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Abstract

This paper presents an abstract parametrised functional interpretation of WE-HAω.
It is based on families of parameters allowing for different degrees of freedom on
the design of concrete interpretations. In this way, we are able to generalise pre-
vious work on unifying functional interpretations by including in the unification
the more recent bounded and Herbrandized functional interpretations.

Keywords: functional interpretations, unification, intuitionism, proof theory
2000 MSC: 03F07, 03F10, 03F30, 03F55

1. Introduction

Since Gödel [16] published his functional (“Dialectica”) interpretation in 1958,
various other functional interpretations have been proposed2. These include Kreisel’s
modified realizability [20], the Diller-Nahm variant of the Dialectica interpreta-
tion [4], Stein’s family of interpretations [28], and more recently, the bounded
functional interpretation [12], the bounded modified realizability [11], and “Her-
brandized” versions of modified realizability and the Dialectica [3]. In view of
this picture, several natural questions arise: How are these different interpreta-
tions related to each other? What is the common structure behind all of them?
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Are there any other interpretations out there waiting to be discovered?
These questions were addressed by the second author and various co-authors

in a series of papers on unifying functional interpretations. Starting with a uni-
fication of interpretations of intuitionistic logic [21], which was followed by var-
ious analysis of functional interpretations within the finer setting of linear logic
[13, 22, 23, 24], a proposal on how functional interpretations could actually be
combined in the so-called hybrid functional interpretations [17, 25], and the in-
clusion of truth variants in the unification [15].

Functional interpretations associate with each formula A a new formula {{A}}xy
where x and y are fresh tuples of variables. Intuitively, x captures the “positive”
quantifications in A, while y captures the “negative” quantifications. This is done
in such a way that, in a suitable system, the truth of A is equivalent to that of
∃x∀y{{A}}xy . The key insight which arises from the programme of “unifying func-
tional interpretations” is that we have some degree of freedom when choosing the
interpretation of the exponentials of linear logic !A and ?A. For instance, we can
take

{{!A}}xy :≡ !{{A}}xy (giving rise to the Dialectica interpretation)
{{!A}}xa :≡ !∀y ∈ a{{A}}xy (giving rise to the Diller-Nahm interpretation)
{{!A}}x :≡ !∀y{{A}}xy (giving rise to modified realizability)
{{!A}}x :≡ !∀y{{A}}xy ⊗ !A (giving rise to modified realizability with truth)
and so on...

showing that these interpretations only differ in the way they treat the contraction
axiom. In particular, in the pure fragment of linear logic all these interpretations
coincide!

So, it makes sense to introduce an abstract bounded quantification ∀x@τ a A,
capturing this degree of freedom on the design of a functional interpretation, and
to try to isolate the properties of this parameter which ensure the soundness of
the interpretation. With this, one is able to define a “unifying functional inter-
pretation” which when instantiated gave rise to several of the existing functional
interpretations, including the Dialectica interpretation, modified realizability (its
q- and truth variants), Stein’s family of interpretations, and the Diller-Nahm in-
terpretation [21, 24]. This process also led to the design of a “Diller-Nahm with
truth” interpretation [15], which at the time was thought not to be possible.

However, the unifying functional interpretation programme has so far been un-
able to capture the two more recent families of functional interpretations, namely
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the bounded functional interpretations [6, 10, 11, 12], and the Herbrandized func-
tional interpretations [3, 9].

In this paper we propose a more general parametrisation of the functional in-
terpretation, introducing other families of parameters which allows us to capture
different interpretations of typed quantifications. We demonstrate that, when de-
vising a functional interpretation, we in fact have two crucial degrees of freedom:
we can choose how to interpret the contraction axiom, as discussed above, but
also, we can choose how to interpret typed quantifications, which ultimately boils
down to the choice of how predicate symbols are interpreted.

A ` A (id) ⊥ ` A (efq)

Γ, A, B ` C
(∧L)

Γ, A ∧ B ` C

Γ ` A ∆ ` B
(∧R)

Γ,∆ ` A ∧ B

Γ, A ` C ∆, B ` C
(∨L)

Γ,∆, A ∨ B ` C

Γ ` A
(∨Rl)

Γ ` A ∨ B

Γ ` B
(∨Rr)

Γ ` A ∨ B

Γ ` A ∆, B ` C
(→L)

Γ,∆, A→ B ` C

Γ, A ` B
(→R)

Γ ` A→ B

Γ ` B
(wkn)

Γ, A ` B

Γ, A, A ` B
(con)

Γ, A ` B

Γ ` A ∆, A ` B
(cut)

Γ,∆ ` B

Γ, A(zτ) ` B
(∃L)

Γ,∃zτA(z) ` B

Γ ` A(tτ)
(∃R)

Γ ` ∃zτA(z)

Γ, A(t) ` B
(∀L)

Γ,∀zA(z) ` B

Γ ` A(zτ)
(∀R)

Γ ` ∀zτA(z)

Table 1: Logical axioms and rules of WE-HAω

In this paper, we will carry out the details in the context of Heyting arithmetic
in all finite types WE-HAω, but the same can also be done for other theories,
with suitable assumptions for the interpretation of its non-logical axioms. In [7],
we explain how this parametrised interpretation of Heyting arithmetic arises from
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a parametrised interpretation of intuitionistic linear logic combined with transla-
tions of intuitionistic logic into intuitionistic linear logic.

The parametrised interpretation of WE-HAω will be presented in Section 2.
In Section 3 we show how instantiating the different parameters then gives rise to
each of the functional interpretations mentioned above. In this process we have
again discovered some new functional interpretations.

2. A Parametrised Functional Interpretation

We will fix the “source” theory as WE-HAω, while the “target” theory At
might be a strict extension of WE-HAω. We will add only enough assumptions
on At to ensure that the soundness of WE-HAω into At goes through. Our as-
sumptions are as follows:

(A1) The target theoryAt is an extension of WE-HAω.
(A2) For each finite type3 ρ we have, in the target theory At, a formula x ≺ρ a,

and a finite type wt(ρ). We will call wt(ρ) the witnessing type of ρ. We
write ∀x ≺ρ a A and ∃x ≺ρ a A as abbreviations for ∀xρ(x ≺ρ a → A) and
∃xρ(x≺ρ a ∧ A), respectively.

(A3) For each finite type ρwe also have, in the target theoryAt, a formula Wρ(x),
which we will use to restrict the domain of the witnesses and counter-
witnesses. We assume that x≺ρ a implies that a is in Wwt(ρ), i.e.

x≺ρ a `At Wwt(ρ)(a).
When τ is a tuple of finite types τ1, . . . , τn, we write Wτ(x1, . . . , xn) as an
abbreviation for Wτ1(x1), . . . ,Wτn(xn), when it appears in the context of a
sequent, or for Wτ1(x1)∧ . . .∧Wτn(xn), when it appears in the conclusion of
a sequent. We assume that, provably in At, the combinators Sρ,τ,σ and Kρ,τ

are in W, and that the application of a function in W to an argument in W
will also be in W, i.e.

(WK) `At Wρ→τ→ρ(Kρ,τ)
(WS) `At W(ρ→τ→σ)→(ρ→τ)→ρ→σ(Sρ,τ,σ)

(WAp) Wτ(x),Wτ→ρ( f ) `At Wρ( f x)

3For the sake of simplicity, we will take the booleans B as a primitive base finite type, although
in WE-HAω the booleans are normally defined from the natural numbers N by interpreting 0 as
true, and n > 0 as false. This means that for us, the atomic formulas of WE-HAω are s =B t (for
s, t : B) and s =N t (for s, t : N).
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(A4) For each formula A ofAt, tuple of variables x = x1, . . . , xn, and finite types
τ = τ1, . . . , τn we associate a tuple of bounding types bt(τ) and a formula
∀x @τ a A, in which the variables x are no longer free. If Γ = A1, . . . , An

then ∀x@τ a Γ abbreviates ∀x@τ A1 , . . . ,∀x@τ An . We do not assume that
the tuple of finite types bt(τ) has the same length as τ. The intuition is that
x ranges over elements of type τ, whereas the bounds a range over possi-
bly different types bt(τ). The formula construction ∀x @τ a A is assumed
to satisfy the following properties (so that it indeed behaves as a bounded
universal quantifier):
(Q1) If Γ `At A then ∀x@τ a Γ `At ∀x@τ a A
(Q2) ∀xWA `At ∀x@τ a A (and in particular ∀x@τ a Wτ(x))
(Q3) ∀x@τ a A `At A, if x is not free in A
(Q4) ∀x@τ a (A(x) ∧ B) `At ∀x@τ a A(x) ∧ B, if x is not free4 in B.
For each formula A of At, tuple of variables x, and types τ and ρ we also
assume that there exist terms η(·), (·) t (·) and (·) ◦ (·) ofAt such that
(Cη) Wτ(z),∀x@τη(z) A `At A[z/x]

`At Wτ→bt(τ)(η)
(Ct) Wτ,τ(x1, x2),∀x@τ (x1 t x2) A `At ∀x@τ x1 A ∧ ∀x@τ x2 A

`At Wbt(τ)→bt(τ)→bt(τ)(λx1, x2.x1 t x2)
(C◦) Wρ→bt(τ)( f ),Wbt(ρ)(z),∀x@τ ( f ◦ z) A `At ∀y@ρ z∀x@τ f y A

`At W(ρ→bt(τ))→bt(ρ)→bt(τ)(λ f , z. f ◦ z)
(A5) Assume that for each finite type ρ of WE-HAω we have a term inAt

mBρ : wt(B)→ wt(ρ)→ wt(ρ)→ wt(ρ)

such that5

(i) `At Wwt(B)→wt(ρ)→wt(ρ)→wt(ρ)(mBρ ), and

(ii) W(a1, a2), z≺B b, x≺ρ ifρ(z, a1, a2) `At x≺ρmBρ (b, a1, a2).

