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Abstract 19 

We analysed research that makes use of precocial species as animal models to describe 20 

the interaction of predisposed mechanisms and environmental factors in early learning, 21 

in particular for the development of social cognition. We also highlight the role of 22 

sensitive periods in this interaction, focusing on domestic chicks as one of the main 23 

animal models for this field. In the first section of the review, we focus on the 24 

emergence of early predispositions to attend to social partners. These attentional 25 

biases appear before any learning experience about social stimuli. However, non-26 

specific experiences occurring during critical periods of the early post-natal life 27 

determine the emergence of these predisposed mechanisms for the detection of social 28 

partners. Social predispositions have an important role for the development learning-29 

based social cognitive functions, showing the interdependence of predisposed and 30 

learned mechanisms in shaping social development. In the second part of the review 31 

we concentrate on the reciprocal interactions between filial imprinting and 32 

spontaneous (not learned) social predispositions. Reciprocal influences between these 33 

two sets of mechanisms ensure that, in the natural environment, filial imprinting will 34 

target appropriate social objects. Neural and physiological mechanisms regulating the 35 

sensitive periods for the emergence of social predispositions and for filial imprinting 36 

learning are also described. 37 

 38 
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 43 

Glossary 44 

Altricial: animal born or hatched in a very immature condition so that the young 45 

require intense parental care. 46 

c-Fos: protein product of the corresponding Immediate Early Gene c-fos that is acting 47 

as a transcription factor and is commonly used as a marker to quantify neural activity 48 

and plasticity.  49 

Deprivation experiment: involves keeping an animal in an environment that has been 50 

systematically impoverished of a given type of stimuli. The rationale of these 51 

experiments is usually to deprive animals of a certain experience, to see whether the 52 

behaviour or trait of interest is nonetheless displayed. 53 

Filial imprinting: rapid form of learning by exposure, through which the young of 54 

precocial bird species learn to recognize the object(s) to which they are exposed 55 

during a sensitive period. By this process, the young chick restricts its affiliative 56 

behaviour towards the first salient object(s) it encounters. In the natural environment, 57 

filial imprinting usually results in social attachment towards the mother hen and/or the 58 

brood mates. 59 

Immediate Early Genes (IEG): a class of genes that are rapidly expressed in response 60 

to neural activation. Their products are often used as neural activity markers.  61 
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IMM (Intermediate Medial Mesopallium): associative brain region of the avian 62 

pallium (homolog to mammalian cortexes), involved in the memory storage for filial 63 

imprinting learning in domestic chicks.  64 

Mesotocin: this hormone, which regulates many social behaviours, is the oxytocin-65 

equivalent of nonmammalian tetrapods. Receptors for these neuropeptides are present 66 

in areas of the Social Behaviour Network. 67 

Point-light display: animation created by placing light-points on the major joints of a 68 

walking body and obscuring the rest of the image. This sort of stimulus conveys many 69 

of the dynamic properties of the portrayed motion while removing most information 70 

on the configuration and appearance of the moving body.  71 

Precocial: animal born or hatched in a very mature condition so that the young do not 72 

need intensive care, being able to perform autonomously many behavioural and 73 

physiological functions.  74 

Predispositions: unlearned tendencies to react in predetermined ways (e.g., with 75 

approach or avoidance) to stimuli featuring specific characteristics (motion, colour, 76 

configuration, etc.). Predispositions are displayed by newborn or newly-hatched animals 77 

or by naïve animals, deprived of any experience with a given category of stimuli. 78 

Usually, the features that elicit predispositions are typical of objects of great biological 79 

significance, such as potential social companions, preys or predators. 80 
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Self-propulsion: propulsion powered by an energy source internal to the moving 81 

object. It is one of the main features that distinguish animate creatures from inanimate 82 

objects, which can be set in motion only by the action of external forces. 83 

Sensitive period: limited periods during which specific mechanisms are more likely to 84 

take place and the effects of experience on developing organisms are stronger than in 85 

the rest of the lifespan. 86 

Semi-rigid motion: Kind of movement, typically associated with biological motion. 87 

Some points maintain a fixed distance from each other, while their distance to other 88 

points varies. This motion pattern is exhibited by vertebrates and other legged animals 89 

and differs from the cinematics of rigid translation and random movement shown by 90 

most inanimate objects. 91 

Social Behaviour Network: a set of interconnected subcortical areas, rich of sex-92 

steroid hormone receptors, highly conserved across vertebrates and in charge of many 93 

social behaviours. 94 

T3 (triiodothyronine): tyrosine-based hormone synthesized by the thyroid gland 95 

involved in the regulation of many physiological processes in the body. T3 represents 96 

the primary metabolically active thyroid hormone in avian species and has been 97 

recently implicated in the control of the sensitive window for filial imprinting. 98 

99 
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 100 

1. General introduction 101 

Throughout the tradition of developmental psychology, the role of predispositions 102 

(spontaneous preferences and behaviours) and experience-based learning mechanisms 103 

in determining cognitive development has been a central topic. The writings of Jacques 104 

Melher pay a special attention towards the way evolution equipped infants with 105 

specialised mechanisms, predisposed to perform specific tasks of great adaptive value. 106 

These mechanisms provide pre-representations at the basis of all subsequent 107 

knowledge (Mehler & Dupoux, 1994). Interestingly, although the early predisposed 108 

mechanisms envisioned by Mehler and Dupoux do not depend on direct learning 109 

experience, they are not experience-independent. On the contrary, environmental 110 

influences act by selecting, triggering and regulating them. Here, we provide an 111 

overview of the research on the dynamic interplay of predisposed and learned 112 

mechanisms in the development of social cognition during the early post-natal life. In 113 

doing so, we focus on the temporal dynamics of these interactions. 114 

Experiences occurring during specific ontogenetic stages are particularly influential on 115 

subsequent cognitive, social and neural development (Bateson & Gluckman, 2012; 116 

Chan, 2014; Charil et al., 2010; Hubel & Wiesel, 1970; Kalcher-Sommersguter et al., 117 

2015; Lorenz, 1937; Zeanah et al., 2009), as shown by the influential notion of sensitive 118 

periods. These are time windows in which the effects of environmental stimuli on 119 

developing organisms are stronger than in the rest of the lifespan ((Bodin, Yeates, & 120 

Cass, 2011) for the distinction between sensitive and critical periods, Dehorter & Del 121 
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Pino, 2020; Knudsen, 2004). We describe the sensitive periods in which different 122 

environmental factors are particularly effective and how they are modulated by genetic 123 

or environmental influences. This shows how the timing of events occurring in the 124 

species-typical environment can shape social development. As model systems, we will 125 

mostly refer to domestic chicks and their social development (Di Giorgio, Loveland, et 126 

al., 2017; Lorenzi et al., 2020; Rosa-Salva, Mayer, & Vallortigara, 2015). Precocial birds 127 

offer advantages such as the presence of a mature sensory-motor system and of fast 128 

learning mechanisms already in hatchlings (e.g., filial imprinting). For these reasons, 129 

they have been central to understand the interface between predisposed and learned 130 

mechanisms at the beginning of life.  131 

Research in precocial birds revealed that, even in the pre-hatching phase, experience 132 

and genetically determined mechanisms interact in the development of socio-cognitive 133 

skills. Thanks to the in ovo development and the possibility to test behavioural 134 

responses already shortly after hatching, precocial birds (Versace, 2017) provide 135 

optimal models for the investigation of pre-natal influences on behavioural outcomes. 136 

