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Abstract: Adaptability to various driving conditions (TCs) is one of the essential indicators to assess the optimality 

of power management strategies (PMSs) of plug-in hybrid electric vehicles (PHEVs). In this study, a novel optimal 

PMS with the improved adaptability to TCs is proposed for PHEVs to achieve the energy-efficient control in 

momentary scenarios by virtue of advanced internet of vehicles (IoVs), thus contributing to remarkable promotion 

in fuel economy of PHEV. Firstly, the optimal control rules in the novel PMS, corresponding to diverse driving 

conditions, are optimized offline by the chaotic particle swarm optimization with sequential quadratic programming 

(CPSO-SQP), which can effectively endow the global optimization knowledge into the rule inspired method. Then, 

an online TC identification (TCI) method is designed by cooperatively exploiting multi-dimensional Gaussian 

distribution (MGD) and random forest (RF), where the MGD based analysis on the macrocosmic state of traffic 

contributes to valuable inputs for the RF based TC classification, and additionally the super regression ability of RF 

further improves the identification accuracy. Finally, the numerical simulation validations showcase that the novel 

optimal PMS can reasonably and instantly manage the power flow within power sources of PHEV under different 

TCs, manifesting its anticipated preferable controlling performance. 

Key words: Power management strategy (PMS), chaotic particle swarm optimization with sequential quadratic 

programming (CPSO-SQP), multi-dimensional Gaussian distribution (MGD), random forest (RF), plug-in hybrid 

electric vehicles (PHEVs).  

I. INTRODUCTION 

The critical social problems, including energy dilemma and global warming, accelerate the evolution of 

technologies in all disciplines [1-3]. Plug-in hybrid electric vehicles (PHEVs), as one of extraordinary solutions in 
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auto industry to solve the mentioned social conflicts, have attained remarkable popularization in recent years [4, 5]. 

Due to the high-efficiency co-operation scheme between efficient internal combustion engines (ICEs) and power 

batteries, PHEVs show exceptional abilities in energy reservation and emission reduction [6]. However, the 

additional energy degrees of freedom, despite huge advantages, make the power management strategies (PMSs) more 

difficult to manage power flow within different energy sources, especially when facing with different traffic 

conditions (TCs). To fully excavate the potency of PHEVs in energy saving, PMSs should be more efficient and 

effective under different traffic conditions (TCs), which is an intractable task waiting to be solved.  

 A slew of attempts on PMSs (also known as energy management strategies) have been spurred to facilitate 

power allocation in the powertrain of PHEVs. Existing solutions can be divided into three types: rule based strategies 

[7, 8], global optimization based strategies [9, 10] and instantaneous based strategies [11, 12]. On the other hand, the 

substantial progress in artificial intelligence expedites the application of machine learning algorithms in power 

management of PHEVs and advances substantial improvement  in energy saving [13, 14]. However, the raised 

methods cannot reach the stable game balance among real implementation ability, optimal control effect and 

computation burden. Rule based strategies, including multi-threshold methods [15] and fuzzy logic algorithms [16], 

can be instantaneously applied in engineering practice without imposing massive computation burden on on-board 

hardware; whereas the expert knowledge based design alienates the controlling effect from optimum. Global 

optimization based methods, such as dynamic programming (DP) [17] and Pontryagin's minimum principle (PMP) 

[18], declare to achieve remarkable global optimal controlling effect; nonetheless, the burdensome computation 

discredits their implementation in real time. The instantaneous based strategies, like equivalent consumption 

minimization strategy (ECMS) [19] and model predictive control (MPC) [5], are eligible in real-time application 

with the anticipated controlling effect; while the environment-sensible inner parameters in these methods discount 

the application effect. For example, the equivalent factors (EFs) in ECMS [20], particularly, are highly dependent on 

appropriate tuning under different driving conditions.  

To promote the performance of instantaneous based strategies, adaptive adjustment has been made for tailoring 

different driving demands/scenarios. Adaptive ECMS (A-ECMS) [21] and stochastic MPC [22] are raised and 

applied with the improved instantaneous performance. In these adaptive methods, TC identification (TCI) or 

prediction (TCP) is usually conducted ahead of controlling order determination. These TCI or TCP techniques 

provide valuable priori knowledge for future driving conditions, and the knowledge can contribute to promotion of 

the power management effect. Currently, the widely accepted TCI methods are machine learning algorithms, such as 
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neural network (NN) [23], support vector machine (SVM) [24], and the inputs of these machine learning methods 

are usually derived from the statistical analysis of traffic state, whereas the simple statistical analysis cannot describe 

TCs elaborately. Similar with the TCI methods, TCP is usually realized by machine learning methods like NN [25], 

Markov Chain (MC) [26], etc. These TCP methods can predict the demand based on a large amount of historical 

training data. Even so, the prediction accuracy will be rapidly deteriorated with the increase of prediction length. 

Compared with TCP, TCI highlights better application capacities in real time, as it can be periodically performed, 

rather than completed in each control step. Recently, the flourishing reinforcement learning (RL) and deep RL based 

methods are progressively emerging in the evolved progress of intelligent decision that eliminate the stickiness 

between PMSs and environmental information. However, the time-consuming offline preparation of methods, such 

as Q-leaning [27] and deep Q-learning [28], discredits the real-time implementation potential in current stage.  

Although existing machine learning based PMSs have shown progress in improving the adaptability to TCs, 

their intensive calculation requirement increases the on-line implementation difficulty. Motivated by this, a novel 

adaptive PMS on the basis of rule based strategy is proposed for a 4-wheel drive (4WD) PHEV with superior 

promotion in energy saving. In this strategy, a new TCI method is innovatively designed to identify TCs rationally 

and precisely through random forest (RF). Instead of classifying TCs based on the general statistical results of traffic 

state, such as average speed and average acceleration, the novel TCI method categorizes the driving conditions 

according to the characteristic indexes, which are generated through the multi-dimensional Gaussian distribution 

(MGD) analysis imposed on the shared data from volunteer vehicles on the same route segments. To promote the 

mediocre controlling performance of rule based PMSs caused by the expert-knowledge dominated design, the chaotic 

particle swarm optimization (PSO) with sequential quadratic programming (CPSO-SQP) is assigned to optimize 

control thresholds in the developed PMS under different driving conditions. Meanwhile, the optimal control 

thresholds are designed in terms of the identified TC for practical implementation. Unlike the existing complex 

methods whose instant application cannot be easily implemented, the novel developed PMS tries to further advance 

the potential of the rule-inspired method, intensifying the adaptability to various TCs in optimal control without 

scarifying the advantage in instant implementation. The meta-heuristic algorithm infuses the supplemental optimal 

knowledge into expert experience, and the TCI with advanced machine learning methods and IoV framework 

promotes the environmental adaptiveness. The main contributions added to the literature include: 

1) A novel PMS based on the simple rule based algorithm is designed for PHEV by cooperatively coordinating the 

offline global optimization and online TCI, leading to qualified superior performance in energy saving under 
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diverse driving scenarios. The proposed novel PMS is an efficient attempt to further excavate the capacity of 

simple rule based algorithms in instantaneous applications by incorporating the optimal knowledge into the 

expert experience.  

