/k semi-Latin square and let T ′ be
the dual of T . We shall show that the concurrence matrix A′ of S′ is equal
to the concurrence matrix B′ of T ′, showing that T is uniform.
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The canonical efficiency factors of S′ are 1− 1/(n− 1), with multiplicity
(n− 1)2 and 1, with multiplicity 2n− 2. Now the argument in the proof of
Theorem 3.4 of Soicher (2012) shows that the 0-eigenspace of A′ is contained
in the 0-eigenspace of B′, so in particular T ′ has at least 2n − 2 canonical
efficiency factors equal to 1. Then, since the sum of the canonical efficiency
factors is the same for S′ and T ′, the Schur optimality of both S′ and T ′

implies that T ′ must have precisely 2n− 2 canonical efficiency factors equal
to 1, and the remaining ones equal to 1− 1/(n− 1).

We now know that A′ and B′ have the same nk-eigenspace (spanned
by the all-1 vector), as well as the same 0-eigenspace. It follows that the
orthogonal complement of the direct sum of these two eigenspaces must
be the eigenspace for the remaining eigenvalue of both A′ and B′. Thus
A′e = B′e as e runs over a basis of Rn2

(consisting of common eigenvectors),
and so A′ = B′.

Now concurrence in S′ and T ′ is block intersection size in S and T ,
respectively, and so S uniform implies T uniform.

Caliński (1971) emphasised the importance of block designs with just
two distinct canonical efficiency factors, one of which is 1. As a result,
some authors call this the C-property, and call such designs C-designs: for
example, see Saha (1976) and Ceranka et al. (1986).

3 Pairwise-variance aberration

Now, given a collection S of Schur optimal designs in a given class C of
(v, b, r, k)-designs, we want a criterion to choose between them. For affine re-
solvable designs, Morgan (2010) proposed choosing a design with minimum
pairwise-variance (PV) aberration, a combinatorial criterion which trans-
lates to a statistical one when the Schur optimal (v, b, r, k)-designs under
consideration are all connected and all have the same two distinct canonical
efficiency factors (and no others).

Definition 1. Let ∆ be a (v, b, r, k)-design. Define

η(∆) := (η0(∆), . . . , ηr(∆)),

where ηi(∆) is the number of unordered pairs of distinct treatments of ∆
with concurrence equal to i. If ∆ is connected and has at most two distinct
canonical efficiency factors, then η(∆) is called the pairwise-variance (or
PV) aberration of ∆. Where ∆ and Γ are connected (v, b, r, k)-designs having
the same two distinct canonical efficiency factors, the design ∆ is considered
to have smaller PV aberration than Γ if η(∆) is lexicograhically less than
η(Γ).
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Now the underlying (nk, n2, n, k)-design of a uniform (n × n)/k semi-
Latin square is connected (since n > 2) and has exactly two distinct canon-
ical efficiency factors, 1− 1/(n− 1) and 1. We thus make the following:

Definition 2. For S a semi-Latin square with underlying block design ∆,
we define η(S) and ηi(S) to be η(∆) and ηi(∆), respectively, and if S is
uniform then we call η(S) the PV aberration of S. Where S and T are
uniform (n× n)/k semi-Latin squares then S is considered to have smaller
PV aberration than T if η(S) is lexicograhically less than η(T ).

These definitions are justified by the following result, which is a corollary
of Theorem 1 of Bailey (2009).

Theorem 3. Let ∆ be a connected (v, b, r, k)-design having at most two
distinct canonical efficiency factors. Then the variance of the estimator of
the difference of the effects of distinct treatments α and β is a function
depending only on r, k, the canonical efficiency factors, and the concurrence
of α and β. Moreover, as a function of the concurrence of α and β this
function is strictly decreasing.

Thus, by minimising PV aberration in an appropriate class of designs,
we are not only minimising the maximum pairwise-variance, but, for those
designs in the class with the same maximum pairwise-variance, we are min-
imising the number of pairs of distinct treatments having that maximum
pairwise-variance, and when these numbers are the same, we are minimising
the number of pairs with the next largest pairwise-variance, and so on.

Morgan (2010) studied affine resolvable designs with minimum PV aber-
ration, and placed an extensive catalogue of these online at
http://designtheory.org/database/v-r-k-ARD-MV/.

We remark that when a (v, b, r, k, λ)-BIBD exists, with b > v, it may be
of interest to determine the duals of (v, b, r, k, λ)-BIBDs with minimum PV
aberration, and for this, the block intersection size distribution of (v, b, r, k, λ)-
BIBDs would need to be studied.

