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Abstract

The α-MEU model and the smooth ambiguity model are two popu-
lar models in decision making under ambiguity. However, the axiomatic
foundations of these two models are not completely understood. We pro-
vide axiomatic foundations of these models in a symmetric setting with
a product state space S∞. This setting allows marginals over S to be
linked behaviorally with (limiting frequency) events. Bets on such events
are shown to reveal the i.i.d. measures that are relevant for the decision
maker’s preferences and appear in the representations. By characterizing
both models within a common framework, it becomes possible to better
compare and relate them.
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1 Introduction
In decision making under ambiguity, an important concern is modeling and dis-
criminating between “perception” of ambiguity and ambiguity attitudes. Two
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popular models that have been described as allowing for a distinction between
the two are the α-MEU model and the smooth ambiguity model. The α-MEU
model ranks acts f according to the criterion

V (f) = αmin
p∈C

∫
u (f) dp+ (1− α) max

p∈C

∫
u (f) dp, (1)

while the smooth ambiguity model ranks acts f according to

U(f) =
∫
φ

(∫
u(f)dp

)
µ(p). (2)

In the former, ambiguity perception is captured by the set C and attitudes are de-
scribed by the parameter α. For the latter, the second-order measure µ captures
ambiguity perception while the curvature of φ describes the ambiguity attitude.
Part of their popularity is explained by the ability of separating between the two.
However, the axiomatic foundations of these two models are not yet completely
well-understood. Importantly, the fact that there is no axiomatization of the two
models in a common framework has inhibited comparison of the two.1 Existing
axiomatizations of the α-MEU model (e.g., Ghirardato, Maccheroni and Mari-
nacci [27], Kopylov [44], Gul and Pesendorfer [32]), as the discussion in Section
1.1 describes, characterize different special cases of the model. The axiomatiza-
tion of the smooth ambiguity model in Klibanoff, Marinacci and Mukerji [38] has
been criticized for using second order acts (e.g., see the comment by Epstein [24]
and the reply by Klibanoff, Marinacci and Mukerji [41]). Seo’s [48] related ax-
iomatization did not use second order acts, but his result is not able to uniquely
separate the function φ from the prior µ.

In this paper, we axiomatize these two models in a common framework under
a symmetry assumption on preferences. In particular, when the state space Ω
has the product structure Ω = S∞, we axiomatize a version of the α-MEU model
that takes the form

V (f) ≡ α min
p∈{`∞:`∈D}

∫
u (f) dp+ (1− α) max

p∈{`∞:`∈D}

∫
u (f) dp, (3)

where D is a finite set of probability measures over S, α ∈ [0, 1], and u is a
non-constant, affine utility function. In words, in this special case of the α-
MEU model the set C only contains i.i.d. probability measures having marginal
distributions contained in the set D. The smooth ambiguity model we axiomatize
under symmetry takes the form

U(f) =
∫
φ

(∫
u(f)d`∞

)
µ(`), (4)

where µ is a probability measure over ∆(S), u is a non-constant, affine utility
function and φ is continuous and strictly increasing. Furthermore, if the support
of µ is not finite then φ must satisfy a Lipschitz-type condition.

1Epstein [24], discussing critically the smooth ambiguity model, remarked that “However,
because of its problematic foundations, the behavioral content of the model and how it differs
from multiple priors, for example, are not clear.”
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The symmetric setting we consider is natural for many empirically grounded
applications of ambiguity. Indeed, many economic models impose constraints on
the agents’ preferences so that they reflect some type of calibration of perceived
ambiguity to external data (see e.g., Hansen and Sargent [33] for motivation and
discussion). For instance, in an asset pricing model, the modeler may want to
impose the restriction that an investor seeks to make her portfolio robust against
only a limited set of stochastic processes that pass certain tests of inference on
past data. Typically, such tests rest on the assumption that past and current
data generating processes are (at least, conditionally) exchangeable, thus invoking
symmetry.

To illustrate the implications of our results, we consider three thought exper-
iments:

Consider an individual with preference � who can bet on two sources of
uncertainty. The first is an urn with 100 balls divided in an unknown way between
black balls and white balls. The other source of uncertainty is the return on
TESLA stock. More precisely, the individual can bet on the results of repeated
draws from the urn and repeated daily returns of the stock. The state space is
S = ({B,W}×V )∞, where V is an interval containing the possible daily returns.
The individual has to choose among the following bets:

(i) bets h and l, where h pays $100 if 50% to 60% of the daily returns are
between 0% and 1% and $0 otherwise, while l pays $90 if 20% to 30% of
the daily returns are between 0% and 1% and $0 otherwise;

(ii) bets H and L. Here, H pays $100 if 50% to 60% of the daily returns are
between 0% and 1% and, if neither 50% to 60% nor 20% to 30% of the
daily returns are between 0% and 1%, pays $90 if 30% to 40% of the balls
drawn from the urn are black, and $0 otherwise. L pays $90 if 20% to 30%
of the daily returns are between 0% and 1% and, if neither 50% to 60% nor
20% to 30% of the daily returns are between 0% and 1%, pays $90 if 30%
to 40% of the balls drawn from the urn are black, and $0 otherwise.

Note that in such a setting the assumption of symmetry is realistic, since the
change in a stock price is typically modeled as i.i.d.2

Let Eh and El denote the events that 50% to 60% and 20% to 30% of the daily
returns are between 0% and 1%, respectively, and let B be the event that 30% to
40% of the balls drawn from the urn are black. If an individual follows the smooth
ambiguity model, h � l implies that H � L. This is a consequence of the smooth
ambiguity model as in (4) necessarily satisfying the sure-thing principle when
restricted to bets over long-run frequencies. To see that this requirement forces
H � L when h � l, notice that H and L are constructed from h and l by changing
the common payoff on the event B∩(El∪Eh)c from $0 to $90. On the other hand,
if an individual uses the α-MEU model as in (3), then the pattern of preference
h � l and L � H is allowed. To illustrate, let u be the identity, α = 3

4 , and the set
of measures, C, be {`∞1 , `∞2 } for some `1, `2 ∈ ∆({{B,W} × V }) with `∞1 (Eh) =

2More precisely, letting pt denote the price of the TESLA stock at time t, it is usually
assumed that the process pt follows a geometric Brownian motion. This implies that the
process ∆t = log(pt)− log(pt−1) is i.i.d.
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1
2 = `∞2 (El), `∞1 (B) = 1 and `∞2 (Eh) = `∞2 (B) = 0 = `∞1 (El). These α-MEU
preferences imply that h � l and L � H, a violation of the sure-thing principle
when restricted to bets over long-run frequencies. To see that h � l, observe that
maxp∈C p(Eh) = maxp∈C p(El) = 1

2 and minp∈C p(Eh) = minp∈C p(El) = 0, while
1
2100 = 50 > 45 = 1

290. However, L � H due to the fact that L, which pays $90
if El or B∩(El∪Eh)c occurs, provides a hedge against ambiguity, while H, which
pays $100 if Eh or $90 if B∩ (El∪Eh)c occurs, does not. Indeed, according to all
measures in C, the event (El∪(B∩(El∪Eh)c) occurs with probability 1

2 , meaning
that L is an unambiguous bet evaluated like a fifty-fifty lottery between $90 and
$0. In contrast, since according to `∞1 both Eh and B ∩ (El ∪ Eh)c occur with
probability 1

2 , while according to `∞2 neither occurs, whether H will pay more
than $0 is ambiguous. Since α∗0+(1−α)(1

2100+ 1
290) = 23.75 < 45 = 1

290+ 1
20,

the individual prefers to accept the lower payoff of $90 on El instead of $100 on
Eh in exchange for this decrease in ambiguity.

The previous example illustrated a way in which the smooth ambiguity model
is more restrictive than the α-MEU model when applied to bets depending on
long-run frequencies. Our next example illustrates the reverse – a way in which
the α-MEU model is more restrictive than the smooth ambiguity model, even
when applied to bets depending on long-run frequencies. Suppose that the indi-
vidual has to choose among the following bets:

(i) bet h, where h pays $100 if 50% to 60% of the daily returns are between
0% and 1% and $0 otherwise;

(ii) bet m, where m pays $100 if either 20% to 30% or 50% to 60% of the daily
returns are between 0% and 1% and $0 otherwise.

If an individual follows the α-MEU model as in (3), then h � $0 and $100 � m
together imply m ∼ h. That i.i.d. α-MEU forces this indifference can be seen
using (3) as follows. Observe that h � $0 and (3) imply that the set D must
contain at least one measure that assigns a probability between 0.5 and 0.6 to
the event that daily returns are between 0% and 1%. Similarly, $100 � m and
(3) imply that there is a measure in the set D that assigns a probability not
in [0.2, 0.3] ∪ [0.5, 0.6] to the event that daily returns are between 0% and 1%.
Therefore, the value of (3) must be the same for both h and m – as ` varies over
D,

∫
fd`∞ can be as good as $100 and as bad as $0 for both f = h and f = m.

This implied indifference is a special case of an axiom called Relevant Range that
we introduce in this paper as part of the characterization of (3). Relevant Range
requires indifference between any two acts generating the same range of

∫
fd`∞ as

` varies over the set of what Klibanoff, Mukerji and Seo [42] characterize through
preferences as relevant measures. To complete the connection with the example,
note that in the context of (3), D is exactly the set of such relevant measures
(Klibanoff, Mukerji and Seo [42, Theorem 4.1]). On the other hand, the smooth
ambiguity model as in (4) permits h � $0 and $100 � m and m � h. For an
example, let µ assign positive weight to each of `1, `2, `3 with `∞1 (Eh) = 1 =
`∞2 (El) and `∞3 (Eh ∪ El) = 0 and φ be any continuous, increasing function.

Finally, for general acts that do not necessarily involve long-run frequency
events, the α-MEU model excludes other types of behavior that the smooth
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ambiguity model does not. To illustrate, suppose that the individual is told that
the urn contains equal numbers of black and white balls. Consider the following
bets:

(i) bets a and b, where a pays $100 if the first draw from the urn is black and
$0 otherwise, while b pays $100 if the first daily return is between 0% and
1% and $0 otherwise.

(ii) bets A and B, where A pays $100,000 with probability 1
2 and with the

remaining probability pays $100 if the first draw from the urn is black and
$0 otherwise. Similarly, B pays $100,000 with probability 1

2 and with the
remaining probability pays $100 if the first daily return is between 0% and
1% and $0 otherwise.

If a � b then the α-MEU model implies A � B, whereas the smooth ambiguity
model allows for the choice reversal B � A. Note that this reversal is consistent
with diminished ambiguity aversion at the higher utility levels under A and B
no longer being sufficient to support the unambiguous bet A over the ambiguous
bet B. The key property of the α-MEU model that implies constant (both ab-
solute and relative) ambiguity aversion, thus ruling out this behavior reflecting
ambiguity aversion changing with utility levels, is the Certainty Independence
axiom of Gilboa and Schmeidler [30] (see Section 4.1 for a statement of this ax-
iom).3 The smooth ambiguity model need not satisfy constant ambiguity aversion
(either absolute or relative) and generally violates Certainty Independence (see
e.g., Klibanoff, Marinacci and Mukerji [38] for discussion in this regard). Bail-
lon and Placido [7] and Berger and Bosetti [8] provide experimental evidence on
non-constant ambiguity aversion.

An advantage of characterizing these two models in the same framework is
that it becomes possible to compare them on their whole domain of preferences.
As we will see, the difference between the symmetric versions of the two models
is that the α-MEU model satisfies Certainty Independence and Relevant Range,
while the smooth ambiguity model need not, and when it is not expected utility,
cannot. Conversely, the smooth ambiguity model must satisfy axioms of subjec-
tive expected utility when restricted to acts whose payoffs depend only on events
based on limiting frequencies, while the α-MEU model need not, and cannot un-
less it is expected utility for all acts. While Certainty Independence and axioms
equivalent to subjective expected utility are familiar from the existing literature,
the Relevant Range axiom is novel to this paper.4

3Note that constant ambiguity aversion here is not referring to the fact that α is constant
(i.e., the same across all acts) in an α-MEU representation. In fact, Certainty Independence
(and thus constant ambiguity aversion) holds for a much broader class of preferences that in-
cludes α-MEU. Ghirardato, Maccheroni and Marinacci [27] call this class the Invariant Bisep-
arable preferences and show they correspond to a type of α-MEU functional where α varies
across acts (see also Amarante [4]). See Grant and Polak [31] for a weakening of Certainty In-
dependence that they show corresponds to constant absolute (as opposed to constant relative)
ambiguity aversion.