See Definition 2.6 and Lemma 2.7 where the operation mBρ is lifted to arbi-
trary formulas A.

(A6) Assume that for each finite type ρ of WE-HAω we have a term inAt

mNρ : (N→ wt(ρ))→ wt(N)→ wt(ρ)

such that

4It is easy to check that (Q4) in fact follows from (Q1) and (Q3), but we include it here as an
assumption for future reference.

5We are denoting by “ifρ(zB, x
ρ
1, x

ρ
2)” the family of terms definable in WE-HAω such that

ifρ(T, x1, x2) =ρ x1 and ifρ(F, x1, x2) =ρ x2, though we will often omit the type in the subscript.
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• `At W(N→wt(ρ))→wt(N)→wt(ρ)(mNρ )

• ∀nNW( f n), n≺N a, x≺ρ f n `At x≺ρmNρ ( f )(a)

See Definition 2.8 and Lemma 2.9 where the operation mNρ is lifted to arbi-
trary formulas A. We also assume we have a terms Nwt(N)→N and νN→wt(N)

such that n≺N a `At n ≤ Na and `At n≺N νn (and hence n ≤ N(νn)).
(A7) Assume that for each term (t[xσ])τ of WE-HAω we have a term (t̃[awt(σ)])wt(τ)

inAt such that

• x≺σ a `At t[x]≺τ t̃[a]

In particular, it follows that for each boolean constant bB there exists a term
b̃wt(B) such that `At b≺B b̃, and for each numeral nN there exists a term ñwt(N)

such that `At n≺N ñ.

Lemma 2.1. Let t[a] be a term of At built from variables a = a1, . . . , an and the
combinators K and S via application. Then W(a1, . . . , an) `At W(t[a]).

Proof. By induction on the structure of t, using (WS), (WK), and (WAp). �

In each concrete instantiation of the parametrised interpretation we will con-
sider different choices for the parameters {x≺ρ a}ρ∈T , {wt(ρ)}ρ∈T , {Wτ(x)}τ∈T , and
{∀x@τ a A}A∈FormAt ,τ∈T

.

Definition 2.2 (Adequate parameters). A choice of parameters will be called ad-
equate for At if assumptions (A1) – (A7) hold. Given a class of formulas C ⊆
FormAt , we say that the choice of parameters in At is C-adequate for At if it is
adequate forAt when assumption (A4) is only required to hold for formulas in C.

Notation 2.3. Given tuples of types ρ = ρ1, . . . , ρn and τ = τ1, . . . , τm we write
ρ→ τ as an abbreviation for the tuple of types

ρ1 → . . .→ ρn → τ1, . . . , ρ1 → . . .→ ρn → τm

Given tuples of terms t = t1, . . . , tn and s we write t s for the tuple t1s, . . . , tns.

2.1. Witnessing types
Let us write ε for the empty tuple of terms or the empty tuple of types.
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Definition 2.4. We generalise the notion of witnessing type to all formulas by
defining for each formula A tuples of types τ+

A and τ−A inductively as follows:

τ+
P :≡ ε, for P atomic
τ+

A∧B :≡ τ+
A, τ

+
B

τ+
A∨B :≡ wt(B), τ+

A, τ
+
B

τ+
A→B :≡ τ+

A → τ+
B, τ

+
A → τ−B → bt(τ−A)

τ+
∃zρA :≡ wt(ρ), τ+

A

τ+
∀zρA :≡ wt(ρ)→ τ+

A

τ−P :≡ ε, for P atomic
τ−A∧B :≡ τ−A, τ

−
B

τ−A∨B :≡ bt(τ−A), bt(τ−B)
τ−A→B :≡ τ+

A, τ
−
B

τ−
∃zρA :≡ bt(τ−A)
τ−
∀zρA :≡ wt(ρ), τ−A

Given a tuple of formulas Γ = A1, . . . , An we write τ+
Γ

(resp., τ−
Γ
) for the tuple

τ+
A1
, . . . , τ+

An
(resp. τ−A1

, . . . , τ−An
).

2.2. Parametrised interpretation
We can now present the parametrised interpretation of WE-HAω intoAt:

Definition 2.5 (Parametrised interpretation). For each formula A of WE-HAω, let
us associate a formula {{A}}xy of At, with two fresh tuples of free-variables x and
y, inductively as follows:

{{s =τ t}}εε ≡ s = t, τ ∈ {B,N}

{{A ∧ B}}x,vy,w ≡ {{A}}xy ∧ {{B}}
v
w

{{A ∨ B}}b,x,vy,w ≡ ∃z≺B b((z = T ∧ ∀y′@τ−A y {{A}}xy′) ∨ (z = F ∧ ∀w′@τ−B w {{B}}vw′))
{{A→ B}} f ,gx,w ≡ ∀y@τ−A gxw {{A}}xy → {{B}}

f x
w

{{∃zτA}}c,xy ≡ ∃z≺τ c∀y′@τ−A y {{A}}xy′
{{∀zτA}} fc,y ≡ ∀z≺τ c {{A}} fc

y

Given a tuple of formulas Γ = A1, . . . , An, we write {{Γ}}x1,...,xn
y1,...,yn

as an abbreviation
for {{A1}}

x1
y1
, . . . , {{An}}

xn
yn

, assuming Ai has interpretation {{A}}xi
yi

.

If A has interpretation {{A}}xy we call x the witnesses of A, and y the counter-
witnesses. We say that a formula A has no computational content if its interpreta-
tion is {{A}}εε, i.e. if the tuples of witnesses and counter-witnesses are both empty.
We often omit ε, writing, for instance, {{A}}xε as simply {{A}}x, or {{A}}εy as {{A}}y.
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2.3. Monotonicity property for B
Assumption (A5) ensures that we have a term mBρ which is in some sense

“bounds” the if-then-else term constructor, i.e. if z≺B b and x≺ρ ifρ(z, a1, a2) then
x≺ρmBρ (b, a1, a2). We can lift this property to arbitrary formulas as follows:

Definition 2.6. For each formula A, define the tuple of terms

mBA : wt(B)→ τ+
A → τ+

A → τ+
A

by induction on A, as follows:

mBA∧B(b, x1, v1, x2, v2) = mBA(b, x1, x2),mBB(b, v1, v2)
mBA∨B(b, b1, x1, v1, b2, x2, v2) = mBB(b, b1, b2),mBA(b, x1, x2),mBB(b, v1, v2)
mBA→B(b, f 1, g1, f 2, g2) = λxτ+

A .mBB(b, f 1x, f 2x), λxτ+
Aλwτ−B .g1xw t g2xw

mB
∃zρA(b, a1, x1, a2, x2) = mBρ (b, a1, a2),mBA(b, x1, x2)

mB
∀zρA(b, f 1, f 2) = λawt(ρ).mBA(b, f 1a, f 2a)

where mBρ is the term assumed to exist in (A5).

Lemma 2.7 (Monotonicity lemma for B). Under assumption (A5), for each for-
mula A, we have:

(i) `At Wwt(B)→τ+
A→τ

+
A→τ

+
A
(mBA)

(ii) W(x1, x2, y), z≺B b, {{A}}if(z,x1,x2)
y `At {{A}}

mBA(b,x1,x2)
y

Proof. By induction on the complexity of the formula A. Point (i) follows directly
from assumptions (A5) (i) and (Ct), and Lemma 2.1. As for point (ii), the cases
where A is an atomic formula, a conjunction, or a universal quantifier are easy to
verify. Let us check the cases of existential quantifier, disjunction and implication.

Existential quantifier. Suppose A ≡ ∃wρB. By induction hypothesis we have

W(x1, x2, y), z≺B b, {{B}}if(z,x1,x2)
y `At {{B}}

mBA(b,x1,x2)
y

By (Q1) we have

W(x1, x2, y), z≺B b,∀y′@ y {{B}}if(z,x1,x2)
y′ `At ∀y′@ y {{B}}m

B
A(b,x1,x2)

y′

By (A5) (ii), we get, assuming W(x1, x2, y),

z≺B b,w≺ρ ifρ(z, a1, a2)∧∀y′@ y {{B}}if(z,x1,x2)
y′ `At w≺ρmBρ (b, a1, a2)∧∀y′@ y {{B}}m

B
A(b,x1,x2)

y′
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and hence, assuming W(a1, x1, a2, x2, y),

z≺B b,∃w≺ρ ifρ(z, a1, a2)∀y′@ y {{B}}if(z,x1,x2)
y′ `At ∃w≺ρmBρ (b, a1, a2)∀y′@ y {{B}}m

B
A(b,x1,x2)

y′

which by Definitions 2.5 and 2.6 is

z≺B b, {{∃wρB}}if(z,a1,x1,a2,x2)
y `At {{∃wρB}}

mB
∃wρA(b,a1,x1,a2,x2)

y

Disjunction. The case of disjunction is similar to the existential quantifier above,
and also uses the assumption (A5) for ρ = B.