We next present a general result providing designs with minimum PV
aberration in certain circumstances, but first we need a definition. For s
a positive integer, an s-fold inflation of a (v, b, r, k)-design or an (n × n)/k
semi-Latin square is obtained by replacing each treatment α by s treatments
σα,1, . . . , σα,s, such that σα,i = σβ,j if and only if α = β and i = j. In
particular, an s-fold inflation of a (v, b, r, k)-design is an (sv, b, r, sk)-design
and an s-fold inflation of an (n× n)/k semi-Latin square is an (n× n)/(sk)
semi-Latin square.

Theorem 4. Suppose that ∆ is a (v, b, r, k)-design, with r > 1, such that
every pair of distinct non-disjoint blocks meet in a positive constant number
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µ of treatments. Then

η0(∆) ≥ v(v − k − (r − 1)(k − µ))/2, (2)

with equality holding if and only if

η(∆) = (v(v − k − (r− 1)(k − µ))/2, vr(k − µ)/2, 0, . . . , 0, v(µ− 1)/2), (3)

which happens if and only if ∆ is a µ-fold inflation of a (v/µ, b, r, k/µ)-
design with the property that every pair of distinct non-disjoint blocks meet
in just one treatment.

Proof. Let α be any treatment of ∆, and let B1, . . . , Br be the blocks con-
taining α (in some fixed, but arbitrary, order). We have that |Bi ∩Bj | = µ
for 1 ≤ i < j ≤ r.

Now let di be the number of treatments in Bi that are not in any of
B1, . . . , Bi−1. Then α is concurrent with exactly d :=

∑r
i=1 di distinct treat-

ments (including α itself). Now d1 = k, d2 = k − µ, and for i = 3, . . . , r,
di ≤ k−µ, with equality if and only if B1, . . . , Bi meet pairwise in exactly the
same µ treatments. Thus α has concurrence 0 with v−d ≥ v−k−(r−1)(k−µ)
treatments, with equality if and only if B1, . . . , Br meet pairwise in exactly
the same µ treatments.

From the preceding argument, we have that the inequality (2) holds, and
that if equality holds then every treatment must have concurrence 0 with
v − k − (r − 1)(k − µ) treatments, concurrence 1 with r(k − µ) treatments,
and concurrence r with the remaining µ− 1 treatments other than itself, in
which case (3) holds.

Now suppose that (3) holds, and define a relation ∼ on the set of treat-
ments by α ∼ β if and only if α and β have concurrence r. Then ∼ is easily
seen to be an equivalence relation, with each equivalence class having ex-
actly µ elements. Choose equivalence class representatives α1, . . . , αv/µ, and
form the design Γ having these representatives as treatments and blocks
B ∩ {α1, . . . , αv/µ}, where B runs over the blocks of ∆. Then Γ is a
(v/µ, b, r, k/µ)-design such that every pair of distinct non-disjoint blocks
meet in just one treatment, and ∆ is a µ-fold inflation of Γ.

Now if ∆ is a µ-fold inflation of a (v/µ, b, r, k/µ)-design with the prop-
erty that that every pair of distinct non-disjoint blocks meet in just one
treatment, then for each treatment α of ∆, the blocks of ∆ containing α
meet in the same µ treatments, and it follows that equality holds in (2).

We shall apply the preceding theorem to uniform semi-Latin squares.
The superposition of an (n×n)/k semi-Latin square with an (n×n)/` semi-
Latin square (with disjoint sets of treatments) is made by superimposing
the first square upon the second, resulting in an (n× n)/(k + `) semi-Latin
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square. For example, the uniform (3 × 3)/4 semi-Latin square (1) is a 2-
fold inflation of a superposition of two MOLS of order 3. Indeed, it is easy
to see that when n > 2 and there exist n − 1 MOLS of order n that the
superposition T of these n − 1 MOLS is a uniform (n × n)/(n − 1) semi-
Latin square, and so, for every positive integer µ, a µ-fold inflation of T is
a uniform (n× n)/(µ(n− 1)) semi-Latin square (see Soicher (2012)).

Theorem 5. Suppose that S is a uniform (n×n)/k semi-Latin square, with
µ := µ(S). Then

η0(S) ≥ nk2/2,

and the following are equivalent:

1. η0(S) = nk2/2;

2. η(S) = (nk2/2, n2k(k − µ)/2, 0, . . . , 0, nk(µ− 1)/2);

3. S is a µ-fold inflation of a superposition of n− 1 MOLS of order n;

4. n − 1 MOLS of order n exist and S has minimum PV aberration in
the class of uniform (n× n)/k semi-Latin squares.