4See the comparison with axioms from Ghirardato, Maccheroni and Marinacci [27] and from
Kopylov [44] in Section 4.1.
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1.1 Related Literature
The most closely related literature consists of those papers that either axiomatize
versions of the α-MEU or smooth ambiguity models or axiomatize various pref-
erences under symmetry conditions. Consider, first, papers on the foundations of
α-MEU. Ghirardato, Maccheroni and Marinacci [27, Proposition 19] characterize
α-MEU under the restriction that the set C appearing in the representation (1)
is also the unique set of probability measures appearing in the Bewley [9] style
representation of%∗, the largest incomplete sub-relation satisfying the Anscombe-
Aumann Independence axiom. However, as shown by Eichberger, Grant, Kelsey
and Koshevoy [23], when the state space is finite their axioms hold if and only
if the preferences are either maxmin or maxmax (i.e., α = 0 or 1). Klibanoff,
Mukerji and Seo [43, Theorem 4.5] extends this conclusion to the context of the
symmetric α-MEU model, where the state space is S∞ and even S need not be fi-
nite. In contrast, our approach allows for the full range of α ∈ [0, 1], albeit only in
symmetric environments. Kopylov [44, Theorem 2.4] characterizes α-MEU under
the restriction that the set C appearing in the representation (1) is also the set of
probability measures,M0, that, when used in an expected utility representation,
generate preferences agreeing with the restriction of % to the set of subjectively
risky acts. Subjectively risky acts are those acts h such that, for all acts f, g, and
all λ ∈ (0, 1),

f % g ⇐⇒ λf + (1− λ)h % λg + (1− λ)h

as is required by the Anscombe-Aumann Independence axiom. This restriction
has bite, in general. However, we show (see Section 6.4 in the Appendix) that all
the α-MEU preferences we axiomatize also satisfy Kopylov’s [44] axioms, implying
that under preference symmetry the requirement that the set C equal M0 is
unrestrictive. Gul and Pesendorfer [32] axiomatize a different special case of α-
MEU. In their model, there exists a σ-algebra E and a prior µ defined on E such
that preferences are represented by

U(f) = α min
π∈Πµ

∫
u(f(s))dπ(s) + (1− α) max

π∈Πµ

∫
u(f(s))dπ(s),

where Πµ is the set of all probability measures that agree with µ on E . Their
interpretation is that the individual is completely ignorant about all events that
are not in E and has no ambiguity about events in E . Such sets Πµ differ from the
sets of measures appearing in our i.i.d. α-MEU model. Chateauneuf, Eichberger
and Grant [12] axiomatize a special case of Choquet expected utility that evalu-
ates each act according to a convex combination of the least favorable prize, the
most favorable prize and expected utility with respect to a fixed probability. Hill
[35] explores a generalization of the α-MEU model in which the individual con-
siders a convex combination of general uncertainty averse and uncertainty loving
preferences. Arrow and Hurwicz [5] and Cohen and Jaffray [16] study decision
making under complete ignorance. They axiomatize criteria ranking acts based
only on the worst and best payoff.

Next, we turn to the foundations of the smooth ambiguity model. Our smooth
ambiguity model characterizations (Theorems 3 and 4) are entirely in terms of
preferences over acts, but impose preference symmetry. An advantage relative
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to that in Klibanoff, Marinacci and Mukerji [38] is that their second order acts
are not required. Two advantages relative to Seo [48] are that failure to reduce
objective compound lotteries is no longer implied by non-neutral attitudes to
ambiguity, and that, given the vN-M utility function u, the function φ that
models attitudes toward ambiguity is uniquely identified. Minardi and Savochkin
[46] characterize the special case of the smooth ambiguity model where φ has a
negative exponential form. Al-Najjar and de Castro [2] and Cerreia-Vioglio et
al. [10] use versions of symmetry, as we do, to characterize symmetric versions of
the smooth ambiguity model. Compared to Al-Najjar and de Castro [2, Theorem
7], our results are more detailed and more clearly link the representation to a
set of preference axioms.5 The primary contrast with Cerreia-Vioglio et al. [10,
Theorem 6] is that they take the set of probabilities in the support of µ as a
primitive, while we derive them from preferences. Recently, Denti and Pomatto
[18] characterize a version of the smooth ambiguity model in which the probability
measures in the support of µ are identifiable. A set P of probability measures is
identifiable if there is a function k mapping states in Ω to probability measures
over Ω such that k(ω)({ω′ ∈ Ω : k(ω′) = k(ω)}) = 1 for all ω ∈ Ω such that
k(ω) ∈ P . Observe that any subset of i.i.d. measures is identifiable using the
function k that associates each state with the i.i.d. measure corresponding to the
limiting frequency of that state. Thus the smooth ambiguity model characterized
in this paper is a specialization of that in Denti and Pomatto [18]. However, they
neither characterize this specialization nor address α-MEU.

Finally, our paper builds on the literature using preference symmetry condi-
tions to explore ambiguity. In particular, Klibanoff, Mukerji and Seo [42] forms
the starting point of our analysis. In turn, it is part of a broader literature gen-
eralizing the approach to symmetry pioneered by de Finetti [21] and Hewitt and
Savage [34]. Some of the most relevant references here include Epstein and Seo
[25, 26], the aforementioned Al-Najjar and de Castro [2] and Cerreia-Vioglio et.
al. [10], and Klibanoff, Mukerji and Seo [43].

1.2 Organization of the Paper
Section 2 introduces notation and the main choice-theoretic objects used in the
paper. In section 3 we recall a useful result from Klibanoff, Mukerji and Seo [42]
that constitutes the starting point of our analysis. Section 4 contains our main
results. Section 5 has some discussion and concludes. Section 6 is an appendix
containing all the proofs and some additional results.

5First, they do not specify which expected utility axioms the preference has to satisfy for
acts measurable with respect to long-run frequency events. As shown in our Theorems 3 and 4,
different sets of expected utility axioms not only have different implications for restrictions on
the prior µ but also for the function φ. Second, they assume that the support of µ contains only
countably additive measures. They do not specify the behavioral content of this assumption. We
show that the corresponding behavioral property is monotone continuity of %∗. Finally, since
µ itself is countably additive in their representation, one can show that their continuity axiom
on preferences implies that φ must be continuous in their representation, but this restriction is
not reflected in their analysis or result.
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2 Setting and Notation
We borrow our notation from Klibanoff, Mukerji and Seo [42]. Consider a com-
pact metric space S. The state space is given by Ω = S∞, with generic element
ω = (ω1, ω2, ...). Observe that, by well-known results, Ω is also a compact metric
space. Denote by Σi the Borel σ-algebra on the i-th copy of S, and by Σ the
product σ-algebra on S∞. Let X be the set of lotteries (i.e., finite support prob-
ability measures on an outcome space Z). An act is a simple Anscombe-Aumann
act, a measurable f : S∞ → X having finite range (i.e., f (S∞) is finite). The set
of acts is denoted by F , and % is a binary relation on F×F (∼ and � denote the
symmetric and asymmetric part, respectively). As usual, we identify a constant
act with the element of X it yields.

Denote with Π the set of all finite permutations on {1, 2, ...} i.e., all one-to-one
and onto functions π : {1, 2, ...} → {1, 2, ...} such that π(i) = i for all but finitely
many i ∈ {1, 2, ...}. For π ∈ Π, let πω =

(
ωπ(1), ωπ(2), ...

)
and (πf) (ω) = f (πω).

For any topological space Y , let ∆ (Y ) denote the set of (countably additive)
Borel probability measures on Y . ba (Y ) is the set of finitely additive bounded
real-valued set functions on Y , and ba1

+ (Y ) the set of non-negative probability
charges in ba (Y ). A measure p ∈ ∆ (S∞) is called symmetric if the order doesn’t
matter, i.e., p (A) = p (πA) for all π ∈ Π, where πA = {πω : ω ∈ A}. Denote
by `∞ the i.i.d. measure with the marginal ` ∈ ∆ (S). Define

∫
S∞ fdp ∈ X by

(
∫
S∞ fdp) (B) = (

∫
S∞ f (ω) (B) dp (ω)). (Since f is simple, this is well-defined).

We endow ∆ (S), ∆ (∆ (S)) and ∆ (S∞) with the relative weak* topology.6 For
a set D ⊆ ∆(S), D denotes the closure of D in the relative weak* topology.

Fix x∗, x∗ ∈ X such that x∗ � x∗. For any event A ∈ Σ, 1A denotes the act
giving x∗ on A and x∗ otherwise. Informally, this is a bet on A. A finite cylinder
event A ∈ Σ is any event of the form {ω : ωi ∈ Ai for i = 1, ..., n} for Ai ∈ Σi and
some finite n. More generally, given f, g ∈ F and A ∈ Σ, fAg denotes the act
that yields f(s) for s ∈ A and g(s) for s /∈ A. For a measurable partition (Ai)mi
of S and lotteries (xi)mi=1, we denote with f = ∑m

i=1 xi1Ai the act that yields xi
for s ∈ Ai. An event A ∈ Σ is null if fAg ∼ g for all acts f, g ∈ F .

The support of a probability measure m ∈ ∆ (∆ (S)), denoted suppm, is a
relative weak* closed set such that m ((suppm)c) = 0 and if G ∩ suppm 6= ∅
for relative weak* open G, m (G ∩ suppm) > 0. Let Ψn (ω) ∈ ∆ (S) denote
the empirical frequency operator defined by Ψn (ω) (A) = 1

n

∑n
t=1 I (ωt ∈ A) for

each event A in S. Define the limiting frequency operator Ψ by Ψ (ω) (A) =
limn Ψn (ω) (A) if the limit exists and 0 otherwise. Also, to map given limiting
frequencies or sets of limiting frequencies to events in S∞, we consider the natural
inverses Ψ−1 (`) = {ω : Ψ (ω) = `} and Ψ−1 (L) = {ω : Ψ (ω) ∈ L} for ` ∈ ∆ (S)
and L ⊆ ∆ (S).

Finally, we denote by Σ∆ the σ-algebra generated by the open (in the weak*
topology) sets in ∆(S). Let ΣΨ denote the σ-algebra generated by the collection
of sets {Ψ−1(L) : L ∈ Σ∆}. Denote by FΨ the set of simple acts measurable with

6To see what this is, consider, for example, ∆ (S). The relative weak* topology on ∆ (S)
is the collection of sets V ∩ ∆ (S) for weak* open V ⊆ ba (S), where the weak* topology on
ba(S) is the weakest topology for which all functions ` 7−→

∫
ψd` are continuous for all bounded

measurable ψ on S.

8



respect to ΣΨ.

3 Symmetry and Relevance
To illustrate our approach, first we recall axioms and a key definition from
Klibanoff, Mukerji and Seo [42]. Consider the following axioms on % which will
be common to both models. The first five are standard axioms in an Anscombe-
Aumann framework.

Axiom 1 % is complete and transitive.

Axiom 2 (Monotonicity) If f(ω) % g(ω) for all ω ∈ S∞, f % g.

Axiom 3 (Risk Independence) For all x, x′, x′′ ∈ X and α ∈ (0, 1), x % x′ if and
only if αx+ (1− α)x′′ % αx′ + (1− α)x′′.

Axiom 4 (Non-triviality) There exist x, y ∈ X such that x � y.

Axiom 5 (Mixture Continuity) For all f, g, h ∈ F , the sets {λ ∈ [0, 1] : λf +
(1− λ)g % h} and {λ ∈ [0, 1] : h % λf + (1− λ)g} are closed in [0, 1].

The last two shared axioms are written in terms of the binary relation %∗
derived from % as follows (see Ghirardato, Maccheroni and Marinacci [27]): for
every f, g ∈ F ,

f %∗ g if αf + (1− α)h % αg + (1− α)h for all α ∈ [0, 1] and h ∈ F .

The next axiom says that the coordinates of S∞ are viewed as interchangeable.
Event Symmetry is the main condition that enables our representation results.
Thanks to this assumption, acts in FΨ will be able to play the role that second-
order acts did in Klibanoff, Marinacci and Mukerji [38, Theorems 1 and 4]’s
axiomatization of the smooth ambiguity model, and the set D ⊆ ∆(S) in the
i.i.d. α-MEU representation is able to be uniquely identified without restrictions
on α (see Section 4).

Axiom 6 (Event Symmetry) For all finite cylinder events A ∈ Σ and finite
permutations π ∈ Π, 1A ∼∗ 1πA.

A natural notion of symmetry, as expressed through preferences, is that the
decision maker is always indifferent between betting on an event and betting
on its permutation. The use of the term “always” here means at least that
this preference should hold no matter what other act the individual faces in
combination with the bet. In an Anscombe-Aumann framework such as ours,
this may be expressed by the statement α1A + (1−α)h∼α1πA + (1−α)h for all
α∈[0, 1] and all acts h, which is precisely 1A ∼∗ 1πA . For preferences satisfying
the usual independence axiom, 1A ∼∗ 1πA is equivalent to 1A ∼ 1πA. As a main
goal of our analysis is to accommodate preferences that violate independence, we
cannot substitute the former with the latter.

The remaining shared axiom is a continuity requirement on %∗:
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Axiom 7 (Monotone Continuity of%∗) For all x, x′, x′′ ∈ X, if x′ � x′′ and events
(An)∞n=1 are such that Ai−1 ⊇ Ai for every i and ∩∞n=1An = ∅, then x′ %∗ xAnx′′
for some n.