Implication. Assume W( f 1, g1, f 2, g2, x,w) and z≺B b. Noting that

(∗) ∀y@τ−A g1xw {{A}}xy ,∀y@τ−A g2xw {{A}}xy ` ∀y@τ−A if(z, g1xw, g2xw) {{A}}xy

we have

{{(A→ B)}}if(z, f 1,g1, f 2,g2)
x,w

≡ ∀y@τ−A if(z, g1xw, g2xw) {{A}}xy → {{B}}
if(z, f 1 x, f 2 x)
w

(∗)
⇒ ∀y@τ−A g1xw {{A}}xy ∧ ∀y@τ−A g2xw {{A}}xy → {{B}}

if(z, f 1 x, f 2 x)
w

(Ct)
⇒ ∀y@τ−A g1xw t g2xw {{A}}xy → {{B}}

if(z, f 1 x, f 2 x)
w

(IH)
⇒ ∀y@τ−A g1xw t g2xw {{A}}xy → {{B}}

mBB(b, f 1 x, f 2 x)
w

≡ {{(A→ B)}}m
B
A→B(b, f 1,g1, f 2,g2)

x,w

since the assumptions imply W( f 1x, f 2x,w) – needed for the (IH). �

2.4. Monotonicity property for N
As with the booleans above, we can also lift assumption (A6) to arbitrary

formulas as follows:

Definition 2.8. For each intuitionistic formula A, define the tuple of terms

mNA : (N→ τ+
A)→ wt(N)→ τ+

A

by induction on A, as follows:

mNA∧B( f A, f B)(a) = mNA( f A)(a),mNB( f B)(a)
mNA∨B(bA, f A, bB, f B)(a) = mNB(bAa, bBa)(a),mNA( f A)(a),mNB( f B)(a)
mNA→B( f , g)(a) = λxτ+

A .mNB(λn. fnx)(a); λxτ+
A ,wτ−B .gt(Na)xw

mN
∃xρA(hN→wt(ρ), fN→τ

+
A)(a) = mNρ (h)(a),mNA( f )(a)

mN
∀xρA( fN→wt(ρ)→τ+

A)(a) = λbwt(ρ)mNA(λn. fnb)(a)
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where mNρ and N are the terms assumed to exist in (A6), and gt is defined recur-
sively as

gtnxw =

{
g0xw if n = 0
gnxw t gt(n − 1)xw if n > 0

Lemma 2.9 (Monotonicity lemma for N). Under assumption (A6), for each for-
mula A, we have:

(i) `At W(N→τ+
A)→wt(N)→τ+

A
(mNP)

(ii) ∀nNW( fn),W(y), n≺N a, {{A}} fn
y `At {{A}}

mNA ( f )(a)
y

Proof. The proof is very similar to that of the monotonicity lemma for B (Lemma
2.7). In the case of implication we first need to prove

(∗) ∀y@τ−A gt(Na)xw {{A}}xy , n≺
N a `At ∀y@τ−A gnxw {{A}}xy

which we can do by first proving, using induction on k and then taking k = Na,

∀y@τ−A gtkxw {{A}}xy , n ≤ k `At ∀y@τ−A gnxw {{A}}xy

The above also uses applications of (Ct) for the induction step. Hence, assuming
∀nNW( fn, gn) and W(x,w) and (n≺N a) we have

{{A→ B}} fn,gn
x,w ≡ ∀y@τ−A gnxw {{A}}xy → {{B}}

fnx
w

(∗)
⇒ ∀y@τ−A gt(Na)xw {{A}}xy → {{B}}

(λn. fnx)(n)
w

(IH)
⇒ ∀y@τ−A gt(Na)xw {{A}}xy → {{B}}

mNB (λn. fnx)(a)
w

≡ {{A→ B}}m
N
A→B( f ,g)(a)

x,w

since the assumptions imply ∀nNW( fnx) – needed for the (IH). �

2.5. Soundness
We are now ready to present the (parametrised) soundness of the parametrised

functional interpretation (Definition 2.5).

Definition 2.10 (Witnessable sequents). A sequent Γ[mτ] ` A[mτ] of WE-HAω

(with free variables mτ) is said to be {{}}-witnessable in the target theory At if
there are tuples of closed terms γ, a ofAt such that

(i) `At Wτ+
Γ
→τ−A→wt(τ)→bt(τ−

Γ
)(γ) and `At Wτ+

Γ
→wt(τ)→τ+

A
(a)
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(ii) Wτ+
Γ
,τ−A

(v, y),m≺τ m̃,∀w@τ−
Γ
γvym̃ {{Γ[m]}}vw `At {{A[m]}}avm̃

y

Definition 2.11 (Sound {{}}-interpretation). An instantiation of the {{}}-interpretation
is said to be sound if the provable sequents of WE-HAω are {{}}-witnessable in the
target theoryAt.

Theorem 2.12 (Soundness of the {{}}-interpretation). Assume a fixed choice of the
parameters for a theory At. Let C be the set of formulas {{A}}xy , for formulas A of
WE-HAω. If this choice of parameters is C-adequate for At (Def. 2.2) then this
instance of the parametrised interpretation (Def. 2.5) is sound (Def. 2.11).

Proof. We must show that the provable sequents Γ[m] ` A[m] of WE-HAω are
{{}}-witnessable in At. We do this by induction on the WE-HAω derivation of
Γ[m] ` A[m]. The free-variables m only play an important role in the treatment
of the quantifiers. Therefore, in the treatment of the logical rules we will w.l.o.g.
assume that Γ and A have no free variables.
The non-logical axioms of WE-HAω (except for induction) and the weak exten-
sionality rule are easily seen to be witnessable since atomic formulas have empty
“computational content”. We treat the induction rule as the last case in this proof.
Let us first consider each of the logical rules (see Table 1) and show that they
turn witnessable premisses into witnessable conclusions. In each case we need
to prove points (i) and (ii) of Definition 2.10. Point (i), however, will follow di-
rectly from the induction hypothesis and Lemma 2.1, since the terms witnessing
the conclusion of each rule will be built from the terms witnessing the premise via
simple λ-term constructions (definable from S and K). Therefore, we will focus
our attention on proving point (ii).
Cut. By induction hypothesis we have closed terms a0, a1,γ, δ, b such that

(IH(i)) `W(a0) and `W(γ) and `W(b) and `W(δ) and `W(a1)

(IH(ii)) W(u, y),∀w′@τ−
Γ
γuy {{Γ}}uw′ ` {{A}}

a0u
y and

W(v, x,w),∀w′′@τ−
∆
δvxw {{∆}}vw′′ ,∀y@τ−A a1vxw {{A}}xy ` {{B}}bvx

w

Let ã :≡ λu, v,w.a1v(a0u)w and b̃ :≡ λu, v.bv(a0u) and γ̃ :≡ λu, v,w.(γu) ◦
(ãuvw) and δ̃ :≡ λu, v,w.δv(a0u)w. Using the induction hypothesis (IH(i)) and

11



(IH(ii)) we have

(IH(ii))
W(u, y),∀w′@τ−

Γ
γuy {{Γ}}uw′ ` {{A}}

a0u
y

(Q1)
W(u),∀y@τ−A ãuvw W(y),∀y@τ−A ãuvw∀w′@τ−

Γ
γuy {{Γ}}uw′ ` ∀y@τ−A ãuvw {{A}}a0u

y
(Q2)

W(u),∀y@τ−A ãuvw∀w′@τ−
Γ
γuy {{Γ}}uw′ ` ∀y@τ−A ãuvw {{A}}a0u

y
(C◦)

W(u),∀w′@τ−
Γ
γ̃uvw {{Γ}}uw′ ` ∀y@τ−A ãuvw {{A}}a0u

y

Using the above (in the cut step) and W(u) `W(a0u), we then have

(IH(ii))
W(v, x,w),∀w′′@τ−

∆
δvxw {{∆}}vw′′ ,∀y@τ−A a1vxw {{A}}xy ` {{B}}

bvx
w

[ a0u
x ]

W(v, a0u,w),∀w′′@τ−
∆
δ̃uvw {{∆}}vw′′ ,∀y@τ−A ãuvw {{A}}a0u

y ` {{B}}b̃uv
w

(cut)
W(u, v,w),∀w′@τ−

Γ
γ̃uvw {{Γ}}uw′ ,∀w′′@τ−

∆
δ̃uvw {{∆}}vw′′ ` {{B}}

b̃uv
w

(∧R). Direct, from the induction hypothesis.

