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Abstract 

Theoretical expressions for the macroscopic polarizability and 

quadrupolarizability of a quadrupolar mixture are derived. The theory is 

demonstrated on the example of a liquid mixture of methane and nitrogen 

(non-quadrupolar plus quadrupolar component). It turns out that the 

dielectric permittivity (the “dipole strength” of the liquid) of this mixture 

changes little with the composition, while the quadrupolar length 

(“quadrupolar strength”) almost triples as the fraction of nitrogen approaches 

one. A set of such mixtures can be used as standard quadrupolar solvents to 

study systematically phenomena such as quadrupolar solvatochromism, the 

effect of the solvent on the rate of a reaction etc. 
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1 Introduction 

Molecules that build up continuous media are either polar or non-polar depending on whether 

they possess dipole moment; we accordingly speak of polar or non-polar media. Higher order 

electric moments of the molecules (quadrupole moment, octupole moment etc.) are usually 

ignored when continuous description of a medium is sought – indeed, there are no 

quadrupoles and octupoles in the macroscopic Maxwell equations. However, the quadrupole 

moment and quadrupolarizability of the molecules may significantly affect the properties of 

dense media and have important role in certain physical phenomena. For example, small polar 

molecules orientate at the boundary between two phases according to their quadrupole 

moment. For instance, the water molecules at its surface are orientated with their oxygen atom 

pointing to the gas phase due to the asymmetric field produced by water’s quadrupole 

moment [1, 2]. The quadrupole interactions contribute to the surface tension [3], and the 

structure of the interface as a whole [4]. Quadrupolarization of the medium also contributes to 

the self-energy of a dissolved ion [5, 6, 7], activity coefficients [8] and slightly but 

measurably to the dielectric constant [9, 10, 11]. Quadrupolarizability of the medium causes 

solvatochromism in different non-polar solvents [12, 13], could affect the rate of chemical 

reactions [14-16] and chemical equilibrium [17-19] etc. 

 The characteristic of the polarity of a medium is the macroscopic polarizability 
P  

(related to the dielectric constant  as 0P    ). The polarizability can be called polar 

strength as it is related to the dipole moment p of the molecules as 
P C  p p  (here C is the 

particle density). In order to take into account the quadrupole moment q  of the molecules, we 

need another macroscopic characteristic of the continuous medium – quadrupolar length LQ. 

The macroscopic quadrupolarizability Q  is related to LQ as 23Q QL  , and is approximately 

proportional to the quadrupolar strength, :Q C  q q . Therefore, 
2 : /QL  p pq q  and the 

effect of quadrupoles is more distinct when the medium is non-polar or slightly polar. 

 The dielectric constant measures how the electric field of a point charge is reduced by the 

presence of dipoles. The presence of quadrupoles reduces the electric field intensity of a point 

charge even further [7]. The effect of the quadrupole moment of the molecules on 

macroscopic fields has been analyzed for the first time by Fokker [20] and Frenkel [21]. One 

of the reasons that Maxwell equations for quadrupolar media are not commonly applied to 

practical problems is that the quadrupolar length of the medium LQ is unknown. In our 

previous work [9, 10, 11] we have developed a theoretical model for LQ of liquids, which 

generalizes Onsager’s spherical cavity model for the dielectric constant  [22] to quadrupolar 

media. As a result, the quadrupolar length of more than ten liquids has been calculated as a 

function of the temperature and the liquid density. The value of the theoretically calculated LQ 

of methanol [9, 10] is in agreement with that obtained independently from data for the mean 

activity coefficient of NaBr in CH3OH [8]. 

 In order to experimentally investigate systematically the effect of the solvent quadrupole 

moment on the properties of a solute [12-19], it will be beneficial to formulate a set of 

“standard” solvents or solvent mixtures with permittivity  that is approximately constant but 

of different LQ – an idea that belongs to Dorairaj, Jeon and Kim [23]. The mixtures of benzene 

and cyclohexane is particularly suitable for this aim [23]. Both components are non-polar 

(intrinsic dipole moment, p0 = 0), and have similar molecular polarizability p [24] and size. 

As a result, they have similar dielectric constants: for benzene  = 2.3×0, for cyclohexane 

 = 2.0×0. On the other hand, one can expect that their quadrupolar lengths are different: 

benzene has a very large permanent quadrupole moment and large LQ  1.6-1.8 Å; for 

cyclohexane LQ is much lower, probably in the order of 0.5 Å [9, 10]. 
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 However, to design “standard” mixtures of benzene and cyclohexane of LQ in the range 

of 0.5-2 Å, we need to be able to predict the quadrupolar length of these mixtures. Therefore, 

in the present study we try to extend our theory of quadrupolarizability of a medium to liquid 

mixtures. Benzene and especially cyclohexane are relatively complicated molecules and 

require detailed quantum computation study in addition to theory of LQ of mixtures (cf. 

Ref. [11]). To avoid this, we demonstrate the results for simpler and better studied mixture 

composed of N2 (which has an intrinsic quadrupole moment q0) and CH4 (no q0). 

