A NOTE ON *K*-FUNCTIONAL, MODULUS OF SMOOTHNESS, JACKSON THEOREM AND NIKOLSKII-STECHKIN INEQUALITY ON DAMEK-RICCI SPACES

VISHVESH KUMAR AND MICHAEL RUZHANSKY

ABSTRACT. In this paper we study approximation theorems for L^2 -space on Damek-Ricci spaces. We prove direct Jackson theorem of approximations for the modulus of smoothness defined using spherical mean operator on Damek-Ricci spaces. We also prove Nikolskii-Stechkin inequality. To prove these inequalities we use functions of bounded spectrum as a tool of approximation. Finally, as an application we prove equivalence of the K-functional and modulus of smoothness for Damek-Ricci spaces.

CONTENTS

1. Introduction	1
2. Essentials about harmonic NA groups	3
3. Main results	7
3.1. Direct Jackson theorem	8
3.2. Nikolskii-Stechkin inequality	11
3.3. Equivalence of the K -functional and modulus of smoothness	13
Acknowledgment	14
References	14

1. INTRODUCTION

The main purpose of this paper is to study the equivalence of the K-functional and the modulus of smoothness generated by the spherical mean operator on Damek-Ricci spaces. Damek-Ricci spaces, also known as Harmonic NA groups, are solvable (non-unimodular)

²⁰¹⁰ Mathematics Subject Classification. Primary 22E30, 41A17 Secondary 41A10.

Key words and phrases. K-functional, Damek-Ricci spaces, Harmonic NA groups, Fourier transform, Spherical mean operator, Modulus of smoothness, Direct Jackson theorem, Jacobi transform.

Lie groups. It is worth mentioning that Damek-Ricci spaces contain non-compact symmetric spaces of rank one as a very small subclass and, in general, Damek-Ricci spaces are not symmetric. Damek-Ricci spaces were introduced by Eva Damek and Fulvo Ricci in [14] and the geometry of these spaces was studied by Damek [13] and Cowling-Dooley-Koranyi [6]. Fourier analysis on these spaces has been developed and studied by many authors including Anker-Damek-Yacoub [1], Astengo-Comporesi-Di Blasio [2], Damek-Ricci [15], Di Blasio [16], Ray-Sarkar [40], Kumar-Ray-Sarkar [22]. One of the interesting features of these spaces is that the radial analysis on these spaces behaves similar to the hyperbolic spaces as observed in [1] and therefore it fits into the perfect setting of Jacobi analysis developed by Flensted-Jensen and Koornwinder [23, 19, 20].

The study of the K-functional is a classical and important topic in interpolation theory and approximation theory. Peetre the K-functional is useful for describing the interpolation spaces between two Banach spaces. First, let us recall the definition of the K-functional. For two Banach spaces A_1 and A_2 , the Peetre the K-functional is given by

$$K(f, \delta, A_1, A_2) := \inf\{\|f_1\|_{A_1} + \delta\|f_2\|_{A_2} : f = f_1 + f_2, f_1 \in A_1, f_2 \in A_2\}$$

where δ is a positive parameter. Now, the Peetre interpolation space $(A_1, A_2)_{\theta,r}$ for $0 < \theta < 1, 0 < r \leq \infty$, is defined by the norm

$$|f|_{(A_1,A_2)_{\theta,r}} := \begin{cases} \left(\int_0^\infty [\delta^{-\theta} K(f,\delta,A_1,A_2)]^r \frac{d\delta}{\delta}\right)^{\frac{1}{r}} & \text{if } 0 < r < \infty, \\ \sup_{\delta > 0} \delta^{-\theta} K(f,\delta,A_1,A_2) & \text{if } r = \infty. \end{cases}$$