This has been exploited by studies on the development of neuroanatomical and 137 

functional lateralization in domestic chicks, revealing how the interaction of genetic 138 

and experience-based mechanism within specific critical periods of the pre-natal life 139 

can modulate cognitive functions ((Rogers, 1982, 1997); (Deng & Rogers, 1997; Rogers 140 

& Bolden, 1991; Rogers & Deng, 1999; Rogers & Sink, 1988); (Deng & Rogers, 2002a); 141 

(Rogers, 1990); (Dharmaretnam & Rogers, 2005) (Lorenzi et al.,  2019); (Chiandetti, 142 

2011; Chiandetti & Vallortigara, 2019); (Chiandetti et al., 2013)).  143 
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In this review, however, we analyse how social and cognitive development are affected 144 

by the interplay between predisposed and learning mechanisms during the first stages 145 

of post-natal life. The review is divided into two main sections that follow an 146 

ontogenetic order, describing mechanisms occurring in the early postnatal life and then 147 

in the filial imprinting phase. In the first section, we focus on the mechanisms 148 

underlying the emergence of early predispositions to attend to social partners. These 149 

predispositions develop in the earliest stages of the postnatal life, in visually naïve 150 

chicks. To clarify whether a behaviour is spontaneous or acquired, researchers have 151 

used deprivation experiments. This method consists in depriving animals of a certain 152 

experience to see whether the behaviour of interest is displayed nonetheless (Lorenz, 153 

1965). Animals are either tested before they have performed the activity, at birth or 154 

hatching, or reared in isolation to eliminate opportunities for learning through 155 

observation. These procedures are facilitated when embryos can be directly controlled 156 

and animals hatch individually, making deprivation experiments particularly suitable for 157 

oviparous species. Hence, it comes as no surprise that avian species have been central 158 

to investigate the ontogenetic origins of behaviour. The ethological tradition has 159 

emphasized stereotypical and species-specific fixed action patterns that do not depend 160 

on experience (Schleidt, 2010). Originally, behavioural biologists focused on the notion 161 

of instinct and complex sequences of relatively fixed adult behaviour (Burghardt & 162 

Bowers, 2017; Eibl-Eibesfeldt, 1975). More recently, scientists have identified early 163 

cognitive traits and spontaneous preferences (predispositions) that orient the behaviour 164 

of neonate, inexperienced animals, towards particular stimuli. As detailed below (see 165 

2.1), converging evidence across neonates of different amniote species (e.g. domestic 166 
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chicks, human infants, tortoise hatchlings) tested with the deprivation method suggests 167 

the presence of predisposed preferences to attend to stimuli associated with the 168 

presence of animate, living beings, the so-called “animacy detectors” (Di Giorgio et al., 169 

2017a; Rosa-Salva et al., 2015; Vallortigara, 2012; Vallortigara, in press). These 170 

preferences, in the literature on domestic chicks and human infants, are often called 171 

“social predispositions”. This is because, in the natural environment of social species, 172 

these early predispositions will result in preferential attention towards appropriate 173 

social partners. Differently from the fully structured, species-specific behaviours 174 

targeted by classical behavioural biologists, early predispositions appear as building 175 

blocks of the developing cognitive abilities of the vertebrate mind. These early social 176 

predispositions, whose neural basis we are starting to uncover in chicks (2.2), appear to 177 

contribute to the development and specialization of the brain circuits that, in adults, 178 

carry out sophisticated social information processing (Johnson, 2005). This may be 179 

achieved even by simply directing visual attention towards appropriate social stimuli, 180 

biasing the visual input received by the subject during a critical period of the postnatal 181 

development. Indeed, anomalies of early social predispositions have been associated 182 

with abnormalities in the development of social cognition, such as those associated 183 

with disorders of the autistic spectrums (Di Giorgio et al., 2016). However, even though 184 

social predispositions do not require any specific learning experience about social 185 

stimuli, their emergence unfolds also through the action of environmental influences. In 186 

the first section of the review, we thus describe how non-specific experiences occurring 187 

during well-defined critical periods of the early post-natal life determine the 188 

emergence of predisposed mechanisms for the detection of social partners (and 189 
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animate creatures in general) (see 2.2). These predispositions have an important role in 190 

shaping the future development of more sophisticated, learning-based social cognitive 191 

functions. This literature beautifully shows the crucial interdependence of predisposed 192 

and learned mechanisms in shaping social development. 193 

In the second section of the review (section 3), we will focus on filial imprinting 194 

(Vallortigara & Versace, 2018), a very prominent form of learning, which is crucial for 195 

the survival and subsequent social adaptation of young chicks. Through filial 196 

imprinting, young precocial birds learn to recognize the object(s) to which they are 197 

exposed during a sensitive period. By this process, in the absence of any overt 198 

reinforcement, the young chick restricts its affiliative behaviour towards the first salient 199 

object(s) it encounters. In the natural environment, filial imprinting usually results in 200 

social attachment towards the mother hen and/or the brood mates (Bateson, 1966; 201 

Bolhuis, 1991; McCabe, 2019). This has, of course, crucial implications for social 202 

development, allowing chicks not only to receive parental care from the mother hen, 203 

but also to maintain group cohesion. Filial imprinting can thus provide the foundations 204 

for the formation and maintenance of stable social groups, whose internal hierarchy 205 

(pecking order) regulates “chicken societies”. By being exposed to conspecifics during 206 

development, chickens develop sophisticated social skills. These include the ability to 207 

recognize familiar conspecifics and their dominance hierarchy (Deng & Rogers, 2002b; 208 

Rogers & Workman, 1989; Vallortigara & Andrew, 1994; Vallortigara & Andrew, 1991; 209 

Vallortigara, 1992), the capacity to acquire information about food sources by 210 

observing others’ behaviour (Nicol, 2004) and even forms of perspective-taking and 211 

social deception (Marino, 2017). In the last part of the review, we will describe how 212 



 12 

experience-driven mechanisms and social predispositions can influence the course of 213 

filial imprinting, directing it towards appropriate objects. We will discuss how the 214 

emergence of social predispositions facilitates imprinting also towards non-predisposed 215 

features of the stimuli. Moreover, we will see that even after an initial imprinting 216 

towards an inanimate object, predispositions can emerge, which then direct 217 

subsequent secondary imprinting to appropriate social companions. We will see how 218 

experience occurring in specific time windows of the perinatal life in turn affects the 219 

duration of the sensitive period for imprinting. At least some of the brain regions 220 

involved in filial imprinting have been identified with a good degree of certainty (e.g., 221 

the Intermediate Medial Mesopallium, or IMM, see Horn, 2004). Some of the 222 

physiological mechanisms that control the opening and closing of the sensitive period 223 

for filial imprinting, though the actions of specific hormones and neurotransmitters, 224 

have been recently identified also (Aoki et al., 2018; Yamaguchi et al., 2012). This 225 

literature reveals the presence of interdependent relationships between experience-226 

based and predisposed mechanisms. 227 

 228 

2. Early post-natal life: sensitive periods for the emergence of predispositions 229 

2.1 The study of early predispositions as adaptive responses 230 

In this section, we analyse the evidence of preparedness to attend to social stimuli in 231 

the early post-natal life, as revealed by social predispositions in domestic chicks (the 232 

main model considered in this review). Early predispositions to orient towards and 233 
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engage with particular stimuli have been observed for both static features and motion 234 

dynamics. Interestingly, the preferred features are associated with the presence of 235 

animate creatures (see Figure 1). Among static features, preferences have been 236 

observed for particular colours (e.g. red and blue are preferred to yellow and green 237 