2 Theoretical methods. Spherical cavity model of 
quadrupolar liquid mixtures 

Probably the most widely used relation between the dielectric constant  and the composition 

of N-component mixture of gases or non-interacting liquids is the Clausius-Mossotti-Debye 

formula [25] 
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where 0 is the dielectric constant of vacuum, p,i is the molecular polarizability of i-th 

molecule, p0,i is its permanent dipole moment, kB – the Boltzmann constant, T – absolute 

temperature, and Ci the particle density of i-th component which is given by 
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Here, yi is mole fraction and vi is partial molecular volume of component i in the mixture (full 

list of symbols, see S1). The Clausius model assumes that a central molecule (a point dipole 

that is polarizable) is placed in the centre of a cavity. The local electric field acting on the 

central molecule is the sum of the external field E0 and the field created by the constant 

homogenous polarization of the medium outside the cavity. 

 Onsager proposed a more realistic model where the polarization of the medium is non-

homogenous and depends on the field created by the central molecule. He obtained for the 

dielectric constant and polarizability 
,OP  of a liquid mixture [22] the formula 
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Here, the index “O” subscript is for “Onsager”, and 
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In Eqs. (3)&(4), Xreact,i is a factor of proportionality (for the i-th species) in Onsager’s reaction 

field 
react, react,i i iXE p , which indicates how the polarizable medium around the central dipole 

reacts to the intrinsic field of the dipole pi. The factor Ycav is the coefficient of proportionality 

in Onsager’s cavity field 
cav cav 0YE E , which is the field in the center of the cavity due to the 

external field E0 only, in the absence of a dipole in the centre. The polarizability of the 

mixture ,OP  is presented as the sum (3) of the effective polarizabilities that come from each 

component multiplied by its concentration. 

 The generalization of the Onsager spherical cavity model for N-component mixture to 

quadrupolarizable media is straightforward: we use the expressions for the reaction field, 

cavity field, reaction field gradient, and cavity field gradient in quadrupolarizable fluid as 
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derived in Ref. [9, 10]. Then, in the computation of the total polarization of the medium in 

external field, and the total quadrupolarization in external field gradient, we sum over all 

components. The results for 
P  and 

Q  are: 
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Here p0,i and q0,i are the intrinsic dipole and quadrupole moment of the i-th molecule in gas 

phase, p,i and q,i are their molecular polarizability and quadrupolarizability. The four 

Onsager factors 
,p iX , 

,E iY , 
,q iX , and 

,E iY
 in Eqs. (5)&(6) are the coefficients in the formulae 

for the reaction field 
react, ,i p i iXE p , the cavity field 

cav, , 0i E iYE E , the reaction field gradient 

  ,react, q i ii
X E q , and the cavity field gradient    ,cav, 0E ii

Y  E E . They are related to 

 and LQ of the mixture and the radii of cavitation Rcav,i as [9, 10]: 
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Here, the f-factors stand for: 
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where xi = LQ/Rcav,i. When the medium is non-quadrupolarizable (LQ = xi = 0), all quadrupole 

f-factors become equal to 1, then Eq. (6) is unnecessary and Eqs. (5)&(7) simplify to the 

respective results of Onsager Eqs. (3)&(4), [22]. 

 In the ideal gas limit (where 
cav,iR → ∞), one has 

, ,,p i q iX X → 0, 
, ,,E i E iY Y

→ 1, and the 

polarizability Eq. (5) and quadrupolarizability Eq. (6) of the mixture simplify to: 
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The last equation generalizes to mixtures the respective result of Jeon and Kim for pure 

liquids [6]. By chance, a Clausius-Mossotti-Debye type of model for the macroscopic 

quadrupolarizability produces the same result (12) for Q ; this is because a homogenously 

quadrupolarized medium outside a cavity creates zero electric field gradient in the centre of 

the cavity [9, 10]. 

 Equations (5) and (6) have too many unknown variables. If the molecular characteristics 

p0,i, p,i, q0,i, and q,i are known, then we have only two equations for N + 2 unknowns ( and 
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LQ of the mixture and N radii of cavitation Rcav,i). Therefore, we need an additional condition 

to determine Rcav,i. One possible relation for Rcav,i was proposed by Onsager [22], who 

assumed that the cavities have spherical shape of radius Rcav,i and volume equal to the partial 

molecular volume vi: 

 3
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4
π

3
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We will refer to the above dependence as the Onsager relation for Rcav,i(vi). Another possible 

relation can be postulated by analogy with the respective formula for single component fluids 

from Ref. [9, 10] (Eq. (57)): 
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where i stands for mi/vi, mi is the molecular mass, and the coefficients k,i and k0,i are specific 

for each pure component (see Table 1 in the next section). Let us denote Eq. (14) as Rcav,i(i). 

We can also assume a third mixing rule based on scaling arguments: 
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Equation (13) is a special case of this proportionality rule. 

3 Results and discussion. Computation of the 
quadrupolar length of the mixture 

Let us demonstrate the theory of quadrupolarizable mixtures by applying it to two-component 

mixture of methane CH4 and nitrogen N2. Both have non-polar (p0 = 0) but polarizable 

(p  0) and quadrupolarizable (q 0) molecules (see Table 1). Due to its symmetry, the 

methane molecule does not possess intrinsic quadrupole moment (q0 = 0) but nitrogen has 

quadrupole moment q0  0. In our previous work [9, 10] we have obtained the quadrupolar 

lengths of the pure components as a function of the liquid density (see S2) and determined the 

coefficients k,i and k0,i in Eq. (14), see Table 1. 