2) The control thresholds in rule based algorithms, corresponding to different driving conditions, are optimized by 

the CPSO-SQP, which avoids the global optimization caught in local optimum and ensures the optimization 

effect, compared with standard particle swarm optimization (PSO).  

3) The online TCI is attained via the RF based identification algorithm. To refine the accuracy of TCI, the inputs of 

RF based identification algorithm are carefully designed, including information of the macrocosmic traffic state 

from the MGD based analysis, which reinforces the identification accuracy via the capability in describing 

relationships of multi-dimension data. 

Aiming to develop the novel PMS for a 4WD PHEV with the prompted performance in time-varying TCs, the 

remainder of this paper is organized as follows. The studied PHEV and the related model construction are described 

in Section II. The designed PMS, including the novel TCI method and control threshold optimization algorithm, is 

detailed in Section III, and the in-depth simulation evaluation in terms of the raised method is conducted in Section 

IV via comparison studies. The main conclusions are drawn in Section VI. 

II. 4WD PHEV AND MODEL CONSTRUCTION  

2.1 The Studied 4WD PHEV  

The studied 4WD PHEV includes two sets of power units installed on each axle, and the general configuration 

is shown in Fig. 1 (a). In the front axle, ICE, together with the high-speed generator and motor 1, provides the tractive 

power. In the rear axle, motor 2 outputs tractive power and recycles braking energy individually. The 4WD PHEV 

can operate in different modes through the cooperation among ICE, motor and generator, providing better driving 

power and energy saving potential, compared with two-wheel driven (2WD) PHEVs. In the vehicle, ICE can either 

drive the vehicle directly with motors in parallel mode, or supply tractive power through driving the generator in 

serial mode. In serial mode, ICE drives generator to output the required power indirectly. ICE and generator are 

functioned as an auxiliary power unit (APU) in serial mode. The switch between serial mode and parallel mode is 

attained by controlling the engagement/disengagement of the clutch between ICE and motor 1. In addition, the 4WD 

PHEV can operate in pure electric (EV) mode and is driven by motors 1 and 2 together. The detailed parameters of 

powertrain in the 4WD PHEV are listed in Table 1.  
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(a) 

 
                                       (b)                                                                                                                 (c) 

 

                                      (d)                                                                                                                (e)  

Fig. 1. The details of the 4WD PHEV and model. (a) Schematic of the 4WD PHEV. (b) Efficiency map of ICE. (c) Efficiency map of motor 

1. (d) Efficiency of motor 2. (e) Final gear transmission efficiency map. 

2.2 4WD PHEV Model Construction  

Vehicle models, including backward and forward types, play an essential role in PMS development of PHEVs. 

The backward models show great convenience in energy estimation, while the forward models are widely adopted in 

modern vehicle development due to the specific energy transmission direction. In forward models, control units are 

in charge of translating the driving intentions instructed from drivers and disseminating the corresponding control 

commands power units. Thus, the forward model is obviously more suitable for developing the adaptive PMS. In this 

paper, the 4WD PHEV forward model is built in Matlab/Simulink, and there exist four sub-modules: driver module, 

plant module, controller module and central area network (CAN) module. The driver module concerns driving 

behaviours and outputs the driving requirement to the controller module, which selects the suitable operation mode 

and distributes driving power within different power sources. The plant module responds to the given control orders 
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from the controller module dynamically. The CAN module bridges communication channels among driver, plant and 

controller module. The mathematic equations of models in terms of each module and component will be described 

in the next step.  

Table 1 Component Parameters in the studied 4WD PHEV 

Engine 

Displacement 2.0 [L] 16V DOHC 

Maximum Power 89 [kW] @4500 [rpm] 

Maximum Torque 190 [Nm] @4500 [rpm] 

Motor 1 
Maximum Power 60 [kW] 

Maximum Torque 137 [Nm] 

Motor 2 
Maximum Power 60 [kW] 

Maximum Torque 230 [Nm] 

Battery 

Type Lithium iron phosphate 

Capacity 16 [kWh]/53.3 [Ah] 

Nominal Voltage 300 [V] 

Gear Ratio 

Between ICE and final drive ig1=3.425 

Between motor 1 and final drive ig2=9.663 

Between motor 2 and final drive ig3=7.065 

Between ICE and generator ig4=2.736 

A. Driver Model  

The driver model describes the driving behaviours and generates the corresponding driving requirement. The 

input of model is the target velocity derived from the difference between driving cycle data and current simulation 

velocity, and the output of the model is the degree of acceleration pedal and brake pedal. Normally, the typical 

proportional-integral-differential (PID) method (simplified to the proportional control in this study) is applied in the 

driver model, of which the mathematical function can be formulated as:  

( ) ( ( 1) ( ))

( ) ( ( ) ( 1))

acc p target real

brake p real target

P t K v t v t

P t K v t v t

= + −


= − +
      (1) 

where accP  and brakeP  denote the expected acceleration and brake pedal degree, targetv  and realv  are the target velocity 

and simulated velocity, pK  is the scale factor, and t  is the time step.  

B. ICE Model  

Based on the efficiency map acquired through the benchmark test, a static model is adopted to characterize the 

ICE’s nonlinear performance in fuel consumption, as shown in Fig. 1 (b). As such, the instantaneous fuel consumption 

can be calculated, as: 

( ) ( ( ), ( ))f out engm t f T t n t=                                                                     (2) 

where fm  is the fuel consumption rate, outT  denotes the engine torque, and engn  means the engine speed. Moreover, 

the engine load engL  can be calculated, as: 
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_

_ ( ) _100%

[ ( 1) 9550] / ( )
( )

eng re eng
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P t n t
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+ 
=                                                            (3) 

where _eng reP   is the required engine power at next time step, and _ ( ) _100%table eng iT   denotes the maximum torque 

corresponding to current engine speed. 