(Kovach, 1971; Miura, Nishi, & Matsushima, 2020; Salzen, Lily, & McKeown, 1971; 238 

Salzen & Meyer, 1968; Taylor, Sluckin, & Hewitt, 1969), shapes (Hess & Goodwin, 1969; 239 

Salzen & Meyer, 1968; Schulman, Hale, & Graves, 1970), for hollow objects (Versace et 240 

al., 2016), for faces and for face-like configurations (in newborns, Johnson & Morton, 241 

1991; Morton & Johnson, 1991; chicks, Rosa-Salva, Regolin, & Vallortigara, 2010, 2012; 242 

Rosa Salva et al., 2011; monkeys, Sugita, 2008; and tortoises Versace, Damini, & 243 

Stancher, 2020). A seminal work by Johnson and Horn (Johnson & Horn, 1988) has 244 

shown that, in the first hours after hatching, dark-reared chicks deprived from 245 

experience with conspecifics exhibit a preference to orient towards a stuffed fowl 246 

compared to a disassembled version of a similar fowl (Bolhuis, Johnson, & Horn, 1989; 247 

Egorova & Anokhin, 2003; Rosa-Salva et al., 2015; Versace et al., 2017). Subsequent 248 

experiments have shown that this predisposition is not specifically tuned to hens or 249 

fowls, but is based on low-level cues present in the area of the neck and face (Johnson 250 

& Horn, 1988; Rosa-Salva, Mayer & Vallortigara, 2019).  251 

 252 
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 253 
 254 
Fig. 1. Schematic representation of the main classes of stimuli used to test social predispositions for 255 
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static and dynamic features typical animate objects. For each pair of stimuli, the preferred object 256 

featuring the predisposed trait and a control stimulus are presented side by side, followed by a selection 257 

of papers reporting a behavioural preference for the predisposed object in naïve animals. From above, 258 

the first two images of the first panel represent the stimuli used to test the preference for hen-like 259 

objects (a stuffed junglefowl-like hen versus a scrambled version of a similar specimen). In the following 260 

rows: a pair of similar stimuli obtained from stuffed chick models; a stuffed duck with her wings 261 

occluded compared to a similar exemplar with the head region occluded; a schematic face-like stimulus 262 

and a non-face control image. The first two images of the second panel represent a point light display 263 

of a walking hen and a control stimulus with random motion of the same dots (the silhouette of the hen 264 

has been added for illustrative purposes). In the following two rows: a schematic representation of a 265 

speed changing stimulus and its speed-constant control; an object that always moves in the direction of 266 

its main body axis and its control stimulus. In the last row, we represented on the left the sequence of 267 

movement of a self-propelled red object hitting and putting in motion a non-self-propelled purple 268 

object (the sequence has to be read from above to below). In this case, chicks preferentially imprint on 269 

the red objects. On the right, both objects appear self-propelled and chicks display no preferences 270 

between the two. In all dynamic stimuli arrows have been added for illustrative purposes. 271 

Deprivation studies on social predispositions have been conveniently conducted on 272 

domestic chicks and other precocial species, thanks to the ease of testing precocial 273 

animals that are born with a mature sensory and motor system (Versace, 2017). 274 

However, the preference for faces and face-like configurations has been extensively 275 

observed also in human infants (Buiatti et al., 2019; Di Giorgio et al., 2016; Goren, Sarty 276 

& Wu, 1975; Morton & Johnson, 1991; Simion & Di Giorgio, 2015), human fetuses 277 

(Reid et al., 2017), monkeys (Sugita, 2008) and recently in tortoise hatchlings (Versace 278 

et al., 2020). This suggests the presence of an ancient mechanism for the detection of 279 

faces, which is tuned to low-level features associated with the presence of faces. This 280 
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mechanism, active soon after birth or hatching, does not specify the species-specific or 281 

individual details of faces, but increases the chances that newborn animals orient 282 

towards other animals by directing their attention toward any face-like configuration. 283 

Dynamic patterns are also very effective in attracting the attention of newborn animals. 284 

Although precocial avian species can exhibit affiliative responses to still objects, the 285 

phenomenon of filial imprinting is enhanced by the presence of moving objects (ten 286 

Cate, 1986). This suggests that the first orienting responses of animals, before they 287 

developed affiliative responses to particular objects they have experienced, might be 288 

driven by cues of animacy, the property of “being alive”. In line with this idea, we have 289 

observed early preferences of visually inexperienced animals for motion dynamics 290 

associated with the presence of animate, living beings. This supports the idea of an 291 

animacy-detector tuned to some of the features that distinguish the biological motion 292 

of animate creatures (Mascalzoni, Regolin, & Vallortigara, 2010; Rosa-Salva et al., 2016; 293 

Rosa-Salva et al., 2018; Vallortigara, Regolin, & Marconato, 2005). Vallortigara and 294 

colleagues (2005) have initially discovered a spontaneous preference for point-light 295 

displays that move according to semi-rigid biological motion. In this kind of 296 

movement, points located on different parts of the body move relative to one another 297 

within an elastic, constrained range. This is different from the cinematics of rigid 298 

translation and random movement shown by most inanimate objects. The preference 299 

for biological motion has been documented in human neonates too (Simion, Regolin, 300 

& Bulf, 2008). Social predispositions for animate motion can be observed using very 301 

simplified visual stimuli. For instance, visually naïve chicks prefer to imprint on objects 302 

that start to move on their own, rather than being pushed in motion by a collision with 303 
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another object (Mascalzoni et al., 2010; Simion et al., 2008). Likewise, the ability to 304 

spontaneously start to move from a resting state (“start from rest”) elicits visual 305 

preferences also in human newborns (Di Giorgio et al., 2017b). Similarly, both chicks 306 

and human infants prefer to approach objects that change in speed and, in the case of 307 

chicks, rotate autonomously (Frankenhuis et al., 2013; Hernik, Fearon, & Csibra, 2014; 308 

Rosa-Salva et al., 2016, 2018). These are all features that signal the presence of an 309 

internal energy source in self-propelled objects (a defining feature for the 310 

discrimination of animate creatures). Moreover, a predisposition for objects that move 311 

in the direction of their main body-symmetry axis, as most bilaterians, is present in 312 

both infants (Hernik et al., 2014) and visually-inexperienced chicks (Rosa-Salva et al., 313 

2018). Overall, compelling evidence suggests that early approach responses are 314 

facilitated by cues associated with animate objects.  315 

An important function of early preferences might be to direct the attention of the 316 

young animals towards the animate objects that will provide care, and towards which 317 

young animals should develop affiliative responses and sexual responses later on 318 

