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Abstract. Traditionally, solver technology and the space/angle discretisations are inti-

mately linked; sweep-based (wavefront) methods are typically used with DG FEM in

space and Sn in angle to solve the Boltzmann-transport equation. These parallelise well

(scaling to >100,000 cores) on structured grids, however achieving good scaling on un-

structured grids is still an open problem. This talk will focus on alternate space/angle

discretisations and solver technology we have been developing within the Applied Mod-

elling and Computation Group (AMCG) at Imperial College. These approaches enables

the use of traditional angular discretisations like Pn, Sn, along with new approaches based

on linear and haar wavelets. We can use these angular discretisations to perform regular

and goal-based anisotropic adaptivity in angle, focusing resolution in important direc-

tions. We have also been developing multigrid solver technology which does not require

sweep-based methods, allowing the possibility of excellent scaling on unstructured grids.

1 Introduction

In this work, we focus on the steady-state, first-order integro-differential form of the BTE, given by

Ω·∇ψ(r,Ω, E)+Σtψ(r,Ω, E) =

∫
Ω′

∫
E′
Σs(r,Ω′ → Ω, E′ → E)ψ(r,Ω′, E′)dE′dΩ′+S e(r,Ω, E), (1)

where ψ(r,Ω, E) is the angular flux at spatial position r, in directionΩ and at energy E. The total and

scatter macroscopic cross sections are given by Σt and Σs, respectively, with S e the source term.

We provide a brief outline of our discretisation of (1), below, taken from [1]. In short, we use

a sub-grid scale FEM on an unstructured grid to provide a high-order, stable discretisation. For the

sub-grid scale formulation, we decompose the solution as ψ = φ + θ, where φ and θ are the solutions

on the “coarse” and “fine” scales, respectively. We approximate the solution on the coarse scale with a
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continuous finite element representation spanned by ηN basis functions, while on the fine scale we use

a discontinuous representation spanned by ηQ basis functions (like [2]). Doing this, we can recover

the system (
A B̃
C D̃

) (
Φ̃

Θ̃

)
=

(
SΦ
SΘ

)
, (2)

where SΦ and SΘ are the discretised source and Φ̃ and Θ̃ are vectors containing the coefficients of

the coarse and fine discretised solutions, φ̃i, j and θ̃i, j, respectively. This is a Schur complement of the

block D, or

(A − BD−1C)Φ̃ = SΦ − BD−1SΘ. (3)

Equation 3 has the same number of DOF as the continuous problem, but now involves the inversion

of D. As is typical in Schur complements, we apply approximations to D to increase its sparsity. The

inversion of D can be performed element by element (in practice, given the approximations applied,

D−1 is often small enough to be stored in memory). Solving (3) can therefore be considered equivalent

to solving the continuous problem modified by a local, element-based stabilisation term. The general

nature of this discretisation makes it easy to apply different (adaptive) angular discretisations.

2 Anisotropic angular adaptivity

Goal-based adaptive technology requires solving an adjoint problem, which allows the targeting of

resolution where necessary to reduce the error in a goal, like the average flux over a region/surface

(see [3–5], also see [6–9] for more examples of the use of angular adaptivity). Figures 1 and 2 show

the results of using goal-based angular adaptivity using linear wavelets to discretise in angle. Figure

1b shows that a given error in the average flux of the “green” region show in Figure 1a, is achieved

with around an order of magnitude less unknowns than a uniform S n calculation.

This is because the goal-based angular adaptivity has focused angular resolution only in the duct

region, as shown in Figure 2a. Figure 2b shows that this angular resolution is applied anisotropically

on the sphere.

3 Multigrid solver

Multigrid has been used with great success in radiation transport, applied to the spatial, angular and

energy domains, along with combinations of the three. This started with S n discretisations in angle,

with multigrid applied both in angle [10, 11] and space [12–15]. Spherical harmonics (Pn) have also

been used, again with multigrid performed in both space [16–19] and angle [20]. Stepping away from

purely spatial or angular multigrid, mixed space/angle [21, 22] and space/angle/energy [23] multigrid

schemes with S n have been explored recently. Multigrid in energy has also been used to improve the

parallel performance of DENOVO [24].

We have been developing matrix-free multigrid solvers for the adapted discretisations described

above. With this solver, we can precondition with spatial, angular or mixed space/angle multigrid.

This is with the goal of improving the scaling on unstructured grids, when compared with purely

sweep-based solvers. Table 1 shows that applying uniform angular resolution with level 4 Haar

wavelets (corresponds to 256 angles, see [5]), results in 80% strong scaling efficiency on 6144 cores.
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(a) Geometry of the 3D “duct” problem. Red region is

a source, with the “goal” set as the average flux over

the green region. The duct is a vacuum, surrounded

by a scattering region with the bulk a heavy absorber.

(b) Convergence of the error in the average flux in the goal region

using adaptive linear wavelets.

Figure 1: Problem geometry and convergence results for a 3D “duct” shielding problem [4, 5]

Cores Time(s) Elements DOFs DOFs/Core Scaling

72 7451.3 1,290,000 41,034,240 2,279,680 -

3072 197.6 1,290,000 41,034,240 53,430 88%

6144 109.7 1,290,000 41,034,240 26,715 79.6%

Table 1: Strong scaling with H44 (256 angles)
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(a) Number of angular unknowns
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(b) Position of wavelets at Node 2 shown in Figure

2a. Most of the wavelets are focused in the direc-

tion pointing down the duct region.

Figure 2: Anisotropic goal-based adaptivity with linear wavelets applied to 3D “duct” shielding prob-

lem [4, 5]
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