 If the cavity radii are known, formulae (5)&(6) for  and LQ are predictive. We have 

several options to calculate Rcav,i, see Eqs. (13)-(15). To compare these options, we tested 

each of them against experimental data for the dielectric constant of a mixture of methane and 

nitrogen at different temperatures and pressures measured by Pan et al. [26] and Singh and 

Miller [27]. For all T and p (T = 91-115 K, p = 0.1-20 MPa) the static  changes from 

approximately 1.6×0 for methane-rich mixture to 1.3×0 for nitrogen-rich mixture. 

 The application of Eqs. (5)&(6) to the permittivity data requires the computation of the 

density  of the mixture as well; moreover, the empirical formulae (13)-(15) contain also the 

partial molar volumes vi of each component. For their computation we use the Hankinson-

Thomson technique [28, 29] as explained in S3. We double-checked the result for  by 

comparing it with the GERG-2008 equation of state [30] as implemented in Aspen Plus 11. 

The results differ by less than 0.9 %. 

Table 1. Values of the molecular multipole moments and polarizabilities of CH4 and N2, and the coefficients in 

the dependence (14) of Rcav,i on i from Ref. [10]. 

 Dipole moment Polarizability Quadrupole moment Quadrupolarizability k0 k 

 p0 [C m]×1030 p/40 [Å3] (q0:q0)1/2 [C m2]× 1040 q/40 [Å5] [kg/m3] [/] 

CH4 0 2.597 0 1.681 122.84 0.7019 

N2 0 1.739 4.08 1.120 342.20 0.5445 
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 We tested several computational procedures to analyze our model and to compare it with 

the experimental results. The first kind of procedures that we tested predicts the dielectric 

constant and the quadrupolar length of the mixture via Eqs. (5)&(6), using the known values 

of the molecular characteristics from Table 1 and one of the models for the radii of cavitation 

Rcav,i: 

 procedure cp1) we solve Eqs. (5)&(6) for the polarizability and the quadrupolarizability 

of the mixture where we substitute Rcav,i with Rcav,i(i) from Eq. (14).The result is  and LQ. 

 Procedure cp2) we solve Eqs. (5)&(6) with the aid of the Onsager relation for Rcav,i(vi), 

Eq. (13); this gives again  and LQ. 

 For comparison, we also applied procedure cpO), using the classical Onsager cavity 

model, i.e. we solve Eq. (3) together with the Onsager relation (13) for Rcav,i(vi), to receive . 
 We also attempted a different approach, based on the work of Böttcher [31], who used 

data for  of single component fluids to compute the respective cavity radius. To apply this 

procedure to mixtures, we substitute the experimental values for  from Ref. [26, 27] in 

Eqs. (5)&(6). Together with the proportionality rule Eq. (15), this makes three equations for 

three unknown parameters: the quadrupolar length LQ, methane’s cavity radius Rcav,1, and 

nitrogen’s cavity radius Rcav,2 in the mixture. 

 The values of  and LQ calculated by applying the first computational procedure (cp1) are 

presented in Figure 1. As one can see, both  and LQ have lower values at high temperatures 

and low pressures, mainly due to the respective drop in density of the mixture. The resulting 

value of the dielectric constant (Figure 1a) does not differ significantly from the value 

obtained by the Onsager model (cpO) – the percentage deviation between the two computed  
is about 0.2 %. The pure component quadrupolar lengths obtained previously [9, 10] (Figure 

4, S2) agree with the values for LQ obtained here for methane-rich and nitrogen-rich mixture 

Figure 1b. The computed dielectric constant (Figure 1a) is compared to the experimentally 

measured one [26, 27] in Figure 2, where the percentage difference between the two is 

presented for all measured mixture composition. Maximum percentage error is 1.0 % and the 

average error is 0.5 %. This is a reasonable result; the error is due most of all to the error in 

the computed molar volumes estimates which is around 1 % for hydrocarbon + nitrogen 

mixtures, see Table 5 in Ref. [32]. The errors in the molecular quadrupolarizability and 

quadrupole moment are also of the same order of magnitude [11]. 

  
Figure 1. Dielectric constant  (a) and quadrupolar length LQ (b) of liquid methane + nitrogen (CH4 + N2) 

mixture as a function of the nitrogen mole fraction y
N2

. Here  and LQ are obtained using the first computational 

procedure (cp1). The color indicates the temperature. The dispersion of the points is due to them being calculated 

for a range of pressures: at each temperature, pressures varies from 0.1 to 20 MPa. 
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Figure 2. Difference between the calculated (using the first computational procedure (cp1)) and experimentally 

measured value of the dielectric constants from Ref. [26, 27]. 