Proof. The underlying block design of S is an (nk, n2, n, k)-design in which
every pair of distinct non-disjoint blocks meet in exactly µ = k/(n − 1)
treatments. Thus, by Theorem 4, we have that η0(S) ≥ nk(nk − k − (n −
1)(k − k/(n− 1)))/2 = nk2/2.

Now we prove the equivalence of statements 1 to 4.

(1⇒ 2) This follows from Theorem 4.

(2⇒ 3) Assume that statement 2 holds. It follows from Theorem 4 that
S must be a µ-fold inflation of a uniform (n× n)/(n− 1) semi-Latin square
T , and, by Theorem 3.3 of Soicher (2012), T is a superposition of n − 1
MOLS of order n.

(3 ⇒ 4) Now assume that S is a µ-fold inflation of a superposition
of n − 1 MOLS of order n. In particular, n − 1 MOLS of order n exist.
Now η0(S) = nk2/2, so if U is any uniform (n × n)/k semi-Latin square
then η0(U) ≥ η0(S), with equality if and only if η(U) = η(S). Thus S
has minimum PV aberration in the class of uniform (n × n)/k semi-Latin
squares.

(4 ⇒ 1) Finally, assume that n − 1 MOLS of order n exist, and that
N is a µ-fold inflation of the superposition of these n − 1 MOLS. Then
N is a uniform (n × n)/k semi-Latin square. Now if S has minimum PV
aberration in the class of uniform (n × n)/k semi-Latin squares, we must
have η0(S) ≤ η0(N) = nk2/2, but since η0(S) ≥ nk2/2, we must have
equality.
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Corollary 6. Let n > 2 and assume that there exist n−1 MOLS of order n.
Then for every positive integer µ, the uniform (n×n)/(µ(n−1)) semi-Latin
squares with minimum PV aberration are precisely the µ-fold inflations of
the superpositions of n− 1 MOLS of order n.

When the integer n > 2 is a prime-power, a well-known construction
of Bose (1938) gives n − 1 MOLS of order n, and so a µ-fold inflation of
the superposition of these n − 1 MOLS yields a uniform (and hence Schur
optimal) (n×n)/(µ(n−1)) semi-Latin square with minimum PV aberration
in the class of all Schur optimal (and hence by Theorem 2 uniform) (n ×
n)/(µ(n− 1)) semi-Latin squares.

For example, the (5 × 5)/12 uniform semi-Latin squares were classified
by Soicher (2013a). Up to isomorphism, there are exactly 277 such semi-
Latin squares, and we calculated their PV aberrations. The least such PV
aberration is

(360, 1350, 0, 0, 0, 60),

coming from a 3-fold inflation of the superposition of four MOLS of order 5.
The next best PV aberration is

(488, 1062, 128, 64, 0, 28),

and the worst is
(720, 450, 600, 0, 0, 0).

This shows that when searching for designs with minimum, or near mini-
mum, PV aberration, one cannot restrict the search to designs having con-
currences differing by as little as possible. This is contrary to the usual
thinking for eigenvalue-based optimality criteria, as discussed in John and
Mitchell (1977) and in Section 2.5 of John and Williams (1995).

4 The uniform (6× 6)/10 semi-Latin squares

Let n > 2. If n is a prime power, we can use n − 1 MOLS of order n to
construct a uniform (n×n)/(µ(n−1)) semi-Latin square with minimum PV
aberration, for all µ ≥ 1. This focuses attention on the case n = 6. There
does not exist a uniform (6× 6)/5 semi-Latin square, since, by Theorem 3.3
of Soicher (2012), such a square would be a superposition of five MOLS of
order 6, and even just two MOLS of order 6 do not exist. On the other hand,
in Section 5 of Soicher (2012), uniform (6× 6)/(5µ) semi-Latin squares are
constructed for all µ ≥ 2.

In this section, we describe a complete classification of the uniform (6×
6)/10 semi-Latin squares, and display the one amongst these having least
PV aberration. The computations described took place on a desktop PC
with 16GB RAM and an Intel(R) i7-6700 CPU running at 3.4GHz.