In addition to these axioms, we also borrow from Klibanoff, Mukerji and Seo
[42] a key definition. Define a relevant measure as a marginal distribution, `, on S
that matters for preferences in the following sense: For each open set of marginal
distributions, L, containing `, we can find two acts, f and g, that yield the same
distribution over outcomes as each other under all i.i.d. distributions generated
by marginals not in L and yet the individual strictly prefers f over g.

LetO` denote the set of open subsets of ∆(S) that contains `. The use of these
open neighborhoods in the definition is required only because ∆ (S) is infinite.
The formal definition is:

Definition 1 A measure ` ∈ ∆(S) is relevant according to preferences % if for
any L ∈ O`, there are f, g ∈ F such that f � g and

∫
fdˆ̀∞ =

∫
gdˆ̀∞ for all

ˆ̀∈ ∆(S)\L. The set of relevant measures for preferences % is denoted by R(%).

Given % satisfying Axioms 1-7, R(%) is unique. R(%) is endogenous in that
it is defined from, and hence varies with, the primitive, %.

To better understand the relationship between preferences and the corre-
sponding R(%), consider the following result showing that a marginal ` ∈ ∆(S)
is a relevant measure if and only if, for each open neighborhood containing it,
the corresponding limiting frequency event is non-null according to preferences.
In reading it, recall that, for A ⊆ ∆ (S), Ψ−1 (A) is the event that limiting
frequencies over S lie in A.

Theorem 1 (Klibanoff, Mukerji and Seo [42, Theorem 3.2])Assume % satisfies
Axioms 1-7. For ` ∈ ∆ (S), ` /∈ R(%) if and only if, for some L ∈ O`, Ψ−1 (L)
is a null event according to %. Moreover, R(%) is closed.

When R(%) is finite, the same result holds without the use of neighborhoods,
i.e., Ψ−1 (`) is null according to % if and only if ` /∈ R(%). Theorem 1 justifies
thinking of R(%) as the unique set of marginals subjectively viewed as possi-
ble, since the individual behaves as if only those outside of R(%) are impossible.
Note the role of Axioms 1-7 (especially the Event Symmetry axiom): they allow
marginals over S to be identified behaviorally with (limiting frequency) events in
S∞. Given that perceived ambiguity is subjective uncertainty about probability
assignments, under Axioms 1-7 the relevant measures are the probability assign-
ments revealed to be in the support of that uncertainty. In other words, relevant
measures are those corresponding to non-null limiting frequency events.

In the next section we will provide axioms that, together with Axioms 1-7,
are equivalent to the α-MEU and smooth ambiguity representations as in (3) and
(4).
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4 Using Event Symmetry and Relevance to pro-
vide foundations for the two decision models

In this section, we characterize the α-MEU and smooth ambiguity models under
our symmetry and continuity assumptions.

4.1 α-MEU Model
We will show that under Axioms 1-7, α-MEU is what results from strengthen-
ing Risk Independence to Gilboa and Schmeidler [30]’s Certainty Independence
(stated below) and adding an axiom making use of the following set:

C∗(f) ≡ {x ∈ X : x %
∫
fd`∞ for some ` ∈ R(%)

and
∫
fd`∞ % x for some ` ∈ R(%)}.

The set C∗(f) consists of the lotteries that (in terms of preference) lie in the
range of lotteries induced by f under the i.i.d. measures generated from relevant
measures (i.e., between the best and worst lotteries formed by using `∞ for ` ∈
R(%) to weight the outcomes of f). The new axiom needed to characterize α-
MEU says that if two acts have the same sets C∗ then the individual must be
indifferent between them.

Axiom 8 (Relevant Range) For all f, g ∈ F , C∗(f) = C∗(g) implies f ∼ g.

We also need the following strengthening of Risk Independence, introduced
by Gilboa and Schmeidler [30],

Axiom 9 (Certainty Independence) For all f, g ∈ F , x ∈ X and α ∈ (0, 1),
f % g if and only if αf + (1− α)x % αg + (1− α)x.

Notice that Certainty Independence remains weaker than the following stan-
dard Independence axiom (which would lead to SEU):

Axiom 10 (Independence) For all f, g, h ∈ F , and α ∈ (0, 1), f % g if and only
if αf + (1− α)h % αg + (1− α)h.

The next result shows that Axioms 1-7, when strengthened by adding Relevant
Range and replacing Risk Independence with Certainty Independence, character-
izes the α-MEU model in (3).

Theorem 2 % satisfies Relevant Range and Axioms 1-7 with Risk Independence
replaced by Certainty Independence if and only if R(%) is finite and there is a
non-constant vNM utility function u and an α ∈ [0, 1] such that

V (f) ≡ α min
p∈{`∞:`∈R(%)}

∫
u (f) dp+ (1− α) max

p∈{`∞:`∈R(%)}

∫
u (f) dp, (5)
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represents %.
Furthermore, for any non-constant vNM utility function û, α̂ ∈ [0, 1] and finite
set D ⊆ ∆(S), the preferences %̂ represented by

V̂ (f) ≡ α̂ min
p∈{`∞:`∈D}

∫
û (f) dp+ (1− α̂) max

p∈{`∞:`∈D}

∫
û (f) dp, (6)

satisfy Relevant Range and Axioms 1-7 with Risk Independence replaced by Cer-
tainty Independence. Moreover, R(%̂) = D. Finally, two functionals of the form
in (6) represent the same preferences if and only if they have the same set D,
the utility functions are related by a positive affine transformation, and, if D is
non-singleton, they have the same α̂.

This characterizes the α-MEU model, albeit limited to symmetric environ-
ments and finitely generated sets of countably additive measures.7 Our unique-
ness results ensure that the set of measures and α are meaningful. The repre-
sentation in (5) shows how the set of measures in i.i.d. α-MEU is related to the
endogenous set of relevant measures R(%). This way of writing the representa-
tion is analogous to the α-MEU representations in Ghirardato, Maccheroni and
Marinacci [27, Proposition 19] and Kopylov [44, Theorem 2.4] in that they also
write the set of measures in terms of an endogenous construct – the Bewley set
C in the case of Ghirardato, Maccheroni and Marinacci [27] and the set M0 in
the case of Kopylov [44] (recall the description of these sets from Section 1.1).
Any representation in which the set of measures is tied to such an endogenous
construct raises the question of which actual sets of measures and parameters
α are consistent with at least some preference satisfying the given axioms. The
contribution of the second part of Theorem 2 with representation (6) is to show
that for i.i.d. α-MEU the fact that the set of measures must be generated by
R(%) is unrestrictive – any finite set of marginals, D, together with any α ∈ [0, 1]
generates a preference satisfying the axioms, making it clear that the entire class
of i.i.d. α-MEU representations (3) is what the axioms characterize.

In applications, it is often desirable to model an agent who has some particular
finite set of probability measures in mind along with a particular α. It follows
from Theorem 2 that any combination of the two is consistent with the axioms,
and so, in that sense, they are indeed free to be separately specified. In contrast,
Ghirardato, Maccheroni and Marinacci [27] and Kopylov [44] do not provide
results analogous to the second part of our Theorem 2. As was discussed in
Section 1.1, in fact, under either symmetry or a finite state space, Ghirardato,
Maccheroni and Marinacci [27]’s characterization is limited to cases where α is
0 or 1. Kopylov [44, p. 91] pointed out that it is easy to find combinations of
sets of measures and αs violating his axioms. As an additional contribution of
our analysis (see Section 6.4 in the Appendix), we show that under symmetry an
analogous result does hold for Kopylov’s theory: all i.i.d. α-MEU representations
satisfy Kopylov’s axioms.

7The proof reveals that finiteness of R(%) results from a tension between Monotone Con-
tinuity of %∗ (which is the main force ensuring countable additivity) and the conjunction of
Relevant Range and Certainty Independence (which are the main drivers ensuring the α-MEU
form).
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It is worth noting that Ghirardato, Maccheroni and Marinacci [27]’s Axiom 7
is similar to Relevant Range except that it uses the range generated by measures
in the Bewley set C(%) rather than measures in R(%). Importantly, while R(%)
does not depend on α, the set C(%) does. That R(%) is independent of α can
be seen from the facts that (a) whether an event is non-null is independent of
α, and (b) as shown in Theorem 1, R(%) is fully determined by which limiting-
frequency events are non-null according to %. In contrast, the Bewley set C(%)
in Ghirardato, Maccheroni and Marinacci [27]’s Axiom 7 uses not just prefer-
ence information about on which events utility has value (i.e., which events are
non-null), but also information about the relative magnitudes of those valuations
(i.e., how preferences trade-off utility across different non-null events). Math-
ematically, according to their Theorem 14, the Bewley set C(%) is the Clark
differential of the representing functional at the constant utility 0. Since this
Clark differential of the α-MEU functional depends on α, so must C(%).

Given an i.i.d. α-MEU representation, preferences will satisfy Relevant Range
with respect to the set of measures appearing in the representation. Except
when α is 0 or 1 or the set of measures in the representation is a singleton, the
Bewley set C(%) will not be equal to the set of measures appearing in the α-MEU
model, and thus Ghirardato, Maccheroni and Marinacci [27]’s Axiom 7 will not
hold. Combining Ghirardato, Maccheroni and Marinacci [27, Proposition 19],
our Theorem 2, and Theorems 4.2 and 4.5 in Klibanoff, Mukerji and Seo [43], if
Relevant Range were replaced by their Axiom 7, then either α is 0 or 1 or the set
of measures in the representation is a singleton. That is, under their Axiom 7, %
must be MEU or max-max EU, in which cases the earlier characterization results
of Gilboa and Schmeidler [30] already apply. In this sense, our result shows that in
a symmetric environment, the difference between the α-MEUmodel and the union
of the MEU and max-max EU models is exactly the difference between Relevant
Range and Ghirardato, Maccheroni and Marinacci [27]’s Axiom 7. Recall that
the key role of symmetry in the process is in allowing for the relevant measures
to be identified from non-nullity of events in the state space Ω.

Another counterpart to Relevant Range is the Partial Ignorance outside of the
Subjectively Risky Acts axiom in Kopylov [44] (recall his notion of subjectively
risky act from our discussion in Section 1.1). The axiom itself is complex to
state, but has the following spirit: if the ranking over subjectively risky acts
plus the implications of Completeness, Transitivity, Monotonicity and Certainty
Independence do not force one to conclude that f � g or g � f , then the axiom
requires that f ∼ g.

We observe that the Relevant Range axiom can also be related to two key
axioms (called Property B and Property C) in Arrow and Hurwicz [5] (that they
attribute to Chernoff [14]). Property B states that relabeling of actions and states
of nature should be deemed irrelevant by the individual. Property C requires that
for a given decision problem, if a state gives the same payoff as another state for
every action in the decision problem, then the state can be removed without influ-
encing the optimal action for the decision problem. Together with a monotonicity
assumption, these two properties imply that if two actions have the same range of
payoffs then they should be deemed equivalent by the individual. As they argue,
this last property is a way to model decision making under “complete ignorance”,
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i.e. that there is no a priori information available which gives any state of nature
a distinguished position. Similarly, our Relevant Range axiom reflects the idea
that beyond whether a frequency is relevant or not there is “complete ignorance”
over such relevant frequencies.

Finally, it is useful to know which i.i.d. α-MEU preferences are also subjective
expected utility preferences (i.e., also satisfy the Independence axiom). The
following result gives the overlap:

Proposition 1 Consider a preference relation % represented by (6). The pref-
erence satisfies Independence if and only if either D is a singleton or D has two
elements and α = 1

2 .

4.2 Smooth Ambiguity Model
We provide two different foundations for the smooth ambiguity model building
on Axioms 1-7. The main idea is to additionally impose expected utility ax-
ioms on a subclass of acts, those measurable with respect to events defined by
empirical frequency limits, i.e., the acts in FΨ. Recall that FΨ denotes the set
of simple acts that are measurable with respect to events in ΣΨ, i.e., long-run
frequency events. Before proceeding, it is important to point out that imposing
expected utility axioms on FΨ does not imply that the individual views events in
ΣΨ as unambiguous nor that the individual is ambiguity neutral when evaluating
such acts.8 A final, more technical addition is a Cauchy continuity axiom impor-
tant in ensuring the existence of a monotonic and norm-continuous extension of
preferences from the simple acts, F , to the bounded acts, F̂ , which is used in
connecting preferences on FΨ to preferences on all simple acts. What differenti-
ates the two characterizations is the axioms imposed on preferences restricted to
FΨ. The first characterization uses the famous axioms from Savage [47] which
have great familiarity, simplicity and transparency, at the cost of requiring that
the measure µ in the representation is non-atomic.9 The second characterization
allows for the important possibility of µ having general finite or infinite support
by substituting axioms from Wakker [50, Theorem V.6.1], the main one being a
tradeoff consistency axiom, for those of Savage.

Start by considering the following version of Savage’s postulates for acts in
FΨ.10

P2 For every f, g, h, h′ ∈ FΨ and A ∈ ΣΨ,

fAh % gAh =⇒ fAh′ % gAh′.

As usual, A ∈ ΣΨ is null if for every f, g ∈ FΨ, fAg ∼ g, otherwise it is
non-null.

