
Using model checking tools to triage the severity of
security bugs in the Xen hypervisor

Byron Cook∗†, Björn Döbel∗, Daniel Kroening∗‡, Norbert Manthey∗,
Martin Pohlack∗, Elizabeth Polgreen§, Michael Tautschnig∗¶, Pawel Wieczorkiewicz∗

∗Amazon Web Services †University College London ‡University of Oxford
§UC Berkeley ¶Queen Mary University of London

Abstract—In practice, few security bugs found in source code
are urgent, but quickly identifying which ones are is hard.
We describe the application of bounded model checking to
triaging reported issues quickly at the cloud service provider
Amazon Web Services (AWS). We focus on the job of reactive
security experts who need to determine the severity of bugs
found in the Xen hypervisor. We show that, using our publicly
available extensions to the model checker CBMC, a security
expert can obtain traces to construct security tests and estimate
the severity of the reported finding within 15 minutes. We believe
that the changes made to the model checker, as well as the
methodology for using tools in this scenario, will generalise to
other organisations and environments.

I. INTRODUCTION

Some bugs have serious security implications. For well-
engineered systems most bugs do not. The reason is that these
systems are built with defense in depth [1], meaning that the
average bug found usually just temporarily reduces the depth
of the defense provided until the bug is fixed, but does not
present an immediate security concern that nullifies assumed
defenses.

At Amazon Web Services (AWS), a key challenge we face is
quickly categorising each bug report, which requires answering
the question whether the bug is reachable through all security
layers. Determining vulnerability severity is performed under
intense time-pressure, because a potentially exploitable issue
with zero-day implications must be fixed before information
falls into the wrong hands. The key to success in these situations
is access to quick and accurate answers to questions about
state-space reachability. Our case study focuses on determining
the severity of bugs in Xen [2], an open-source hypervisor used
throughout the industry. AWS uses a customised Xen version
on some of its Elastic Compute Cloud (EC2) servers. While this
case study focuses on Xen, we believe the results generalise to
other large-scale systems: based on our experience with Xen
and other systems, after an initial effort to ensure successful
builds of the code base, the system-specific effort to apply the
approach reported on in this case study is low.

For each security finding, the Xen Project publishes a Xen
Security Advisory (XSA) [3]. A typical XSA comes with a
description of the problem and a source-code patch to mitigate
the issue. Before full publication, the XSA is shared with
the members of Xen’s pre-disclosure list, as is common in
responsible disclosure processes. At AWS, members of 24/7
security operations triage potential security bugs as they are

discovered or reported. They may find themselves in the
following quandary: should they wake the engineering team
from their beds to investigate? Or do the existing layers of
defense mitigate against the consequences of the bug? Often
the same code is used in multiple products, where the defenses
will differ from service to service.

In order to assess the severity of a given XSA, the security
expert will manually determine whether the vulnerability is
reachable in the AWS-customised version of Xen. Engineers
construct security tests to reproduce the vulnerability, thereby
answering the reachability question. This reachability question
fundamentally is a global question about the interaction amongst
details across the entire EC2 system. It includes complex custom
hardware, software, protocols, and networks that implement the
layers of security defense, as well as enabling high compute
utilization and scalability needed for one of the world’s largest
cloud providers.

In this case study we describe our use of bounded model
checking to help our security experts make faster and more
accurate assessments of severity. The complexity of the overall
environment is well beyond the capacity of today’s formal
methods tools. We automate the part of the process that was
previously most time-consuming for security experts using an
extended version of CBMC [4]. For a given XSA, we use the
source-code patch provided with the XSA to write an assertion,
which we insert into the patched source-code area. Reachability
and violation of this assertion indicates a possible exploitation
of the vulnerability. We analyse the Xen source code in the
context of a potential security bug and generate traces that are
helpful for test construction.

These tests will be executed in the overall EC2 environment,
and help the security experts among us understand which
defenses remain intact, or else help find a complete proof-of-
concept test, which will be used to confirm any mitigation. In
our experience, we can perform work in minutes that would
previously have taken weeks or months. Because weeks is
unacceptably long, before the use of our methodology, additional
developers were enlisted as needed in order to reach a more
timely analysis conclusion. Now, we are able to more rapidly
make high-confidence calls using the high-fidelity answers
produced by our methodology. The result is that the rare critical
security bugs get fixed even faster than before, with fewer
human resources.