 As already mentioned, the dielectric constant and the quadrupolar length of the mixture 

depend on temperature and pressure. That is illustrated in Figure 3, where  and LQ are 

calculated (using the additional condition (14) for Rcav,i(i)) for a range of T and p at each 

mixture composition. The quadrupolar length has a more prominent temperature and pressure 

dependence at a higher amount of nitrogen in the mixture. This is due to the fact that nitrogen 

has a non-zero quadrupole moment in contrast to methane (Table 1), resulting in significant 

contribution of the 
4 40,CH 0,CH B: / k Tq q  term to Q  in Eq. (6). The quadrupolar length in ideal 

gas approximation is also depicted in Figure 3b. We obtained it by solving Eqs. (11)&(12) 

together with the empirical relation for Rcav,i(i), Eq. (14). As seen, the ideal gas formulae 

give lower values for LQ compared to those following from the Onsager cavity model. 

  
Figure 3. Dielectric constant (a) and quadrupolar length (b) of a mixture methane + nitrogen as a function of the 

composition for different temperatures and pressures. The results are obtained by solving Eqs. (5) and (6)

together with the additional condition (14) for the cavity radii Rcav,i(i) (cp1), with values of the molecular 

characteristics from Table 1. Methane and nitrogen partial molar volumes are calculated using Hankinson-

Thomson technique [28, 29]. 

 All tested computational procedures described above give close values for the dielectric 

constant  and the quadrupolar length LQ. The difference between the computed values of  
from the three procedures is small compared with the experimental error in Figure 2. 

However, when the cavity radii Rcav,i are computed via the Böttcher technique applied to 

mixtures, the results for the cavity radius itself appear to be illogical (see S4). All three 
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techniques ((cp1), (cp2), and Böttcher’s method) predict approximately the same LQ – the 

maximum percentage difference between the computed quadrupolar lengths is 1.4 % and the 

average absolute difference is 0.6 %. Therefore, the value obtained for LQ does not depend 

significantly on the model used for the cavity radii Rcav,i (i.e. LQ is not very sensitive to Rcav,i), 

so we can conclude that the cavity model (5)&(6) we developed can be used to predict the 

macroscopic quadrupolar length of mixtures with adequate accuracy of the order of 1-2 %. 

4 Conclusions 

The main intention of the present study was to provide a recipe for the formulation of a series 

of “standard” quadrupolar mixtures with a relatively stable (not varying with the composition) 

dielectric constant  and known varying quadrupole length LQ. Such standard solvent are 

necessary [23] to investigate the role of the quadrupolarizability on chemical and physical 

phenomena such as quadrupolar solvatochromism [12, 13], effect of solvent’s quadrupole 

moment on the rate of a reaction [14-16], solubility [23] etc. For the purpose of computing LQ, 

we generalized Onsager’s spherical cavity model for mixtures by including explicitly the 

quadrupoles and the field gradient in the model. The obtained theoretical equations (5)&(6) 

allow the polarizability and quadrupolarizability of a mixture to be computed from the 

molecular properties (p0,i, p,i, q0,i, and q,i, which can be obtained by quantum-mechanical 

computations). 

 We demonstrated the ability of our model to predict  and LQ on the example of the 

relatively simple and well-studied liquid mixture of methane and nitrogen. Furthermore, we 

demonstrate that this mixture has the desired properties – approximately constant dielectric 

permittivity (  1.31.6×0), while the quadrupolar length LQ almost trebles with the change 

in composition (from 0.3 Å to 0.8 Å). 

 A problem of the model, already present in the original theory of Onsager [22], is that the 

cavity radius Rcav,i is an ill-defined parameter. We tried several different recipes for defining 

Rcav,i when computing the quadrupolar length LQ. We have shown that the choice of how Rcav,i 

is calculated has little effect on the computed LQ: three rather different computational 

procedures predict almost identical values for LQ. From the comparison of these procedures, 

we conclude that our model predicts LQ with accuracy of the order of 2 %. 

 In the near future, we intend to apply the theory to the more complex system 

cyclohexane-benzene, which requires supplementary quantum-mechanical computation of the 

molecular parameters of cyclohexane (cf. Ref. [11]). We will also demonstrate how, by the 

addition of a balancing third component, we can produce a set of ternary mixtures with 

exactly the same dielectric permittivity and very different macroscopic quadrupolarizabilities. 

 

Supporting information description. (S1) a list of symbols; (S2) pure component 

quadrupolar length of methane and nitrogen; (S3) Hankinson-Thomson technique for 

calculation of the molar volumes of the components; (S4) additional information about the 

radii of cavitation; (S5) a sample code. 
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Quadrupolarizability of liquid mixtures 
 

Supporting information 

S1. List of symbols 

C  particle density [m–3] 

E0  external electric field 

Ecav  cavity electric field 

Ereact reaction electric field 

E0  external field gradient 

fp, fq, fE, fE, gp, gq quadrupole factors 

kB  Boltzmann constant 

k0, k coefficients in the empirical dependence Eq. (14) between density and cavity radius 