C. Motor and Generator Model 

The motor and generator in the studied PHEV are permanent magnet synchronous motors (PMSMs). Due to the 

fast transient response, the dynamic behaviours of electric motor are neglected. Likewise, the static models based on 

efficiency maps from benchmark test, are employed to describe the power performance of motor and generator, as 

shown in Fig. 1 (c) and (d). The parameters of generator are the same with motor 1 in this paper. The load of motor 

and generator can be calculated, as:  

100%

[ ( 1) 9550] / ( )
( )

100%

[ ( 1) 9550] / ( )
( )

mot re mot

mot

table

gen re gen

gen

table gen

P t n t
L t

T mot

P t n t
L t

T

−

−

−

− −

−

+ 
=




+  =



                                                            (4) 

where motL   and genL   denote the motor and generator load; mot reP
−

  and gen reP
−

  are the required motor power and 

generator power; motn  and genn  represent the motor speed and generator speed; and 100%table motT
− −

 and 100%table genT
− −

 

are the maximum motor torque and generator torque corresponding to the current speed, respectively.  

D. Battery Model  

The battery pack in the studied PHEV belongs to lithium iron phosphate batteries and is with a nominal capacity 

of 53.3 Ah in total. The nominal voltage of battery pack is 300V, with 100 cells connected in series. As well known, 

battery’s performance can be influenced by operating temperature and degrades with aging. The designed strategy, 

however, considers single-step control process every time. Consequently, it is fair to assume there exists limited 

impact on the performance of vehicle control from temperature and aging degradation in one-step control. As such, 

the temperature and aging influence are neglected for ease of modelling the battery, and a simple equivalent circuit 

model is employed to characterize the battery’s electrical performance. It consists of an open circuit voltage source 

and an internal resistor connecting in series topology. By analysing the model of battery, the deviation of SOC can 

be calculated as: 

int

int

( ) ( ) ( ) ( )4
( )

2 ( )

oc oc batt

batt

V V R P
S

t t
OC t

R Q

t t

t

− −
= −                                                        (5) 
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where SOC  is the battery SOC, ocV  is the open circuit voltage of battery, intR  is the internal resistance of battery, 

battP  is the battery power, and battQ  denotes the battery capacity. 

E. PMS in Vehicle Model 

The addressed PMS in PHEVs, generally, is in charge of operation mode selection and power management. The 

general control framework is shown in Fig. 2. The control orders from PMS are usually the load rates of components, 

including throttle values and battery currents calculated according to energy distribution results, and they will be sent 

to component control units from higher level controller. The logic to control the mode transition in the studied PHEV 

is designed by a rule based method according to the benchmark test data. The operation mode is commanded to 

switch by referring to the vehicle speed v , the required tractive power reqP  and the required tractive torque reqT . The 

thresholds determining the mode transition are illustrated in Fig. 3, in which there exists a rectangular area in both 

charging depleting and charging sustaining stage. In addition, it is desired to avoid the frequent switch among pure 

electric, serial and parallel modes, thereby contributing to better driving comfort and fuel economy.  

EV Mode

Serial Mode
Parallel 

Mode

Required 

Driving Power

Required 

Engine Power

Required 

Motor Power

Engine Control Motor Control Generator Control Battery Management 

Desired Engine Throttle Desired Motor Torque Desired Generator Load Battery Current

High Level Controller

Low Level Controller

 
Fig. 2. General control framework in PHEVs. 

 

Fig. 3. Mode transition conditions in charging depleting and charge sustaining stage.  
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In the PMS, the general power management principle is to regulate the engine to operate in the brake-special 

fuel consumption (BSFC) line by the load-following method. The power management in serial and parallel mode in 

charging depleting (CD) and charge sustaining stage (CS) can be explained in Tables 2 and 3, respectively.  

Table 2 Power management strategy in CD and CS stage under the serial mode 
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−
=

−
 

Note that apuP  expresses the APU power, _apu optP   denotes the power corresponding to the optimal operation points of APU, apu_maxP  

represents the maximum power corresponding to the specific speed of APU. _ _ _batt max CD sP  and _ _ _batt max CS sP  mean the maximum power 

limit of battery in the charge depletion and charge sustaining stage when the vehicle is under the serial mode. reqP  denotes the required driving 

power; _ _tran ele apu , _ 1tran ele  and _ 2tran ele  denote the transmission efficiency of the electric path between APU and motor 1, between 

battery and motor1, and between battery and motor 2, respectively; and 1mot  and 2mot  is the efficiency of motors 1 and 2.  

Table 3 Power management strategy in CD and CS stage under the parallel mode 
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Note that engP  is the engine power, _eng optP  denotes the power corresponding to the optimal operation points of ICE, eng_maxP  represents 

the maximum power corresponding to the specific speed of ICE. _tran fuel  denote the transmission efficiency of fuel path. 

In addition, the transmission efficiencies of fuel and electric paths are calculated by the multipliers of the 

efficiency of gear ig1, ig2, ig3 and ig4 with final gear efficiency. The efficiency of ig1, ig2, ig3 and ig4 is all set to 0.95 in 

this study. The final gear efficiencies can be attained via the interpolation based on the efficiency map according to 

the current axle speed and required tractive powers, as shown in Fig. 1 (e). The target of PMS addressed in this paper 

is applied to optimally assign the operation modes and distribute the energy ratios within the powertrain system in 

real-time, and the solution searching in the designed strategy is based on the efficiency maps of ICE and motors, 

which have considered the impact from thermal dynamics. The transient thermal behaviors of ICE and motors, 
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consequently, are not considered separately in the PMS development. Additionally, it is assumed that battery 

temperature will not increase significantly in each control step.  

In the next step, based on the detailed modelling of powertrain components, the proposed novel PMS will be 

elaborated and discussed. 

III. DEVELOPMENT OF THE NOVEL PMS 

The developed PMS is qualified with the extraordinary adaptability to environment variation based on the 

accurate TCI. Even though the principle underlining the novel strategy is essentially the simple rule based control 

logic, the offline control threshold optimization can translate the valuable knowledge of optimization to expert 

experience. Fig. 4 illustrates the general control process of the raised method. The historical traffic data is gathered 

for the offline K-means based clustering operations [29], thereby generating three different driving conditions: slow-

moving, medium-speed drag-free and high-speed transit, corresponding to the driving in city downtown, urban and 

highway, respectively. Given the specifically derived driving cycle belonging to certain TC, the CPSO-SQP optimizes 

the controlling thresholds existing in the rule-based strategy and generates the optimal parameter set for real-time 

implementation. The collected historical traffic data are analysed by the MGD, thus forming specific data to train the 

RF to realize the instantaneous TCI. The MGD based traffic flow analysis describes the traffic state from multiple 

perspectives, rather than the simply statistical quantity in existing methods, leading to more accurate TCI. In actual 

applications, instantaneous traffic data will be processed by the MGD online for the RF based TCI. According to the 

classified TC, the specific control thresholds are assigned to hybrid powertrains to achieve efficient mode selection 

and energy distribution. In the next step, the methods to classify different TCs based on specific data processed by 

the MGD and CPSO-SQP based offline parameter optimization will be introduced in detail. 