1



Related work: We integrate our extensions into CBMC [5],
[6], a bit-precise bounded model checking tool for C programs.
Model checking is frequently applied to security problems:
Gallagher et al. [7] use security patches to generate verification
assertions, and use CBMC and Frama-C to verify these.
UQBTng [8] automatically finds integer overflows in Win32
binaries using CBMC. Vasudevan et al. [9] use CBMC in
the verification of a small hypervisor framework. Automated
verification techniques have been applied to the address
translation subsystem [10] of the Xen hypervisor, using a
parametric verification technique to reduce the model size.
A small custom hypervisor is analysed by Alkassar [11]
and [12]. Dahlin et al. [13] develop a simple but fully verified
hypervisor. None of these approaches scales to the size of Xen
(cf. Section II).

Frama-C has been applied to verify a subset of the Xen
hypervisor code [14], using modelling of assembly code, harness
functions and manually picking hypercalls. The considered
properties are shallower than required for analysing security
issues. In contrast, we aim to automatically select hypercalls, and
focus on the interaction between the guest and the hypervisor.
KLEE [15] cannot be applied, as Xen does not compile to
LLVM [16]. This rules out tools built on top of KLEE, such
as the automatic exploit generation tool of [17], and also the
concolic execution approach that Chen et al. presented for
Linux kernel modules [18].

II. THE XEN HYPERVISOR

In cloud computing, one physical host machine is partitioned
into several parts, called virtual machines. Virtual machines
behave like complete computers with their own operating system,
and each virtual machine serves a single guest (serving as a
host in nested virtualisation [19]). The software that provides
this illusion is called a hypervisor [20], [21]. Xen [2] is a
bare-metal hypervisor, as it runs directly on the hardware of the
host and manages all the host’s resources. A similar hypervisor
is KVM [22], for which this work would apply as well.

1) Virtual machines: Every guest virtual machine in Xen
has its own guest kernel and operating system. A system call
from a program of a guest, e.g., a request for access to I/O
devices, reaches the guest kernel. In most configurations of Xen,
the guest kernel does not have direct control of the physical
machine. Hence, the guest kernel issues a hypercall or accesses
a predefined memory range to request the service from the
hypervisor. Xen is event-driven: after booting and once a guest
runs, Xen waits for guest code to execute and takes actions on
hypercalls, or host interrupts. The hypervisor handles hardware
exceptions and interrupts, which may be raised by the CPU
when guests issue privileged instructions.

2) Memory: Xen uses virtual memory for isolation and to
give guests the impression they are working with contiguous
sections of memory, when the physical memory could be spread
across different locations. Virtual memory is split into fixed-
length contiguous blocks called pages and each virtual address,
describing a location in a page, is mapped to a physical address
in a page frame. This mapping is stored in a page table. There

are several ways Xen can virtualise memory; most commonly
Xen uses hardware support in the form of nested paging and
extended page tables.

A. Example Vulnerability and Security Test

In the presence of an adversarial guest, security issues can
result in information leaks, guest denial of service (DoS),
privilege escalation to or DoS of the host machine. We discuss
XSA 227 [23] as an example of a potential vulnerability.

1) Security vulnerablity XSA 227: A guest can share memory
with, e.g., other guests, or devices. When setting up a new
shared memory area, the guest passes the memory location
to be shared to the hypervisor, by giving the guest-physical
address of an entry in one of its page tables. To share the
page, the hypervisor modifies this page table entry. Before the
modification, Xen checks several properties. XSA 227 reported
that Xen did not check whether the entry address starts at the
beginning of a page table entry, i.e., whether the address is
aligned. Since Xen writes exactly one page table entry, the
hypervisor can write beyond an unaligned page table entry,
allowing the guest to partially overwrite the next page table
entry. Writing to the page table in this unprotected way is
sufficient to allow a guest to grant itself additional permissions
and gain full system access.

2) Security test for XSA 227: To establish the severity of
an XSA for AWS, an engineer develops tests to trigger the
vulnerability in the EC2 environment. For XSA 227, the test
performs a hypercall from a guest that shares memory at a
non-aligned address. If the hypercall returns with success, the
vulnerability is reachable. Else, if the hypercall returns an error
code—and if no other mistakes have been made when invoking
the hypercall—the vulnerability is unreachable.

3) Equivalent reachability problem: For XSA 227, part of
the XSA patch provided is the following macro that checks
whether the page-table entry of a page is aligned:

#define IS_ALIGNED(val , align) \
(((val) & ((align) - 1)) == 0)

We use this macro to add an assertion that, if violated, indicates
the vulnerability is exploitable. For XSA 227, we insert the
following assert statement over local variables pte_addr and
nl1e into the source-code area patched in the XSA:

assert(IS_ALIGNED(pte_addr , sizeof(nl1e )));

We could thus use software model checking to verify whether
the above assertion can be violated, starting from the hypercall
entry point. Such a counterexample can be used to construct
the above mentioned test.