(Morton & Johnson, 1991; Versace et al., 2018). As mentioned in the introduction, this 319 

would also enable the subsequent development of neural mechanisms specialised for 320 

the processing of various aspects of social information (Di Giorgio et al., 2016; Johnson, 321 

2005). This idea is supported by evidence of enhanced imprinting responses elicited by 322 

predisposed stimuli, such as red colour on the head of a creature that moves 323 

according to biological motion (Lemaire et al., 2020; Miura et al., 2020; Miura & 324 

Matsushima, 2016) or such as “start from rest” (Mascalzoni et al., 2010). However, 325 

similar early predispositions have been found in solitary animals with no parental care, 326 
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such as land tortoises (Versace et al., 2020). This suggests that mechanisms to direct 327 

attention towards animate objects might respond to a general need of identifying 328 

living agents to gain information about important aspects of life, including the 329 

presence of resources, preys and predators (Lorenzi & Vallortigara, 2020; Vallortigara, 330 

2012; Versace et al., 2020). The predispositions for some stimuli exhibited at the 331 

beginning of life, though, are not rigidly prescriptive, as revealed by the fact that both 332 

chicks (Versace et al., 2017) and young tortoises (Versace et al., 2018) can show 333 

exploration of alternative stimuli. The propensity to focus only on the predisposed 334 

stimuli or explore alternative stimuli has a genetic basis in chicks, as shown by the 335 

differences in perseverance in approaching a stuffed hen in visually naïve chicks 336 

(Versace et al., 2017). 337 

In line with the idea that predispositions direct attention to stimuli relevant for an 338 

individual’s fitness, we have recently shown that spontaneous responses that do not 339 

require experience include anti-predator defensive behaviours. Although this topic has 340 

received less attention than social predispositions, to date studies in chicks (and 341 

mallard ducklings, Dessborn et al., 2012) have shown that precocial birds are able to 342 

recognize and appropriately react to various threats, and this in the absence of 343 

previous experience. A few decades ago, Schiff reported that dark-hatched and -reared 344 

chicks escape a stimulus rapidly looming in front of them (Schiff, 1965). Recently, we 345 

have shown that young chicks reared with no experience with moving stimuli 346 

spontaneously assess the difference between distant and approaching threats posed by 347 

stimuli moving overhead. Being presented with stimuli that mimicked either an 348 

approaching threat (a ‘looming’ stimulus increasing in size like an approaching 349 
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predator) or a distant threat (a ‘sweeping’ stimulus moving at a constant distance like a 350 

cruising prey bird), naïve chicks modulated their defensive responses accordingly 351 

(Hébert, Versace, & Vallortigara, 2019). They ran away from an approaching stimulus 352 

and froze in the presence of a distant threat (see Fig. 2). Static visual stimuli can also 353 

trigger innate anti-predatory responses: while chicks are attracted by ‘face-like’ stimuli 354 

(a silhouette containing three dark blobs organized in a triangular fashion) over a 355 

control stimulus (Rosa-Salva et al., 2009) (Fig. 1), they avoid stimuli with a black ‘pupil-356 

like’ feature (Rosa-Salva, Regolin, & Vallortigara, 2012) (see Fig. 2) (see also (Gagliardi, 357 

Gallup, & Boren, 1976; Jones, 1980; Scaife, 1976) and (Rosa-Salva, Regolin, & 358 

Vallortigara, 2007)). 359 

 360 

Fig. 2 Illustration of stimuli and setups used to test predisposed anti-predator responses in naïve chicks. 361 

In the upper panel, a face-like and a non-face-like schematic stimulus are shown, both featuring three 362 

internal features with a central pupil-like element. Only in the face-like configuration these resemble a 363 

pair of predator eyes. Naïve chicks tend to avoid the face-like stimulus in this test. In the lower panel, 364 

prototypical chicks’ reactions to looming and sweeping stimuli (fleeing and freezing, respectively) are 365 

shown. 366 
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2.2 Neural and physiological mechanisms underlying early predispositions 367 

Our recent research started to shed some light on the neural mechanism underlying 368 

early predispositions for social stimuli. We did this visualising c-Fos to map neural 369 

activation. In one of our first studies on this regard we found higher activation of IMM 370 

in chicks that preferred a scrambled version of a stuffed fowl hen compared to chicks 371 

that preferred the normal fowl. It was already known that the IMM (Bolhuis & Honey, 372 

1998; Horn, 1986, 1990; Horn & McCabe, 1984; McCabe & Horn, 1994; McCabe, Horn, 373 

& Bateson, 1981) is not required for the preference for hen-like objects. Bilateral 374 

lesions of the IMM impair the recognition of imprinting objects, but do not suppress 375 

the predisposed preference for hen-like objects (Horn & McCabe, 1984). However, 376 

although this region does not cause the expression of the predisposition, IMM 377 

responds differently to naturalistic and artificial stimuli in inexperienced chicks (Mayer 378 

et al., 2016). At least three explanations are possible for this finding. The mismatch 379 

between the template provided by the predisposition for hen-like objects and the 380 

artificial object experienced may require increased plasticity to imprint on the 381 

scrambled stimulus. This could cause increased c-Fos expression in the chicks that 382 

choose the non-predisposed stimulus, since c-Fos is a marker of learning and memory 383 

related plasticity (Lanahan & Worley, 1998; Okuno, 2011; Sauvage, Kitsukawa, & 384 

Atucha, 2019). Another possibility is that the choice to approach the scrambled fowl 385 

reflects the lack of a predisposed preference for hen-like objects and that c-Fos 386 

expression in IMM could be systematically higher individuals with this abnormal 387 

developmental outcome. Last but not least, it has been proposed that the neural 388 
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circuits responsible for the expression of predispositions in chicks with hen preference 389 

suppress the neuronal activity in the IMM (McCabe, 2019). 390 

Other studies have investigated the involvement of the social behaviour network in 391 

chicks’ predispositions. This network includes interconnected brain regions that are rich 392 

in sex-steroid receptors and modulate various social behaviours in adult vertebrates 393 

(Goodson, 2005; Newman, 1999; O’Connell & Hofmann, 2011). Until recently, however, 394 

it was unclear whether areas of this network participate in the expression of early social 395 

behaviours in newborn animals too. We found activation of important social behaviour 396 

network nodes, such as septum, preoptic area and amygdaloid areas (arcopallium and 397 

nucleus taeniae of the amygdala) in visually naïve chicks exposed for the first time to 398 

social stimuli (Lorenzi et al., 2017; Mayer et al., 2017, 2019; Mayer, Rosa-Salva, & 399 

Vallortigara, 2017). Among the amygdaloid nuclei, nucleus taeniae of the amygdala and 400 

parts of arcopallium selectively responded to the static features of predisposed stimuli 401 