For the sake of presentation, in the cases below we may omit the contexts Γ and ∆

whenever they do not play an important role in the treatment of the rule.
(∧L). By the induction hypothesis we have closed terms a, b, c in W such that

(IH) W(x, v,w),∀y@τ−A axvw {{A}}xy ,∀w′@τ−B bxvw {{B}}vw′ ` {{C}}
cxv
w

We claim that the terms γ, a, b and c witness the conclusion of the rule. We have

(IH)
W(x, v,w),∀y@τ−A axvw {{A}}xy ,∀w′@τ−B bxvw {{B}}vw′ ` {{C}}

cxv
w

(∧L)
W(x, v,w),∀y@τ−A axvw {{A}}xy ∧ ∀w′@τ−B bxvw {{B}}vw′ ` {{C}}

cxv
w

(Q4)
W(x, v,w),∀y,w′@τ−A,τ−B axvw, bxvw ({{A}}xy ∧ {{B}}

v
w′) ` {{C}}

cxv
w

(D2.5)
W(x, v,w),∀y,w′@τ−A∧B

axvw, bxvw {{A ∧ B}}x,vy,w′ ` {{C}}
cxv
w

(∨L). By induction hypothesis we have

1. W(x,u),∀y@τ−A axu {{A}}xy ` {{C}}
cA x
u , for closed terms a and cA in W

2. W(v,u),∀w@τ−B bvu {{B}}vw ` {{C}}
cBv
u , for closed terms b and cB in W

The above implies

1. W(x,u),∀y@τ−A axu {{A}}xy , z≺B b, z = T ` {{C}}if(z,cA x,cBv)
u

2. W(v,u),∀w@τ−B bvu {{B}}vw, z≺B b, z = F ` {{C}}if(z,cA x,cBv)
u

12



By Lemma 2.7

1. W(x, v,u),∀y@τ−A axu {{A}}xy , z≺B b, z = T ` {{C}}m
B
C(b,cA x,cBv)

u

2. W(x, v,u),∀w@τ−B bvu {{B}}vw, z≺B b, z = F ` {{C}}m
B
C(b,cA x,cBv)

u

By (∨L), we get

W(x, v,u),

z≺B b, ((z = T ∧ ∀y@τ−A axu {{A}}xy) ∨ (z = F ∧ ∀w@τ−B bvu {{B}}vw))

` {{C}}
mBC(b,cA x,cBv)
u

By (∃L), we get

W(x, v,u),

∃z≺B b((z = T ∧ ∀y@τ−A axu {{A}}xy) ∨ (z = F ∧ ∀w@τ−B bvu {{B}}vw))

` {{C}}
mBC(b,cA x,cBv)
u

And hence, by (Cη),

W(x, v,u),

∀ỹ, w̃@bt(τ−A),bt(τ−B) η(axu), η(bvu)

∃z≺B b((z = T ∧ ∀y@τ−A ỹ {{A}}xy) ∨ (z = F ∧ ∀w@τ−B w̃ {{B}}vw))

` {{C}}
mBC(b,cA x,cBv)
u

which by Definition 2.5 is

W(x, v,u),∀ỹ, w̃@τ−A∨B
η(axu), η(bvu) {{A ∨ B}}b,x,vỹ,w̃ ` {{C}}

mBC(b,cA x,cBv)
u

(→R). Direct, from the induction hypothesis.

(→L). By the induction hypothesis we have closed terms a, b, c,γ, δ such that

(IH(i)) `W(a) and `W(b) and `W(c) and `W(γ) and `W(δ)
(IH(ii)) W(u, y),∀w′@τ−

Γ
γuy {{Γ}}uw′ ` {{A}}

au
y and

W(w, v, z),∀w′′@τ−
∆
δwvz {{∆}}ww′′ ,∀w′′′@τ−B bwvz {{B}}vw′′′ ` {{C}}

cwv
z
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Using (IH(i)) and (IH(ii)), with b̃ = bw( f (au))z and d = g(au) ◦ b̃, we have

(IH(ii))
W(u, y),∀w′@τ−

Γ
γuy {{Γ}}uw′ ` {{A}}

au
y

(Q1)
W(u, g),∀y@τ−A d W(y),∀y@τ−A d ∀w′@τ−

Γ
γuy {{Γ}}uw′ ` ∀y@τ−A d {{A}}au

y
(Q2), (C◦)

W(u, g),∀w′@τ−
Γ
γu ◦ d {{Γ}}uw′ ` ∀y@τ−A d {{A}}au

y

and, letting c̃ = cw( f (au)) and δ̃ = δw( f (au))z

(IH(ii))
W(w, v, z),∀w′′@τ−

∆
δwvz {{∆}}ww′′ ,∀w′′′@τ−B bwvz {{B}}vw′′′ ` {{C}}

cwv
z

[ f (au)
v ]

W(w, f (au), z),∀w′′@τ−
∆
δ̃ {{∆}}ww′′ ,∀w′′′@τ−B b̃ {{B}} f (au)

w′′′ ` {{C}}
c̃
z

(IH(i))
W(w, f ,u, z),∀w′′@τ−

∆
δ̃ {{∆}}ww′′ ,∀w′′′@τ−B b̃ {{B}} f (au)

w′′′ ` {{C}}
c̃
z

Let us call the two derivations above π1 and π2. Then (omitting the contexts
∀w′@τ−

Γ
γu ◦ d {{Γ}}uw′ and ∀w′′@τ−

∆
δ̃ {{∆}}ww′′ for the sake of presentation):

π1 π2
(→ L)

W(w, f , g,u, z),∀y@τ−A d {{A}}au
y → ∀w′′′@τ−B b̃ {{B}} f (au)

w′′′ ` {{C}}
c̃
z

(C◦)
W(w, f , g,u, z),∀w′′′@τ−B b̃∀y@τ−A g(au)w′′′ {{A}}au

y → ∀w′′′@τ−B b̃ {{B}} f (au)
w′′′ ` {{C}}

c̃
z

(Q1)
W(w, f , g,u, z),∀w′′′@τ−B b̃ (∀y@τ−A g(au)w′′′ {{A}}au

y → {{B}}
f (au)
w′′′ ) ` {{C}}c̃z

(D2.5)
W(w, f , g,u, z),∀w′′′@τ−B b̃ {{A→ B}} f ,gau,w′′′ ` {{C}}

c̃
z

(Cη)
W(w, f , g,u, z),∀w′′′@τ−B b̃∀x@τ+

A
η(au) {{A→ B}} f ,gx,w′′′ ` {{C}}

c̃
z

Quantifiers. In the case of the quantifiers the free variables m are obviously rele-
vant, so in these cases we will make these explicit:
(∀L). By the induction hypothesis we have closed terms a, b in W such that

(IH) W(x,w),m≺τ m̃,∀y@τ−A axwm̃ {{A(t[m])}}xy ` {{B}}
bxm̃
w

Let t̃[m] be a term such that m≺ρ m̃ ` t[m] ≺τ t̃[m̃], using (A7). Note also that
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(Q1) and (Q3) imply ∀y@ a∀z≺ bA ` ∀z≺ b∀y@ a A. Then

(IH)
W(x,w),m≺ρ m̃,∀y@τ−A axwm̃ {{A(t[m])}}xy ` {{B}}

bxm̃
w f (t̃[m̃])

xW( f (t̃[m̃]),w),m≺ρ m̃,∀y@τ−A a( f (t̃[m̃]))wm̃ {{A(t[m])}} f (t̃[m̃])
y ` {{B}}b( f (t̃[m̃]))m̃

w
(→L)

W( f ,w),m≺ρ m̃, t[m]≺τ t̃[m̃]→ ∀y@τ−A a( f (t̃[m̃]))wm̃ {{A(t[m])}} f (t̃[m̃])
y ` {{B}}b( f (t̃[m̃]))m̃

w
(∀L)

W( f ,w),m≺ρ m̃,∀z≺τ t̃[m̃]∀y@τ−A a( f (t̃[m̃]))wm̃ {{A(z)}} f (t̃[m̃])
y ` {{B}}b( f (t̃[m̃]))m̃

w
(Q1), (Q3)

W( f ,w),m≺ρ m̃,∀y@τ−A a( f (t̃[m̃]))wm̃∀z≺τ t̃[m̃]{{A(z)}} f (t̃[m̃])
y ` {{B}}b( f (t̃[m̃]))m̃

w
(D2.5)

W( f ,w),m≺ρ m̃,∀y@τ−A a( f (t̃[m̃]))wm̃ {{∀zτA(z)}} ft̃[m̃],y ` {{B}}
b( f (t̃[m̃]))m̃
w

(Cη)
W( f ,w),m≺ρ m̃,∀c, y@τ−

∀zτA
η(t̃[m̃]), a( f (t̃[m̃]))wm̃ {{∀zτA(z)}} fc,y ` {{B}}

b( f (t̃[m̃]))m̃
w

(∀R). This case is straightforward:

(IH)
W(u, y), z≺τ c,∀w′@τ−

Γ
γuyc {{Γ}}uw′ ` {{A(z)}}auc

y
(→ R)

W(u, y),∀w′@τ−
Γ
γuyc {{Γ}}uw′ ` z≺τ c→ {{A(z)}}auc

y
(∀R)