The characterizations of the K-functional has several applications in approximation theory [12]. In [27], Peetre started characterization of the K-functional by proving an equivalence of it with the modulus of smoothness for L^p -spaces on \mathbb{R}^n which proved to be very helpful to study apporximation theory. Later, in [10] the authors showed its equivalence in terms of the rearrangement of derivatives for a pair of Sobolev spaces W_p^m and for the pair (L^p, W_p^m) . In particular, a characterization of the K-functional for $(L^2(\mathbb{R}), W_2^m(\mathbb{R}))$ can be found in the classical book of Berens and Buter [4]. The characterizations of the K-functional for the pair $(L^2(X), W_2^m(X))$ were explored by several authors for different choices of X. Classically, this equivalence was proved for $X = \mathbb{R}^n$ by Peetre [27] and after that it was proved for X = [a, b] by De Vore-Scherer [10], for weighted setting by Ditzian [11], for $X = \mathbb{R}^n$ with Dunkl translation by Belkina and Platonov [3], for rank one symmetric spaces [18], for Jacobi analysis in [17] and for compact symmetric spaces on [38]. In this paper our aim is to extend this characterization to more general setting of solvable (non unimodular) Lie groups. We consider the pair $(L^2(X), W_2^m(X))$ for X being the Damek-Ricci spaces. We will prove the equivalence of the K-functional and modulus of smoothness generated by spherical mean operator on Damek-Ricci space. Modulus of smoothness for Damek-Ricci space has been introduced in [22]. We prove our main result by establishing two classical results, namely, Direct Jackson theorem [26] and Nikolskii-Stechkin inequality [25] for Damek-Ricci spaces. Platonov studied Direct Jackson theorem and Nikolskii-Stechkin inequality for compact homogeneous manifolds and for noncompact symmetric spaces of rank one ([33, 35, 34, 38, 32, 39]).

2. Essentials about harmonic NA groups

For basics of harmonic NA groups and Fourier analysis on them, one can refer to seminal research papers [13, 14, 15, 16, 1, 2, 6, 40, 22, 21]. However, we give necessary definitions, notation and terminology that we shall use in this paper.

Let \mathfrak{n} be a two-step nilpotent Lie algebra, equipped with an inner product \langle , \rangle . Denote by \mathfrak{z} the center of \mathfrak{n} and by \mathfrak{v} the orthogonal complement of \mathfrak{z} in \mathfrak{n} with respect to the inner product of \mathfrak{n} . We assume that dimensions of \mathfrak{v} and \mathfrak{z} are m and l respectively as real vector spaces. The Lie algebra \mathfrak{n} is H-type algebra if for every $Z \in \mathfrak{z}$, the map $J_Z : \mathfrak{v} \to \mathfrak{v}$ defined by

$$\langle J_Z X, Y \rangle = \langle Z, [X, Y] \rangle, \quad X, Y \in \mathfrak{v}, \ Z \in \mathfrak{z},$$

satisfies the condition $J_Z^2 = -\|Z\|^2 I_{\mathfrak{v}}$, where $I_{\mathfrak{v}}$ is the identity operator on \mathfrak{v} . It follows that for $Z \in \mathfrak{z}$ with $\|Z\| = 1$ one has $J_Z^2 = -I_{\mathfrak{v}}$; that is, J_Z induced a complex structure on \mathfrak{v} and hence $m = \dim(\mathfrak{v})$ is always even. A connected and simply connected Lie group Nis called H-type if its Lie algebra is of H-type. The exponential map is a diffeomorphism as N is nilpotent, we can parametrize the element of $N = \exp \mathfrak{n}$ by (X, Z), for $X \in \mathfrak{v}$ and $Z \in \mathfrak{z}$. The multiplication on N follows from the Campbell-Baker-Hausdorff formula given by

$$(X,Z)(Z',Z') = (X + X', Z + Z' + \frac{1}{2}[X,X']).$$

The group $A = \mathbb{R}^*_+$ acts on N by nonisotropic dilations as follows: $(X, Y) \mapsto (a^{\frac{1}{2}}X, aZ)$. Let $S = N \ltimes A$ be the semidirect product of N with A under the aforementioned action. The group multiplication on S is defined by

$$(X, Z, a)(X', Z', a') = (X + a^{\frac{1}{2}}X', Z + aZ' + \frac{1}{2}a^{\frac{1}{2}}[X, X'], aa').$$