B. Challenges in Applying Automated Program Analyses

Existing program analysis techniques, however, cannot be
applied out-of-the-box to the Xen code base: (1) Xen uses C
code with systems extensions and assembly code throughout the
codebase, for example interfacing with hardware. In Xen 4.8,
there remain more than 700 lines of assembly in the code base.
To the best of our knowledge, there is no symbolic verification
tool that can handle this combination of C and assembly code

2



on such a large code base. (2) Modelling behaviour of an
adversarial guest precisely would require modelling the exact
start state of the machine, which is determined in boot code, the
exact interaction history with other guests, and maintaining a full
model of the memory layout and system registers. We cannot
do this, due to both the proliferation of low-level assembly
code in the boot code and the scalability demands of a full
memory model. (3) Xen is configurable, owing to its requirement
to have full control of a machine regardless of architecture.
Thus, Xen contains code that emulates CPU instructions for
multiple different architecture flavours. During boot time, the
architecture flavour is determined and function pointers are set
to point to the correct implementations. (4) The size of the
code base exceeds the scalability limits of existing software
model checkers: Xen 4.8 is comprised of ∼300,000 lines of
code. Benchmarks in the TACAS Competition on Software
Verification [24] are smaller. The largest tasks feature ∼100,000
lines of code. However, in 2019, large solved benchmarks in
this competition typically had either short counterexample
traces or simple proofs of safety. For Xen, we expect long
counterexample traces of instructions to refute safety, due to the
steps involved in the interaction with hypervisors. For all XSAs
we have investigated, unpatched CBMC failed to complete
analysis within an 8 hour time window, even after using all
available program slicers. Program slicing [25] uses dependence
analysis to remove instructions that cannot affect a property of
interest. CBMC includes a reachability slicer, which removes
instructions that cannot affect any assertion, and a slicer to
remove code that initialises unused global variables. These
slicers are fast but do not remove enough code for the analysis
of Xen to become feasible. CBMC also contains a full-program
slicer, which computes the cone-of-influence [26]. Full slicing
is precise but, owing to the cost of points-to analyses, not
scalable and does not complete within 8 hours.

III. EXTENDING CBMC TO HANDLE XEN

We address these four challenges using automated approxim-
ations with hooks for expert-provided refinement, implemented
in an extended version of CBMC [4].

A. Assembly Code

When the lack of interpretation of assembly code adversely
affects precision, we model it in C, most importantly the
hypercall table of Xen, which contains the hypercalls a guest
may use. We model this as a non-deterministic choice over
hypercalls, entered with non-deterministic arguments, to allow
all possible guest behaviour. Figure 1 shows a snippet from this
model. While this model is currently constructed manually, it
is reused across XSAs. Future work on CBMC includes adding
native support for assembler code, which will avoid the need
for expert-provided input for this stage.

B. Environment Modelling

We start our analysis either at a start point known to be
relevant to the XSA or at the hypercall entry-point. To over-
approximate the state of the machine at the point the guest makes

void do_hypercall ()
{

int nondet;
switch(nondet)
{
case 1:

XEN_GUEST_HANDLE (const_trap_info_t) traps1;
do_set_trap_table(traps1 );
break;

case 2:
XEN_GUEST_HANDLE (mmu_update_t) ureqs2;
unsigned int count2;
XEN_GUEST_HANDLE (uint) pdone2;
unsigned int foreigndom2;
do_mmu_update(ureqs2 , count2 , pdone2 , foreigndom2 );
break;

case 3:
XEN_GUEST_HANDLE (ulong) frame_list3;
unsigned int entries3;
do_set_gdt(frame_list3 , entries3 );

...

Figure 1. Model of the hypercall table.

a hypercall, we automatically generate an environment that
assumes non-deterministic values for all input parameters to the
start function, and constrains all pointers to refer to valid areas
of memory. To enforce the latter, we add harness functions into
the code at analysis time. These functions initialise the pointers
to point to valid but non-deterministic objects. By starting from
this set of states, we over-approximate the potential behaviour
of the adversary between boot and the first hypercall we model.
As can be seen in Figure 2, these harnesses are similar to the
test harnesses used by fuzzing techniques with which security
experts are already familiar.