W(u, y),∀w′@τ−
Γ
γuyc {{Γ}}uw′ ` ∀z≺τ c{{A(z)}}auc

y
(D2.5)

W(u, y),∀w′@τ−
Γ
γuyc {{Γ}}uw′ ` {{∀zτA(z)}}au

c,y

(∃L). By the induction hypothesis we have closed terms a, b in W such that

(IH) W(x,w), z≺τ c,∀y@τ−A axwc {{A(z)}}xy ` {{B}}
bxc
w

Then
(IH)

W(x,w), z≺τ c,∀y@τ−A axwc {{A(z)}}xy ` {{B}}
bxc
w

(∧L)
W(x,w), z≺τ c ∧ ∀y@τ−A axwc {{A(z)}}xy ` {{B}}

bxc
w

(∃L)
W(x,w),∃z≺τ c∀y@τ−A axwc {{A(z)}}xy ` {{B}}

bxc
w

(D2.5)
W(x,w), {{∃zτA(z)}}c,xaxwc ` {{B}}

bxc
w

(Cη)
W(x,w),∀y′@τ−

∃zτA
η(axwc) {{∃zτA(z)}}c,xy′ ` {{B}}

bxc
w
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(∃R). Let t̃[m̃] be the term such that m≺ρ m̃ ` t[m]≺τ t̃[m̃] – see (A7). Then

(IH)
W(u, y),m≺ρ m̃,∀w′@τ−

Γ
γum̃y {{Γ}}uw′ ` {{A(t[m])}}aum̃

y
(Q1), (Q2)

W(u, y),m≺ρ m̃,∀y′@ y∀w′@τ−
Γ
γum̃y′ {{Γ}}uw′ ` ∀y′@ y {{A(t[m])}}aum̃

y′
(∧R)

W(u, y),m≺ρ m̃,∀y′@ y∀w′@τ−
Γ
γum̃y′ {{Γ}}uw′ ` t[m]≺τ t̃[m̃] ∧ ∀y′@ y {{A(t[m])}}aum̃

y′
(∃R)

W(u, y),m≺ρ m̃,∀y′@ y∀w′@τ−
Γ
γum̃y′ {{Γ}}uw′ ` ∃z≺τ t̃[m̃]∀y′@τ−A y {{A(z)}}aum̃

y′
(C◦), (D2.5)

W(u, y),m≺ρ m̃,∀w′@τ−
Γ

(γum̃) ◦ y {{Γ}}uw′ ` {{∃zA(z)}}t̃[m̃],aum̃
y

Weakening. By the induction hypothesis the premise of the weakening rule is
witnessable, i.e. we have closed terms γ, b in W such that

(IH) W(u,w),∀w′@τ−
Γ
γuw {{Γ}}uw′ ` {{B}}

bu
w

Let 0 be an arbitrary closed terms of the appropriate type. It follows that the terms
λu, x,w.γuw and 0 and λu, x.bu witness the conclusion of the weakening rule:

(IH)
W(u,w),∀w′@τ−

Γ
γuw {{Γ}}uw′ ` {{B}}

bu
w

(wkn)
W(u,w, x),∀w′@τ−

Γ
γuw {{Γ}}uw′ ,∀y@τ−A 0uxw {{A}}xy ` {{B}}

bu
w

Contraction. By the induction hypothesis we have closed terms γ, a0, a1, b such
that

(IH(i)) `W(γ) and `W(ai), for i ∈ {0, 1}, and `W(b)
(IH(ii)) W(x0, x1,w),∀y@τ−A a0x0x1w {{A}}x0

y ,∀y@τ−A a1x0x1w {{A}}x1
y ` {{B}}

bx0 x1
w

We have Let ã0 := a0xxw and ã1 := a1xxw. Then

(IH(ii))
W(x0, x1,w),∀y@τ−A a0x0x1w {{A}}x0

y ,∀y@τ−A a1x0x1w {{A}}x1
y ` {{B}}

bx0 x1
w

[ x
x0
, x

x1
]

W(x,w),∀y@τ−A ã0 {{A}}xy ,∀y@τ−A ã1 {{A}}xy ` {{B}}
bxx
w

(∧L)
W(x,w),∀y@τ−A ã0 {{A}}xy ∧ ∀y@τ−A ã1 {{A}}xy ` {{B}}

bxx
w

(Ct)
W(x,w, ã0, ã1),∀y@τ−A ã0 t ã1 {{A}}xy ` {{B}}

bxx
w

(IH(i))
W(x,w),∀y@τ−A ã0 t ã1 {{A}}xy ` {{B}}

bxx
w

Induction. Let us now consider the induction rule
` A(0) A(n) ` A(n + 1)

` ∀nNA(n)

Let s, r, t in W be realisers for the premises:
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(i) W(y) `At {{A(0)}}sy
(ii) W(x, y),∀y′@τ−A raxy {{A(n)}}xy′ , n≺

N a `At {{A(n + 1)}}tax
y

Using assumption (A6) that n≺N νn, we have

(iii) W(x, y),∀y′@τ−A r(νn)xy {{A(n)}}xy′ `At {{A(n + 1)}}t(νn)x
y

which, by (Q2), implies

(iv) W(x),∀yW{{A(n)}}xy `At ∀yW{{A(n + 1)}}t(νn)x
y

Let fn be defined by primitive recursion on n as

fn =

{
s if n = 0
t(νn)( f (n − 1)) if n > 0

Since W(s, t, νn), it follows that ∀nNW( fn). From (i) and (iv), by induction on n
we have

(v) W(y) `At {{A(n)}} fn
y

and, by Lemma 2.9, W(y), n≺N a `At {{A(n)}}m
N
A ( f )(a)

y . �

3. Concrete Interpretations of WE-HAω

Let us now consider several instances of the parametrised interpretation {{·}}.
By the parametrised Soundness Theorem 2.12, in order to prove the soundness of
the instantiation, it is enough to check that the choice of parameters is adequate for
the formulas in the image of the interpretation, and that the non-logical axioms of
WE-HAω are witnessable in At. For simplicity, for all instantiations considered
here we always take the target theory to be At = N-HAω (equality available for
all types).

We consider three groups of instantiations, depending on the choice of the
parameter x≺τ a, which we will take to be either

1. x =τ a with wt(τ) = τ (equality),
2. x ∈τ a with wt(τ) = τ∗ (set inclusion) or
3. x ≤∗τ a with wt(τ) = τ (majorizability).

In each of these cases, and for the corresponding instances of W considered here,
it should be straightforward to verify that assumptions (A5), (A6) and (A7) are
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satisfied (disjunction, induction and finite types). For instance, in the case of
majorizability, when Wτ(x) = x ≤∗τ x, assumption (A6) becomes

∀nN( f n ≤∗τ f n), n ≤ a, x ≤∗τ f n ` x ≤∗τ mNP( f )(a)

which is satisfied for mNP( f )(a) = maxn≤a f n; and (A7) is the standard result that
says that all terms of Gödel’s system T are majorizable.

3.1. Interpretations where x≺τ a :≡ x =τ a
The instances where x ≺τ a is chosen to be x =τ a, with wt(τ) = τ and

mBτ ( f )(a) = mNτ ( f )(a) = f (a), which we call precise interpretations, include the
seminal interpretations such as Gödel’s Dialectica interpretation, its Diller-Nahm
variant, and Kreisel’s modified realizability. In these cases the soundness of the
interpretation is already known, so we will simply show in detail how the param-
eters are instantiated to obtain these interpretations, without duelling too much on
their soundness.

Modified realizability interpretation. Consider the following instantiation of
the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ ε A bt(τ) mBτ mNτ
x =τ a τ true ∀xτ A ε ifτ λ f . f

where ε denotes the empty tuple of terms or types.

Proposition 3.1 (Kreisel’s modified realizability of WE-HAω – pointwise presen-
tation). With the parameters instantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,v ⇔ (b = T ∧ ∀y{{A}}xy) ∨ (b = F ∧ ∀w{{B}}vw)

{{A→ B}} fx,w ⇔ ∀y{{A}}xy → {{B}}
f x
w

{{∃zτA}}c,x ⇔ ∀y{{A[c/z]}}xy
{{∀zτA}} fc,y ⇔ {{A[c/z]}} fc

y

so that ∀y{{A}}xy ⇔ x mr A (cf. [26]).
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Dialectica interpretation. Consider this instantiation of the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ mNτ
x =τ a τ true A[a/x] τ ifτ λ f . f

Proposition 3.2 (Gödel’s Dialectica interpretation of WE-HAω). With the param-
eters instantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,vy,w ⇔ (b = T ∧ {{A}}xy) ∨ (b = F ∧ {{B}}vw)

{{A→ B}} f ,gx,w ⇔ {{A}}xgxw → {{B}}
f x
w

{{∃zτA}}c,xy ⇔ {{A[c/z]}}xy
{{∀zτA}} fy,b ⇔ {{A[b/z]}} fb

y

so that {{A}}xy ⇔ AD(x; y).