10



Consider now the Hamming graph H(2, n). This graph has vertex-set
{1, . . . , n} × {1, . . . , n}, with distinct vertices (i, j) and (i′, j′) joined by an
edge if and only if i = i′ or j = j′. We observe that a block design ∆ is the
dual of a uniform (n× n)/(µ(n− 1)) semi-Latin square if and only if:

• the treatments of ∆ are the vertices of H(2, n);

• each block of ∆ is a co-clique (independent set) of size n of H(2, n)
(and has multiplicity at most µ in ∆);

• the concurrence of distinct treatments α, β of ∆ is 0 or µ, according
as {α, β} is an edge or non-edge of H(2, n).

Note that, in particular, these conditions imply that every treatment of ∆
is in exactly µ(n− 1) blocks.

The (graph) automorphism group Aut(H(2, n)) of H(2, n) is the wreath
product Sn o C2, which is generated by the direct product D := Sn × Sn of
two copies of the symmetric group on {1, . . . , n} and an element τ satisfying
τ2 = 1 and τ(g, h) = (h, g)τ for all (g, h) ∈ D. If (i, j) is a vertex of H(2, n)
then the image of (i, j) under (g, h) ∈ D is (ig, jh) and the image of (i, j)
under τ is (j, i).

Now suppose that S is a uniform (n× n)/(µ(n− 1)) semi-Latin square,
and ξ ∈ Aut(H(2, n)). Then the image of the dual S′ of S under ξ is the
block design whose treatments are the ξ-images of the treatments of S′ and
whose blocks are obtained by applying ξ to every treatment in every block
of S′. This image is the dual of a uniform (n × n)/(µ(n − 1)) semi-Latin
square. Now let T be any uniform (n×n)/(µ(n−1)) semi-Latin square. By
Theorem 3 of Soicher (2013b), we have that S and T are isomorphic as semi-
Latin squares if and only if there is an element of Aut(H(2, n)) mapping the
dual S′ of S to the dual T ′ of T . Moreover, due to the structure of both S′

and T ′ as duals of uniform semi-Latin squares, any block design isomorphism
from S′ to T ′ must be a graph automorphism of H(2, n), and so we have
that S and T are isomorphic as semi-Latin squares if and only if S′ and T ′

are isomorphic as block designs.

We classify the uniform (6 × 6)/10 semi-Latin squares via backtrack
searches (see, for example, Section 6.2 of Gibbons and Österg̊ard (2007),
for an introduction to using backtrack search for the enumeration of block
designs). Our searches are for the block multisets of the duals of the uni-
form semi-Latin squares we seek to classify. We represent a block multi-
set as a set of (block,multiplicity)-pairs, where the blocks in these pairs
are distinct and the associated multiplicity of a block gives the number of
times that block occurs in the block multiset. Our backtrack searches work
(block,multiplicity)-pair by (block,multiplicity)-pair.

We define a partial solution to be a set of (block,multiplicity)-pairs,
such that the blocks are distinct co-cliques of size 6 of H(2, 6), the (block)
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multiplicities are 1 or 2, and no non-edge of H(2, 6) is contained in more
than two blocks (counting multiplicities). A solution is a partial solution for
which every non-edge of H(2, 6) is contained in exactly two blocks (counting
multiplicities). Hence, the solutions are precisely the block multisets of the
duals of the uniform (6× 6)/10 semi-Latin squares.

We first programmed a partial backtrack search exploiting the automor-
phism group of H(2, 6), using the GAP system (The GAP Group, 2020)
and adapting code from its DESIGN (Soicher, 2019a) and GRAPE (Soicher,
2019b) packages. This search was used to generate a sequence

(P1, A1), (P2, A2), . . . , (Pt, At),

where each Pi is a partial solution and its corresponding Ai is a set of
(block,multiplicity)-pairs, such that no block of Ai is a block of Pi, and the
following hold:

• each isomorphism class of duals of uniform (6 × 6)/10 semi-Latin
squares has at least one representative whose block multiset is a so-
lution consisting of some Pi extended by elements belonging to the
corresponding Ai;

• each Pi (considered as a multiset of independent sets of H(2, 6)) has
trivial stabiliser in Aut(H(2, 6)).

For our program, it turned out that t = 2214, and the search ran in under
four minutes.

Then, for each pair (Pi, Ai), we used a newly developed C program to
perform a backtrack search to determine all the solutions which are exten-
sions of Pi by elements from Ai. The total run time for this step was about
eight and a half hours, or on average, about 14 seconds for each i.