C. Function Pointer Removal

By default, CBMC expands function pointers to a case
statement over a set of functions determined using an over-
approximating type-based analysis. For the configurable code
base of Xen, the type-based analysis yields up to 300 functions
for a single function pointer. CBMC determines the precise
set of function calls, i.e., the subset of feasible cases, during
symbolic execution. As our analysis running on Xen uses non-
deterministic initial states, symbolic execution would typically
deem all cases feasible, even though most of them are spurious.
We added a new flow-insensitive points-to analysis [27] to
reduce the candidate set per pointer. If the flow-insensitive
points-to analysis yields an empty set as, e.g., caused by pointers
depending on boot code, we fall back to the original behaviour.
With this change, we introduce 20k fewer function calls, about
114k instead of 134k, and hence reduce the likelihood of
spurious counterexamples.

Configurable harnesses: Xen code supports several archi-
tectures. For our analysis we pick a single architecture, e.g.,
Intel. This allows us to restrict the set of functions considered
for handling architecture specifics, while still using a non-
deterministic machine state. We thus support adding expert-
provided code into the harnesses described in Section III-B to
restrict the candidates of these function pointers to a specific

3



int main()
{

struct x86_emulate_ctxt harness_ctxt;
struct x86_emulate_ops harness_ops;
int nondet;
// instantiate read function pointer
switch(nondet)
{
case 1:

harness_ops.read = EXAMPLE;
break;

case 2:
harness_ops.read = EXAMPLE2;
break;

}
// restrict possible vendor values
__CPROVER_assume(harness_ctxt.vendor < 3);

x86_emulate (& harness_ctxt , &harness_ops );
}

Figure 2. Harness for x86_emulate.

function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

The example given in Figure 2, x86_emulate contains several
function pointers and an expert engineer specifies two possible
function pointers for the read function.

D. Approximating Program Slicer

In order to focus analysis on the relevant part of the
hypervisor, we introduce a more aggressive slicing approach
following the algorithm of Figure 3: we first compute an
approximation of the call graph using the function-pointer
removal as described above. Using this call graph, the slicer
computes the set of paths from the entry point to the target
property. From this set, we select direct paths, which we define
as the paths without cycles on the call graph. We then take
these direct paths and remove all function calls that return back
to the calling function and replace these function calls with an
approximation of their behaviour by havocking the function
body, as explained below. This produces an approximation
of the cone of influence, which may be sufficiently small to
analyse with CBMC.

If the resulting program slice is still too large to analyse, the
approximating slicer can be configured to keep only functions on
the shortest direct path. To increase precision, we can preserve
all functions within a given distance of function calls from the
direct paths, illustrated in Figure 4. To obtain scalability and
precision, we run multiple analyses with varying degrees of
precision in parallel to find the configuration that completes
within the timeout with maximum precision.

1) Approximating behaviour of missing code: If a function is
removed, we must approximate the behaviour of that function in
order to avoid missing counterexamples. A coarse approximation
is to havoc the function, i.e., assume the function may return
a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation
is not strictly an over-approximation, because it may under-
approximate behaviour as described below. We chose this

simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some
counterexamples due to under-approximation is acceptable for
our use case as we strive to support the security expert in
constructing tests.

2) Potential under-approximation: The first source of under-
approximation are global variables written to by a function
that we removed. We partly mitigate the absence of modelling
this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is,
however, possible that a trace requires a global variable to take
different values during the trace; such counterexamples would
thus be missed.

The second source of under-approximation is not havocking
pointers to pointers. When a function receives a pointer A as
argument that points to pointer B, we do not havoc pointer B.
When a function receives a pointer A that points to a struct B

that contains a pointer C, we do not havoc pointer C. We choose
not to havoc these pointers, as this can change any memory to
any value, and introduces spurious counterexamples. There are
84 functions in Xen that accept pointers to pointers, and we
did not find any to be relevant to the XSAs we analysed.

IV. DETERMINING SEVERITY OF VULNERABILITIES

Our aim is to assist experts in determining the severity of
a security vulnerability, within a specific version of Xen. To
illustrate this use case, we selected a few XSAs with different
properties: 200, 212, 213, 227, and 238 [3]. We build our
modifications on top of CBMC version 5.10, which uses Mini-
Sat 2.2.1 [28]. We disable MiniSAT’s pre-processor, as it usually
consumes more run time than the actual verification task for the
given problems. We pick Xen release 4.8 [29], as none of the
selected XSAs have been mitigated in this version, and fixed
handling comments in assembly to allow us to compile the
code with CBMC. Next, we added the assertions and harness
functions for each XSA. This is a required setup step the
complexity of which varies between adding a single assertion,
and adding a full harness for the hypercall table (about 300
instructions), depending on the XSA. When starting from our
provided package, these harnesses are already present, and
hence, future harnesses require less effort. To speed-up overall
time, and precision, we run multiple configurations of the slicer
and analysis options in parallel via AWS Batch [30], to obtain
first results quickly. Our Xen and CBMC packages including
all scripting are available at [31].