Proof. We are using here the equivalences

∃xτ(x =τ t ∧ A(x)) ⇔ A(t) and ∀xτ(x =τ t → A(x)) ⇔ A(t)

which are valid in N-HAω, in order to remove equality on higher-types. In this
way, since our source theory is WE-HAω, we also have that for all formulas A
of WE-HAω, the formula {{A}}xy will be decidable. This property is essential for
satisfying condition (Ct), where y1 t y2 is defined via a case distinction involving
the formula {{A}}xy . This is also the only place where we make use of the assumption
that the choice of parameters only needs to be adequate for the formulas in the
image of the interpretation. �

Diller-Nahm interpretation. Consider this instantiation of the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ mNτ
x =τ a τ true ∀x ∈τ a A τ∗ ifτ λ f . f

Proposition 3.3. With the parameters instantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,vy,w ⇔ (b = T ∧ ∀y′ ∈τ−A y{{A}}xy′) ∨ (b = F ∧ ∀w′ ∈τ−B w{{B}}vw′)
{{A→ B}} f ,gx,w ⇔ ∀y ∈τ−A gxw {{A}}xy → {{B}}

f x
w

{{∃zτA}}c,xy ⇔ ∀y′ ∈τ−A y {{A[c/z]}}xy′
{{∀zτA}} fc,y ⇔ {{A[c/z]}} fc

y
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The treatment of disjunction and the existential quantifier in the instantiation
above appears to diverge from the standard Diller-Nahm interpretation, but the
following proposition shows that this is in fact an equivalent way of presenting
the Diller-Nahm interpretation.

Proposition 3.4 (Correspondence with Diller-Nahm interpretation of WE-HAω).
The interpretation {{A}}xy in Proposition 3.3 can be seen to correspond to ADN(x; y),
in the sense that for each A there are terms s1, t1 and s2, t2 such that

(i) ∀y′ ∈ s1xy{{A}}xy′ ` ADN(t1x; y)
(ii) ∀y′ ∈ s2xy ADN(x; y′) ` {{A}}t2 x

y

Proof. By induction on A.
Existential quantifier (i). Let s1, t1 be given by the induction hypothesis. Then:

∀y′ ∈ {s1xy}{{∃zτA}}c,xy′
P 3.3
⇔ ∀y′ ∈ {s1xy}∀y′′ ∈ y′ {{A[c/z]}}xy′′
⇒ ∀y′′ ∈ s1xy{{A[c/z]}}xy′′

(IH(i))
⇒ (A[c/z])DN(t1x; y)

DN def.
≡ (∃zτA)DN(c, t1x; y)

Existential quantifier (ii). Let s2, t2 be given by the induction hypothesis. Then:

∀y′′ ∈
⋃

y′∈y s2xy′ (∃zτA)DN(c, x; y′′)
DN def.
≡ ∀y′′ ∈

⋃
y′∈y s2xy′ (A[c/z]DN(x; y′′))

⇒ ∀y′′ ∈
⋃

y′∈y s2xy′ A[c/z]DN(x; y′′)
⇒ ∀y′ ∈ y∀y′′ ∈ s2xy′ A[c/z]DN(x; y′′)

(IH(ii))
⇒ ∀y′ ∈ y{{A[c/z]}}t2 x

y′
P 3.3
⇔ {{(∃zτA)}}c,t2 x

y′′

Implication (i). Let sB
1 , tB

1 and sA
2 , tA

2 be given by the induction hypothesis. Then:
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∀x′ ∈ {tA
2 x}∀w′ ∈ sB

1 ( f x′)w{{A→ B}} f ,gx′,w′

⇒ ∀w′ ∈ sB
1 ( f (tA

2 x))w{{A→ B}} f ,g
tA
2 x,w′

P 3.3
⇔ ∀w′ ∈ sB

1 ( f (tA
2 x))w(∀y ∈ g(tA

2 x)w′ {{A}}t
A
2 x

y → {{B}} f (tA
2 x)

w′ )

⇒ ∀w′ ∈ sB
1 ( f (tA

2 x))w∀y ∈ g(tA
2 x)w′ {{A}}t

A
2 x

y

→ ∀w′ ∈ sB
1 ( f (tA

2 x))w{{B}} f (tA
2 x)

w′
(IH(i),IH(ii))
⇒ ∀w′ ∈ sB

1 ( f (tA
2 x))w∀y ∈ g(tA

2 x)w′∀y′ ∈ sA
2 xy ADN(x; y′)

→ BDN(tB
1 ( f (tA

2 x)); w)
⇒ ∀y′ ∈

⋃
w′∈sB

1 ( f (tA
2 x))w
⋃

y∈g(tA
2 x)w′ sA

2 xy ADN(x; y′)
→ BDN(tB

1 ( f (tA
2 x)); w)

DN def.
≡ (A→ B)DN(tA→B

1 [ f , g]; x,w)

where tA→B
1 [ f , g] ≡ λx,w.

⋃
w′∈sB

1 ( f (tA
2 x))w
⋃

y∈g(tA
2 x)w′ sA

2 xy, λx.tB
1 ( f (tA

2 x)).

Implication (ii). Let sA
1 , tA

1 and sB
2 , tB

2 be given by the induction hypothesis. Then:

∀x′ ∈ {tA
1 x}∀w′ ∈ sB

2 ( f x′)w(A→ B)DN( f , g; x′,w′)
⇒ ∀w′ ∈ sB

2 ( f (tA
1 x))w(A→ B)DN( f , g; tA

1 x,w′)
DN def.
≡ ∀w′ ∈ sB

2 ( f (tA
1 x))w(∀y ∈ g(tA

1 x)w′ ADN(tA
1 x; y)

→ BDN( f (tA
1 x); w′))

⇒ ∀w′ ∈ sB
2 ( f (tA

1 x))w∀y ∈ g(tA
1 x)w′ ADN(tA

1 x; y)
→ ∀w′ ∈ sB

2 ( f (tA
1 x))wBDN( f (tA

1 x); w′)
(IH(i),IH(ii))
⇒ ∀w′ ∈ sB

2 ( f (tA
1 x))w∀y ∈ g(tA

1 x)w′∀y′ ∈ sA
1 xy {{A}}xy′

→ {{B}}t
B
2 ( f (tA

1 x))
w

⇒ ∀y′ ∈
⋃

w′∈sB
2 ( f (tA

1 x))w
⋃

y∈g(tA
1 x)w′ sA

1 xy {{A}}xy′ → {{B}}
tB
2 ( f (tA

1 x))
w

P 3.3
⇔ {{A→ B}}

λx,w.
⋃

w′∈sB
2 ( f (tA1 x))w

⋃
y∈g(tA1 x)w′ sA

1 xy,λx.tB
2 ( f (tA

1 x))

x,w

�

Remark 3.5 (Stein’s family of interpretations). In [28] Stein describes a family
of interpretations parametrised by a number n. The idea is that when ρ is a type
of type level ≥ n we treat the contraction in a way similar to the Diller-Nahm
interpretation and so bt(ρ) = ρ∗ and ∀x @ρ a A :≡ ∀x ∈ρ range(a) A, where a is
a function from the pure type (n − 1). But when ρ is a type of type level < n we
treat it as modified realizability and therefore bt(ρ) = ε and ∀x @ρ ε A :≡ ∀xρA.
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Although we could consider combinations of this with the various interpretations
of quantifiers, we will leave this for future work.

Remark 3.6 (Diller-Nahm with majorizability). One could also consider the fol-
lowing choice of parameters

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ mNτ
x =τ a τ true ∀x ≤∗τ a A τ ifτ λ f . f

which corresponds to a version of the Diller-Nahm interpretation where set inclu-
sion is replaced by majorizability. Unfortunately this does not seem to lead to a
sound interpretation, and indeed we cannot satisfy condition (Cη), as there is no
term η which satisfies:

∀y ≤∗τ η(z)A[y] ` A[z]

in the target theory N-HAω for an arbitrary z, since this would imply z ≤∗τ η(z).
One could then try to take {Wτ(x)}τ∈T to be “x is monotone of type τ”, i.e. Wτ(x) =

x ≤∗τ x, but then assumption (A3) fails, since we no longer have x≺τ a `Wwt(τ)(a).

3.2. Interpretations where x≺τ a :≡ x ≤∗τ a
The instances where x≺τ a is chosen to be x ≤∗τ a, with wt(τ) = τ, which we

call bounded interpretations, include the bounded functional interpretation [12],
and the bounded modified realizability [11]. In this case we will also discuss a
new interpretation: the bounded Diller-Nahm interpretation. In the following we
will write ∀̃xτA as an abbreviation for ∀xτ(x ≤∗τ x→ A).

Bounded modified realizability. Consider this instantiation of the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ ε A bt(τ) mBτ (b, x, y) mNτ
x ≤∗τ a τ x ≤∗τ x ∀̃xτA ε maxτ(x, y) λ f . f

Definition 3.7. Two functional interpretations of WE-HAω intoAt are said to be
equivalent if they have the same set of witnessable sequents.