(e.g., hen-like objects) (Mayer et al., 2019). This is similar to what happens in humans, 402 

where amygdala has been implicated in early orienting responses towards face-like 403 

configurations (Johnson, 2005). An interesting dissociation appeared when we tested 404 

the response to the animate motion of social companions. In this case, the amygdaloid 405 

nuclei were not responsive, while the activation of septum and preoptic area was 406 

increased. In a first study, we found that septum was responsive to the motion of a 407 

living conspecific compared to the rigid motion of a similarly stimulus (a stuffed chick 408 

rotating at a constant speed) (Mayer et al., 2017). In a follow-up work, we found that 409 

both septum and preoptic area were also activated by a highly controlled stimulus 410 

showing speed changes in the motion of a simple object (Lorenzi et al., 2017). Overall, 411 
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these nodes of the social behaviour network show selective responses to features of 412 

animate objects already in visually naïve animals. Previous visual experience and 413 

specific learning events do not seem to be necessary to establish these functions, in 414 

line with what has been recently reported for cortical areas specialised for face 415 

processing in humans (Ratan Murty et al., 2020). Areas of the social behaviour network 416 

might be involved in processing the social valence of, and bonding to, social stimuli in 417 

the absence of previous social experience. 418 

In mammals and birds, social behaviours are mediated by neuropeptide signalling 419 

based on vasopressin and oxytocin receptors, present in medial amygdala and lateral 420 

septum (Goodson et al., 2009). A recent study investigated the role of vasotocin and 421 

mesotocin (the avian homologs of vasopressin and oxytocin) in mediating the social 422 

predisposition for hen-like objects. This revealed that intracranial mesotocin 423 

administration increased the level of preference for the stuffed fowl model compared 424 

to saline‐ injected controls (Loveland, Stewart, & Vallortigara, 2019). This suggests that 425 

mesotocin signalling may regulate the expression of social predispositions, probably 426 

acting on areas of the social behaviour network.  427 

Intriguingly, in two of our works investigating the physiological substrate of chicks’ 428 

predispositions for social stimuli, we found that their development can be disrupted 429 

exposing embryos to valproic acid during the last week of incubation (Lorenzi et al., 430 

2019; Sgadò et al., 2018). In humans, prenatal exposure to this drug increases the risk 431 

to develop disorders of the autistic spectrum (Christensen et al., 2013). For this reason, 432 

embryonic exposure to valproic acid is used to develop models of autism in rodents 433 
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(Nicolini & Fahnestock, 2018) and chicks (Lorenzi et al., 2019; Nishigori et al., 2013; 434 

Sgadò et al., 2018). The embryonic administration of valproic acid to chicks induces 435 

selective anomalies in social aggregation behaviours (Nishigori et al., 2013), impairment 436 

in the recognition of familiar conspecifics (Zachar et al., 2019), a loss of the 437 

predisposition for hen-like objects (Sgadò et al., 2018) and speed-changing stimuli 438 

(Lorenzi et al., 2019). These results support the idea that, in chicks like in human 439 

newborns (Di Giorgio et al., 2016), disturbances of early social predisposition may derail 440 

the normal development of social cognition, causing abnormal developmental 441 

outcomes such as those observed in autistic disorders. The mechanisms subtending to 442 

the effects of valproic acid in chicks are currently unknown. However, in mammals, 443 

valproic acid seems to act on an inhibitory pathway (GABAergic parvalbumine cells) 444 

that controls critical periods for cortical plasticity (eg., Gervain et al., 2013; Gogolla et 445 

al., 2009; Lauber, Filice, & Schwaller, 2016; Reh et al., 2020; Silingardi et al., 2010). This 446 

opens the way for future studies investigating how valproic acid may affect similar 447 

pathways in birds, deepening our understanding of the mechanisms that control 448 

sensitive periods in non-mammalian species. 449 

Overall, evidence suggests that the neural mechanisms to detect living animals are 450 

widespread across species and might fulfill a range of adaptive functions from the first 451 

stages of life. 452 

2.3 Transient time windows for the emergence of early predispositions and their 453 

hormonal correlates 454 



 24 

Early predispositions are not fixed and crystallised responses that are present 455 

throughout life (differently from the fixed-action patterns investigated by classical 456 

ethologists) (see (Shultz, Klin, & Jones, 2018 for a review on human neonates).  457 

The preference for face-like stimuli, for instance, changes during the first months of 458 

life. This preference is apparent in human neonates in the first hours after birth, 459 

declines at around two months of age before reappearing again at five months for 460 

more complex stimuli (Buiatti et al., 2019; Johnson et al., 1991; Shultz et al., 2018; 461 

Simion & Di Giorgio, 2015) and being detectable up to adulthood (Tomalski, Csibra, & 462 

Johnson, 2009). Likewise, at hatching, chicks of both sexes have a spontaneous 463 

preference to approach other females (Pallante, Rucco, & Versace, in preparation). This 464 

preference rapidly fades when chicks are expose to other chicks. The loss of this 465 

preference occurs at the age in which in the will chicks leave the nest. This dynamic 466 

may be important to promote social cohesion with the flock, that is composed of both 467 

male and female chicks. 468 

Transient time windows in the appearance of predispositions have been well 469 

documented for chicks’ preferences to approach stuffed hens (Bolhuis, Johnson, & 470 

Horn, 1985; Egorova & Anokhin, 2003; Horn, Bolhuis, & Hampton, 1995; Johnson, 471 

Bolhuis, & Horn, 1985). This preference emerges only after the animals have been 472 

stimulated through some activating experience, such as motoric activity, exposure to 473 

unrelated visual patterns, handling or acoustical stimulation. These activating 474 

experiences do not provide any specific information about the predisposed visual 475 

stimuli. Indeed, the activating experiences can even involve modalities other than 476 
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vision. To have an effect, the activating experiences that trigger the appearance of the 477 

predisposition for hen-like objects must happen within a specific time window in the 478 

early post-natal life (between 24 and 36 hours after hatching) (Bolhuis & Horn, 1997; 479 

Bolhuis et al., 1989; Davies, Johnson, & Horn, 1992; Johnson, Davies, & Horn, 1989). 480 

Moreover, the ensuing predisposition will be detectable only at precise time points 481 

after the activating experiences (between 5 and 24h after the stimulation, Davies et al., 482 

1992). This timing, however, is modulated by the type of activating experience to which 483 

chicks are exposed. For instance, if chicks also receive visual stimulation while 484 

performing motoric activity, the preference for hen-like objects is detectable already 485 

after 2 hours (Bolhuis et al., 1985). However, it is unclear whether this acceleration 486 

depends on the level of arousal or the sensory modality stimulated by the activating 487 

experience (see also Lickliter, 2000; Rosa-Salva et al., 2015). Studies on the role of 488 

stimulating experiences during sensitive developmental periods also revealed 489 

information on the physiological mechanisms involved. An intriguing case is that of 490 

noradrenaline, which is not directly involved in the expression of the preference for 491 

hen-like objects (Bolhuis, McCabe, & Horn, 1986; Davies, Horn, & McCabe, 1985; 492 

Davies et al., 1992; see Rosa-Salva et al., 2015 for a review). This neurotransmitter, 493 

however, seems to play a role in the opening of the sensitive period related to its 494 

emergence. Indeed, the administration of a noradrenaline antagonist delays the onset 495 

of the sensitive period during which activating experiences cause the subsequent 496 

emergence of the predisposition for hen-like objects (Davies et al., 1992; for similar 497 

evidence after the administration of the anaesthetic equithisin see Bolhuis & Horn, 498 

1997). 499 
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Similar developmental properties also characterise the predispositions for self-500 

propelled objects and biological motion. The preference for objects that change in 501 

speed is present 24 hours after hatching, but fades two days later (Versace, Ragusa, & 502 