3.1 MGD and RF Based TCI  

As discussed before, the identified TCs are critical to prompt the power management performance of PHEVs. 

Existing methods classify TCs by statistically analysing the numerical variables related with traffic status. The 

numerical variables including the average velocity, average acceleration and percentage of different speed ranges, 

are usually adopted to quantify the traffic status include. Despite the validated performance under certain conditions, 

the developed TCI methods shows some obvious disadvantages: 

1) Simple numerical variables seldom present inner connections among each other and thus cannot describe 

TCs accurately and minutely.  
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2) Existing TCI methods, based on the numerical variables, impress large number of inputs into TC 

identification algorithms such as NN and SVM, thereby complicating the training process and hindering 

implementation in real time.  
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Fig. 4. Control process of the novel PMS.   

To improve the accuracy of TCI in real time, a novel TCI method is proposed in this study. Instead of 

categorizing TCs by analysing the given numerical variables related to traffic status, the RF based TC identification 

algorithm classifies them with the inputs from the MGD based analysis in terms of the shared traffic information. 

The traffic flow analysis through MGD can sufficiently reveal traffic state by investigating the interaction among 

multiple factors. Benefiting from the internet of vehicles (IoVs), vehicle status, including velocity, acceleration and 

distance headway to forward vehicle, can be easily shared within vehicles on certain route segment via vehicle to 

vehicle (V2V) communication. Besides, general traffic status like the number of vehicles on the route segment can 

be disseminated to each vehicle via vehicle to infrastructure (V2I) communication. It is assumed that the V2V and 

V2I adopt the millimeter-wave (mmWave) communication thanks to its ultra-wide band [30]. Meanwhile, to reduce 

the hardware complexity and energy consumption, the base station (BS) and vehicle are equipped with single radio 

frequency chain [30].  

The execution process of the raised TCI method is illustrated in Fig. 5. Accordingly, the shared traffic information 

is analysed by the MGD to generate small scale of inputs for te RF based TC identification algorithm, which, installed 

in on-board vehicle control unit (VCU), identifies the TC for next route segment before vehicle moves in. To 

guarantee the controlling effect, TCs in next route segment are classified every 20 s, and the total travel time in next 

segment can be calculated by the method in [1]. The traffic information of next route segment for TCI is 

instantaneously shared to the target vehicle via the V2V and V2I communication. The input of RF based identification 

algorithm consists of the number of vehicles on the next route segment, average value and variance of velocities, 
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acceleration and distance headway on next route segment in three-dimension (3D)-MGD, value of covariance matrix 

of 3D-MGD on velocity, acceleration and distance headway on next route segment, and probability density of vehicle 

idle in 3D-MGD. Compared with TCI with 15 to 25 inputs in previous methods [31, 32], the raised method only 

requires 9 variables for the RF based classification, thereby reducing the scale of identification algorithm. The inputs 

are chosen after comprehensively considering the interaction between vehicle behaviours and traffic status. The 

outputs of RF are three classified TCs, including slow-moving, medium-speed drag-free and high-speed transit. The 

3D-MGD and RF in the TCI will be introduced in the next step.  

 

Fig. 5. Illustration on novel TCI method. 

A. Traffic Flow Analysis by 3D-MGD 

The 3D-MGD is theoretically derived from the basic one dimension (1D)-Gaussian distribution (GD) [33]. For 

three independent variables 1 2 3( , , )x x x x= , these independent variables should satisfy:  

           1 2 3 1 2 3( , , ) ( ) ( ) ( )f x x x f x f x f x=                                                                  (6) 

The averages and variances of the independent variables can be expressed as: 

1 2 3

1 2 3

( , , )

( , , )

u u u u

   

=


=
                                                                                (7) 

Based on the general description of 1D-GD, equation (6) can be reformulated as: 

( )

22 2

3 31 1 2 2

3 2 2 2 1/2
1 2 31 2 3

1 1
( ) exp

22 / 2( )

x ux u x u
f x

     

       −− −  = − + +     
         

                          (8) 

For the 3D vector, the covariance matrix can be expressed as: 
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Accordingly, the value of the covariance matrix and inverse covariance matrix can be respectively expressed as: 

2 2 2
1 2 3=                                                                                        (10) 

2
3

1 2
22 2 2

1 2 3 2
1

0 0
1

= 0 0

0 0




  



−

 
 

  
 
  

                                                                          (11) 

By applying (10) and (11) into (8), the 3D-MGD can be formulated, as: 

( )
( ) ( )1

3/2 1/2

1 1 1
( , ) exp

22

T
N x u x u x u



− 
 = − −  − 

 
                                                     (12) 

In the 3D-MGD based traffic flow analysis, the dependent variables can be described, as: 

( )
( )
( )

, ,

( ), ( ), ( )

( ), ( ), ( )

x v a x

u u v u a u x

v a x   

 = 


= 
 = 

                                                                       (13) 

where v, a and x  respectively means the vehicle velocity, acceleration, and distance headway. The probability 

density of idle state in 3D-MGD can be acquired by (12) through setting velocity and acceleration to zero, and the 

value of covariance matrix in 3D-MGD can be calculated by (10). The methods to calculate average and variance of 

velocity, acceleration, and distance headway in 3D-MGD are the same with that in 1D-GD [33]. In addition, the 

number of vehicles on the next route segment is counted in cloud sever and shared to the target vehicle timely.  

B. TC Identification Algorithm by RF  

In the classification problem by RF [34], the supervised classification is realized by the basic binary classification 

in decision tree. The observed input vector is pc X , and the guessed output Y  takes the value in (0,1). Given 

the raining sample ( )1 1( , ), ,( , )n n nX Y X Y=  , the classification rule nm  is applied to train the RF. The classification 

rule is a Borel measurable function of X  and n  [35]. Then, RF conducts the classification through a majority vote 

among the decision trees, as: 

( )
1

, 1

1 1
1 x; ,

(x; ,..., , ) 2

0

M

n M nj
M n M n

if m
m M

otherwise

=


  

   = 



                                             (14) 

where 1 ,,  M    are random variables with the same distribution with n . By supposing that a leaf is on behalf of 

region A, the tree classifier can be simplified as: 
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* *, 1 , 0( ) ( )
, 1

1
(x; ,..., , )

0

i i i i
n j n j

X A Y X A Yi D i D
M n M n

if
m

otherwise

      

   
   = 



 
                          (15) 

where *( )n jD   denotes the data points selected in the resampling step. In this paper, the classification and regression 

tree (CART) [35] is employed in the RF algorithm. For any ( ,z) Aj  , the CART-split criterion can be formulated,  

as [35]: 

, 0, 1, 0, 1, 0, 1,

( ) ( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

n L n R
class n n n n L n L n R n R

n n

N A N A
L j z p A p A p A p A p A p A

N A N A
= − −                        (16) 

where A  is the set of all possible cut, 
( ){ : }j

LA x A x z=   , ( ){ : }j
RA x A x z=   , and  (resp., ),A AL ARY Y Y  means 

the average value of iY . For each cell A, 0, ( )np A  is the empirical probability. The pseudo code of RF algorithm is 

provided in Table 4, where    1, , nnodesize a   is the number of examples in each cell, and    1, ,mtry p   is the 

number of possible directions for splitting at each leaf node. 