Proposition 3.8 (Bounded modified realizability, [11]). With the parameters in-
stantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,v ⇔ ∃z ≤∗ b((z = T ∧ ∀̃y{{A}}xy) ∨ (z = F ∧ ∀̃w{{B}}vw))

{{A→ B}} fx,w ⇔ ∀̃yτ−A{{A}}xy → {{B}}
f x
w

{{∃zτA}}c,x ⇔ ∃zτ≤∗τ c∀̃y{{A}}xy
{{∀zτA}} fc,y ⇔ ∀zτ≤∗τ c {{A}} fc

y
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and {{A}}xy is equivalent to the bounded modified realizability.

Proof. Let us show that ∃̃x∀̃y{{A}}xy ⇔ ∃̃x(x bmr A). We proof the two implica-
tions by induction on A. The only non-trivial case is disjunction. Assume first that
we have a monotone terms s, tA, tB such that

∃z ≤∗ s((z = T ∧ ∀̃y{{A}}tA
y ) ∨ (z = F ∧ ∀̃w{{B}}tB

w ))

By induction hypothesis we have monotone terms t′A and t′B such that

∃z ≤∗ s((z = T ∧ t′A bmr A) ∨ (z = F ∧ t′B bmr B))

which indeed implies (t′A bmr A) ∨ (t′B bmr B), and hence, t′A, t′B bmr A ∨ B.
On the other hand, assume we have monotone terms t′A and t′B such that

(t′A bmr A) ∨ (t′B bmr B).

Assuming F ≤ T, we have

∃z ≤∗ T((z = T ∧ t′A bmr A) ∨ (z = F ∧ t′B bmr B))

which by the induction hypothesis gives us monotone terms tA and tB such that

∃z ≤∗ s((z = T ∧ ∀̃y{{A}}tA
y ) ∨ (z = F ∧ ∀̃w{{B}}tB

w ))

and hence {{A ∨ B}}T,tA,tB . �

Bounded functional interpretation. Consider this instantiation of the parame-
ters:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ (b, x, y) mNτ
x ≤∗τ a τ x ≤∗τ x ∀̃x ≤∗τ a A τ maxτ(x, y) λ f . f

Proposition 3.9 (Bounded functional interpretation, [12]). With the parameters
instantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,vy,w ⇔ ∃z ≤∗ b((z = T ∧ ∀̃y′ ≤∗
τ−A

y {{A}}xy′) ∨ (z = F ∧ ∀̃w′ ≤∗
τ−B

w {{B}}vw′))
{{A→ B}} f ,gx,w ⇔ ∀̃y ≤∗

τ−A
gxw {{A}}xy → {{B}}

f x
w

{{∃zτA}}c,xy ⇔ ∃z ≤∗τ c∀̃y′ ≤∗
τ−A

y {{A}}xy′
{{∀zτA}} fc,y ⇔ ∀zτ ≤∗τ c {{A}} fc

y

and {{A}}xy is equivalent to the bounded functional interpretation.
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Proof. Similar to Proposition 3.8. �

Remark 3.10. In order to extend the source theory with bounded quantifiers, in
this case one must add an “intensional” majorizability relation x E y, which
satisfies

f E g ⇒ ∀x, y(x E y→ ( f x E gy) ∧ ( f x E f y))

with a rule-version of the other direction:

Γ, x E y ` ( f x E gy) ∧ ( f x E f y)

Γ ` f E g

Adding the other direction as an axiom would require us to produce a majorant
for arbitrary x’s and y’s, which we do not have in the target theory N-HAω.

Bounded Diller-Nahm interpretation. Let us consider now what we believe is
a novel functional interpretation of WE-HAω, where contraction is treated like in
the Diller-Nahm interpretation (via finite sets), but the typing axioms are treated as
in the bounded interpretations (via majorizability). As above, we are considering
the source theory to be WE-HAω and the target theory to be N-HAω, but consider
the following instantiation of the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ (b, x, y) mNτ
x ≤∗τ a τ x ≤∗τ x ∀̃x ∈τ a A τ∗ maxτ(x, y) λ f . f

With these parameters the {{·}}-interpretation becomes:

{{s = t}} ≡ s = t

{{A ∧ B}}x,vy,w ≡ {{A}}xy ∧ {{B}}
v
w

{{A ∨ B}}b,x,vy,w ≡ ∃z ≤∗ b((z = T ∧ ∀̃y′ ∈τ−A y {{A}}xy′) ∨ (z = F ∧ ∀̃w′ ∈τ−B w {{B}}vw′))

{{A→ B}} f ,gx,w ≡ ∀̃y ∈τ−A gxw {{A}}xy → {{B}}
f x
w

{{∃zτA}}c,xy ≡ ∃z ≤∗τ c∀̃y′ ∈τ−A y{{A}}xy′
{{∀zτA}} fb,y ≡ ∀z ≤∗τ b {{A}} fb

y

Proposition 3.11 (Bounded Diller-Nahm interpretation). The derived functional
interpretation above is a sound interpretation of WE-HAω.

Proof. In order to prove the soundness for the interpretation it is enough to show
that this choice of parameters is adequate for the formulas {{A}}xy , for all A in
WE-HAω. Since Wτ(x) is the assumption that x is self-majorizing (i.e. mono-
tone), conditions (WS), (WK), (WAp) easily follow. (Q1) and (Q2) are also straight-
forward. The conditions for validating “contraction” (Cη), (Ct), (C◦) hold by
taking η(x) = {x} and y1 t y2 = y1 ∪ y2 and f ◦ z = ∪x∈z f x as indeed we have:
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(Cη) (z ≤∗ z), ∀̃y ∈ {z}A[y] `At A[z]
(Ct) ∀̃y ∈ y1 ∪ y2A[y] `At ∀̃y ∈ y1A[y] ∧ ∀̃y ∈ y2A[y]
(C◦) ∀̃y ∈ ∪x∈z f x A[y] `At ∀̃x ∈ z ∀̃y ∈ f x A[y]

That concludes the proof that the choice of parameters is an adequate choice for
the formulas {{A}}xy , for all A in WE-HAω. �

Remark 3.12. It could turn out, however, that this “Bounded Diller-Nahm inter-
pretation” is actually equivalent (in the sense of having the same characterising
principles) as the Diller-Nahm interpretation or the bounded functional interpre-
tation. Even though this is still open, we suspect this will not be the case, since
being a member of a finite set is strictly stronger than being majorized by some
element. More precisely, from x ∈τ a we indeed have x ≤∗ max a. But from the as-
sumption x ≤∗τ a we cannot in general find a finite set ã (depending only on a) such
that x ∈ ã. This should be settled once we have investigated the characterising
principles of this new interpretation, which we plan to do in a follow up paper.

3.3. Interpretations where x≺τ a :≡ x ∈τ a
The instances where x ≺τ a is chosen to be x ∈τ a, with wt(τ) = τ∗ and

mNP( f )(a) =
⋃
{ f z : z ∈ a}, which we call Herbrand interpretations, give some

new interpretations for WE-HAω which are related with recently developed func-
tional interpretations for nonstandard arithmetic [3]. In fact, to obtain the latter
interpretations one needs to consider two types of predicate symbols, as explained
in Section 4.

Herbrand realizability (for WE-HAω). Consider the following instantiation of
the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ ε A bt(τ) mBτ (b, x, y) mNτ ( f )(a)
x ∈τ a τ∗ true ∀xτA ε x ∪ y

⋃
z∈a

f z

Proposition 3.13 (Herbrand realizability). With the parameters instantiated as
above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,v ⇔ ∃z ∈ b((b = T ∧ ∀y{{A}}xy) ∨ (b = F ∧ ∀w{{B}}vw))

{{A→ B}} fx,w ⇔ ∀yτ−A{{A}}xy → {{B}}
f x
w

{{∃zτA}}x,c ⇔ ∃z ∈τ c∀y{{A}}xy
{{∀zτA}} fc,y ⇔ ∀z ∈τ c{{A}} fc

y
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and {{A}}xy is equivalent to the Herbrand realizability of [3] (when that interpreta-
tion is restricted to the theory WE-HAω).

Proof. The Herbrand realizability is presented in [3] as an interpretation of the
“nonstandard” theory E-HAω∗

st . But, as discussed in [3, Prop. 2.7], E-HAω∗
st is a

conservative extension of E-HAω, and hence also of WE-HAω. It has been shown
in [26] that this Herbrand realizability can be equivalently presented as:

ε hr s = t ⇔ s = t
x, v hr A ∧ B ⇔ x hr A ∧ v hr B
x, v hr A ∨ B ⇔ x hr A ∨ v hr B
f hr A→ B ⇔ ∀x(x hr A→ f x hr B)
c, x hr ∃zτA ⇔ ∃z ∈τ c(x hr A)
f hr ∀zτA ⇔ ∀z ∈τ c( fc hr A)

It is straightforward to show (by induction on A) that ∃x(x hr A) ⇔ ∃x∀y{{A}}xy .
�

Herbrand Diller-Nahm interpretation. Consider the following instantiation of
the parameters:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ (b, x, y) mNτ ( f )(a)
x ∈τ a τ∗ true ∀x ∈τ a A τ∗ x ∪ y

⋃
z∈a

f z

Proposition 3.14 (Herbrand Diller-Nahm interpretation). With the parameters in-
stantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,vy,w ⇔ ∃z ∈ b((z = T ∧ ∀y′ ∈τ−A y {{A}}xy′) ∨ (z = F ∧ ∀w′ ∈τ−B w {{B}}vw′))
{{A→ B}} f ,gx,w ⇔ ∀y ∈τ−A gxw {{A}}xy → {{B}}

f x
w

{{∃zτA}}xy ⇔ ∃z ∈τ c∀y′ ∈τ−A y {{A}}xy′
{{∀zτA}}xb,y ⇔ ∀z ∈τ b{{A}}xy

and this is a sound interpretation of WE-HAω.