LQ  quadrupolar length of the medium 

m  mass of a molecule 

p  dipole moment of a molecule in external field 

p0  permanent (intrinsic) dipole moment of a molecule 

q  quadrupole moment of a molecule in external field gradient 

q0  permanent (intrinsic) quadrupole moment of a molecule 

Rcav  radius of the cavity 

T  absolute temperature [K] 

vi  partial molecular volume 

Xp  reaction field factor 

Xq  reaction field gradient factor 

x = LQ/Rcav 

yi  mole fraction of i-th component 

YE  cavity field factor 

YE  cavity field gradient factor 

 

p   mean polarizability of a molecule 

P  macroscopic polarizability of the medium 

q   mean quadrupolarizability of a molecule 

Q  macroscopic quadrupolarizability of the medium 

  dielectric permittivity of the medium 

0  dielectric permittivity of the vacuum 

  mass density 

i = mi/vi 
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S2. Pure component quadrupolar lengths 

 

We supplement here just for comparison the pure component quadrupolar lengths of methane 

and nitrogen liquids as calculated in Ref. [9, 10]. 

   
 

Figure 4. Pure component quadrupolar lengths LQ of methane CH4 (a) and nitrogen N2 (b) liquids as function of 

mass density . 

 

S3. Calculation of the molar volumes of the 
components 

 

According to Hankinson-Thomson technique [28, 29] the compressed liquid molar volume of 

a mixture is given by the Tait equation: 

 1 lnsm

sm

B p
V V C

B P

 
  

 
, (16) 

where the volume is in [m3] and the pressure is in [Pa]. The coefficients B and C are 

        
1/3 2/3 4/3

1 1 1 1/ 1 1 1 1 1cm Rm Rm Rm RmB P a T b T d T e T          , (17) 

 
1 1 SRKmC j k  . (18) 

Here the coefficient e1 is given by 

  2

1 1 1 SRK 1 SRKexp m me f g h     (19) 

and all other constants are summarized in Table 2. The saturated volume of the mixture Vsm is 

 
* (0) ( )

SRK1sm m R m RV V V V     , (20) 

where 

        
1/3 2/3 4/3(0)

2 2 2 21 1 1 1 1R Rm Rm Rm RmV a T b T c T d T         , (21) 

  ( ) 2 3

2 2 2 2 / 1.00001R Rm Rm Rm RmV e f T g T h T T        . (22) 
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Table 2. Values of the constants in Eqs. (17)-(22). 

Constants in Eqs. (17), (18) and (19) Constants in Eqs. (21) and (22) 

a1 = –9.070217 a2 = –1.52816 

b1 = 62.45326 b2 = 1.43907 

d1 = –135.1102 c2 = –0.81446 

f1 = 4.79594 d2 = 0.190454 

g1 = 0.250047 e2 = –0.296123 

h1 = 1.14188 f2 = 0.386914 

j1 = 0.0861488 g2 = –0.0427258 

k1 = 0.0344483 h2 = –0.0480645 

 

 The saturated pressure of the mixture Psm is calculated by the relation 

 
sm cm RmP P P . (23) 

Here the critical pressure Pcm is 

   */cm cm cm mP Z RT V  (24) 

and the compressibility factor Zcm is calculated using the following expression 

 
SRK0.291 0.080cm mZ   . (25) 

The reduced pressure of the mixture PRm is given by 

 (0) (1)

SRKlog Rm Rm m RmP P P  , (26) 

where 

 (0) 5.8031817log 0.07608141Rm RmP T   , (27) 

 (1) 4.86601RmP  , (28) 

 635.0 36.0 / 96.736logRm Rm RmT T T     , (29) 

 log 0.03721754RmT   . (30) 

Reduced temperature TRm is 

 /Rm cmT T T . (31) 

 Hankinson, Brobst, and Thomson propose the following mixing rules: 

 

 
1/2

* *

*

i j i ci j cj

i j

cm

m

y y V T V T

T
V




, (32) 

 
* * *2/3 *1/31

3
4

m i i i i i i

i i i

V yV yV yV
   

    
   

   , (33) 

and 

 SRK SRKm i i

i

y  . (34) 

In these equations yi is the component mole fraction, Tci and Vi
* are the pure component 

parameters which are given for methane and nitrogen in Table 3 (for other compounds see 

Table 3-10, p. 57 in Ref. [29]). 

Table 3. Pure component parameters for the Hankinson-Brobst-Thomson model. 

 Tc SRK V* 

 [K] [ / ] [L/mol] 

CH4 190.58 0.0074 0.0994 

N2 126.25 0.0358 0.0901 

 

 Substituting Eqs. (17)-(34) and the parameters from Table 2 and Table 3 in Eq. (16) 

yields liquid mixture volume V as a function of the composition (for given T and p). Then for 

two-component mixture we can calculate the molar volume of the components by 
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2

1 2

1 y

V
v V y

y

 
   

 
 (35) 

and 

 

2

2 1

1 y

V
v V y

y

 
   

 
, (36) 

where y2 = 1 – y1. 

 

 A sample Maple code that computes the mixture volume and the molar volumes of two-

component mixture is given below. The example is written for methane + nitrogen mixture 

for temperature 110 K and pressure 1 MPa with methane mole fraction 0.75. 

 
> restart; 
> # 1. Tait equation of the mixture volume. 