Finally, we took all the (1340930 as it turned out) solutions found by
the C program backtrack searches and determined isomorphism class rep-
resentatives amongst all the duals of uniform (6× 6)/10 semi-Latin squares
having those solutions as their block multisets. We did this using the DE-
SIGN package making heavy use of the bliss program (Junttila and Kaski,
2007) via GRAPE. The run time for this step was a little over five hours.

We found that, up to isomorphism, there are exactly 8615 uniform
(6× 6)/10 semi-Latin squares. These semi-Latin squares, their PV aberra-
tions, and their duals are available from http://www.maths.qmul.ac.uk/

~lsoicher/usls/. There is a unique (up to isomorphism) uniform (6×6)/10
semi-Latin square M with least PV aberration, which is

(532, 906, 294, 30, 6, 0, 2).

We present this M in Figure 1. The automorphism group of the dual of M
has order 12, but the automorphism group of M has order 48, since there
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1 2 3 4 5 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45 51 52 53 54 55
6 7 8 9 10 16 17 18 19 20 26 27 28 29 30 36 37 38 39 40 46 47 48 49 50 56 57 58 59 60

11 12 21 22 31 1 2 23 24 33 3 4 13 14 35 5 6 15 16 25 7 8 17 18 27 9 10 19 20 29
32 41 42 51 52 34 43 44 53 54 36 45 46 55 56 26 47 48 57 58 28 37 38 59 60 30 39 40 49 50

17 19 25 27 35 7 9 21 22 36 1 2 15 20 31 3 10 13 18 23 4 5 11 16 29 6 8 12 14 24
39 43 45 53 57 40 47 48 55 59 37 41 49 58 60 28 44 50 51 52 30 32 33 54 56 26 34 38 42 46

14 15 24 28 37 3 5 26 27 32 8 9 11 19 33 1 2 12 17 29 6 10 13 20 21 4 7 16 18 23
40 47 50 54 56 39 46 49 51 60 38 44 48 52 57 30 42 45 55 59 22 34 35 53 58 25 31 36 41 43

13 16 23 29 34 4 8 28 30 31 6 10 12 18 32 7 9 11 20 24 1 2 14 19 25 3 5 15 17 21
38 48 49 55 60 35 42 50 57 58 39 43 47 54 59 27 41 46 53 56 26 36 40 51 52 22 33 37 44 45

18 20 26 30 33 6 10 25 29 37 5 7 16 17 34 4 8 14 19 21 3 9 12 15 23 1 2 11 13 27
36 44 46 58 59 38 41 45 52 56 40 42 50 51 53 22 43 49 54 60 24 31 39 55 57 28 32 35 47 48

Figure 1: Uniform (6× 6)/10 semi-Latin square with least PV aberration

are automorphisms of M fixing every cell, but interchanging the treatments
in one or both of the pairs of treatments with concurrence 6. We note that
η0(M) = 532, which is well off the lower bound of 300 given by Theorem 5.

The next best PV aberration of a uniform (6× 6)/10 semi-Latin square
is

(532, 912, 276, 48, 0, 0, 2),

and the worst is
(600, 720, 450, 0, 0, 0, 0).

Using the DESIGN package, we found that no dual of a uniform (6×6)/10
semi-Latin square is resolvable. Equivalently, no uniform (6 × 6)/10 semi-
Latin square is a superposition of Latin squares, which answers a question
raised by Soicher (2013a).

We have checked that the results of our computations are consistent
with some previous partial classifications of uniform (6 × 6)/10 semi-Latin
squares done by the authors using the DESIGN package. These include
finding that (up to isomorphism) there are exactly 5828 uniform (6× 6)/10
semi-Latin squares whose dual has a non-trivial automorphism, exactly 7
uniform (6× 6)/10 semi-Latin squares having at least two treatments with
concurrence 6, and (see Soicher (2013a)) exactly 98 uniform (6×6)/10 semi-
Latin squares having no concurrence greater than 2. We have also checked
that our programs agree with Soicher (2013a) that, up to isomorphism, there
are exactly 10 uniform (5×5)/8 semi-Latin squares and exactly 277 uniform
(5× 5)/12 semi-Latin squares.
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5 A new construction of uniform semi-Latin squares

Suppose that n > 2 and there exist n−1 mutually orthogonal Latin squares
Λ1, . . . , Λn−1 of order n with disjoint sets of symbols L1, . . . , Ln−1. We
present a construction of an ((n + 1) × (n + 1))/(µn) uniform semi-Latin
square with µ = n− 2, which generalises the uniform (6× 6)/15 semi-Latin
square used in the proof of Theorem 5.1 of Soicher (2012).