8We discuss and illustrate this in Section 5.2.
9In Section 6.7 of the Appendix, we show that by weakening Savage’s P6, the same approach

can be extended to allow µ that are only partially non-atomic – in particular, µ may assign
up to half its weight to atoms. Note that this still completely rules out discrete measures or
measures with finite support.

10Axioms 1 and 4 already provide Savage’s postulates P1 and P5, and so we do not repeat
those here.
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P3 For every x, y ∈ X, f, g ∈ FΨ, and non-null A ∈ ΣΨ,

x � y ⇐⇒ xAf � yAg.

P4 For every A,B ∈ ΣΨ and x, y, x′, y′ ∈ X such that x � y and x′ � y′,

xAy % xBy =⇒ x′Ay′ % x′By′.

P6 For every f, g ∈ FΨ and x ∈ X such that g � f , there exists a ΣΨ-
measurable partition (Ai)ni=1 of Ω such that for every i = 1, . . . , n, g � xAif and
xAig � f .

As in Savage, a key implication of P6 is that µ is non-atomic. Additionally,
the following continuity axiom is used to ensure countable additivity of µ and
continuity of φ. Given a sequence (f)∞n=1 of acts, write fn → f if for every act
g, g � f implies that there exists N such that n ≥ N =⇒ g � fn and f � g
implies that there exists N ′ such that n ≥ N ′ =⇒ fn � g.

Axiom 11 (Pointwise Continuity) For every sequence (fn)∞n=1 in FΨ such that
for some x, y ∈ X x % fn(ω) % y for every ω ∈ Ω, fn(ω)→ f(ω) for every ω ∈ Ω
implies fn → f .

Our final axiom is the Cauchy continuity requirement. Let F̂ denote the
set of all bounded and measurable functions from Ω to X.11 Ghirardato and
Siniscalchi [28] propose a notion of convergence that they show corresponds to
sup-norm convergence in the space of utility acts. Following them, we say fk ∈ F̂
norm-converges to f ∈ F̂ if for all x, y ∈ X with x � y, there exists K such that
k ≥ K implies for all ω ∈ Ω

1
2f (ω) + 1

2y ≺
1
2fk (ω) + 1

2x and 1
2fk (ω) + 1

2y ≺
1
2f (ω) + 1

2x.

Ghirardato and Siniscalchi [28] propose the following continuity condition using
norm-convergence:

Axiom 12 (Cauchy Continuity) Consider sequences fk ∈ F , xk ∈ X such that
fk norm-converges to f ∈ F̂ . If fk ∼ xk for all k, then there exists x ∈ X such
that xk norm-converges to x.

We are ready to state our first representation theorem for the smooth ambi-
guity model.

Theorem 3 % satisfies axioms 1-7, P2-P4, P6, Pointwise Continuity and Cauchy
Continuity if and only if there is a non-constant vNM utility function u : X → R,
a strictly increasing continuous function φ : u(X) → R such that there are
m,M > 0 with m|x − y| ≤ |φ(x) − φ(y)| ≤ M |x − y| for every x, y ∈ u(X)
and a non-atomic Borel probability measure µ ∈ ∆(∆(S)) such that

U(f) =
∫

∆(S)
φ

(∫
u(f)d`∞

)
µ(`),

11More precisely, F̂ is the collection of functions f : Ω → X that satisfy the following two
properties:
(i) for all x ∈ X, {ω : f(ω) � x} ∈ Σ; and
(ii) there exist x, y ∈ X such that x % f(ω) % y for all ω ∈ Ω.
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represents %. Moreover, µ is unique, R(%) = suppµ, u is unique up to a positive
affine transformation, and, given a normalization of u, φ is unique up to positive
affine transformations.

Note that the Lipschitz style restriction m|x− y| ≤ |φ(x)− φ(y)| ≤M |x− y|
is only needed to guarantee Monotone Continuity of %∗.12

Next we provide the axiomatization relying on Wakker’s Tradeoff Consistency
and S-continuity axioms. To apply Wakker [50, Theorem V.6.1] we need to
specify a topology on X. For this purpose, assume that Z is a metric space
that is complete and separable.13 Endow X with the weak convergence (wc)
topology. The wc topology on X is the weakest topology for which all functions
x 7−→

∫
ψdx are continuous for all bounded continuous ψ on Z. Also note that

a sequence xn ∈ X converges to x ∈ X under the wc topology if and only if∫
ψdxn →

∫
ψdx for all bounded continuous ψ on Z. Under this topology, X is a

connected topological space.

Axiom 13 (Tradeoff Consistency) There are no non-null events A,B ∈ ΣΨ,
consequences w, x, y, z ∈ X and acts f, g ∈ FΨ such that xAf % yAg, zAf %
wAg, xBf % yBg and wBg � zBf .

Axiom 14 (S-continuity) For every partition of Ω into a finite number of events
in ΣΨ, (Ai)mi=1, and act f = ∑m

i=1 xi1Ai , the sets {(yi)mi : ∑m
i=1 yi1Ai % f} and

{(yi)mi : f % ∑m
i=1 yi1Ai} are closed in the product topology of Xm.

Our representation theorem for the smooth ambiguity model allowing for gen-
eral µ is:

Theorem 4 % satisfies axioms 1-7, S-continuity, Cauchy Continuity and Trade-
off Consistency if and only if there is a non-constant wc-continuous vNM utility
function u, a strictly increasing continuous function φ : u(X) → R and a Borel
probability measure µ ∈ ∆(∆(S)) such that

U (f) =
∫

∆(S)
φ
(∫

S∞
u (f) d`∞

)
dµ (`) , (7)

represents % and either (i) there arem,M > 0 such thatm |a− b| ≤ |φ (a)− φ (b)| ≤
M |a− b| for all a, b ∈ u (X) or, (ii) suppµ is finite. Moreover, µ is unique,
R(%) = suppµ, u is unique up to positive affine transformations, and, given a
normalization of u, if suppµ is non-singleton, then φ is unique up to positive
affine transformations.

Note that the restriction that (i) or (ii) holds is solely to ensure Monotone
Continuity of %∗, and is a combination of the conditions having the same purpose
in Theorems 2 and 3.

12In this respect, we see that any tension between Monotone Continuity of %∗ and the
expected utility axioms imposed on acts measurable with respect to limiting frequency events
can be resolved through conditions on φ rather than by being forced to limit the richness of
the set of relevant measures as was the case for α-MEU in Theorem 2.

13Recall that X is the set of all lotteries over the set Z.
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In both smooth ambiguity representation theorems, µ is uniquely determined
by expected utility preferences over “frequency acts” (i.e., ΣΨ-measurable acts)
and thus, it expresses beliefs over the events in ΣΨ in the same sense as the
prior in an expected utility representation. Furthermore, the support of µ is
exactly the set of relevant measures. Notice that φ is unique up to positive
affine transformations only given a normalization of u. Should one worry that
normalization of u is needed to pin down φ, and thus to pin down ambiguity
attitude? The answer is no. Expected utility preferences over monetary lotteries
have their risk aversion as measured by the Arrow-Pratt index depend on the
currency used to denominate money. This in no way means that risk attitudes
are non-unique. Similarly, the Arrow-Pratt index of φ, identified by Klibanoff,
Marinacci and Mukerji [38] as measuring ambiguity attitude, depends on the
units used to measure utility, and this does not affect the unique identification of
ambiguity attitudes.

Theorems 3 and 4 provide foundations for the smooth ambiguity model using
the Event Symmetry requirement. There are close analogies to the smooth ambi-
guity representation theorems in Klibanoff, Marinacci and Mukerji [38] and Seo
[48] with the additional assumption that the environment is known to be symmet-
ric. For all these approaches, the key assumptions are (1) conditions equivalent to
expected utility over lotteries, (2) conditions equivalent to expected utility over
acts in FΨ (resp. second order acts in [38] and lotteries over acts in [48]) and
(3) Event Symmetry. In particular, Event Symmetry permits the identification
of acts in FΨ with maps from probability measures in ∆(S) to consequences in
X. In this sense, Event Symmetry plays the same role as Klibanoff, Marinacci
and Mukerji [38]’s Consistency and Seo [48]’s Dominance. A formal connection
between Event Symmetry and these two axioms is discussed in Klibanoff, Mukerji
and Seo [43, pp. 37-39]. In particular, conditions (vii) and (viii) in their Theorem
3.1 (reported as Theorem 5 in our Section 6.1 in the Appendix) show how Event
Symmetry is equivalent in this context to Dominance and Consistency, respec-
tively. Moreover, our representation results show how, in a symmetric setting,
objects like second order acts or lotteries over acts can be replaced by particular
standard acts related to frequencies. See the discussions in Klibanoff, Marinacci
and Mukerji ([38, pp. 1854 and 1856], [39, p. 937]) for the idea that objects like
second order acts could, with enough invariance, be replaced by acts based on
long run outcomes of repeated trials.

Finally, we provide a counterpart to Proposition 1, and characterize the over-
lap between the smooth ambiguity preferences in (7) and subjective expected
utility preferences:

Proposition 2 Consider a preference relation % represented by (7). The pref-
erence satisfies Independence if and only if either the support of µ is a singleton
or φ is linear.

5 Conclusion and Discussion
In recent decades, many models have emerged in pure and applied economic
theory according to which agents’ choices may be sensitive to ambiguity. Sev-
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eral papers have tried to discriminate among various of these models empirically
(among many others, see Cubitt, De Kuilen and Mukerji [17] and Baillon and
Bleichrodt [6]). Moreover, symmetry assumptions are often in the background
when analyzing such experimental data. The α-MEU and smooth ambiguity
models are two popular alternatives used in applications. By axiomatizing these
two models in a common framework, our work can help in understanding and
discriminating between them. As we have shown, under symmetry the difference
between the two models is exactly that the α-MEU model satisfies Certainty In-
dependence and Relevant Range for all acts while the smooth ambiguity model
satisfies axioms of subjective expected utility restricted to acts measurable with
respect to long-run frequency events. In contrast, when restricted to the latter
acts, i.i.d. α-MEU reduces to a representation of preferences under complete
ignorance proposed by Hurwicz [36] (see also Arrow and Hurwicz [5]) when the
state space is taken as equal to the set of relevant measures:14

V (f) ≡ α min
`∈R(%)

u(f) + (1− α) max
`∈R(%)

u(f). (8)

The introduction included some thought experiments illustrating aspects of these
differences, both for frequency acts and more general acts.

5.1 Bets on frequency limits
Our axiomatizations make heavy use of the infinite product structure of the state
space, S∞ = S × S . . . × S . . .. Because infinitely many experiments cannot
be performed, one may argue that the acts in FΨ are not fully operational.
First, we note that the practice of using acts that may require infinite data to
determine their realization is ubiquitous in decision theory. For example, in
Savage’s subjective expected utility theory with a continuum of states, observing
the realized state will in general require uncountably infinite data. Moreover,
we argue that this type of experiment is already effectively operationalized in
economics. For example, in the experimental literature that studies learning in
games, a focus is to understand whether play converges to a Nash equilibrium
(see for example Chen and Gazzale [13]). This is usually tested by fixing a long
time horizon and looking at whether a high number of players repeatedly play the
Nash profile. Another example is related to the experimental literature that tests
theoretical predictions of bargaining models. Since the main bargaining models
adopt an infinite horizon, again in experiments one has to use a long enough time
horizon (e.g., see Weg, Rapoport and Felsenthal [51]). Both these cases rely on the
idea that an infinite horizon model can be approximated with arbitrary precision
by one with finite horizon. Such an idea can be captured in our framework as
follows. Consider the simple case of coin tossing, i.e. S = {H,T} (so that
∆(S) = [0, 1]) and consider finitely many coin tosses, i.e. Ω = {H,T}N with
N <∞. There are two difficulties. First, symmetry is not equivalent to mixture
of i.i.d. measures, as discussed by Diaconis and Freedman [19, 20]. Second,
Ψ−1
N (`) is empty whenever ` ∈ [0, 1] is not a rational number. However, as shown
14Since these acts are measurable with respect to limiting frequency events, u(f) evaluated

at ` ∈ ∆(S) is well-defined and equal to u(f(Ψ−1(`))).
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by Diaconis and Freedman [20], any symmetric probability can be approximated
by a mixture of i.i.d. measures. Furthermore, the event Ψ−1

N (`) with ` irrational
can be approximated with N large enough.

5.2 Ambiguity of long-run frequency events
As stated in Section 4.2, the fact that the smooth ambiguity model under sym-
metry satisfies the axioms of expected utility on FΨ does not imply that the
individual views events in ΣΨ (i.e., long-run frequency events) as unambiguous
or treats them as such. Such an observation is related to a phenomenon known
as source preference (see Abdellaoui et al. [1, p. 696] for a discussion of the
literature). Sources of uncertainty are groups of events that are generated by
the same mechanism of uncertainty. As demonstrated by Chew and Sagi [15],
one can have probabilities within sources even when probabilistic sophistication
does not hold between sources. In this case, even if the smooth ambiguity model
satisfies the sure-thing principle for bets on frequency events, this does not mean
that bets on such events are treated in the same way as purely risky bets.