V:=Vsm*(1-C*ln((B+P)/(B+Psm)));          # Eq.(16) 

B:=Pcm*(-1+a1*(1-Trm)^(1/3)+b1*(1-Trm)^(2/3)+d1*(1-Trm)+e1*(1-Trm)^(4/3)): 

# Eq. (17) 

C:=j1+k1*omega:                          # Eq. (18) 

e1:=exp(f1+g1*omega+h1*omega^2):         # Eq. (19) 

 

Vsm:=Vm*Vr0*(1-omega*Vrd):  # Eq. (20), saturated volume of the mixture 

Vr0:=1+a2*(1-Trm)^(1/3)+b2*(1-Trm)^(2/3)+c2*(1-Trm)+d2*(1-Trm)^(4/3): 

# Eq.(21) 

Vrd:=(e2+f2*Trm+g2*Trm^2+h2*Trm^3)/(Trm-1.00001):  # Eq. (22) 

 

Psm:=Prm*Pcm;          # Eq. (23); saturated pressure of the mixture 

Pcm:=(Zcm*R*Tcm)/Vm:                     # Eq. (24) 

Zcm:=0.291-0.08*omega:                   # Eq. (25) 

Prm:=10^(Prm0+omega*Prm1):               # Eq. (26) 

Prm0:=5.8031817*log[10](Trm)+0.07608141*alpha:   # Eq. (27) 

Prm1:=4.86601*beta:                      # Eq. (28) 

alpha:=35.0-36.0/Trm-96.736*log[10](Trm)+Trm^6:  # Eq. (29) 

beta:=log[10](Trm)+0.03721754*alpha:     # Eq. (30) 

 

Trm:=T/Tcm;           # Eq. (31); reduced temperature 
> # 2. Mixing rule.  

Tcm:=(y1^2*V1*Tc1+2*y1*y2*sqrt(V1*V2*Tc1*Tc2)+y2^2*V2*Tc2)/Vm;# Eq. (32) 

 

Vm:=1/4*(y1*V1+y2*V2+3*(y1*V1^(2/3)+y2*V2^(2/3))*(y1*V1^(1/3)+y2*V2^(1/3)));              

# Eq. (33) 

 

omega:=y1*omega1+y2*omega2; # Eq. (34) 
> # 3. Mole fraction. 

y2:=1-y1; 

 
> Digits:=15: 
> # 4. Constants in Eqs. (17)-(22) 

# 4.1 Constants in Eqs. (17), (18) and (19) from Table 2. 

a1:=-9.070217: 

b1:=62.45326: 

d1:=-135.1102: 

f1:=4.79594: 

g1:=0.250047: 

h1:=1.14188: 

j1:=0.0861488: 

k1:=0.0344483: 

# 4.2 Constants in Eqs. (21) and (22) from Table 2. 

a2:=-1.52816: 

b2:=1.43907: 

c2:=-0.81446: 

d2:=0.190454: 

e2:=-0.296123: 

f2:=0.386914: 
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g2:=-0.0427258: 

h2:=-0.0480645: 
> # 5. Pure component parameters for methane+nitrogen mixture from Table 3. 

# 5.1  Pure component parameters for methane (index "1"): 

Tc1:=190.58;      # [K] 

omega1:=0.0074; 

V1:=0.0994*1e-3;  # [m3/mol] 

# 5.2  Pure component parameters for nitrogen (index "2"): 

Tc2:=126.25;      # [K] 

omega2:=0.0358; 

V2:=0.0901*1e-3;  # [m3/mol] 

> # 6. Scientific constants. 

with(ScientificConstants): 

NA:=evalf(Constant('N[A]')); # Avogadro constant  

kB:=evalf(Constant('k'));    # Boltzmann constant [J/K] 

R:=NA*kB;                    # gas constant [J/mol/K] 
> # 7. Temperature, pressure.  

T := 110;                    # temperature [K] 

P := 10^6;                   # pressure    [Pa] 

> # 8. Molar volumes 

v1:=evalf(V+y2*diff(V,y1)):  # Eq. (35); molar volume of the first component 

(methane)  

v2:=evalf(V-y1*diff(V,y1)):  # Eq. (36); molar volume of the second component 

(nitrogen)  
> # 9. Mole fraction. 

y1:=0.75; 
> # 10. Final results. 

'V'=evalf(V*1e6);            # mixture volume [cm3/mol] 

'v1'=evalf(v1*1e6);          # molar volume of the first component (methane) in 

[cm3/mol] 

'v2'=evalf(v2*1e6);          # molar volume of the second component (nitrogen) in 

[cm3/mol] 

S4. Radii of cavitation 

 

Böttcher technique is to substitute experimentally measured dielectric constant into Onsager 

expression for the polarizability of a medium [31]. However, for quadrupolar mixtures we do 

not have in advance experimentally measured quadrupolar length of the mixture. So we use 

additional condition – the proportionality rule, Eq. (15). We substitute the experimental  
from Refs. [26, 27] into the polarizability Eq. (5) and quadrupolarizability Eq. (6) of a mixture 

and then solve these three equations (Eqs. (5), (6), and (15)) for LQ, methane cavity radius 

Rcav,1, and nitrogen cavity radius Rcav,2. The results are presented in Figure 5. As one can see, 

the obtained Rcav,i using Böttcher procedure applied to mixtures are quite illogical. 