For i = 1, . . . , n − 2 and j = 1,. . . , n, put Lij = {(α, j) : α ∈ Li}. Put
L̄i = Li1 ∪ · · · ∪ Lin. Create an n-fold inflation Λ̄i of Λi using the symbols
in L̄i.

Put L̄n−1 = Ln−1 × {1, . . . , n − 2}, and create an (n − 2)-fold inflation
Λ̄n−1 of Λn−1 using the symbols in L̄n−1.

Superpose Λ̄1, . . . , Λ̄n−1 to give an (n×n)/` semi-Latin square S, where
` = (n− 2)n+ n− 2 = (n− 2)(n+ 1).

Add an extra row and an extra column to this. For i = 1, . . . , n, j = 1,
. . . , n and t = 1, . . . , n − 2, each cell (i, j) contains a unique symbol from
Ltj : remove this from cell (i, j) and insert it in cells (i, n+ 1) and (n+ 1, j).
Put all the symbols in L̄n−1 into cell (n+ 1, n+ 1).

Now we have an array S̄ of size ((n+1)×(n+1))/k where k = `−(n−2) =
n(n− 2) =

∣∣L̄n−1∣∣. Every symbol in L̄1 ∪ · · · ∪ L̄n−2 ∪ L̄n−1 occurs precisely
once in each row and once in each column, so S̄ is a semi-Latin square.

For 1 ≤ i, j ≤ n, cell (i, j) contains symbols (α, 1), . . . , (α, n − 2) for
a single symbol α in Ln−1: thus it has n − 2 symbols in common with cell
(n+ 1, n+ 1).

Suppose that i 6= i′ and j 6= j′ with i, i′, j, j′ in {1, . . . , n}. Then there
is exactly one value of t such that the original cells (i, j) and (i′, j′) have
the same symbol in Λt. If t = n − 1 then the symbols in common to the
new cells (i, j) and (i′, j′) in S̄ are precisely those in L̄n−1: there are n− 2
of these symbols. If 1 ≤ t ≤ n− 2 then the symbols in common to the new
cells (i, j) and (i′, j′) are precisely those in (L̄t \ Ltj) \ Ltj′ : there are n− 2
of these.

We have shown that new cell (i, j) in S̄ has n−2 symbols in common with
new cell (i′, j′) for all j′ in {1, . . . , n} \ {j}. This accounts for (n− 1)(n− 2)
symbols in new cell (i, j). Since it has no symbols in common with new cell
(i′, j), the remaining n−2 symbols in new cell (i, j) must be in cell (i′, n+1).
Similarly, new cell (i, j) has n− 2 symbols in common with cell (n+ 1, j′).

For 1 ≤ i ≤ n and 1 ≤ j ≤ n, we have shown that cell (i, n + 1) has
precisely n − 2 symbols in common with new cell (i′, j) when i′ 6= i and
none in common with new cell (i, j). For any fixed j, this accounts for
(n− 1)(n− 2) symbols in column j. Hence the remaining n− 2 symbols in
cell (i, n+ 1) must be in cell (n+ 1, j).
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This completes the proof that S̄ is a uniform semi-Latin square.

Theorem 7. Let S̄ be the ((n+1)× (n+1))/((n−2)n) uniform semi-Latin
square constructed above. If n ≥ 5 then n− 2 > 2 and

ηn+1(S̄) =
n(n− 2)(n− 3)

2
,

ηn−2(S̄) =
n2(n− 1)(n− 2)

2
,

η2(S̄) =
n2(n− 2)(n− 3)(2n− 1)

2
,

η1(S̄) =
n(n− 1)(n− 2)(n3 − 4n2 + 8n− 2)

2
,

η0(S̄) =
n2(n− 2)(3n2 − 9n+ 4)

2
,

and ηm(S̄) = 0 for all other non-negative integers m.

Proof. Suppose that 1 ≤ i ≤ n − 2 and α ∈ Li. For j and j′ in {1, . . . , n}
with j 6= j′, the concurrence of (α, j) and (α, j′) is n−2. If β ∈ Li\{α}, then
the concurrence of (α, j) and (β, j) is 1 and there is one other value of j′ such
that the concurrence of (α, j) and (β, j′) is 1; otherwise this concurrence is 0.

Suppose that 1 ≤ i′ ≤ n − 2 and i′ 6= i. Then we can show that, of the
n2 elements in L̄i′ , 2n−1 have concurrence 2 with (α, j), (n−1)(n−3) have
concurrence 1 with (α, j), and the remaining 2(n − 1) have concurrence 0
with (α, j).