The counterexample trace contains all function entries and
exits, arguments and relevant variable assignments. We add an
option to CBMC to print the trace in HTML with options to
expand function calls.

A. Results

The experiments were run on AWS Batch using the EC2 r5
instance family, with a memory limit of 110 GiB and an overall
timeout of 8 hours per job. The original Xen binary contains
103,662 effective program locations, i.e., code statements that
affect the state of the program. We ran CBMC out-the-box on

4



Approximating Slice (CFG g, node entry, node target, bool direct, int distance)

S1 FP := remove function pointers(g)
S2 CG := compute call graph(FP )
S3 DP := get direct paths(CG, entry, target)
S4 DP := shortest path(DP ) if ¬ direct else DP
S5 mark for havoc = ∅
S6 for node n in FP :
S7 if distance(FP , DP , n) > distance:
S8 mark for havoc := mark for havoc ∪{n}
S9 for node n in mark for havoc:
S10 havoc object(n)

Figure 3. Approximating slicing is applied to input program represented by its control-flow graph g, and configurable in the entry- and target nodes, whether or
not to consider all direct paths, and the maximum distance.

each of the XSAs with all combinations of the CBMC program
slicers, with a loop unwinding limit of 0, i.e., executing the
loop body just once. The reachability slicer and global slicer
reduce the instruction count by up to 20%. CBMC cannot
produce a results for any of the combinations, and the full
slicer does not finish within the 8 h timeout.

We vary the input parameters to approximating slicing
(cf. Figure 3) to preserve all direct paths, or shortest paths only,
or preserve functions with a distance of up to 2 calls. We limit
loop unwinding to 0, 1 or 2 iterations, and use both function
pointer removal approaches. These limits were chosen since
they were large enough to produce precise enough results to
create tests from the traces. It is possible to increase these
limits and still obtain traces, but substantially large values may
result in a binary too large to analyse in reasonable time (for
instance, increasing the depth to 10 or greater).

Slicing is crucial, as it reduces the size of the input program
to less than 5% of its original size in under 10 minutes. Overall
run times of the more precise configurations (distance=2) are

harness

do hvm op

hvmop unmap io
range from ioreq server

do iretdo mmu update do sysctl

assert

do altp2m

put page

cpy to usr

xsm hvm ct

xsm hvm ioreq serve

rcu lock remote
domain by id

get cpu info

copy from user hvm

hypercall table

Direct Path One function call away

Two function calls away Three function calls away

Figure 4. Xen’s call graph from the harness function to an assertion representing
XSA 238. The thick framed nodes show the direct path; these functions are
always preserved by the approximating slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section III-D1,
by default. If we preserve functions up to one function call away from the
direct paths, the light grey nodes will be preserved, and the unlabelled nodes
represent functions which will be approximated.

presented in Figure 5. For smaller distances, the run times are
typically smaller. The figure shows that run times depend on
the XSA, as well as on the unwinding parameter – for more
unwinding the run time for XSAs 213, 212 and 238 increases.
For XSA 200, no direct-path based traces can be produced
within 8 hours in case all direct paths are kept, because XSA
200 is located in instruction emulation code, which introduces
many direct paths.

For all five selected XSAs, an initial result for at least
one configuration is returned within 10 minutes. This time
allows engineers to refine the harness to improve the result
for test generation quickly. Within the first hour, more than 30
configurations produce traces.

B. Turning a Trace To a Test

To make the results of this work consumable for future
XSAs, we also discuss how to turn a counterexample trace
from CBMC into a security test that could be executed inside
the guest. The required information is

1) the configuration of Xen
2) the type of the guest that can hit the security issue
3) the interaction the guest has to perform to trigger the

security issue
A typical XSA description provides data for item 1 and 2,
because it scopes the security issue. In case CBMC produces
a valid trace for an assertion, this trace provides information
about item 3, namely the relevant data that comes from the
guest. This data is forwarded to Xen via a few interfaces:

1) hypercalls, namely the call to perform, as well as the
arguments for the hypercall

2) copy from guest, a function which copies data from
the guest into the hypervisor

3) hardware interaction, e.g., content of packages that are
generated by interaction with the (emulated) hardware

In the XSAs we analysed, we only see interaction via hypercalls
and the function copy from guest. No devices are involved
in these XSAs.