Table 4 The pseudo code of RF algorithm 

1 for 1, ,?  j M=  do  

2    Pick up na  points in n  

3    Set ( )=  

4    Set  final =  

5    while   do 

6        Let A be the first element of  

7        if A  contains less than nodesize points or if i AX  are equal then 

8             Remove the cell A from  

9              ( ),final finalConcatenate A  

10        else 

11             Pick up a subset try {1, , }p   or cardinality mtry 

12             Choose the most suitable spilt in A by CART-split criterion 

13             Cut the cell A according to the split. Name LA  and RA  for the two split cells.  

14             Remove the cell A from the list  

15             ( , , )L RConcatenate A A  

16        end  

17   end  

18   Compute the estimation value ),( ,n j nm x  at x  

19 end 

3.2 CPSO-SQP Based Control Threshold Optimization  

A. General Parameter Optimization by PSO 

PSO is one of meta-heuristic algorithms belonging to swarm intelligence and can globally search optimal results 

[36]. By imitating behaviours of bird flocks, PSO solves optimization problems based on the defined particles. During 

the optimization process, particles for candidate solutions flow through the search space along the specified direction 

that is planned according to the best performance of individual particle and swarm [37]. The particles are updated in 
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each population by learning the cooperation and differentiation among particles. Notably, the particle flow direction 

should be carefully programmed to avoid the preferred solutions from being trapped into local neighbourhood. Each 

particle represents a solution of the optimization problem in a D-dimensional space [36]. The position of ith particle 

can be defined as: 

1 2[ , ,..., ]i i i iDx x x x=                                                                          (17) 

In each population, each particle can be expressed as: 

 1 2= , ,..., nX x x x                                                                                   (18) 

During searching the optimal solution, each particle updates its position based on its current position and the flowing 

speed. The position updating manner can be described as: 

[ ] [ ] [ 1]1i i ix t x vt t+ + +=                                                                         (19) 

where t   is the iteration number, and iv   is the particle flowing velocity. The particle flowing velocity can be 

calculated, as: 

1 21 ( ) ( )[ ] [ ]i i besti i gbest it vv c P c xt x P  + = + − + −                                                   (20) 

where bestiP  means the best position of particle i, gbestP  is the optimal position among particles,   and   are the 

uniformly distributed random variables, 1c  and 2c  denote the acceleration coefficients, and   is the inertial weight. 

Through the designed velocity, the particles can flow across the searching space efficiently. In the right side of (20), 

the first term tracks the previous flow direction with a certain weight, preventing searching the deflected direction; 

the second term studies the tendencies of the personally optimal positions; and the third term identifies the manners 

that particles move toward the best position. Given the nature of the searching process, local optimality, rather than 

global one, may be identified with the inappropriately assigned parameters, thus reducing the efficiency of the 

approach. To assure the effect of parameter optimization, some improvement on PSO deserves to be made.  

B. Improved Parameter Optimization by CPSO-SQP 

To enhance the performance of PSO by avoiding the solution process in PSO from being trapped in local 

optimality, the chaotic PSO with sequential quadratic programming (CPSO-SQP), as a two-phased iterative strategy, 

is advanced. In CSPO-SQP, CLS is applied to reinforce the local oriented optimization, while the SQP is exploited 

to tune the search results for global optimality [38]. The pseudo code of the CPSO-SQP is provided in Table 5. The 

CLS is implemented based on the Tent equation [38], as:  
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                                                               (21) 

where icx  is the i th chaotic variable, and k  denotes the iteration number. The process of CLS can be described as:  

1. Initialize 0k = , and convert the ( ) , 1,2, ,k
ix i n=   within , ,( , )min i max ix x  to chaotic variable ( )k

icx  in (0,1) by: 

)

 
,(

, ,

k
i min i

i

max i min i

k
x x

cx
x x

−
=

−
                                                                       (22) 

2. Calculate ( 1)
i

kcx +  for next iteration by (21).  

3. Convert 
( 1)k
icx +

 to 
( 1)k
ix +

 by: 

( 1) ( 1)
, , ,( )k k

i min i i max i min ix x cx x x+ += + −                                                            (23) 

4. Evaluate the new solutions with 
( 1) , 1,2, ,k
ix i n+ =  , 

5. If the new solution is better than 
(0) (0) (0) (0)

1 2[ , , , ]nX X X X=   or iteration limit, output the new solution, or return 

to step 2.  

Table 5 The pseudo code of CPSO-SQP 

1 for i=1 to N do 

2     parameter initialization  

3 end  

4 for n=1 to iteration limit do  

5    for i=1 to N do  

6  
1 21 ([ ] [ ]

[ ] [ 1] [ ]

) ( )

1

i i besti i gbest i

i i i

V t V c P X c P X

V t X V t

t

t

  + = + − + −


+ = + +

 

7          do CLS 

8 end  

9 if  ( 1)besti best iP P −  then 

10       solve the optimization problem by SQP with start point of bestiP  

11    end  

12 end  

The SQP has been verified effective to find accurate solutions for nonlinear control problems [39]. For SQP, 

optimal solutions can be obtained by the iterative process. In each iteration, the quadratic programming (QP) problem 

is solved to indicate the searching direction [40]. Based on the obtained searching direction, the control variables are 

updated accordingly. The QP problem can be described as: 

1
min ( )

2

T T
k k k k kd H d f x d+                                                                        (24) 

subject to: 

[ ( )] ( ) 0 1,...,

[ ( )] ( ) 0 1,...,

T
k k i k

T
k k i k

g x d g x i n

g x d g x i n m

  + = =

 +  = +

                                                   (25) 
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where kH   denotes the Hessian matrix of the Lagrangian function, kd  means the search direction foundation at 

iteration k , ( )f x  is the evaluation function in each iteration, ( )g x  is the constraints on the optimization problem, 

n  is the number of the equality constraints, and m  is the number of the constraints. The Hessian matrix of the 

Lagrangian function can be constructed, as: 