Now consider γ in Ln−1. For j and j′ in {1, . . . , n − 2} with j 6= j′,
the concurrence of (γ, j) and (γ, j′) is n + 1. If δ ∈ Ln−1 \ {γ} and j′ ∈
{1, . . . , n − 2} then the concurrence of (γ, j) and (δ, j′) is 1. If α ∈ Li, as
above, then the concurrence of (γ, j) and (α, j′) is 0 for one value of j′ and
is 1 for the remaining n− 1 values of j′.

It follows that ηn+1(S̄) = n(n− 2)(n− 3)/2, and that ηn−2(S̄) = n(n−
2)n(n − 1)/2. Concurrence 2 occurs only between L̄i and L̄i′ for i 6= i′, so
we find that η2(S̄) = (n− 2)(n− 3)/2× n2(2n− 1).

Concurrence 1 occurs (n − 2)n2 × 2(n − 1)/2 times within treatment
sets L̄1, . . . , L̄n−2, and (n − 2)(n − 3)n2/2 × (n − 1)(n − 3) times between
such sets. It occurs n(n − 1)/2 × (n − 2)2 times within L̄n−1, and n(n −
2)× (n− 2)× n(n− 1) times between L̄n−1 and other treatments. Finally,
concurrence 0 occurs (n−2)n2×(n−1)(n−2)/2 times within L̄1, . . . , L̄n−2,
(n−2)(n−3)n2/2×2(n−1) times between these sets, and n(n−2)×(n−2)×n
times between these and Ln−1.

Let n ≥ 5. We observe that the lower bound for η0 given by Theorem 5
applied to S̄ is (n+ 1)n2(n− 2)2/2, which is (n+ 1)(n− 2)/(3n2 − 9n+ 4)
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times η0(S̄). Thus, when n+ 1 is a prime power, S̄ is far from optimal with
respect to PV aberration. However, when n+ 1 is not a prime power, we do
not know how far from optimal S̄ is with respect to PV aberration.

Putting n = 5 in Theorem 7 shows that the uniform (6×6)/15 semi-Latin
square constructed by Soicher (2012) has PV aberration

(1275, 1890, 675, 150, 0, 0, 15).

On the other hand, the least PV aberration of any uniform (6× 6)/15 semi-
Latin square found by the authors so far is

(1260, 1943, 630, 125, 40, 0, 7),

and a uniform (6 × 6)/15 semi-Latin square with this PV aberration is
available from http://www.maths.qmul.ac.uk/~lsoicher/usls/.

Suppose now n > 2 is a prime power. Then there exist n − 1 MOLS of
order n, and so we can make a uniform ((n+1)×(n+1))/((n−2)n) semi-Latin
square S̄ as above. In this case, there is also the construction of Theorem 4.3
of Soicher (2012) (equivalent to the construction of Corollary 4.1.2 of Suen
(1982)) which gives a uniform semi-Latin square T of size ((n + 1) × (n +
1))/((n − 1)n) (and also one of size ((n + 1) × (n + 1))/((n − 1)n/2) when
n is odd). Now let s and t be non-negative integers, not both zero. Let
U be an s-fold inflation of S̄ if t = 0, let U be a t-fold inflation of T if
s = 0, and otherwise let U be the superposition of an s-fold inflation of S̄
and a t-fold inflation of T . Then U is a uniform ((n + 1) × (n + 1))/(µn)
semi-Latin square with µ = s(n − 2) + t(n − 1). Since n − 2 and n − 1 are
coprime, by the well-known solution of the “Frobenius coin problem” for
two denominations, every integer greater than or equal to (n− 3)(n− 2) is
a non-negative integer linear combination of n − 2 and n − 1. Therefore,
when n > 2 is a prime power, there exists a uniform semi-Latin square of
size ((n + 1) × (n + 1))/(µn) for every positive integer µ ≥ (n − 3)(n − 2)
(and for every positive integer µ ≥ (n− 3)((n− 1)/2− 1) if in addition n is
odd).