Finally, to turn the relevant parts of the trace into an actual
security test, we need the basic building blocks to interact with
the hypervisor, for example being able to compile a kernel

5



UW
0

DP
0

UW
1

DP
0

UW
2

DP
0

UW
0

DP
1

UW
1

DP
1

UW
2

DP
1

Configuration

103

104

Ov
er

al
l r

un
 ti

m
e 

[s
ec

on
ds

]

XSA Run Times
XSA 200
XSA 212
XSA 213
XSA 227
XSA 238

Figure 5. Run time of the overall approach for selected configurations that finish within 8 hours. We fixed the parameters to distance=2, and advanced function
pointer removal as well as run full slicing after approximating slicing. Keeping all direct paths (DP1), as well as unwinding loops (UW) during search are altered.

module or the required C header files to use the definitions of
structures that are passed as arguments to the hypercall. We
use the Xen Testing Framework [32], which provides these
building blocks, supports many hypercalls and allows the user
to create a security test easily. XTF also already has tests
for past XSAs. For the XSAs we use, actual tests can be
found via the following URL: https://xenbits.xen.org/gitweb/
?p=xtf.git;a=blob plain;f=tests/xsa-200/main.c.1

C. Practical Relevance

EC2 launched in 2006. The Xen project reported its first
XSA in March 2011, and has since announced more than 300
XSAs—about three per month. AWS’ Xen security team has
provided feedback to the Xen security team on several occasions
and reported four follow-up XSAs. Using this experience, we
analyzed the five XSAs above as examples. The generated traces
for four out of those proved to be good enough as building
blocks for tests: the relevant hypercall, as well as relevant
input values for the hypercall are present in the trace. When
there are multiple traces, we use the trace with most precision,
i.e. highest unwinding, distance, and direct paths included.
Ultimately this runnable test is used to avoid future security
regressions. Only the trace for XSA 213 requires further work,
as CBMC only reports the second half of the trace, and skips
setting the hypervisor into a specific mode first, because we
start the analysis from a non-deterministic machine state.

Compared to the manual assessments that we performed,
the automated approach is often faster. If we take setting
up Xen for the analysis into account, i.e. adapting available
harnesses and packaging for AWS Batch, we are usually in
the same ball-park. While AWS security experts can often
quickly assess reachability of a location in the code base, for a
specific configuration and version of the hypervisor, finding
input values to bypass checks and doing this analysis for all
different production configurations is more challenging. For
these cases, the presented approach is a win, as the amount of
engineering time spent can be reduced from engineering days
to hours.

1Replace the 200 with the any of the XSA numbers 200, 212, 213 or 227.

We note that failing to find a trace is not sufficient to allow
the security team to ignore an issue, and the security team
makes risk-based assessments based on their experience and
judgment. In some cases in this scenario it is necessary to fall
back to the traditional techniques to establish high confidence
that a potential issue does not require a fix. In these scenarios,
our tool can, nevertheless, still be provide a useful datapoint
that, combined with other information, can give the security
team confidence that additional investigation is not urgent.

The recent XSA 296 reported the vulnerability for PV and
HVM guests. After about a day of manual work, AWS experts
could rule out HVM guests. The new approach would have
been helpful, as all reported traces would have relied on PV
guest features, helping to rule out HVM faster.

For similarly complex software projects, the presented
technique will provide valuable insight into reachability and
produce sample input values to trigger a software bug. Less
experienced teams might benefit from the automated approach
to speed up response time for security incidents.

1) Limitations and open challenges: Our approach has
a number of limitations which reduce the precision of our
results. We may miss traces for several reasons: CBMC has an
incomplete understanding of assembly code; we do not consider
whether functions we remove modify globals; we unwind loops
to a finite bound; and CBMC does not maintain a full model of
memory. We may produce spurious traces because we start from
a mid-point in the code using a non-deterministic start state.
Addressing these limitations and running bit-precise analysis
on large code bases remains an open challenge. We feel that
the natural next step towards this would be refinement of our
approximations.

There are cases where security issues can only be triggered
if there are two guest CPUs available. Analysis would have to
scale for parallel interaction, including parallel hypercalls, and
modification of guest data.

Finally, automation would benefit from an incremental
approach of the technique. The investigating engineer might
receive the initial results, and then modify the harness to
restrict the search space. Today, the complete process has to be

6

https://xenbits.xen.org/gitweb/?p=xtf.git;a=blob_plain;f=tests/xsa-200/main.c
https://xenbits.xen.org/gitweb/?p=xtf.git;a=blob_plain;f=tests/xsa-200/main.c


triggered again, and the whole search has to be repeated. We
expect starting analysis from a state similar to a given trace
to significantly reduce the run time of subsequent iterations,
similarly to incremental SAT solving [33].