( , ) ( ) ( )T
iL x f x g x = +                                                                           (26) 

In the SQP based solution, there are three main steps to proceed: updating the Hessian of the Lagrangian function, 

solving the QP and calculating the Lagrangian merit function. In the first step, the Hessian of Lagrangian function is 

updated by the BFGS quasi-Newton method [41], as: 

1

( )( )T T
k k k k k k

k k T T
k k k k k

q q B s B s
B B

q s s B s
+ = + −                                                                   (27) 

where  

1

1 11 1
( ) ( ) ( ) ( )

k k k

m m

k k i i k k i i ki i

s x x

q f x g x f x g x 

+

+ += =

= −


= +  − −   
                                       (28) 

In (28),   denotes the estimation of the Lagrangian multiplier, and kH  is approximately estimated by kB . At each 

iteration, the QP problem is solved by (24) to generate the searching direction kd . In the third step of SQP, the manner 

to update solution can be expressed, as: 

1k k k kx x a d+ = +                                                                           (29) 

where ka  denotes the step length that mainly accounts for adjusting the decrease search of the augmented Lagrangian 

function, as: 

2

1 1

1
= ( ) ( ( ) ) ( ( ) )

2

m m

i i i i i ii i
L f x g x s g x s 

= =
− − + −                                               (30) 

where s is the non-negative slack variable, and   denotes the penalty parameter. In the control threshold 

optimization by the CPSO-SQP, the updated particles are the control thresholds in PMS. The optimized control 

thresholds include the parameters of strategy accounting for mode transition and battery power limits in different 

modes. The evaluation function ( )f x  in each iteration can be written as: 

1

( )
( )( )

N
batt

f t

lhvt

P
f

X
x m

Q
X 

=

 
= + 

 
                                                                (31) 
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where fm  is the instant fuel consumption after determining the optimized control thresholds X  on the specified 

route segment, battP   is the battery power, lhvQ   is the fuel low heat value, t   denotes the weighting on energy 

consumption, and t is the time step. The control thresholds determine the mode transition and battery power limits in 

different operation modes for the PHEV. The constraints on the optimization problem can be summarized, as: 

min max

_ min _ max

_ min _ max

_1_ min 1 _1_ max

_ 2_ min 2 _ 2_ max

_ min _ max

_ min _ max

_1_ min _1 _1_ max
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eng eng eng

mot mot mot

mot mot mot

gen gen gen

eng eng eng

mot mot mot

mot

SOC SOC SOC
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T T T

T T T

T T T

T T T
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                                                          (32) 

where the superscripts min  and max  denote the minimum and maximum value of each variable, respectively. engT , 

1motT , 
2motT  and genT  represent the torque of ICE, motor 1, motor 2 and generator; and eng , _1mot , _ 2mot  and gen  

denote the speed of the ICE, motor 1, motor 2 and generator, respectively. The control thresholds in the designed 

strategy are optimized offline by the CPSO-SQP on the specific driving cycles. The driving cycles for offline 

optimization, corresponding to the three TCs, are derived from the historical traffic data. The extracted driving cycles 

with the same length are obtained by the method in [42]. When the vehicle moves in new route segment, the on-

board VCU starts to identify TC of next route segment and assign the corresponding control thresholds subsequently. 

The vehicle judges the geographic position by referring to the instant GPS coordinates and shared map data.  

In the next step, the simulations and detailed comparisons are conducted to validate the feasibility of the 

proposed algorithm. 

IV. SIMULATION VALIDATION 

In this section, simulations are performed to validate the capability of proposed PMS in instant energy 

management of PHEVs. In the assessment, the effectiveness of novel TCI method and role of the proposed PMS in 

energy saving are comprehensively assessed through the comparison study, where Original CS means the rule based 

PMS derived from the benchmark test, NCS with NTCI represents the proposes adaptive PMS. The simulation is 

performed in the Matlab/Simulink- IPG CarMaker co-simulation platform, in which the IPG CarMaker offers 
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scenario simulation, and the PMS simulation is conducted in Matlab/Simulink. The connection between PMS and 

scenario simulation is realized via the interface in IPG Carmaker. The vehicle instant state values obtained in IPG 

Carmaker, including the velocity, acceleration and time headway of vehicles on route segment, are sent to PMS in 

Matlab/Simulink through the interface, thereby assisting in accomplishing TCI and power management.  Note that 

all the simulation were conducted on a workstation with an i7-8700 processor and 16 gigabytes memory.  

4.1 Assessment on the Effectiveness of the Novel TCI Method 

The identification accuracy of TCI method is critical to the proposed adaptive PMS. Therefore, it is imperative 

to assess the effectiveness of the novel TCI method in TC identification first. In particular, NN, SVM, and RF based 

identification algorithms, with small scale of inputs from MGD based traffic analysis and 15 inputs selected according 

to the methods in [31, 32], are tested on 30 combined driving cycles. The 30 driving cycles are also derived based on 

the traffic data that are collected on real routes [42]. Each driving cycle includes slow-moving, medium-speed drag-

free and high-speed transit condition, and partial driving cycles are illustrated in Fig. 6 (a). Tables 4 and 5 list the 

average classification accuracies and online calculation time from different identification algorithms with two groups 

of inputs. The numerical results in Tables 6 and 7 highlight the satisfactory performance of the RF based identification 

algorithm, which can categorize the driving conditions more precisely after using the inputs from the MGD based 

traffic analysis. Besides, the reduced input scale by MGD based traffic analysis accelerates the online identification 

speed, boosting the abilities of identification algorithms in real time implementation. Even though the average online 

calculation time by the RF based identification algorithm is slightly longer than that by SVM, it still can satisfy the 

requirement of instant application before the vehicle moves into next route segment. To illustrate the behaviours of 

the proposed novel identification algorithm more clearly, two assessment cases are compared in Fig. 6 (b) and (c). 

The displayed driving cycles are included in the chosen 30 driving cycles, and the real driving conditions in these 

cycles are calibrated beforehand. Apparently, the novel identification algorithm based on RF can discern driving 

conditions precisely in most of time, and the identification errors are mainly incurred by the noise (mainly due to the 

measurement error and malfunction during data collection) existing in the training data that may induce overfitting 

and improper categorization. Even with misidentification, most of errors are prone to be sluggishly classified 

(especially in Fig. 6 (b)); that said, it leads to neglectable impact on the proposed strategy. This is because the 

threshold optimization in the developed strategy is finalized within a certain segment, exhibiting certain robustness 

to the lagged classification. Based on the numerical and visual results, it can be concluded that the novel TCI method 

shows better performance in driving condition classification than the existing methods in literature. The prompted 
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performance of the novel TCI owes to the MGD based traffic analysis and the enhanced regression by RF. The MGD 

based analysis can process the connection among state parameters of traffic flow and endow the inputs for 

identification algorithms with stronger positive correlation. The reduced scale of inputs for identification algorithms 

boost the capacities of identification algorithms in instant application. To sum up, the RF based identification 

algorithm possesses qualified capacities in classification problem due to its decision-tree based framework and 

specific manner to generate output.  