6 Constructing affine resolvable designs and BIBDs
from uniform semi-Latin squares

Let n be any integer greater than 2, let S be a uniform (n× n)/(µ(n− 1))
semi-Latin square, with rows R1, . . . , Rn, and let ∆(S) be its underlying
block design. Obtain the block design ∆1(S) from ∆(S) by adding, for each
i = 1, . . . , n, µ new treatments Ri,1, . . . , Ri,µ, each incident precisely with the
blocks in row Ri. In ∆1(S), the set of blocks in each column form a replicate,
and every pair of blocks in different columns have exactly µ treatments in
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common. Hence ∆1(S) is an affine resolvable (µn2, n2, n, µn)-design. The
analogous construction using columns in place of rows gives another affine
resolvable design ∆2(S), which may or may not be isomorphic to ∆1(S).
However, if T is any uniform (n×n)/(µ(n−1)) semi-Latin square isomorphic
to S, then the isomorphism classes of ∆1(T ) and ∆2(T ) are those of ∆1(S)
and ∆2(S), in some order.

Each of the 8615 uniform (6×6)/10 semi-Latin squares S classified in Sec-
tion 4 gives two affine resolvable designs ∆1(S) and ∆2(S). We found that,
up to block design isomorphism (determined by the DESIGN package using
bliss via GRAPE), these give in total 16875 affine resolvable (72, 36, 6, 12)-
designs. The only isomorphisms of affine resolvable designs resulted from
the 355 uniform (6×6)/10 semi-Latin squares T having an automorphism in-
terchanging rows and columns, in which case ∆1(T ) is isomorphic to ∆2(T ).

An affine resolvable (72, 36, 6, 12)-design is equivalent to an orthogonal
array OA(72, 6, 6, 2). Recent work finding all isomorphism classes of orthog-
onal arrays for certain parameter tuples, such as that by Bulutoglu and Mar-
got (2008), Bulutoglu and Ryan (2015, 2018), Geyer et al. (2019) and Schoen
et al. (2010), does not yet include the orthogonal arrays OA(72, 6, 6, 2), but
our present work can be used to produce 16875 pairwise non-isomorphic or-
thogonal arrays having this parameter tuple. An arbitrary orthogonal array
OA(72, 6, 6, 2) A is isomorphic to one of these 16875 orthogonal arrays if
and only if A is isomorphic to an orthogonal array B with the property that
for each i = 1, 2, 3, 4, 5, 6, there are two rows of B of the form (i, i, i, i, i, i).
An instance of this, which extends to an OA(72, 7, 6, 2), is given in Exam-
ple 4.1.2 of Suen (1982).

For every uniform (n× n)/(µ(n− 1)) semi-Latin square S we can make
a third design ∆3(S) from ∆(S) by adding µ new treatments for each row
and µ new treatments for each column, as above (so each new treatment is
incident with the blocks in its corresponding row or column), and then taking
the dual. This gives a block design with n2 treatments in µn(n− 1) + 2µn
blocks of size n, in which every pair of distinct treatments has concurrence µ.
In other words, ∆3(S) is an (n2, µn(n+ 1), µ(n+ 1), n, µ)-BIBD.

When µ = 1, this construction is essentially that of Bose (1938) to
obtain an affine plane of order n (i.e. an (n2, n(n + 1), n + 1, n, 1)-BIBD)
from n − 1 MOLS of order n. When µ ≥ 2, the BIBDs we construct have
repeated blocks. However, their parameter tuples seem to have no overlap
with those of the BIBDs with repeated blocks constructed by Bailey and
Cameron (2007).

If S and T are isomorphic uniform (n × n)/k semi-Latin squares then
∆3(S) and ∆3(T ) must be isomorphic, but the converse need not hold. For
example, it was shown by Owens and Preece (1995) (and confirmed by Egan
and Wanless (2016)) that there are exactly 15 sets of eight MOLS of order 9,
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up to trisotopism, that is, up to uniform permutation of the rows, uniform
permutation of the columns, permuting the symbols separately within each
Latin square, and optionally, simultaneously transposing the Latin squares.
It follows, from Theorem 3.3 of Soicher (2012), that there are exactly 15 iso-
morphism classes of uniform (9 × 9)/8 semi-Latin squares. However, there
are only seven isomorphism classes of affine planes of order 9 (see, for ex-
ample, Owens and Preece (1995)), and so there are non-isomorphic uniform
(9 × 9)/8 semi-Latin squares S and T such that ∆3(S) and ∆3(T ) are iso-
morphic affine planes.

We have, however, verified (via the DESIGN package using bliss via
GRAPE), that the 8615 (36, 84, 14, 6, 2)-BIBDs ∆3(S) obtained from the
8615 uniform (6 × 6)/10 semi-Latin squares S classified in Section 4 are
pairwise non-isomorphic. According to Mathon and Rosa (2007), only five
BIBDs with these parameters were known at that time.
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