V. CONCLUSION

We have described the application of bounded model checking
and slicing to the Xen hypervisor used in triaging reported
security concerns. By introducing improved handling of function
pointers and approximating program slicing in combination
with havocking functions we are able to use bounded model
checking to produce counterexample traces that reproduce
security issues and ultimately, determine their severity. Despite
the open challenges listed in the previous section, we have
shown that we can use automation to help generate security
tests from patches today, which supports more rapid security
analysis and also leads to a more secure cloud environment
for customers. This tooling assists experts in determining the
severity of security vulnerabilities, constructing security tests
for these scenarios, and helping on-call security experts quickly
decide whether they should wake up developers or allow them
to enjoy their well-deserved sleep.

REFERENCES

[1] A. Follner, A. Bartel, H. Peng, Y. Chang, K. K. Ispoglou, M. Payer,
and E. Bodden, “PSHAPE: automatically combining gadgets for
arbitrary method execution,” in Security and Trust Management -
12th International Workshop, STM 2016, Heraklion, Crete, Greece,
September 26-27, 2016, Proceedings, ser. Lecture Notes in Computer
Science, vol. 9871. Springer, 2016, pp. 212–228. [Online]. Available:
https://doi.org/10.1007/978-3-319-46598-2 15

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in SOSP. ACM, 2003, pp. 164–177.

[3] Xenproject.org Security Team, “Xen security advisories,” 2019, accessed:
2019-12-17. [Online]. Available: https://xenbits.xenproject.org/xsa/

[4] E. Polgreen, “CBMC extensions,” 2018, accessed: 2019-12-19. [Online].
Available: https://github.com/polgreen/cbmc/tree/xen extended cbmc

[5] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, ser. Lecture Notes in Computer Science, vol. 2988.
Springer, 2004, pp. 168–176.

[6] D. Kroening and M. Tautschnig, “CBMC – C bounded model checker
(competition contribution),” in TACAS, ser. Lecture Notes in Computer
Science, vol. 8413. Springer, 2014, pp. 389–391.

[7] J. Gallagher, R. Gonzalez, and M. E. Locasto, “Verifying security patches,”
in Workshop on Privacy & Security in Programming. ACM, 2014, pp.
11–18.

[8] R. Wojtczuk, “UQBTng: A tool capable of automatically finding integer
overflows in Win32 binaries,” in CCC. Chaos Communication Congress,
2005.

[9] A. Vasudevan, S. Chaki, L. Jia, J. M. McCune, J. Newsome, and A. Datta,
“Design, implementation and verification of an extensible and modular
hypervisor framework,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2013, pp. 430–444.

[10] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. Vasudevan,
“Parametric verification of address space separation,” in POST, ser. Lecture
Notes in Computer Science, vol. 7215. Springer, 2012, pp. 51–68.

[11] E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova, “Automated
verification of a small hypervisor,” in VSTTE, ser. Lecture Notes in
Computer Science, vol. 6217. Springer, 2010, pp. 40–54.

[12] W. J. Paul, S. Schmaltz, and A. Shadrin, “Completing the automated
verification of a small hypervisor – assembler code verification,” in SEFM,
ser. Lecture Notes in Computer Science, vol. 7504. Springer, 2012, pp.
188–202.

[13] M. Dahlin, R. Johnson, R. B. Krug, M. McCoyd, and W. D. Young,
“Toward the verification of a simple hypervisor,” in ACL2, ser. EPTCS,
vol. 70, 2011, pp. 28–45.

[14] A. Puccetti, “Static analysis of the XEN kernel using Frama-C,” J. UCS,
vol. 16, no. 4, pp. 543–553, 2010.

[15] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI. USENIX Association, 2008, pp. 209–224.

[16] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer Society,
2004, p. 75.

[17] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic exploit generation,” Commun. ACM, vol. 57,
no. 2, pp. 74–84, 2014. [Online]. Available: https://doi.org/10.1145/
2560217.2560219

[18] B. Chen, Z. Yang, L. Lei, K. Cong, and F. Xie, “Automated bug
detection and replay for COTS linux kernel modules with concolic
execution,” in 27th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2020, London, ON, Canada,
February 18-21, 2020, K. Kontogiannis, F. Khomh, A. Chatzigeorgiou,
M. Fokaefs, and M. Zhou, Eds. IEEE, 2020, pp. 172–183. [Online].
Available: https://doi.org/10.1109/SANER48275.2020.9054797

[19] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B. Yassour, “The turtles
project: Design and implementation of nested virtualization,” in 9th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings.
USENIX Association, 2010, pp. 423–436. [Online]. Available:
http://www.usenix.org/events/osdi10/tech/full papers/Ben-Yehuda.pdf

[20] H. K. Jr., “Operating systems architecture,” in AFIPS, ser. AFIPS
Conference Proceedings, vol. 36. AFIPS Press, 1970, pp. 109–118.