Table 6 Numerical comparison in condition identification by different identification algorithms with 15 inputs 

Method Average Accuracy (%) Average Online Calculation Time (s) 

NN 1.219 0.211 

SVM 1.136 0.207 

RF 0.861 0.209 

Table 7 Numerical comparison in condition identification by different identification algorithms with inputs from MGD 

Method Average Accuracy (%) Average Online Calculation Time (s) 

NN 0.949 0.205 

SVM 0.893 0.202 

RF 0.611 0.204 

 

 
(a) 

 
                                                     (b)                                                                                                           (c) 

Fig. 6. Illustration of assessment on TCI accuracy. (a) Partial driving cycles in assessment. (b) Condition identification result 1 by NTCI with 

inputs from MGD based traffic analysis; (c) Condition identification result 2 by NTCI with inputs from MGD based traffic analysis. 
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B. Study the Role of the Proposed PMS in Energy Saving 

After validating the effectiveness of the novel TCI method, the energy saving performance of the raised adaptive 

PMS needs to be addressed. Under the constraints from the corresponding laws and rules, PHEVs prefer more 

electricity usage in charging depleting stage based on the designed control thresholds for mode transition and energy 

distribution. The particular design manner makes it hazy to reveal behaviours of the raised method if the simulation 

is performed in charging depleting stage in most of time. As such, for better demonstrating the performance of the 

proposed PMS, the simulation is designed with a low initial battery SOC, i.e., 0.35. Besides, the comparison study 

in this section only presents the performance of motor 1 since the power distribution ratio between motors 1 and 2 is 

chosen as 0.5 in this paper. The study on the role of the proposed PMS in energy saving can be divided into three 

steps. The first step generally investigates the performances of the presented PMS by comparing with some baseline 

methods in different driving cycles. The second step compares the proposed approach with alternative energy 

management formulation which implies more complex controller and includes higher level intrinsic adaptability to 

varying traffic scenarios, further weighing performance of the novel PMS. The third step comparatively analyzes 

component behaviors of the studied vehicle, elaborately revealing energy-saving mechanism underline the new 

method.  

a. The General Investigation on Performance of the Presented PMS  

The general performance of presented PMS is examined based on five driving cycles. The chosen five driving 

cycles include three standard cycles, i.e., UDDS, US06 and HWFET, as well as two real traffic driving cycles, as 

shown in Fig. 6 (b) and (c). For ease of evaluating the performance of the presented PMS, the rule based PMS, ECMS 

and DP are preferred as the baseline methods. Table 8 lists the detailed energy consumption by different methods. 

The converted fuel consumption includes the equivalent fuel consumption that is converted from electrical energy 

usage. Intuitively, the presented adaptive PMS leads to better fuel economy, compared with the original rule based 

PMS and ECMS, and achieves close effect to global DP. The fuel economy of the novel PMS can reach 95.42% of 

that by DP and can be reduced by as much as 5.91% and 1.23%, compared with that of the rule based PMS and 

ECMS. The optimality of the novel PMS is better in standard driving cycles than that in real traffic driving cycles. 

This can be attributed to the following two reasons. First, the accuracy of TCI on standard driving cycles are slightly 

higher due to the low-frequency TC variation, thus reducing misrecognition especially at the boundaries of 

neighbouring TCs. Second, the simulation length in standard driving cycles is shorter than that in real traffic driving 

cycles, resulting in less cumulation error. The comparison between the environmentally sensitive ECMS and novel 
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PMS proves that the improved adaptability to TCs increases the opportunity to infuse more environment information 

into power management, thereby furnishing better performance of PMS. The difference in the original CS strategy 

and novel PMS exhibits that the rule based method can also attain the satisfactory performance by combining optimal 

knowledge with expert experience. 

Table 8 Energy consumption by different methods 

Driving 

Cycle 
Strategy 

Fuel 

Consumption 

(g) 

Converted Fuel 

Consumption 

(L/100km) 

Optimality 

(%) 

Performance 

Promotion 

(%) 

UDDS 

Original CS 398.12 4.35 89.51 - 

ECMS 390.87 4.13 94.19 4.68 

NCS with NTCI 388.12 4.07 95.42 5.91 

DP 376.61 3.89 100 10.49 

US06 

Original CS 160.01 4.38 89.43 - 

ECMS 157.33 4.15 94.51 5.08 

NCS with NTCI 154.97 4.11 95.29 5.86 

DP 150.34 3.92 100 10.57 

HWFET 

Original CS 199.06 4.48 89.56 - 

ECMS 194.81 4.25 94.41 4.85 

NCS with NTCI 190.31 4.20 95.32 5.76 

DP 185.13 4.01 100 10.44 

Cycle 1 

Original CS 1455.41 4.61 89.17 - 

ECMS 1429.02 4.35 94.43 5.26 

NCS with NTCI 1425.33 4.32 95.06 5.89 

DP 1378.51 4.11 100 10.83 

Cycle 2 

Original CS 1331.68 4.52 89.64 - 

ECMS 1308.79 4.30 94.21 4.57 

NCS with NTCI 1298.16 4.26 95.13 5.49 

DP 1253.16 4.05 100 10.36 

b. The Comparison between the Proposed PMS and MPC Based PMS  

To further evaluate the power management performance, the novel PMS with TC adaptability is compared with 

the MPC based PMS under the same simulation conditions. The MPC based PMS searches optimal solutions within 

predicted horizons and tries to incorporate future TC information into power sources management, thereby holding 

intrinsic adaptability to varying TCs. Table 9 lists the comparison results between the two PMSs on the real traffic 

driving cycles shown in Fig. 6 (b) and (c). As can be seen, the fuel consumption by MPC based PMS is slightly lower 

than that by the novel PMS, while the calculation time by the MPC based PMS is obviously longer. The step 

calculation time is obtained by dividing the total calculation time over the total number of control steps, and the 

control step in the study is set to 0.2 s. The better performance of the MPC based PMS in energy saving lies in the 

benefit from the solution searching in receding horizons. It can find the solution for each step by incorporating the 

predicted future driving information can fully consider the impact on whole energy consumption in each decision. 