 Furthermore, inconsistent results for Rcav,i are also obtained when this approach is applied 

to the classical Onsager model for liquid mixtures. We solve Eq. (3) together with 

proportionality rule (15); this gives again Rcav,1 and Rcav,2. At some mixture composition the 

obtained cavity radii are in the order of 0.7-0.8 Å, which is below the Curie point 1.3-1.4 Å 

(see Eq. (55)&(56) in Ref. [9]). 

 In Figure 5 are presented also Rcav,i according Onsager relation Eq. (13) for Rcav,i(vi) and 

the semi-empirical relation Rcav,i(i) from Eq. (14) (where i = mi/vi). 
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Figure 5. Methane cavity radius Rcav,1 (a) and nitrogen cavity radius Rcav,2 (b) as a function of the respective 

molar volumes v1 and v2. Unfilled circles are obtained using Böttcher technique. Gray curves represent Onsager 

relation Eq. (13) for Rcav,i(vi); green curves are the semi-empirical relations Rcav,i(i) from Eq. (14). 

S5. Computational procedures 

 

A Maple code that computes the quadrupolar length of CH4 + N2 mixture using different 

computational procedures (as described in the main text) is supplemented below. 

 
> restart; 
> # 1. Polarization and quadrupolarization of liquid quadrupolar mixture. 

eqAP:=epsilon-1=YE1/(1-ap1*Xp1)*(ap1*C1/epsilon0+C1/epsilon0/(1-

ap1*Xp1)*p01^2/3/kB/T)+YE2/(1-ap2*Xp2)*(ap2*C2/epsilon0+C2/epsilon0/(1-

ap2*Xp2)*p02^2/3/kB/T);                         # Eq. (5) 

eqAQ:=3*epsilon=YDE1/(1-aq1*Xq1)*(aq1*C1/epsilon0/LQ^2+C1/epsilon0/LQ^2/(1-

aq1*Xq1)*q012/10/kB/T)+YDE2/(1-aq2*Xq2)*(aq2*C2/epsilon0/LQ^2+C2/epsilon0/LQ^2/(1-

aq2*Xq2)*q022/10/kB/T);                         # Eq. (6) 
> # 2. Onsager factors for both components. 

   # Eq. (7) 

Xp1:=1/2/Pi/epsilon0/Rc1^3*(epsilon-fp1)/(2*epsilon+fp1): 

Xp2:=1/2/Pi/epsilon0/Rc2^3*(epsilon-fp2)/(2*epsilon+fp2): 

 

YE1:=3*fE1*epsilon/(2*epsilon+fp1): 

YE2:=3*fE2*epsilon/(2*epsilon+fp2): 

   # Eq. (8) 

Xq1:=9/4/Pi/epsilon0/Rc1^5*(epsilon-fq1)/(3*epsilon+2*fq1): 

Xq2:=9/4/Pi/epsilon0/Rc2^5*(epsilon-fq2)/(3*epsilon+2*fq2): 

 

YDE1:=5*epsilon*fDE1/(3*epsilon+2*fq1): 

YDE2:=5*epsilon*fDE2/(3*epsilon+2*fq2): 
> # quadrupolar f-factors: 

   # Eq. (9) 

fp1:=(2+8*x1)/(2*gp1+9*x1^2+9*x1^3): 

fp2:=(2+8*x2)/(2*gp2+9*x2^2+9*x2^3): 

 

fE1:=(2*gp1)/(2*gp1+9*x1^2+9*x1^3): 

fE2:=(2*gp2)/(2*gp2+9*x2^2+9*x2^3): 

 

gp1:=1+4*x1+9*x1^2+9*x1^3: 

gp2:=1+4*x2+9*x2^2+9*x2^3: 

   # Eq. (10) 

fq1:=(1+6*x1+6*x1^2)/(gq1+12*x1^2+18*x1^3+18*x1^4): 

fq2:=(1+6*x2+6*x2^2)/(gq2+12*x2^2+18*x2^3+18*x2^4): 
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fDE1:=gq1/(gq1+12*x1^2+18*x1^3+18*x1^4): 

fDE2:=gq2/(gq2+12*x2^2+18*x2^3+18*x2^4): 

 

gq1:=1+6*x1+24*x1^2+54*x1^3+54*x1^4: 

gq2:=1+6*x2+24*x2^2+54*x2^3+54*x2^4: 
> # x_i = L_Q/R_cav,i 

x1:=LQ/Rc1: 

x2:=LQ/Rc2: 
> # 3. Onsager polarization of liquid mixture; Eq. (3). 

eqAPO:= subs(LQ=0,eqAP); 
> # 4. Particle density; Eq. (2). 