The Herbrand realizability for intuitionistic logic given by Proposition 3.13
and the Herbrand Diller-Nahm interpretation given by Proposition 3.14 are in a
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sense ”rediscovered” interpretations. In fact, these interpretations are closely re-
lated with the interpretations given in [3] for WE-HAω

st. They are also closely
connected with the interpretation for “pure logic” considered by Gilda Ferreira
and Fernando Ferreira in the paper [9]. Moreover, Fernando Ferreira has a recent
paper [8] where he considers essentially the Herbrand Diller-Nahm interpretation
for WE-HAω as well as an extension to second-order arithmetic.

Our parametrised interpretations allow us to consider also a Herbrand version
of the bounded functional interpretation.

Herbrandized bfi. We conclude this list of instantiations with what we believe is
another novel functional interpretation of WE-HAω, where contraction is treated
like the Herbrandized interpretations, but the typing axioms are treated as in the
bounded interpretations:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ (b, x, y) mNτ ( f )(a)
x ∈τ a τ∗ x ≤∗τ x ∀̃x ≤∗τ a A τ x ∪ y

⋃
z∈a

f z

Proposition 3.15 (Herbrandized bounded functional interpretation of WE-HAω).
With the parameters instantiated as above we have:

{{s = t}} ⇔ s = t
{{A ∧ B}}x,vy,w ⇔ {{A}}xy ∧ {{B}}

v
w

{{A ∨ B}}b,x,vy,w ⇔ ∃z ∈ b((z = T ∧ ∀̃y′ ≤∗
τ−A

y {{A}}xy′) ∨ (z = F ∧ ∀̃w′ ≤∗
τ−B

w {{B}}vw′))
{{A→ B}} f ,gx,w ⇔ ∀̃y ≤∗

τ−A
gxw {{A}}xy → {{B}}

f x
w

{{∃zτA}}c,xy ⇔ ∃z ∈τ c∀̃y′ ≤∗
τ−A

y {{A}}xy′
{{∀zτA}} fc,y ⇔ ∀z ∈τ c {{A}} fc

y

and this is a sound interpretation of WE-HAω.

Proof. In order to show that this interpretation is sound, we should check that the
choice of parameters is adequate – i.e. that (A1) – (A7) hold – which is quite
straightforward and follows the same patterns as in the previous instances. �

A remark similar to Remark 3.12 also applies here. We suspect that this is a
new interpretation, but will only be certain once we have investigated its charac-
terising principles.
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Remark 3.16 (A Herbrandized Dialectica). One might also consider an instanti-
ation of the parameters as follows:

x≺τ a wt(τ) Wτ(x) ∀x@τ a A bt(τ) mBτ (b, x, y) mNτ ( f )(a)
x ∈τ a τ∗ true A[a/x] τ x ∪ y

⋃
z∈a

f z

which would correspond to a “Herbrandized” version of the Dialectica interpre-
tation. In this case contraction is dealt with in a precise way, but quantifiers are
approximated by finite sets. In WE-HAω, however, where definition by cases is
available, it’s easy to check that this would give rise to an interpretation which is
equivalent to the original Dialectica, since the interpretation of the quantifiers

{{∃zτA}}c,xy ⇔ ∃z ∈τ c {{A}}xy
{{∀zτA}} fy,c ⇔ ∀z ∈τ c {{A}} fc

y

can be effectively replaced by precise witnesses

{{∃zτA}}c,xy ⇔ {{A[c/z]}}xy
{{∀zτA}} fy,c ⇔ {{A[c/z]}} fc

y

4. Final Remarks and Future Work

We have described above a general framework for unifying several functional
interpretations of WE-HAω, which we then used to discover new interpretations.
The instantiations are summarised in Figure 1.

A notable family of functional interpretations that we are not covering in this
paper is Kohlenbach’s monotone functional interpretations (see [18, 19]). We fo-
cus here on the different ways a formula can be given a functional interpretation.
The monotone functional interpretation in fact makes use of these same interpre-
tations of formulas, but with a different interpretation of proofs. More precisely,
given the interpretation of a formula A as {{A}}xy , we are focusing here on the sound-
ness theorem that guarantees the existence of terms t such that {{A}}ty for provable
A. In the monotone functional interpretation a different soundness proof is used,
which, for provable A, guarantees the existence of terms t̃ such that ∃x≤∗ t̃ {{A}}xy ,
where ≤∗ is Bezem’s strong majorizability relation. Hence, one could consider
“monotone” soundness theorems for each of the interpretations discussed here,
but we leave this to future work.

As shown in the previous section, the parametrised interpretations presented
in this paper can be used as a way to discover new interpretations. The instances
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wt(τ) x≺τ a mBτ (b, x, y) / mNτ ( f , a) bt(τ) ∀x@τ a A Wτ(x) Interpretation
τ x =τ a ifτ(b, x, y) / f (a) τ A[a/x] true Dialectica
τ x =τ a ifτ(b, x, y) / f (a) ε ∀xτA true Modified realizability
τ x =τ a ifτ(b, x, y) / f (a) τ ∀x ≤∗τ a A true / x ≤∗τ x (combination not sound)
τ x =τ a ifτ(b, x, y) / f (a) τ∗ ∀x ∈τ a A true Diller-Nahm
τ x ≤∗τ a maxτ(x, y) / f (a) τ A[a/x] x ≤∗τ x (combination not sound)
τ x ≤∗τ a maxτ(x, y) / f (a) ε ∀̃xτA x ≤∗τ x Bounded modified realizability
τ x ≤∗τ a maxτ(x, y) / f (a) τ ∀̃x ≤∗τ a A x ≤∗τ x Bounded functional interpretation
τ x ≤∗τ a maxτ(x, y) / f (a) τ∗ ∀̃x ∈τ a A x ≤∗ x Bounded Diller-Nahm
τ∗ x ∈τ a x ∪ y /

⋃
z∈a

f z τ A[a/x] true Herbrand Dialectica ( ' Dialectica)

τ∗ x ∈τ a x ∪ y /
⋃
z∈a

f z ε ∀xτA true Herbrand realizability (for IL)

τ∗ x ∈τ a x ∪ y /
⋃
z∈a

f z τ ∀̃x ≤∗τ a A x ≤∗τ x Herbrandized bfi

τ∗ x ∈τ a x ∪ y /
⋃
z∈a

f z τ∗ ∀x ∈τ a A true Herbrand Diller-Nahm

Figure 1: Summary of instantiations (with the two novel interpretations in bold)

that we considered are by no means exhaustive. For instance, we think that the
interpretations for nonstandard arithmetic from [3, 6, 10] should also fit in our
framework. The idea is to consider not just different interpretations of the typed
quantifiers ∀xτA and ∃xτA, but also the typed standard quantification ∀xstτA and
∃xstτA. Suitable choices for these should lead to the known interpretations of non-
standard arithmetic, but might also give rise to new interpretations for nonstandard
arithmetic. This study, however, goes behind the scope of this paper.

Another question concerns variants with truth [15]. We think that it may be
possible to obtain the existing interpretations with truth, and maybe to find new
ones, using our parametrised interpretations. We also leave this to future work.

Usually, functional interpretations are accompanied by a characterisation the-
orem where one shows the equivalence between a formula and its interpretation.
In order to show such equivalence one requires some principles – typically, a form
of Choice and of Markov’s principle are among such principles – which are called
the characteristic principles of the interpretation. In the case of our parametrised
interpretation we do not know if such a (parametric) theorem holds. We were
able to define parametrised characteristic principles and obtain the result but only
assuming that the characteristic principles are interpretable (by themselves). This
does not solve the problem since it may happen that the theory with the princi-
ples may not be consistent. However, for each particular instantiation described
in this paper the parametrised characteristic principles indeed correspond to the
actual characteristic principles of the interpretation obtained with that instantia-
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tion. So, it seems that if the resulting theory is consistent, then the parametrised
interpretation admits a characterisation theorem.

Finally, it is well-known that intuitionistic functional interpretations are re-
lated with classical ones by means of a negative translation. For example, as
shown in [1, 29], Jean-Louis Krivine’s negative translation is the correct tool to
connect Gödel’s Dialectica with Shoenfield’s interpretation. Other factorisations
were obtained in [5, 14, 29, 27]. It is our impression that composing our in-
tuitionistic parametrised interpretation with various negative translations would
entail parametrised classical interpretations that allows one to obtain all the stan-
dard interpretations for classical logic, showing factorisations are a general feature
among functional interpretations. We also leave this to a future study.
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