Vallortigara, 2019). The development of a preference for the semi-rigid biological 503 

motion typical of legged animals may require previous exposure to moving visual 504 

stimuli (Miura & Matsushima, 2012) or motoric activity such as walking on a treadmill 505 

(Vallortigara et al., 2005). In the case of biological motion, the behavioural preference is 506 

detectable already thirty minutes after the exposure to moving visual stimuli and 507 

persists one day late. A sensitive period was also present for the preference for 508 

biological motion, which was visible in two- but not in five-day old chicks (Miura et al., 509 

2020).  510 

In some studies, the development of biological motion preferences were limited to 511 

males (Miura & Matsushima, 2012). This is in line with the evidence of the involvement 512 

of sex hormones, such as testosterone, in the expression of the predisposed preference 513 

for hen-like objects (e.g., Bolhuis et al., 1986; see Rosa-Salva et al., 2015 for a review). 514 

This may indicate that at least some of the underlying physiological mechanisms may 515 

be shared between different social predispositions. 516 

Thyroid hormones too have been implicated in the development of social 517 

predispositions for animate motion. These hormones play essential roles in the brain 518 

development of vertebrate species (McNabb & King, 1993). Among thyroid hormones, 519 

3,5,3′-triiodothyronine (T3) has the highest affinity with avian thyroid receptors and is, 520 

therefore, the primary metabolically active thyroid hormone (Bellabarba et al., 1988; 521 
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Weirich & McNabb, 1984). We recently obtained preliminary evidence that T3 affects 522 

the emergence of chicks’ predisposition for speed-changing objects, by modulating its 523 

timing (Lorenzi et al., 2020). Blocking the thyroid hormone receptors with an 524 

antagonist, at the age when domestics chicks normally show a preference for speed 525 

changing objects (day 1 post-hatching), leads to the disappearance of the preference. 526 

Contrariwise, injecting T3 when the sensitive period normally terminates (day 3 post-527 

hatching), reinstates the preference for self-propelled objects, at least in females 528 

(Lorenzi et al., 2020). Whether T3 only controls the emergence of the predisposition for 529 

self-propelled objects or it acts on a more general brain mechanism common to most 530 

predispositions, remains however to be univocally determined. 531 

 532 

3. Experience-driven effects and the control of sensitive periods for imprinting  533 

The predisposed preference for biological motion has facilitating effects on filial 534 

imprinting for non-predisposed features, such as the colour of the moving stimulus. 535 

Chicks that developed a stronger preference for a biological motion stimulus are better 536 

able to imprint on the colour in which this stimulus was depicted (Miura & 537 

Matsushima, 2016). Miura and Matsushima (2020) found evidence of a complex 538 

interaction between the predisposition for biological motion, the predisposition for the 539 

red colour (typical of hens’ combs and junglefowl faces) and filial imprinting. This work 540 

revealed a predisposed preference for approaching and imprinting on stimuli in which 541 

the biological motion of a walking hen is associated with the colour red. On the 542 

contrary, the same stimulus presented in yellow or performing a simple linear motion is 543 
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a less effective imprinting stimulus. This might reflect a predisposed preference for a 544 

walking animal with a red comb/crest or a reddish face. Notably, this effect seemed 545 

driven by the movement of the hen’s head, since presenting only the head of the 546 

stimulus was as effective as presenting the whole body, whereas the tail region was not 547 

effective. Crucially, however, the capacity to imprint on biological motion stimuli 548 

presented in a yellow colour could be rescued, if chicks were pre-exposed to visual 549 

moving stimuli. When chicks had been stimulated by exposure to moving objects 550 

before imprinting, they could also imprint on a biological motion stimulus with the less 551 

predisposed yellow colour. Similarly, previous visual exposure to a group of 552 

conspecifics enhances imprinting preferences (Deng & Rogers, 2002b). Only chicks that 553 

were exposed to a group of conspecifics, in a later test showed a preference for the 554 

individual chick with whom they had been subsequently reared. This effect was due to 555 

an improvement of the performance of the right-eye system (left hemisphere), in line 556 

with the dominance of the right hemisphere in biological motion processing (Rugani et 557 

al., 2015) or in familiarity recognition (Vallortigara & Rogers, 2005). On the contrary, 558 

the left eye-system showed a stably superior performance, also in the absence of this 559 

priming experience. See also (Lickliter, Dyer, & McBride, 1993; Lickliter & Gottlieb, 1985; 560 

Lickliter & Gottlieb, 1988) for similar effects in ducklings. 561 

Overall, the studies reviewed so far suggest a dynamic and potentially enhancing 562 

interplay between experience-based and predisposed mechanisms. On the one hand, 563 

as we saw in the previous paragraph, non-specific experiences, occurring within specific 564 

sensitive periods, drive the emergence of predispositions for animate stimuli. On the 565 
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other hand, predispositions are associated with enhanced learning of additional 566 

features of the stimulus.  567 

A well-known feature of filial imprinting is the presence of a limited sensitive period 568 

during which this form of learning can occur. Behaviourally, the sensitive period for 569 

imprinting begins as soon as precocial birds start following an object and terminates 570 

once the birds start to avoid unfamiliar ones (Bolhuis, 1991). The sensitive period for 571 

imprinting usually lasts a couple of days after hatching; for instance, Yamaguchi et al. 572 

(2012) reported that 4 day-old, dark-reared chicks can no longer be imprinted (but see 573 

Case & Graves, 1978; Sluckin, 1972 for reports of imprintability up to 7 days in dark 574 

reared chicks, indicating potential inter-breed variability). However, the duration of the 575 

sensitive period can substantially vary, being influenced by different factors (Bateson, 576 

1966; Bolhuis, 1991; Sluckin, 1972). Both pre-hatch and post-hatch experiences 577 

influence the determination of the sensitive period (Dimond, 1968; Landsberg, 1976; 578 

Simner, 1973). For instance, rearing ducklings in diffuse, non-patterned light 579 

(preventing structured visual experiences) extends the sensitive period in this species 580 

(Moltz & Stettner, 1961).  581 

At the neurophysiological level, an increase of the concentration of the 582 

neurotransmitter glutamate extends the imprinting period, suggesting a possible role 583 

of NMDA glutamate receptors (Parsons & Rogers, 1997, 2000). The sensitive period for 584 

filial imprinting may be influenced by hormones too (Bateson, 1983; Knudsen, 2004). 585 

For instance, in ducklings a rise of corticosterone has been described around the end 586 

of the sensitive period for imprinting (Weiss, Köhler, & Landsberg, 1977). This 587 
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hormonal change may be the source for the increasing fear observed when imprinting 588 

terminates (Bolhuis, 1991).  589 

Recently, a role of thyroid hormones has been identified in domestic chicks. In 590 

precocial galliform birds, the thyroid hormones T4 and T3 peak around hatching and 591 

then gradually decrease (Lu, McMurtry, & Coon, 2007; McNabb, 2006; Yamaguchi et al., 592 