# Partial molar volumes are in [cm3/mol]. 

C1:= NA/1e-6*y1/(v1*y1+v2*y2); 

C2:= NA/1e-6*y2/(v1*y1+v2*y2); 
> # 5. Onsager relation for R_cav,i(v_i); Eq. (13). 

eqRA1O:=4/3*Pi*Rc1^3/(v1*1e-6/NA)=1; 

eqRA2O:=4/3*Pi*Rc2^3/(v2*1e-6/NA)=1; 

> # 6. Semi-empirical relation for R_cav,i(rho_i); Eq. (14). 

eqRA1:=m1/(4/3*Pi*Rc1^3)-(krho1*rho1+k01); 

eqRA2:=m2/(4/3*Pi*Rc2^3)-(krho2*rho2+k02); 

# where 

rho1:=m1*NA/(v1*1e-6); 

rho2:=m2*NA/(v2*1e-6); 

> # 7. Proportionality rule; Eq. (15). 

eqV:=v1/v2=(Rc1/Rc2)^3; 
> # 8. Scientific constants. 

with(ScientificConstants): 

NA:=evalf(Constant('N[A]')):             # Avogadro constant 

kB:=evalf(Constant('k')):                # Boltzmann constant [J/K] 

epsilon0:=evalf(Constant('epsilon[0]')): # dielectric permittivity of the vacuum 

[F/m] 

mH:=evalf(Element('H,atomicweight')):    # mass of hydrogen atom  [kg] 

mC:=evalf(Element('C,atomicweight')):    # mass of carbon atom    [kg] 

mN:=evalf(Element('N,atomicweight')):    # mass of nitrogen atom  [kg] 

# index "1" subscript is for methane 

# index "2" subscript is for nitrogen 

m1:=mC+4*mH:                             # mass of methane molecule  [kg] 

m2:=2*mN:                                # mass of nitrogen molecule [kg] 

# Convert the units of cavity radii and quadrupolar length in Angstroms. 

Rc1:=RA1*10^(-10): 

Rc2:=RA2*10^(-10): 

LQ:=LA*10^(-10): 

 

# 9. Molecular characteristics and parameters in Eq. (14) from Table 1. 

# Dipole moment [C m] 

p01:=0: 

p02:=0: 

# Molecular polarizability [F m2] 

ap1:=2.597*evalf(4*Pi*epsilon0*1e-30): 

ap2:=1.739*evalf(4*Pi*epsilon0*1e-30): 

# Quadrupole moment [C m2] 

q012:=0: 

q022:=(4.08*1e-40)^2: 

# Molecular quadrupolarizability [F m4] 

aq1:=1.681*evalf(4*Pi*epsilon0*1e-50): 

aq2:=1.120*evalf(4*Pi*epsilon0*1e-50): 

 

# Parameters in Eq. (14) 

k01:=122.84:     # [kg/m3]  

k02:=342.20:     # [kg/m3] 

krho1:=0.7019:   # [/] 

krho2:=0.5445:   # [/] 

 
> # 10. Additional parameters. 

T:=100:         # temperature [K] 

P:=20.01e6:     # pressure [Pa] 

# Partial molar volumes, calculated using Hankinson-Thomson technique; Ref. [28,29] 

v1:=35.30689:   # methane partial molar volume [cm3/mol] 
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v2:=35.50899:   # nitrogen partial molar volume [cm3/mol] 

# Mole fractions 

y1:=0.7462:     # methane mole fraction [/] 

y2:=1-y1:       # nitrogen mole fraction [/] 

# Experimental dielectric constant of the mixture from Ref. [27] 

epsilon__exp:=1.60552;   # [/] 
> # 11. Computational procedures. 

# 11.1 Computational procedure (cp1) (Eqs. (5), (6), and (14)). 

fsolve({subs([RA1=solve(eqRA1,RA1)[1],RA2=solve(eqRA2,RA2)[1]],eqAP), 

        subs([RA1=solve(eqRA1,RA1)[1],RA2=solve(eqRA2,RA2)[1]],eqAQ)}, 

        {LA=0..2,epsilon=1..5}); 
> # 11.2 Computational procedure (cp2) (Eqs. (5), (6), and (13)). 

fsolve({subs([RA1=solve(eqRA1O,RA1)[1],RA2=solve(eqRA2O,RA2)[1]],eqAP), 

        subs([RA1=solve(eqRA1O,RA1)[1],RA2=solve(eqRA2O,RA2)[1]],eqAQ)}, 

        {LA=0..2,epsilon=1..5}); 
> # 11.3 Computational procedure (cpO) (Eqs. (3) and (13)). 

fsolve(subs([RA1=solve(eqRA1O,RA1)[1],RA2=solve(eqRA2O,RA2)[1]],eqAPO), 

       epsilon=1..5); 
> # 12. Minimal cavity radii according Curie point (see Eq.(55)&(56) in Ref. [9]). 

R__C1:=max(evalf((ap1/(4*Pi*epsilon0))^(1/3))*1e10, 

evalf((3*aq1/(4*Pi*epsilon0))^(1/5))*1e10); 

R__C2:=max(evalf((ap2/(4*Pi*epsilon0))^(1/3))*1e10, 

evalf((3*aq2/(4*Pi*epsilon0))^(1/5))*1e10); 
> # 13. Böttcher technique applied to mixtures. 

fsolve({subs(epsilon=epsilon__exp,eqAP), 

        subs(epsilon=epsilon__exp,eqAQ), 

        eqV}, 

        {RA1=R__C1...4,RA2=R__C2..4,LA=0..2}); 

 