Whereas, the proposed novel PMS seeks the solution for several steps within a route segment. The rough solution 

searching scale discounts the performance in energy saving. However, the maximum difference in the converted fuel 

consumption is merely 0.98%, which can be neglected to some extent. As the implementation of MPC algorithm 

requests prediction on future driving information, and the complex calculation is burdensome; therefore, the capacity 
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in real-time application of MPC cannot be as qualified as that of the novel PMS. Considering the balance in fuel 

economy and application capacity in real time, the performance of the proposed PMS is satisfactory, and it can be 

treated as an alternative solution to the MPC based PMS.  

Table 9 Comparison in MPC and NCS with NTCI 

Driving 

Cycle 
Strategy 

Converted Fuel 

Consumption 

(L/100 km) 

Total 

Calculation 

Time (s) 

Step 

Calculation 

Time (s) 

Cycle 1 

Original CS 4.61 1775.36 0.071 

MPC 4.28 4425.31 0.177 

NCS with NTCI 4.32 2650.06 0.106 

Cycle 2 

Original CS 4.52 1800.26 0.072 

MPC 4.01 4375.14 0.175 

NCS with NTCI 4.05 2625.21 0.105 

c. The Analysis of Energy-Saving Mechanism of the Novel Method 

After realizing the satisfying performance of the novel PMS, the energy-saving mechanism of the novel method 

is further investigated. Fig. 7 (a) and (b) supply the subsidiary illustration on energy consumption manners by 

different methods. The accumulate fuel consumption shown in Fig. 7 (a) reveals the closed fuel consuming variations 

between the NCS with NTCI and DP. The approaching fuel consuming way to global DP is realized by incorporating 

partial driving information into PMS in the raised method through TCI. Specifically, as can be seen, the electric 

energy is strictly replenished in medium-speed drag-free and high-speed transit condition while utilized in slow-

moving condition by DP. The presented method, after integrated with the ability in perceiving the future driving 

conditions by TCI, can supply the most appropriate control thresholds for future driving, thereby achieving the close 

effect to global DP. In Fig. 7 (a), the vehicle operates in medium-speed drag-free and high-speed transit condition 

successively from 1000 s to 1700 s. The NCS with NTCI requires the ICE to charge the battery in serial and parallel 

mode, respectively, avoiding the similar fast decrease of SOC by the Original CS. The similar manipulation appears 

in the simulation by DP. The saving electricity can contribute to the vehicle’s operation in pure EV mode under slow-

moving conditions. Despite the slight difference of SOC by DP, the proposed strategy saves more electric energy for 

pure EV driving under slow-moving conditions. 

 
                                                          (a)                                                                                                       (b) 

Fig. 7. Comparison in energy performance. (a) Fuel consumption by different methods; (b) Battery SOC curves by different methods. 
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Fig. 8 (a) to (c) compare the performance of different methods from the perspective of component operation 

status. Two cases are marked to demonstrate the behaviours of different methods. In case 1 (from 1700 s to 3000 s), 

the driving conditions include slow-moving and medium-speed drag-free conditions. The DP and NCS with NTCI 

endeavour to flatten the SOC decrease rate by enabling the vehicle to operate in serial and parallel mode more. The 

fast depletion of electricity by Original CS, nevertheless, forces the ICE to operate in both high and low efficiency 

fields and therefore opposes to energy saving. In case 2, the vehicle operates on high-speed transit condition and 

slow-moving condition sequentially. The DP and NCS with NTCI take the opportunity to charge the battery in high 

speed for optimal efficiencies of ICE. Then, in low speed, the replenished electric energy is consumed to avoid the 

inferior fuel economy operation mode. In contrast, the Original CS requests the ICE to operate in low speed frequently, 

exaggeratedly increasing the fuel consumption with low efficiency. In reference to the NCS with NTCI, the foreseen 

traffic condition via NTCI endows the opportunities to adjust control thresholds, adaptively managing energy flow 

within powertrains effectively.  

 

                                                         (a)                                                                                                            (b) 

 
                                                         (c)                                                                                                            (d) 

Fig. 8. Comparison in component operation. (a) Comparison in ICE torque by different methods; (b) Comparison in generator torque by 

different methods; (c) Comparison in motor 1 torque by different methods; (d) Comparison in ICE operation points by different method. 

Fig. 8 (d) compares the ICE operation area by different methods. The operation points in high efficiency region 

by DP and the NCS with NTCI are clearly more than those by Original CS, contributing to better fuel economy. DP, 

given the knowledge about the whole driving cycle before the trip starts, can search the optimal solution that results 
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in minimum fuel consumption. While the NCS with NTCI, foreseeing upcoming traffic condition via IoVs, prepares 

the best control thresholds for next route segment, thereby narrowing the gap to global optimal solution and boosting 

fuel economy. The enhanced adaptability to varying TCs insures the most appropriate control thresholds can be 

implemented for current TC, thereby increasing the probabilities that PMS control power sources operate in optimal 

zones and contributing to fuel economy improvement.  

Through the simulation analysis, it can be summarized that the proposed method highlights prompted 

adaptabilities to various driving conditions by integrating NTCI. Meanwhile, through the cooperation of NTCI, the 

designed control threshold optimization method superiorly improves the fuel economy of the studied vehicle. 

V. CONCLUSION 

This paper presents a novel power management strategy for plug-in hybrid electric vehicles with the enhanced 

adaptability to various traffic conditions. The adaptation to different traffic conditions is realized by the novel traffic 

condition identification method. According to the identified traffic conditions, the control thresholds are optimized 

by chaotic particle swarm optimization with sequential quadratic programming offline and updated timely. The main 

findings can be summarized as follows.  

1) The multi-dimension Gaussian distribution based traffic analysis, together with the random forest based 

classification, improves the accuracy of instant traffic condition categorization.  

2) The chaotic particle swarm optimization with sequential quadratic programming refines the ability of simple 

rule based algorithm, narrowing the gap towards to global optimality.  

3) The dramatic adaption to different traffic conditions, together with evolved rule based algorithm, provides 

the studied plug-in hybrid electric vehicle with the opportunities of advancing its potential in energy saving. 

Compared with the original rule based strategy, the fuel economy by the raised method is improved by as 

high as 5.91%, reaching 95.42% of that by the dynamic programming based strategy.  

4) The proposed novel power management strategy holds promising capacity in instantly optimal control, which 

can be seen as an alternative to the model predictive control based management strategy.  

5) The improved adaptability to time-varying TCs prompts the application of the polished control thresholds 

and increases more chances for powertrain components to operate in optimal regions, thereby contributing 

to fuel economy improvement.  

In the future, more efforts will be made in developing new methods to prompt the adaptability of power 

management strategies to traffic conditions. In addition, novel methods such as machine learning will be employed 
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to improve the traffic condition precision. Furthermore, impact on vehicle performance in real time from driving 

behaviours will also be carefully investigated.  
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