To illustrate, consider the following example. Take any non-null long-run
frequency event E ∈ ΣΨ and assume smooth ambiguity preferences represented
as in (4). Let m = µ(Ψ−1(E)) with 0 < m < 1. Take x, y ∈ X such that
u(y) = 0, u(x) = 1 and assume that φ is strictly concave with φ(0) = 0. The
smooth ambiguity model evaluates the bet xEy as mφ(1), and the bet xEcy as
(1−m)φ(1). For any p ∈ [0, 1] and x, y ∈ X, denote by xpy ∈ X the lottery that
pays x with probability p and y with probability 1−p. Now consider the lotteries
xpy and x(1−p)y. These are evaluated as φ(p) and φ(1−p), respectively. Let pE
and pEc be such that xpEy ∼ xEy and xpEcy ∼ xEcy. By strict concavity of φ, it
follows that pE < m and m < 1−pEc . In other words, in terms of betting on such
frequency events, the decision maker behaves as if his second order belief µ, the
subjective belief about the i.i.d. measures in the set Ψ−1(E), matches an interval
of probabilities,

[
pE, 1− pEc

]
, rather than the precise point m = µ (Ψ−1(E)),

and this interval is wider the greater the ambiguity aversion. For example, if
φ(x) = 1

a
(1− e−ax), then as a→∞ we have that pE → 0 and 1− pEc → 1.15

To formalize this point, we apply the preference-based definition of unam-
biguous events given by Klibanoff, Marinacci and Mukerji [38, Definition 7]. In
the present setting, their definition can be translated as follows:
Definition 2 An event E ⊆ Ω is unambiguous for the preference % with a
smooth ambiguity representation if, for each x, y ∈ X and p ∈ [0, 1] such that
x � y either [xEy � xpy and yEx ≺ ypx] or [xEy ≺ xpy and yEx � ypx] or
[xEy ∼ xpy and yEx ∼ ypx]. An event is ambiguous if it is not unambiguous.

For instance, in the previous example we had pE < m and m < 1 − pEc , so
that xpy � xEy and yEx � ypx, which implies that event E is ambiguous. More
generally, using arguments from Klibanoff, Marinacci and Mukerji [41, Section
2.4] it can be shown that all the (non-null and non-universal) events concerning
the frequencies of ambiguous events will themselves be treated as ambiguous by
the smooth ambiguity model under symmetry.

15Indeed, pE = − log(1−m(1− e−a)))/a and 1− pEc = (log(m− e−a)(m− 1)) + a)/a.
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6 Appendix: Proofs and Additional Results
Denote by B0 (S,K) the set of simple functions defined on S with range contained
in an interval K. The set B0 (∆ (S) , u(X)) is defined analogously, where ∆ (S)
is endowed with the Borel σ-algebra generated by the weak topology.

6.1 Preliminaries
We first report a result from Klibanoff, Mukerji and Seo [43] that will be useful in
the main proofs. This result shows that Event Symmetry relates quite closely to
a variety of other conditions from the literature, including strengthenings of de
Finetti [21]’s Exchangeability, Hewitt and Savage [34]’s Symmetry, of Seo [48]’s
Dominance and of Klibanoff, Marinacci and Mukerji [38]’s Consistency. One of
those conditions (condition (viii) below) requires some additional definitions.

Definition 3 For f ∈ F , fΨ is the (not necessarily simple) act uniquely defined
as follows:

fΨ (ω) =
{ ∫

S∞ fd`
∞ if ` = Ψ (ω) ∈ ∆ (S) ,

δx∗ ω ∈ {ω : Ψ (ω) is not defined} .

Note this definition associates with each act f an act fΨ that, for each event
{ω : Ψ (ω) = `} corresponding to the limiting frequencies generated by `, yields
the lottery generated by f under the assumption that the i.i.d. process `∞ governs
the realization of the state.

Since fΨ need not be simple, but is an element of the space F̂ (defined in
Section 4.2) of all bounded and measurable functions from Ω to X, it is necessary
to consider extending % to F̂ . In particular, we consider extensions continuous
in the following sense: %̂ on F̂ satisfies Norm Continuity if f%̂g whenever fk%̂gk
for all k = 1, 2, ... and fk and gk norm-converge to f and g respectively.

Theorem 5 (Klibanoff, Mukerji and Seo [43, Theorem 3.1])
The following conditions are equivalent under the assumption that % is reflex-

ive, transitive and satisfies Mixture Continuity of %:
(i) for every f ∈ F and π ∈ Π, f ∼ 1

2f + 1
2πf ,

(ii) for every f ∈ F , π ∈ Π and α ∈ [0, 1], f ∼ απf + (1− α) f ,
(iii) for every f ∈ F and πi ∈ Π, f ∼ 1

n

∑n
i=1 πif ,

(iv) for every f ∈ F , πi ∈ Π and αi ∈ [0, 1] with ∑n
i=1 αi = 1, f ∼ ∑n

i=1 αiπif ,
and

(v) for every f ∈ F and π ∈ Π, f ∼∗ πf .
Moreover, the above are equivalent to each of the following under Axioms 1-7:
(vi) Event Symmetry,
(vii) for every f, g ∈ F , if

∫
fdp %

∫
gdp for all symmetric p ∈ ∆ (S∞), then

f % g.
Finally, if, in addition, there exists an extension of % to F̂ that is reflexive,

transitive and satisfies Norm Continuity, then the following is equivalent to all
of the above:

(viii) for f, g ∈ F , f % g if and only if fΨ%̂gΨ, if %̂ is any such extension.
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6.2 Proof of Theorem 2
We begin by showing that the axioms imply the desired representation. Ob-
serving that Mixture Continuity of % implies Ghirardato, Maccheroni and Mari-
nacci [27]’s Archimedean axiom, we see that % are Invariant Biseparable prefer-
ences (i.e., satisfy axioms 1-5 in Ghirardato, Maccheroni and Marinacci [27]). By
Proposition 7 in Ghirardato, Maccheroni and Marinacci [27], % has a representa-
tion, I(u (f)), where u is non-constant and affine, and I is monotonic, constant
linear and lies between minp∈C

∫
u (f) dp and maxp∈C

∫
u (f) dp (i.e., for all simple

acts f , minp∈C
∫
u (f) dp ≤ I(u (f)) ≤ maxp∈C

∫
u (f) dp) where C is the Bewley

set from Theorem 4.5 in Klibanoff, Mukerji and Seo [42]. By that Theorem 4.5,
minp∈{`∞:`∈R(%)}

∫
u (f) dp ≤ minp∈C

∫
u (f) dp and maxp∈{`∞:`∈R(%)}

∫
u (f) dp ≥

maxp∈C
∫
u (f) dp. Therefore

min
p∈{`∞:`∈R(%)}

∫
u (f) dp ≤ I(u (f)) ≤ max

p∈{`∞:`∈R(%)}

∫
u (f) dp. (9)

Now consider the Relevant Range axiom. Observe that C∗(f) can be written as

{x ∈ X : min
p∈{`∞:`∈R(%)}

∫
u (f) dp ≤ u(x) ≤ max

p∈{`∞:`∈R(%)}

∫
u (f) dp}.

Thus, C∗(f) = C∗(g) if

max
p∈{`∞:`∈R(%)}

∫
u (f) dp = max

p∈{`∞:`∈R(%)}

∫
u (g) dp,

and
min

p∈{`∞:`∈R(%)}

∫
u (f) dp = min

p∈{`∞:`∈R(%)}

∫
u (g) dp.

Relevant Range therefore implies that I(u (f)) must be able to be expressed
as a function of maxp∈{`∞:`∈R(%)}

∫
u (f) dp and minp∈{`∞:`∈R(%)}

∫
u (f) dp only.

Since (9) holds and I(u (f)) depends only on maxp∈{`∞:`∈R(%)}
∫
u (f) dp and

minp∈{`∞:`∈R(%)}
∫
u (f) dp, we may apply Lemma B.5 in Ghirardato, Maccheroni

and Marinacci [27] to conclude that

I(u (f)) = α min
p∈{`∞:`∈R(%)}

∫
u (f) dp+ (1− α) max

p∈{`∞:`∈R(%)}

∫
u (f) dp,

for some α ∈ [0, 1].
We next show that R(%) is finite. Consider α ∈ [0, 1) first. Suppose R(%)

is not finite. Then, we can take distinct `n ∈ R(%) for each n. Let An =⋃
k>n Ψ−1 (`k). Then, An ↘ ∅. Without loss of generality, assume [0, 1] ⊆ u (X).

Let u (x) = 1 > u (x′) = 1
k
> u (x′′) = 0 for each integer k > 1. By Mono-

tone Continuity of %∗, for each integer k > 1, there is n (k) > 0 such that
V
(
xAn(k)x

′′
)
< 1

k
. Since V

(
xAn(k)x

′′
)
is decreasing in n(k), V

(
xAn(k)x

′′
)
→ 0.

However, applying the α-MEU form of V shows

V
(
xAn(k)x

′′
)
≥ (1− α) max

p∈{`∞:`∈R(%)}
p
(
An(k)

)
= 1− α > 0,

a contradiction. Note that the equality in the previous sentence follows since,
no matter the value of n(k), if R(%) is infinite there is an m > n(k) with
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`m ∈ R(%), which, by definition of An, ensures Ψ−1 (`m) ⊆ An(k) and therefore
maxp∈{`∞:`∈R(%)} p

(
An(k)

)
≥ `∞m (An(k)) ≥ `∞m (Ψ−1 (`m)) = 1.

Now let α = 1. Take `n ∈ R(%) and An ⊂ S∞ as above, and also let
u (x) = 1 > u (x′) = 1

k
> u (x′′) = 0. By Monotone Continuity of %∗, for each

k > 1, there is n (k) > 0 such that x′ %∗ xAn(k)x
′′. Again invoking Theorem 4.5

from Klibanoff, Mukerji and Seo [42], 1
k
≥ p

(
An(k)

)
for all p ∈ C. Equivalently,

1− 1
k
≤ p

(
S∞\An(k)

)
for all p ∈ C. This implies V

(
xS∞\An(k)x

′′
)
∈
[
1− 1

k
, 1
]
.

Since V
(
xS∞\An(k)x

′′
)
is increasing in n(k), V

(
xS∞\An(k)x

′′
)
→ 1. However,

(`n+1)∞ (S∞\An) = 0 for all n, and hence V
(
xS∞\An(k)x

′′
)
→ 0, a contradiction.

This proves that % has the desired representation.
Next, we show the axioms are necessary for the representation in (6), and

thus also (5). That R(%̂) = D follows from Theorem 4.1 in Klibanoff, Mukerji
and Seo [42]. That Relevant Range is satisfied then follows since C∗(f) = {x ∈
X : maxp∈{`∞:`∈R(%̂)}

∫
u (f) dp ≥ u(x) ≥ minp∈{`∞:`∈R(%̂)}

∫
u (f) dp}. The re-

maining axioms except Monotone Continuity of %∗ are straightforward to verify.
We establish necessity of Monotone Continuity of %∗. Consider V1 (f) ≡

minp∈{`∞:`∈D}
∫
u (f) dp first. The Bewley set of V1 is co ({`∞ : ` ∈ D}) and it is

weak* compact since D is finite. Thus, V1 satisfies Monotone Continuity of %∗.
Similarly, V0 (f) = maxp∈{`∞:`∈D}

∫
u (f) dp also satisfies Monotone Continuity of

%∗. Take An ↘ ∅ and x, x′, x′′ ∈ X such that u (x′) > u (x′′). Then, there are n̄1
and n̄0 such that

V1 (λx′ + (1− λ)h) ≥ V1 (λxAnx′′ + (1− λ)h) ,

for all λ ∈ [0, 1], h ∈ F and n ≥ n̄1, and

V0 (λx′ + (1− λ)h) ≥ V0 (λxAnx′′ + (1− λ)h) ,

for all λ ∈ [0, 1], h ∈ F and n ≥ n̄2. Since V = αV1 + (1− α)V0,

V (λx′ + (1− λ)h) ≥ V (λxAnx′′ + (1− λ)h) for n = max (n̄1, n̄2) .

Thus, Monotone Continuity of %∗ is satisfied.
We now show uniqueness. Uniqueness of D follows from uniqueness of R (%).

Uniqueness of α when D is non-singleton is a conclusion of Lemma B.5 in Ghi-
rardato, Maccheroni and Marinacci [27]. Uniqueness of u up to positive affine
transformations is standard.

6.3 Proof of Proposition 1
The proof makes use of the following result establishing the overlap between SEU
and preferences having a general α-MEU representation (1) with a finite set of
measures C for a measurable space Ω without assuming Ω = S∞ or symmetry.

Lemma 1 Consider a preference relation represented by (1) and assume C =
{p1, ..., pK} with K ≥ 2. The preference satisfies Independence if and only if
α = 1

2 and there is p̂ ∈ ∆Ω such that p ∈ C implies 2p̂− p ∈ co (C).
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We first prove the Proposition and then give the (somewhat lengthy) proof of
the Lemma in its own subsection.