2012). The level of T3 in the brain correlates with the strength of imprinting and 593 

artificially injecting T3 facilitates it. The action of T3 appears to be quick, being 594 

detectable already in 30 minutes, similarly to what reported above for the induction of 595 

the predisposition for biological motion. Importantly, T3 is strongly implicated in the 596 

control of the sensitive period for imprinting in chicks. Inhibiting it (either systemically 597 

or via brain injections) impairs visual imprinting, whereas injecting it extends and even 598 

re-opens its sensitive period up to 8 days after hatching. After this age, the capability 599 

to form imprinting attachment cannot be rescued by T3, indicating the presence of 600 

further, yet unknown, closing mechanisms (Yamaguchi et al., 2012). Recent studies have 601 

also elucidated the neural mechanisms subtending to the action of T3, which seem to 602 

be specifically localised to IMM (a region classically implicated in imprinting, Horn, 603 

2004) (summarised in Fig. 3). Blockage of the nucleotide diphosphate kinase 2 in IMM 604 

impairs the reopening of the sensitive window by T3 (Yamaguchi et al., 2016). Likewise, 605 

blocking the Wnt-2b glycoprotein, related to neuronal growth, in an area connected to 606 

IMM (IMHA, intermediate medial hyperpallium apicale) also prevents T3 action (Aoki et 607 

al., 2015; Yamaguchi et al., 2018) (see Fig. 3).  608 
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 609 

Fig. 3. Known pathways for the action of T3 on IMM (Intermediate Medial Mesopallium) and its efferent 610 

IMHA (Intermediate Medial Hyperpallium Apicale). The concentration of the thyroid hormone T3 (3,5,3′-611 

triiodothyronine) is balanced in the brain by the enzyme Dio2 (type 2 iodothyronine deiodinase), which 612 

converts T4 into T3 (the active form) and by Dio3, which converts T3 into its inactive metabolite T2 (3,3′-613 

diiodothyronine). In IMM, T3 binds a thyroid hormone receptor (TR), which activates the enzyme 614 

phosphatidylinositol 3′-kinase (PI3K). PI3K is hypothesised (dotted arrow) to act on another enzyme, 615 

NDPK2 (Nucleoside diphosphate kinase II), which would in turn interact with proteins that regulate the 616 

actin cytoskeleton, potentially leading to changes in the dendritic spines, supporting learning related 617 

plasticity. In IMHA, the molecular mechanisms that regulate the sensitive period for imprinting may 618 

involve the Wnt2b protein, which binds to a Fzd (frizzled) receptor, causing the activation of Dvl 619 

(Dishvelled) protein. This in turn modulates the activity of two enzymes, JNK (c-Jun N-terminal kinase) 620 

and CAMKII (Ca2+/calmodulin-dependent protein kinase II). The activation of this pathway induces 621 

changes in actin and reorganization of the microtubules, modulating the morphogenesis of dendritic 622 

spines and post-synaptic components assembly. Overall, the activation of the Wtn pathway in IMHA, 623 

concurrently with the input that this structure receives from the IMM that has been activated by T3 624 
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influx, may strengthen the connectivity between these two areas, contributing to the opening of the 625 

critical period for imprinting. 626 

 627 

Moreover, it has been recently shown that the expression of GABAA-GABAB receptors 628 

within IMM defines the opening and closing of the sensitive period downstream to T3. 629 

While GABAB initiates imprinting, GABAA contributes to its termination (Aoki et al., 2018; 630 

see also McCabe, 2019 for a comprehensive review of this literature). In mammals, the 631 

brain-region specific maturation parvalbumin-positive GABAergic inhibitory 632 

interneurons have a crucial role in the neurobiology of sensitive periods. This allows 633 

the refinement of cortical circuits that build up advanced cognitive functions (reviewed 634 

in Reh et al., 2020). Once again, similar mechanisms might be present in avian species 635 

(e.g., Aoki et al., 2018, see above), opening the way for exciting comparative 636 

investigations. 637 

Similar to what described for the behavioural effects of the biological motion 638 

preference, the relationship between imprinting and T3 hormonal levels seems to be a 639 

circular one. The process of imprinting increases the forebrain concentration of T3 640 

hormone, by increasing the expression of Dio2, the enzyme that converts T4 to T3 (the 641 

active form) (see also Takemura et al., 2018). This “primes” the mechanisms for the 642 

development of further secondary imprinting learning. As a consequence, after this 643 

initial priming even chicks as old as 4-8 days became susceptible to further imprinting 644 

(Yamaguchi et al., 2012). The similarity with the mechanisms described above for the 645 

action of the biological motion preference is not only a superficial one. Indeed, the 646 
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induction of the predisposition for biological motion is linked to an increase in the 647 

gene expression of Dio2 (Miura et al., 2018; Takemura et al., 2018). The level of 648 

preference for biological motion developed by chicks primed with exposure to moving 649 

stimuli correlates with the level of telencephalic Dio2 expression (Takemura et al., 650 

2018). Moreover, injections of IOP (iopanoic acid, that inhibits Dio2) reduced the level 651 

of biological motion preference developed by newly-hatched chicks after priming with 652 

motion stimuli (Miura et al., 2018). This reveals a direct causal link between the action 653 

of thyroid hormones and predispositions for biological motion. According to the model 654 

proposed by Miura and Matsushima (2020), the first encounter of an animal with a 655 

salient moving object would cause a surge of telencephalic T3 concentration. This 656 

would have consequences both at the level of inborn predispositions (causing the 657 

rapid emergence of the predisposition for biological motion), and at the level of 658 

learning mechanisms (causing the acute activation of imprinting learning and priming 659 

the memory system for further imprinting learning in the later days). Thanks to the 660 

induction of the predisposition for biological motion, even if the first moving object 661 

seen by the chick would be an inanimate object, the subsequent imprinting would be 662 

directed towards more biologically plausible objects. Please note that secondary 663 

imprinting towards naturalistic stimuli overrides previous imprinting learning on 664 

artificial ones, but not vice versa (Boakes & Panter, 1985; Bolhuis & Trooster, 1988). 665 

Moreover, the first “wave” of imprinting will determine at least some degree of 666 

following behaviour (i.e., motoric and visual stimulation). Thus, this first visual 667 

experience with any moving object is also likely to activate the emergence of the 668 

predispositions for hen-like objects, and specifically for their red face region (Fig. 4).  669 
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 670 

Fig. 4. Schematic illustration of a model representing the emergence of multiple social predispositions as 671 

a consequence of the exposure to any salient moving stimulus, in newly hatched chicks. T3 level peak at 672 

hatching, making these animals susceptible to imprinting. The exposure to the stimulus and the 673 

associated motoric activity will cause the emergence of the predisposition for the head region of hen-674 

like stimuli. Moreover, by being exposed to a salient stimulus the animals will start to learn its features 675 

through filial imprinting. This process will cause an additional increase in the concentration of T3. This 676 

will have two consequences: extending the sensitive window for imprinting and causing the emergence 677 

of the predisposition for biological motion. (It is unknown whether T3 has any effect on the 678 

predisposition for hen-like object, dotted arrow). The combined presence of the two predispositions will 679 

direct chicks’ attention towards appropriate social stimuli (e.g., the mother hen) if they are at all available 680 

in the environment. Since the animals are still susceptible to (secondary) imprinting learning, this will 681 

ensure filial attachment towards the mother hen. 682 

It seems that multiple mechanisms evolved to ensure this crucial step of social 683 

development (Versace et al., 2018). Filial attachment towards the mother hen has 684 

important short-term beneficial consequences for the chicks, that gain heat, protection 685 

and guidance from the hen. Thanks to their notable social-learning abilities, chicks can 686 

also acquire crucial information (e.g., on the position and palatability of various food 687 

sources) from the hen and other brood-mates (e.g., Marino, 2017; Nicol, 2004).  688 
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Unfortunately, compared to the earlier developmental stages, less is known about how 689 

these interactive processes extend to later stages of chicks’ life. For instance, there is 690 

relatively little evidence of the impact of these early environmental influences on the 691 

social adaptation of adult chickens (but see Rogers & Workman, 1989 for longitudinal 692 

data on lateralization and social interaction in chicks up to 16 days of age; see also 693 