[21] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421,
1974.

[22] A. Kivity, “Kvm: Kernel-based virtual machine,” 2006, accessed:
2019-12-19. [Online]. Available: http://lkml.iu.edu/hypermail/linux/kernel/
0610.2/1369.html

[23] Xenproject.org Security Team, “Advisory xsa-227,” 2018, accessed: 2019-
12-19. [Online]. Available: https://xenbits.xenproject.org/xsa/advisory-227.
html

[24] D. Beyer, “Software verification with validation of results - (report on
SV-COMP 2017),” in TACAS, ser. Lecture Notes in Computer Science,
vol. 10206, 2017, pp. 331–349.

[25] M. Weiser, “Program slicing,” in ICSE. IEEE Computer Society, 1981,
pp. 439–449.

[26] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu, “Verifiying safety properties
of a power PC microprocessor using symbolic model checking without
bdds,” in CAV, ser. Lecture Notes in Computer Science, vol. 1633.
Springer, 1999, pp. 60–71.

[27] M. Shapiro and S. Horwitz, “Fast and accurate flow-insensitive
points-to analysis,” in Conference Record of POPL’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Papers Presented at the Symposium, Paris, France, 15-17
January 1997. ACM Press, 1997, pp. 1–14. [Online]. Available:
https://doi.org/10.1145/263699.263703

[28] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, ser. Lecture
Notes in Computer Science, vol. 2919. Springer, 2003, pp. 502–518.

[29] Xen Project, “Xen project 4.8.0,” 2018, accessed: 2019-12-19.
[Online]. Available: https://xenproject.org/downloads/xen-project-archives/
xen-project-4-8-series/xen-project-4-8-0/

[30] “AWS Batch,” 2016, accessed: 2019-12-19. [Online]. Available:
https://aws.amazon.com/batch

[31] “Xen and CBMC packages including scripting,” 2019.
[Online]. Available: https://www.amazon.co.uk/clouddrive/share/
gBYJ5K5YuMvn8tyR8jj1CrX2kLDmkshiKt7KrfbL49c

[32] “Xen test framework,” http://xenbits.xen.org/docs/xtf/, accessed: 2018-09-
10.

[33] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–560,
2003.

7

https://doi.org/10.1007/978-3-319-46598-2_15
https://xenbits.xenproject.org/xsa/
https://github.com/polgreen/cbmc/tree/xen_extended_cbmc
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1109/SANER48275.2020.9054797
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
http://lkml.iu.edu/hypermail/linux/kernel/0610.2/1369.html
http://lkml.iu.edu/hypermail/linux/kernel/0610.2/1369.html
https://xenbits.xenproject.org/xsa/advisory-227.html
https://xenbits.xenproject.org/xsa/advisory-227.html
https://doi.org/10.1145/263699.263703
https://xenproject.org/downloads/xen-project-archives/xen-project-4-8-series/xen-project-4-8-0/
https://xenproject.org/downloads/xen-project-archives/xen-project-4-8-series/xen-project-4-8-0/
https://aws.amazon.com/batch
https://www.amazon.co.uk/clouddrive/share/gBYJ5K5YuMvn8tyR8jj1CrX2kLDmkshiKt7KrfbL49c
https://www.amazon.co.uk/clouddrive/share/gBYJ5K5YuMvn8tyR8jj1CrX2kLDmkshiKt7KrfbL49c
http://xenbits.xen.org/docs/xtf/

	Introduction
	The Xen Hypervisor
	Virtual machines
	Memory

	Example Vulnerability and Security Test
	Security vulnerablity XSA 227
	Security test for XSA 227
	Equivalent reachability problem

	Challenges in Applying Automated Program Analyses

	Extending CBMC to handle Xen
	Assembly Code
	Environment Modelling
	Function Pointer Removal
	Approximating Program Slicer
	Approximating behaviour of missing code
	Potential under-approximation


	Determining Severity of Vulnerabilities
	Results
	Turning a Trace To a Test
	Practical Relevance
	Limitations and open challenges


	Conclusion
	References