The “if” direction of the Proposition is implied by Lemma 1 with p̂ = 1
2`
∞
1 +

1
2`
∞
2 for D = {`1, `2}. For the “only if” direction, suppose the preference satisfies

Independence. Then, there is p̂ ∈ ∆(Ω) such that V (f) =
∫
u (f) dp̂ for all f ∈ F .

By Event Symmetry, p̂ is a symmetric measure. By the de Finetti Theorem, p̂
is a mixture of i.i.d. measures. Moreover, for any ` ∈ D, since D contains at
least two elements, we have V

(
1Ψ−1(`)

)
= 1−α = p̂ (Ψ−1 (`)). Because α = 1

2 by
Lemma 1,

1 = p̂ (Ω) ≥
∑
`∈D

p̂
(
Ψ−1 (`)

)
=
∑
`∈D

1
2 ≥ 1.

The latter inequality holds because D has at least two elements. To maintain
equality, conclude there must be exactly two elements in D.

6.3.1 Proof of Lemma 1

Consider the “if” direction first. Assume the properties and take any f ∈ F .
Without loss of generality, assume

∫
u (f) dp1 = minp∈C

∫
u (f) dp and

∫
u (f) dp2 =

maxp∈C
∫
u (f) dp. Then, 2p̂− p1 and 2p̂− p2 belong to co (C). Hence,

V (f) = 1
2 min
p∈C

∫
u (f) dp+ 1

2 max
p∈C

∫
u (f) dp

= 1
2

∫
u (f) dp1 + 1

2 max
p∈C

∫
u (f) dp

≥ 1
2

∫
u (f) dp1 + 1

2

∫
u (f) d (2p̂− p1) =

∫
u (f) dp̂

and

V (f) = 1
2 min
p∈C

∫
u (f) dp+ 1

2 max
p∈C

∫
u (f) dp

= 1
2 min
p∈C

∫
u (f) dp+ 1

2

∫
u (f) dp2

≤ 1
2

∫
u (f) d (2p̂− p2) + 1

2

∫
u (f) dp2 =

∫
u (f) dp̂

This implies V (f) =
∫
u (f) dp̂. This holds for any f and thus the preference

satisfies Independence.
Now consider the “only if” direction. Suppose the preference satisfies Inde-

pendence. Then

V (λf + (1− λ) g) = λV (f) + (1− λ)V (g)

for each f, g ∈ F and λ ∈ [0, 1].
We show that there are f, g ∈ F and x ∈ X such that minp∈C

∫
u (f) dp 6=

maxp∈C
∫
u (f) dp and 1

2f (ω) + 1
2g (ω) ∼ x for all ω. Because u is non-constant,

we can let u (X) ⊃ [−1, 1] and we do so. Then, there is an η ∈ B0 (Ω,R)
such that minp∈C

∫
ηdp 6= maxp∈C

∫
ηdp because C has multiple elements. By

normalization, we can assume

−1 ≤ inf
ω∈Ω

η (ω) < 0 < sup
ω∈Ω

η (ω) ≤ 1.
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Then, there are f, g ∈ F such that η = u ◦ f and −η = u ◦ g. Letting x ∈ X such
that u (x) = 0, we see that 1

2f (ω) + 1
2g (ω) ∼ x for all ω.

Then, for the above f, g ∈ F and x ∈ X,

0 = u (x) =V
(1

2f + 1
2g
)

= 1
2V (f) + 1

2V (g)

=1
2

(
αmin
p∈C

∫
ηdp+ (1− α) max

p∈C

∫
ηdp

)
+ 1

2

(
αmin
p∈C

∫
−ηdp+ (1− α) max

p∈C

∫
−ηdp

)
=1

2 (2α− 1)
(

min
p∈C

∫
u (f) dp−max

p∈C

∫
u (f) dp

)
,

where the third equality follows from Independence of the preference. This implies

(2α− 1)
(

min
p∈C

∫
u (f) dp−max

p∈C

∫
u (f) dp

)
= 0.

Because minp∈C
∫
u (f) dp 6= maxp∈C

∫
u (f) dp, α = 1

2 .
Turn to the property that there is p̂ ∈ ∆Ω such that p ∈ C implies 2p̂− p ∈

co (C). Note that Independence implies V is SEU and we can find p̂ ∈ ∆Ω such
that V (f) =

∫
u (f) dp̂ for all f ∈ F . Without loss of generality, because p1 ∈ C,

suppose 2p̂ − p1 /∈ C by contradiction. A separating hyperplane theorem (for
example, see the references in [29, Footnote 14]) implies that there is f ∈ F such
that

∫
u (f) d (2p̂− p1) > maxp∈C

∫
u (f) dp. But then,

V (f) = 1
2 min
p∈C

∫
u (f) dp+ 1

2 max
p∈C

∫
u (f) dp

≤ 1
2

∫
u (f) dp1 + 1

2 max
p∈C

∫
u (f) dp

<
1
2

∫
u (f) dp1 + 1

2

∫
u (f) d (2p̂− p1) =

∫
u (f) dp̂.

This contradicts the property V (f) =
∫
u (f) dp̂ for all f ∈ F . Conclude that

p ∈ C implies 2p̂− p ∈ co (C).

6.4 Proof that i.i.d. α-MEU preferences satisfy Kopylov’s
[44] axioms

Kopylov [44, Theorem 2.4] shows that a set of axioms are equivalent to preferences
being represented by a functional of the form

UK (f) = α0 min
m∈M0

∫
u (f) dm+ (1− α0) max

m∈M0

∫
u (f) dm. (10)

Here, α0 ∈ [0, 1] is a constant, andM0 ⊂ ∆(Ω) is the set of probability measures
m such that

U0 (r) =
∫
u (r) dm

represents the preference restricted to G0, the set of subjectively risky acts. An
act r is a subjectively risky act, i.e., r ∈ G0 if and only if for all acts f, g and all
λ ∈ (0, 1),

f % g ⇔ λf + (1− λ) r % λg + (1− λ) r.
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Theorem 6 All i.i.d. α-MEU preferences as in (5) or (6) have a representation
as in (10), and satisfy Kopylov’s axioms.

Proof of Theorem 6: Most of the argument proceeds assuming Ω is any mea-
surable space and that the set of measures in the α-MEU representation is finite.
The further restrictions to Ω = S∞ and the measures being i.i.d. are imposed
only in the last step.

Suppose that preferences are represented by

V (f) ≡ αmin
p∈P

∫
u (f) dp+ (1− α) max

p∈P

∫
u (f) dp (11)

where P = {p1, ..., pK} and α 6= 1
2 . The next two lemmata find the sets G0 and

M0 for such preferences. The case of α = 1
2 will be dealt with separately.

Lemma 2 For such preferences, G0 = {r ∈ F : minp∈P
∫
u (r) dp = maxp∈P

∫
u (r) dp}

Proof of Lemma 2: First we show⊃. Suppose minp∈P
∫
u (r) dp = maxp∈P

∫
u (r) dp.

Then, for any f ∈ F and λ ∈ [0, 1],

min
p∈P

∫
u (λf + (1− λ) r) dp = λmin

p∈P

∫
u (f) dp+ (1− λ) min

p∈P

∫
u (r) dp

and similarly for the maximum operator. Thus, V (λf + (1− λ) r) = λV (f) +
(1− λ)V (r) and hence r ∈ G0.

Turn to ⊂. Suppose r ∈ G0. Take x ∈ X such that

u (x) = 1
2

(
max
ω∈Ω

u (r (ω)) + min
ω∈Ω

u (r (ω))
)
,

where the max and min exist because all acts are simple acts. Since u (X) is
convex, such an x exists. Take an f ∈ F such that u (f (ω)) = 2u (x)− u (r (ω)).
To see such an f exists, note that u (X) is convex and

min
ω∈Ω

u (r (ω)) ≤ 2u (x)− u (r (ω)) ≤ max
ω∈Ω

u (r (ω))

implies u (f (ω)) = 2u (x) − u (r (ω)) ∈ u (X). We see that 1
2f (ω) + 1

2r (ω) ∼ x
for all ω ∈ Ω. Take x′ ∈ X such that f ∼ x′. Then,

u (x) =V
(1

2f + 1
2r
)

= V
(1

2x
′ + 1

2r
)

= 1
2V (x′) + 1

2V (r) = 1
2V (f) + 1

2V (r)

=1
2

(
αmin

p∈P

∫
u (f) dp+ (1− α) max

p∈P

∫
u (f) dp

)
+ 1

2

(
αmin

p∈P

∫
u (r) dp+ (1− α) max

p∈P

∫
u (r) dp

)
=1

2

(
αmin

p∈P

(
2u (x)−

∫
u (r) dp

)
+ (1− α) max

p∈P

(
2u (x)−

∫
u (r) dp

))
+ 1

2

(
αmin

p∈P

∫
u (r) dp+ (1− α) max

p∈P

∫
u (r) dp

)
=1

2

(
2u (x) + (2α− 1)

(
min
p∈P

∫
u (r) dp−max

p∈P

∫
u (r) dp

))
.
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Here, the second equality follows because r ∈ G0 and f ∼ x′. The third holds
because x′ is a lottery. Then, the above computation results in

0 = (2α− 1)
(

min
p∈P

∫
u (r) dp−max

p∈P

∫
u (r) dp

)
.

Because α 6= 1
2 , conclude minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp. �

Lemma 3 For such preferences,

M0 =
{
p ∈ ∆(Ω) : p =

K∑
k=1

θkpk for
K∑
k=1

θk = 1 and θ1, ..., θK ∈ R
}

Notice that the weights θ1, ..., θK need not all be nonnegative.
Proof of Lemma 3: First, suppose p = ∑K

k=1 θkpk ∈ ∆Ω for some θ1, ..., θK ∈ R
with ∑K

k=1 θk = 1. Then, for any r ∈ G0,

∫
u (r) dp =

K∑
k=1

θk

∫
u (r) dpk =

∫
u (r) dp1 = V (r)

by Lemma 2. Thus, SEU with p as the measure evaluates all r∈ G0 correctly, and
therefore p ∈M0.

Turn to the opposite direction. Suppose p ∈ ∆(Ω) such that, for all θ1, ..., θK ∈
R satisfying ∑K

k=1 θk = 1, p 6= ∑K
k=1 θkpk. Let

C =
{
p′ ∈ ba (Ω) : p′ =

K∑
k=1

θkpk for some θ1, ..., θK ∈ R with
K∑
k=1

θk = 1
}
.

Then C is closed and convex, and by the separating hyperplane theorem there is
b ∈ B (∆ (Ω) ,R) such that

∫
bdp >

∫
bd

(
K∑
k=1

θkpk

)
(12)

for all θ1, ..., θK ∈ R satisfying∑K
k=1 θk = 1. In fact, we can take b ∈ B0 (∆ (Ω) ,R)

by Ghirardato and Siniscalchi [29, Footnote 14], and also b ∈ B0 (∆ (Ω) , u (X))
by normalization. Then, there is r ∈ F such that b = u ◦ r. We now show
that maxk=1,...,K

∫
u (r) dpk = mink=1,...,K

∫
u (r) dpk. Suppose this does not hold.

Without loss of generality, let
∫
u (r) dp1 >

∫
u (r) dp2. Then, we can take a very

large θ1 and a very small θ2, keeping θ1 + θ2, θ3,..., θK constant. This makes
the right-hand side of (12) become as large as we like, which is a contradiction.
Thus, r ∈ G0 by Lemma 2. But then p /∈M0, since

∫
u (r) dp 6=

∫
u (r) dpk for all

k = 1, ..., K, whereas the equality of these expectations is required for all acts in
G0. �

Lemma 4 For such preferences, if Ω = S∞ and each pk ∈ P is i.i.d., then
M0 = co {P}.
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Proof of Lemma 4: By Lemma 3,

M0 =
{
p ∈ ∆(Ω) : p =

K∑
k=1

θkpk for
K∑
k=1

θk = 1 and θ1, ..., θK ∈ R
}
.

If K = 1 the result is trivial. Assume K ≥ 2. If θi < 0 for some i ∈ {1, . . . , K},
then ∑K

k=1 θkpk is not a probability measure because, letting `i ∈ ∆(S) be such
that pi = `∞i ,

p
(
Ψ−1 (`i)

)
=

K∑
k=1

θkpk
(
Ψ−1 (`i)

)
= θi < 0.

Therefore

M0 =
{
p ∈ ∆(Ω) : p =

K∑
k=1

θkpk for
K∑
k=1

θk = 1 and θ1, ..., θK ∈ R+

}
= co {P} ,

which completes the proof. �

Thus far, we have shown that any i.i.d. α-MEU representation as in (5) or (6)
with α 6= 1

2 hasM0 = co {{`∞ : ` ∈ D}} = co {{`∞ : ` ∈ R(%)}} and therefore is
also a representation of the form (10). By Kopylov [44, Theorem 2.4], this implies
that it satisfies his axioms.