Leonard et al., 1993; Leonard, Zanette, & Wayne Fairfull, 1993; Widowski, Lo Fo Wong, 694 

& Duncan, 1998 for the long-term effect of group composition on adult mating and 695 

agonistic behaviours). This aspect has been perhaps better studied in other bird 696 

species such as zebra finches, where sexual imprinting has been the object of 697 

numerous studies (see Bischof, 1994, 2018; ten Cate & Vos, 1999 for reviews). In sexual 698 

imprinting, the early experience the birds have with social companions, within a specific 699 

sensitive period of the post-natal life, affects their mate choice later in life. After this 700 

early acquisition phase, the formation of stable mate-preferences by sexual imprinting 701 

involves a second sensitive period, at the time when the young bird performs its first 702 

courtship. The availability of an appropriate partner to court can modify or consolidate 703 

the preference acquired in the earlier phase, crystallising it in its definitive form. It has 704 

been proposed that the first stage of sexual imprinting in zebra finches could 705 

correspond to filial imprinting as described for altricial birds. In this phase, the young 706 

bird would acquire general information that allow it to recognise parents, siblings and 707 

other members of its social group. During the subsequent consolidation phase, its first 708 

courtship attempts are directed towards individuals resembling this template, if at all 709 

available, and the tendency is further consolidated. Similar to what we saw for filial 710 

imprinting, also in sexual imprinting the preferences of young birds are not completely 711 
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unconstrained, revealing the presence of genetic biases or unlearned predispositions. 712 

Indeed, cross-fostering experiments with birds of different species revealed that sexual 713 

imprinting is usually easier to achieve for the own species. This two-phase process, 714 

involving the interaction of predisposed and learned mechanisms, thus increases the 715 

chances to obtain sexual imprinting towards the bird’s own species, while allowing still 716 

sufficient behavioural flexibility to cope with different environmental circumstances 717 

(Bischof, 2018). The neural correlates of learning occurring in sexual imprinting during 718 

the consolidation phase have been also well investigated (Bischof, 2007). In the case of 719 

visual sexual imprinting, changes occurring during the second sensitive period involved 720 

mostly an irreversible reduction of dendritic spines in the Lateral Nido-Mesopallium 721 

(LNM). Similarities with the processes observed for filial imprinting include a clear 722 

involvement of hormonal signalling (testosterone, in this case) in the opening of the 723 

sensitive window for the consolidation phase, and of GABAergic inhibition for its 724 

closing. Future studies should be devoted to compare how predispositions and 725 

learning mechanisms interact during the earlier stages of life and later in development 726 

(see Vidal, 1980 for a behavioural study of the relationship between sexual and filial 727 

imprinting in chicks). It would thus be important to perform longitudinal 728 

developmental studies, targeting how early environmental influences shape adult social 729 

behaviour.  730 

4. Conclusions 731 

In a world rich in stimuli, social predispositions help young animals to direct their 732 

attention and learning toward social partners, which provide protection and guidance, 733 
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and to ignore less relevant stimuli. Predispositions are not fixed and immutable 734 

mechanisms, though, but respond in different ways to the environmental and social 735 

stimulation present at specific time-points during the ontogenetic development. We 736 

have described how the relation between predisposed and environmental factors in the 737 

first phases of life has profound influences on subsequent development (see also 738 

Versace et al., 2018; Versace & Vallortigara, 2015). However, long term effects have just 739 

started to be elucidated. 740 

We have shown how distinct sensitive periods shape the development of social 741 

behaviour via complex interactions of environmental and genetic influences. This is 742 

apparent, for instance, in the development of affiliative responses for the mother 743 

through predispositions that orient the newborn towards animate objects (reviewed in 744 

Di Giorgio et al., 2017a) and enhance learning of the particular features of the social 745 

partners. The latter mechanism is shown for example by the enhancement of 746 

imprinting in chicks whose predispositions for biological motion have been activated 747 

by previous exposure to moving objects (Miura & Matsushima, 2016; Miura et al., 748 

2020). Importantly, we have shown how environmental events can modulate the timing 749 

and duration of sensitive periods, maximising the chances of optimal developmental 750 

outcomes. This is well-exemplified by in the surge of T3 elicited by the first wave of 751 

imprinting learning after encountering a salient object, which allows subsequent 752 

secondary imprinting to take place (Yamaguchi et al., 2012).  753 

Domestic chicks are currently an elective model system to investigate connection 754 

between predispositions and learning at the behavioural and neurobiological level. This 755 
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is mostly due to the advantages of precocial animals that respond to behavioural tests 756 

immediately after birth, as well as to the opportunity to investigate the fast learning 757 

mechanism of filial imprinting. These advantages allowed researchers to shed some 758 

light on the neural and physiological bases of the early mechanisms (e.g., Horn, 2004; 759 

Lorenzi et al., 2017; Loveland et al., 2019; Mayer et al., 2016, 2017a, 2017b, 2019), 760 

including those for the opening and closing of sensitive periods (Aoki et al., 2018; 761 

Yamaguchi et al., 2012). While the notion of sensitive period has been traditionally 762 

applied to filial imprinting, mounting evidence shows that specific time windows 763 

regulate the emergence of predispositions too (e.g., (Bolhuis & Horn, 1997; Bolhuis et 764 

al., 1989; Davies, Johnson, & Horn, 1992; Johnson, Davies & Horn, 1989; Miura et al., 765 

2020; Versace, Ragusa & Vallortigara, 2019). 766 

More recently, chicks have been used for the study of how predispositions influence 767 

typical and pathological development, as they are being proposed as a model for the 768 

social impairment of autism spectrum disorders (Sgadò et al., 2018; Lorenzi al., 2019; 769 

see also Di Giorgio et al., 2016; Zachar et al., 2019). This is facilitated by the fact that 770 

predispositions appear to be very similar across taxa. In fact, organisms as different as 771 

human babies, chicks and tortoises display similar social predispositions (e.g., Johnson, 772 

2005; Rosa-Salva et al., 2010; Versace et al., 2020). This further points at the adaptive 773 

value of mechanisms that enable young animals to cope with their environment from 774 

the early stages of life, as already envisioned in the pre-representations conceptualised 775 

by Mehler and Dupoux for human infants (Mehler & Dupoux, 1994). 776 

 777 
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- precocial avian species are optimal models to study social cognition development 
- predisposed and environmental factors interact in the development of domestic chicks 
- social predispositions require activating experiences, occurring in critical periods 
- social predispositions and filial imprinting are reciprocally interacting mechanisms 
- hormonal and neural mechanisms control critical periods for social development 
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