Before turning to the case of α = 1
2 , we note that the i.i.d. restriction in

Lemma 4 was important to the argument. More general preferences represented
as in (11) with α 6= 1

2 may not have representations of the form (10). For a
simple example, suppose that Ω = S = {H,T} and P = {p1, p2} with p1 (H) = 1

3
and p2 (H) = 2

3 . Then M0 = ∆(S) ⊃ co{P} implying that no representation
as in (10) exists, and that these preferences violate Kopylov’s axiom of Partial
Ignorance outside G0.

Finally, turn to i.i.d. α-MEU preferences (so that Ω = S∞ and each pk ∈ P
is i.i.d.) with α = 1

2 . If K ≤ 2, then, by Proposition 1, preferences are
SEU and thus all acts are subjectively risky and Kopylov’s axioms are satis-
fied. Suppose therefore that K ≥ 3. Inspection of the proofs of Lemma 2,
Lemma 3 and Lemma 4 reveals that the parts of those arguments that did
not depend on α 6= 1

2 can be used to show that M0 ⊆ co {P}. We com-
plete the argument thatM0 = co {P} by showing thatM0 ⊇ co {P} . Suppose
r ∈ G0. We show that minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp. Suppose not. Let

pk = `∞k with some `k ∈ ∆(S) for k = 1, ..., K. Without loss of generality, as-
sume maxp∈P

∫
u (r) dp =

∫
u (r) dp1 =

∫
u (r) d`∞1 >

∫
u (r) d`∞2 =

∫
u (r) dp2 =

minp∈P
∫
u (r) dp. Since r ∈ G0, for any f, g such that f % g and all λ ∈ [0, 1] it

must be that V (λf + (1− λ)r) ≥ V (λg + (1− λ)r). Let

f = r(arg max
ω∈Ω

u (r (ω)))Ψ−1(`1 ∪ `3)r(arg min
ω∈Ω

u (r (ω))) and

g = r(arg max
ω∈Ω

u (r (ω)))Ψ−1(`2 ∪ `3)r(arg min
ω∈Ω

u (r (ω))).

Observe that f ∼ g. Furthermore, for all λ,

V (λf + (1− λ)r)

=1
2(λmin

ω∈Ω
u (r (ω)) + (1− λ)

∫
u (r) d`∞2 ) + 1

2(λmax
ω∈Ω

u (r (ω)) + (1− λ)
∫
u (r) d`∞1 )
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while, for λ sufficiently large,

V (λg + (1− λ)r)

=1
2(λmin

ω∈Ω
u (r (ω)) + (1− λ)

∫
u (r) d`∞1 ) + 1

2(λmax
ω∈Ω

u (r (ω)) + (1− λ)
∫
u (r) d`∞3 ).

Therefore, V (λf + (1− λ)r) = V (λg + (1− λ)r) if and only if
∫
u (r) d`∞3 =∫

u (r) d`∞2 . Next, consider

f ′ = r(arg min
ω∈Ω

u (r (ω)))Ψ−1(`1 ∪ `3)r(arg max
ω∈Ω

u (r (ω))) and

g′ = r(arg min
ω∈Ω

u (r (ω)))Ψ−1(`2 ∪ `3)r(arg max
ω∈Ω

u (r (ω))).

Again, f ′ ∼ g′. Furthermore, for λ sufficiently large,

V (λf ′ + (1− λ)r)

=1
2(λmin

ω∈Ω
u (r (ω)) + (1− λ)

∫
u (r) d`∞3 ) + 1

2(λmax
ω∈Ω

u (r (ω)) + (1− λ)
∫
u (r) d`∞2 )

and, for all λ,

V (λg′ + (1− λ)r)

=1
2(λmin

ω∈Ω
u (r (ω)) + (1− λ)

∫
u (r) d`∞2 ) + 1

2(λmax
ω∈Ω

u (r (ω)) + (1− λ)
∫
u (r) d`∞1 ).

Therefore, V (λf ′ + (1− λ)r) = V (λg′ + (1− λ)r) if and only if
∫
u (r) d`∞3 =∫

u (r) d`∞1 . Since
∫
u (r) d`∞1 >

∫
u (r) d`∞2 , it must be that, for λ sufficiently

large, either λf+(1−λ)r � λg+(1−λ)r or λf ′+(1−λ)r � λg′+(1−λ)r must hold,
contradicting r ∈ G0. Therefore, G0 = {r ∈ F : minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp}

and therefore co {P} ⊆ M0. This completes the α = 1
2 case and the argument.�

6.5 Proof of Theorem 3
We start with necessity of Monotone Continuity of%∗ and Savage’s axioms on FΨ.
Ghirardato and Siniscalchi [28] show necessity of Cauchy continuity. Necessity of
the remaining axioms is straightforward.

Monotone Continuity of %∗: Suppose that there are m,M > 0 such that
m |a− b| ≤ |φ (a)− φ (b)| ≤ M |a− b| for all a, b ∈ u (X). Fix any x, x′, x′′ ∈ X
with x′ � x′′. The only non-trivial case is x � x′. Without loss of generality,
assume u (x) = 1 > u (x′) = t′ > u (x′′) = 0 and [0, 1] ⊆ u (X). Suppose An ↘ ∅.
Take ε′, ε > 0 so that

ε′ < t′ and m (t′ − ε′) (1− ε) ≥M (1− t′) ε.

Define ζn : ∆ (S) → R by ζn (`) = `∞ (An), and temporarily equip ∆ (S) with
the wc topology. Since wc open sets are weak* open, µ is well-defined on the
Borel σ-algebra generated by wc open sets. Then, by Lusin’s theorem (Aliprantis
and Border [3, Theorem 12.8]), there is a wc compact set L ⊆ ∆ (S) such that
µ (L) > 1−ε and all ζn are wc continuous. Note that ζn converges monotonically
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to 0 pointwise. Then by Dini’s Theorem (Aliprantis and Border [3, Theorem
2.66]), ζn on L converges uniformly to 0. Hence there is N > 0 such that ζN =
`∞ (AN) < ε′ for all ` ∈ L. To see x′ %∗ xANx′′, and thus Monotone Continuity
of %∗, compute, for any α ∈ [0, 1] and h ∈ F ,

U (αx′ + (1− α)h)− U (αxANx′′ + (1− α)h)

=
∫
L
φ
(
αt′ + (1− α)

∫
hd`∞

)
− φ

(
α`∞ (AN) + (1− α)

∫
hd`∞

)
dµ (`)

+
∫

∆(S)\L
φ
(
αt′ + (1− α)

∫
hd`∞

)
− φ

(
α`∞ (AN) + (1− α)

∫
hd`∞

)
dµ (`)

>
∫
L
φ
(
αt′ + (1− α)

∫
hd`∞

)
− φ

(
αε′ + (1− α)

∫
hd`∞

)
dµ (`)

+
∫

∆(S)\L
φ
(
αt′ + (1− α)

∫
hd`∞

)
− φ

(
α + (1− α)

∫
hd`∞

)
dµ (`)

≥
∫
L
αm (t′ − ε′) dµ (`) +

∫
∆(S)\L

αM (t′ − 1) dµ (`)

= α [m (t′ − ε′)µ (L)−M (1− t′) (1− µ (L))]
≥ α [m (t′ − ε′) (1− ε)−M (1− t′) ε] ≥ 0.

P1-P6 on FΨ: For f ∈ FΨ, f is constant on Ψ−1 (`), so

U(f) =
∫

∆(S)
φ
(∫

S∞
u (f) d`∞

)
dµ (`)

=
∫

∆(S)
φ
(
u
(
f ◦Ψ−1 (`)

))
dµ (`) ,

represents % on FΨ. Viewing f ◦ Ψ−1 (`) as an act from ∆ (S) to X, this is an
expected utility representation with countably additive, non-atomic µ and non-
constant vNM utility function v ≡ φ ◦ u. Therefore, P1-P6 are satisfied. That
the continuity axiom is satisfied follows by Lebesgue’s dominated convergence
theorem (Aliprantis and Border [3, Theorem 11.21]).

As for sufficiency, we first prove the following claims.
Claim I: There exists u : X → R non-constant and affine that represents %

on X. Moreover, without loss of generality [0, 1] ⊆ u(X).
This claim follows by standard results, see for example Cerreia-Vioglio et al.

[11].
Now for f ∈ FΨ, let u(f ◦ Ψ−1) : ∆(S) → R denote the mapping defined

by u(f ◦ Ψ−1)(`) = u(f(Ψ−1(`))) for every ` ∈ ∆(S). Note that u(f ◦ Ψ−1) is
well-defined and belongs to B0(∆(S), u(X)) since f is constant on Ψ−1(`).

Claim II: B0(∆(S), u(X)) = {u(f ◦Ψ−1) : f ∈ FΨ}.
Showing that {u(f ◦ Ψ−1) : f ∈ FΨ} ⊆ B0(∆(S), u(X)) is straightforward.

As for B0(∆(S), u(X)) ⊆ {u(f ◦Ψ−1) : f ∈ FΨ}, take a ∈ B0(∆(S), u(X)). Then
a = ∑n

i=1 yi1Ai where (Ai)ni=1 is a measurable partition of ∆(S). For each i, let
Ei = Ψ−1(Ai). Note that if Ai is non-empty, then Ei is also non-empty. Now
take any x1, . . . , xn ∈ X such that u(xi) = yi for every i = 1, . . . , n. Let f ∈ FΨ

be such that for every i = 1, . . . n it holds that f(ω) = xi whenever ω ∈ Ei. Then
u(f ◦ Ψ−1) = a. It follows that B0(∆(S), u(X)) ⊆ {u(f ◦ Ψ−1) : f ∈ FΨ} as
desired.
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Now define %̃ on B0(∆(S), u(X)) by

a%̃b ⇐⇒ ∃f, g ∈ FΨ such that u(f ◦Ψ−1) = a, u(g ◦Ψ−1) = b and f % g,

for every a, b ∈ B0(∆(S), u(X)). Note that %̃ is well defined since by Claim II for
every a, b ∈ B0(∆(S), u(X)) there exists f, g ∈ FΨ such that a = u(f ◦Ψ−1) and
b = u(f ◦Ψ−1). Moreover, if f, h ∈ FΨ are such that u(f ◦Ψ−1) = u(h◦Ψ−1) then
f ∼ h. To see this, observe that this last equality implies that u(f(ω)) = u(h(ω))
for every ω ∈ {ω : Ψ (ω) is defined}. Because Event Symmetry implies that the
event {ω : Ψ (ω) is not defined} is null, it follows that f ∼ h. Hence %̃ is well
defined. It is now straightforward to see that %̃ satisfies the following claim:

Claim III: %̃ satisfies:
P1 %̃ is complete and transitive.
P2 For every a, b, c, c′ ∈ B0(∆(S), u(X)) and E ∈ Σ∆,

aEc%̃bEc =⇒ aEc′%̃aEc′.

P3 For every non-null A ∈ Σ∆, x, y ∈ u(X) and a, b ∈ B0(∆(S), u(X)),

x > y ⇐⇒ xAa�̃yAb.

P4 For every A,B ∈ Σ∆ and x, y, x′, y′ ∈ u(X) such that x�̃y, x′�̃y′,

xAy%̃xBy =⇒ x′Ay′%̃x′By′.

P6 For every a, b ∈ B0(∆(S), u(X)) and x ∈ u(X) such that b�̃a, there exists
a Σ∆-measurable finite partition (Ai)ni=1 of ∆(S) such that for every i = 1, . . . , n,
b�̃xAia and xAib�̃a.

Recall that we write an → a if for every b ∈ B0(∆(S), u(X)), b�̃a implies that
there exists N such that n ≥ N =⇒ b�̃an and a�̃b implies that there exists N ′
such that n ≥ N ′ =⇒ an�̃b.

Continuity If (an) is a sequence in B0(∆(S), u(X)), converges to a ∈ B
pointwise and satisfies m ≤ an ≤M for m,M ∈ R, then an → a.

Note that the σ-algebra generated by the open sets of ∆(S) is countably
separated (Mackey [45]) since S is a compact metric space. By Claim III and
Stanca [49, Theorem 5] (reported as Theorem 7 below), there exists µ ∈ ∆(∆(S))
non-atomic and φ : u(X)→ R continuous and strictly increasing such that

a%̃b ⇐⇒
∫
φ(a(`))µ(`) ≥

∫
φ(b(`))µ(`).

Moreover, if (µ′, φ′) is another representation then µ = µ′ and φ′ = aφ + b for
constants a, b with a > 0. We can conclude that for every f, g ∈ FΨ,

f % g ⇐⇒ u(f ◦Ψ−1)%̃u(g ◦Ψ−1)

⇐⇒
∫
φ(u(f(Ψ−1(`))))dµ(`) ≥

∫
φ(u(g(Ψ−1(`))))dµ(`)

⇐⇒
∫
φ

(∫
u(f(ω))d`∞(ω)

)
dµ(`) ≥

∫
φ

(∫
u(g(ω))d`∞(ω)

)
dµ(`).
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Theorem 7 (Stanca [49, Theorem 5]) Consider a measurable space (Ξ,A) where
A is countably separated. Let %̃ be a relation on B0(Ξ, K) where K is an interval
that contains 0 and a positive number. Then %̃ satisfies P1-P6 and continuity if
and only if there exists a non-atomic measure µ on ∆ (Ξ) and u : K → R strictly
increasing and continuous such that

U(f) =
∫
u(f(ξ))µ(dξ),

represents %̃. Moreover, any other such representation with µ′ and u′ satisfies
µ = µ′ and u = au+ b for a > 0 and constant b.

It remains to extend the representation to the entire set F . By Proposition 1
in Ghirardato and Siniscalchi [28], Cauchy continuity ensures the existence of a
complete, monotonic and norm-continuous extension of % from F to F̂ .16 Denote
this extension by %̂. When restricted to the set of bounded ΣΨ-measurable
functions from Ω to X, it is represented by

V (f) =
∫

∆(S)
φ
(∫

S∞
u (f) d`∞

)
dµ (`) .

Given the extension %̂, we can invoke the equivalence of (vi) and (viii) in Theorem
5. By this equivalence, for any act f ∈ F , f ∼ x ∈ X if and only if fΨ∼̂xΨ = x
(fΨ is defined just before the statement of Theorem 5). Therefore, for any act
f ∈ F , f∼̂fΨ. Defining U (f) by U (f) = V

(
fΨ
)
, we see that U represents

% on F . Since, by construction of fΨ,
∫
S∞ u

(
fΨ
)
d`∞ =

∫
S∞ u (f) d`∞ for all

` ∈ ∆ (S),

U (f) = V
(
fΨ
)

=
∫

∆(S)
φ
(∫

S∞
u
(
fΨ
)
d`∞

)
dµ (`)

=
∫

∆(S)
φ
(∫

S∞
u (f) d`∞

)
dµ (`) for f ∈ F .

Finally, we need to show there arem,M > 0 such thatm |a− b| ≤ |φ (a)− φ (b)| ≤
M |a− b| for all a, b ∈ u (X). To prove it by contradiction, assume that this does
not hold. Because µ is non-atomic, suppµ is infinite and thus we can take dis-
tinct elements `n ∈ suppµ, for all integers n ≥ 1. Let An = ⋃

k≥n Ψ−1 (`k). Then,
An ↘ ∅ and for each n, (`n)∞ (An) = 1 > ε ≡ 1

2 . Fix x � x′ � x′′ and without
loss of generality, assume u (x) = 1 > u (x′) = ε

2 > u (x′′) = 0. Since An ↘ ∅,
Monotone Continuity of %∗ implies that there is n such that∫

φ
(
α ε

2 + (1− α)
∫
u (h) d`∞

)
dµ (`)

≥
∫
φ
(
α`∞ (An) + (1− α)

∫
u (h) d`∞

)
dµ (`) , (13)

for all α ∈ [0, 1] and h ∈ F . To pick a helpful h, note that ` 7→ `∞ (An) is
relatively weak* continuous and hence there is a relatively weak* open L ⊆ ∆ (S)

16Recall that F̂ is the set of all bounded acts, i.e. measurable functions f : Ω→ X such that
for some x, y ∈ X it holds that x % f(ω) % y for every ω ∈ Ω.
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containing `n such that `∞ (An) > ε for all ` ∈ L. Since `n ∈ suppµ, µ (L) > 0.
Take any a, b ∈ u (X) and define h by

u (h (ω)) = a if ω ∈ Ψ−1 (L) , and u (h (ω)) = b otherwise.

Then, the left-hand side of (13) reduces to

µ (L)φ
(
α ε

2 + (1− α) a
)

+ (1− µ (L))φ
(
α ε

2 + (1− α) b
)
,

and the right-hand side of (13) becomes∫
L
φ (α`∞ (An) + (1− α) a) dµ (`) +

∫
∆(S)\L

φ (α`∞ (An) + (1− α) b) dµ (`)

≥µ (L)φ (αε+ (1− α) a) + (1− µ (L))φ ((1− α) b) .

Therefore, (13) implies

(1− µ (L))
[
φ
(
α ε

2 + (1− α) b
)
− φ ((1− α) b)

]
≥µ (L)

[
φ (αε+ (1− α) a)− φ

(
α ε

2 + (1− α) a
)]

.

Then,

µ (L) ≤ (1− µ (L))
φ
(
α ε

2 + (1− α) b
)
− φ ((1− α) b)

φ (αε+ (1− α) a)− φ
(
α ε

2 + (1− α) a
) .

Since α, a and b were arbitrary, we have µ (L) ≤ (1− µ (L))K where

K = inf
{
φ (a′ + δ)− φ (a′)
φ (b′ + δ)− φ (b′) : a′, b′, a′ + δ, b′ + δ ∈ u (X) , 0 < δ ≤ ε

2

}
.

Recall that µ (L) > 0 and hence K > 0. Thus, to show a contradiction, it suffices
to show that K = 0. Let ρ (t, t′) = [φ (t′)− φ (t)] / (t′ − t). Assume the lower
inequality in (i) fails – that is, for any γ > 0, ρ (t, t′) < γ for some t < t′ ∈ u (X).
(The case where the upper inequality in (i) fails can be proved similarly.) Thus,
for any δ ∈ (0, t′ − t], there is t′′ ∈ u (X) such that ρ (t′′, t′′ + δ) < γ, because
otherwise ρ (t, t′) < γ can’t be true. Next take any r < r′ ∈ u (X) and let
ρ̄ = ρ (r, r′) > 0. By similar reasoning, for any δ ∈ (0, r′ − r] > 0, there is
r′′ ∈ u (X) such that ρ (r′′, r′′ + δ) ≥ ρ̄. Thus,

inf
{
ρ (t′′, t′′ + δ)
ρ (r′′, r′′ + δ) : t′′, r′′, t′′ + δ, r′′ + δ ∈ u (X) , 0 < δ ≤ min[ ε2 , r

′ − r, t′ − t]
}

= 0.

This infimum is at least K, thus K = 0, a contradiction. Because there are
m,M > 0 such that m |a− b| ≤ |φ (a)− φ (b)| ≤ M |a− b| for all a, b ∈ u (X),
we can apply Klibanoff, Mukerji and Seo [42, Theorem 4.3] to conclude that
R(%) = suppµ as desired.
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6.6 Proof of Theorem 4
We start by showing the necessity of Monotone Continuity of %∗ and Wakker’s
axioms on FΨ. Ghirardato and Siniscalchi [28] show necessity of Cauchy conti-
nuity. Necessity of the remaining axioms is straightforward.

Monotone Continuity of %∗: Case (i) can be treated in the same way as in
the proof of Theorem 3.

Turn to the case where (ii) holds, so that suppµ is finite. Again suppose
An ↘ ∅ and x � x′ � x′′. Since suppµ is finite, sup`∈suppµ `

∞ (An) → 0. Thus,
for ε > 0 satisfying u (x′) > εu (x) + (1− ε)u (x′′), there is n > 0 such that
`∞ (An) < ε for all ` ∈ suppµ. This implies

U (αx′ + (1− α)h)− U (αxAnx′′ + (1− α)h)

=
∫
φ
(
αu (x′) + (1− α)

∫
u (h) d`∞

)
− φ

(
α (`∞ (An)u (x) + (1− `∞ (An))u (x′′)) + (1− α)

∫
u (h) d`∞

)
dµ (`)

≥ 0.

for all α ∈ [0, 1], h ∈ F , and ` ∈ suppµ. Therefore, x′ %∗ xAnx′′ and Monotone
Continuity of %∗ holds.

The fact that Wakker’s axioms are satisfied on FΨ follows by the same rea-
soning as in the proof of Theorem 3. Note that Wakker’s pointwise monotonicity
axiom (see [50, Definition V.4.l]) is implied by our axiom 2.

Now turn to sufficiency. By the same reasoning as in the proof of Theorem
3, we can identify the set of acts FΨ with the set of “second-order” acts F∆(S) =
{f : ∆(S)→ X : |f(S)| <∞}. Indeed, for any f ∈ FΨ we can define the second
order act ` 7→ f ◦ Ψ−1 (`). Conversely, using the same reasoning as in the proof
of Theorem 3, for any a ∈ F∆(S) we can find f ∈ FΨ such that f ◦ Ψ−1 (`) = a.
It follows that we can define a preference relation on F∆(S) which satisfies the
axioms of Wakker [50]. By [50, Theorem V.6.1], % on FΨ can be represented by

V (f) =
∫

∆(S)
v
(
f ◦Ψ−1 (`)

)
dµ (`) ,

for a wc continuous v on X and a countably additive measure µ ∈ ∆ (∆ (S)).
Since % on X is vN-M, there is a mixture linear function u on X, representing
% on X. Thus, v = φ ◦ u for some strictly increasing function φ on u (X). By
Mixture Continuity of %, α 7→ u (αx+ (1− α) y) is continuous on [0, 1]. Since
v is wc continuous, φ is continuous. Moreover, u = φ−1 ◦ v is wc-continuous.
Non-triviality implies u is non-constant.

Note that, for f ∈ FΨ,

u
(
f ◦Ψ−1 (`)

)
=
∫

Ψ−1(`)
u (f) d`∞ =

∫
S∞

u (f) d`∞.

Thus,
V (f) =

∫
∆(S)

φ
(∫

S∞
u (f) d`∞

)
dµ (`) for f ∈ FΨ.
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It remains to extend to the entire F . This can be done in the same way as in
the proof of Theorem 3.

To complete sufficiency, we assume suppµ is infinite and show (i) in the
statement holds. The proof of Theorem 3 shows this is implied by Monotone
Continuity of %∗.

Uniqueness of u up to positive affine transformations is standard. Uniqueness
of µ and φ follows by the construction – expected utility preference on acts in
FΨ uniquely pin down µ and, when suppµ is non-singleton, make φ unique up to
positive affine transformations given a normalization of u. Finally, as either there
are m,M > 0 such that m |a− b| ≤ |φ (a)− φ (b)| ≤M |a− b| for all a, b ∈ u (X)
or suppµ is finite, we can again apply Klibanoff, Mukerji and Seo [42, Theorem
4.3] to conclude that R(%) = suppµ.

6.7 A version of Theorem 3 with a partially atomic mea-
sure

Define the set of atoms in ∆(S) as

A =
{
` ∈ ∆(S) : Ψ−1(`) is non-null

}
.

Consider the following weakening of P6:

Axiom 15 (Unlikely Atoms) There exist x, y ∈ X with x � y such that
yΨ−1(A)x % xΨ−1(A)y.

In words, this axiom restricts the likelihood of the set of atoms of long-run
frequencies.

Theorem 8 % satisfies axioms 1-7, P2-P4, Unlikely Atoms, Pointwise Conti-
nuity and Cauchy Continuity if and only if there is a non-constant vNM utility
function u : X → R, a strictly increasing continuous function φ : u(X) → R
such that there are m,M > 0 with m|x− y| ≤ |φ(x)−φ(y)| ≤M |x− y| for every
x, y ∈ u(X) and a Borel probability measure µ ∈ ∆(∆(S)) such that µ(A) ≤ 1

2
and

U(f) =
∫

∆(S)
φ

(∫
u(f)d`∞

)
µ(`),

represents %. Moreover, µ is unique, R(%) = suppµ, u is unique up to a positive
affine transformation, and, given a normalization of u, φ is unique up to positive
affine transformations.

6.7.1 Proof of Theorem 8

The proof proceeds as in Section 6.5. The only difference is that we invoke
Stanca [49, Theorem 6] instead of Stanca [49, Theorem 5] when deriving µ. It is
immediate that Unlikely Atoms is equivalent to the condition µ(A) ≤ 1

2 .
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6.8 Proof of Proposition 2
If either the support of µ is a singleton or φ is linear, (7) is (an increasing trans-
formation of) a subjective expected utility functional and therefore satisfies In-
dependence. For the other direction, argue by contradiction. Suppose that the
preference satisfies Independence, φ is not linear and the support of µ contains at
least two elements. Then there is a set E ⊂ ∆(S) such that µ(E) ∈ (0, 1). Inde-
pendence plus Axioms 1-7 implies that preferences have an SEU representation
with the same vNM utility function u as in the smooth ambiguity representation
(7). Denote the unique probability measure in this SEU representation by η. By
Event Symmetry and the de Finetti theorem, η is symmetric and therefore there
is a unique Borel probability measure λ ∈ ∆(∆(S)) such that,

η(A) =
∫

∆(S)
`∞(A)dλ(`)

for all measurable A ⊆ S∞. Thus∫
∆(S)

∫
S∞

u (f) d`∞(ω)dλ(`)

represents the same preference as (7). In particular, they represent the same
subjective expected utility preference when restricted to acts in FΨ. Therefore∫

∆(S)
u(f(Ψ−1(`))dλ(`)

and ∫
∆(S)

φ ◦ u(f(Ψ−1(`))dµ (`)

represent the same SEU preferences over acts in FΨ. Since µ(E) ∈ (0, 1) implies
that µ has non-singleton support, the uniqueness properties of an SEU repre-
sentation yield that φ ◦ u must be a positive affine transformation of u. This
contradicts the non-linearity of φ and completes the proof.
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