Then S is a solvable (connected and simply connected) Lie group with Lie algebra $\mathfrak{s} = \mathfrak{z} \oplus \mathfrak{v} \oplus \mathbb{R}$ and Lie bracket

$$[(X, Z, \ell), (X', Z', \ell')] = (\frac{1}{2}\ell X' - \frac{1}{2}\ell' X, \ell Z' - \ell' Z + [X, X]', 0)$$

The group S is equipped with the left-invariant Riemannian metric induced by

$$\langle (X, Z, \ell), (X', Z', \ell') \rangle = \langle X, X' \rangle + \langle Z, Z' \rangle + \ell \ell'$$

on \mathfrak{s} . The homogeneous dimension of N is equal to $\frac{m}{2} + l$ and will be denoted by Q. At times, we also use symbol ρ for $\frac{Q}{2}$. Hence dim $(\mathfrak{s}) = m + l + 1$, denoted by d. The associated left Haar measure on S is given by $a^{-Q-1}dXdZda$, where dX, dZ and da are the Lebesgue measures on $\mathfrak{v},\mathfrak{z}$ and \mathbb{R}^*_+ respectively. The element of A will be identified with $a_t = e^t$, $t \in \mathbb{R}$. The group S can be realized as the unit ball $B(\mathfrak{s})$ in \mathfrak{s} using the Cayley transform $C: S \to B(\mathfrak{s})$ (see [1]).

To define (Helgason) Fourier transform on S we need to introduce the notion of Poisson kernel [2]. The Poisson Kernel $\mathcal{P}: S \times N \to \mathbb{R}$ is defined by $\mathcal{P}(na_t, n') = P_{a_t}(n'^{-1}n)$, where

$$P_{a_t}(n) = P_{a_t}(X, Z) = Ca_t^Q \left(\left(a_t + \frac{|X|^2}{4} \right)^2 + |Z|^2 \right)^{-Q}, \quad n = (X, Z) \in N.$$

The value of C is suitably adjusted so that $\int_N P_a(n)dn = 1$ and $P_1(n) \leq 1$. The Poisson kernel satisfies several useful properties (see [22, 40, 2]), we list here a few of them. For $\lambda \in \mathbb{C}$, the complex power of the Poisson kernel is defined as

$$\mathcal{P}_{\lambda}(x,n) = \mathcal{P}(x,n)^{\frac{1}{2} - \frac{i\lambda}{Q}}.$$

It is known ([40, 2]) that for each fixed $x \in S$, $\mathcal{P}_{\lambda}(x, \cdot) \in L^{p}(N)$ for $1 \leq p \leq \infty$ if $\lambda = i\gamma_{p}\rho$, where $\gamma_{p} = \frac{2}{p} - 1$. A very special feature of $\mathcal{P}_{\lambda}(x, n)$ is that it is constant on the hypersurfaces $H_{n,a_{t}} = \{n\sigma(a_{t}n') : n' \in N\}$. Here σ is the geodesic inversion on S, that is an involutive, measure-preserving, diffeomorphism which can be explicitly given by [6]:

$$\sigma(X, Z, a_t) = \left(\left(e^t + \frac{|V|^2}{4} \right)^2 + |Z|^2 \right)^{-1} \left(\left(- \left(e^t + \frac{|X|^2}{4} \right) + J_Z \right) X, -Z, a_t \right).$$

Let Δ_S be the Laplace-Beltrami operator on S. Then for every fixed $n \in N$, $\mathcal{P}_{\lambda}(x, n)$ is an eigenfunction of Δ_S with eigenvalue $-(\lambda^2 + \frac{Q^2}{4})$ (see [2]). For a measurable function f on S, the (Helgason) Fourier transform is defined as

$$\widetilde{f}(\lambda, n) = \int_{S} f(x) \mathcal{P}_{\lambda}(x, n) dx$$

whenever the integral converge. For $f \in C_c^{\infty}(S)$, the following inversion formula holds ([2, Theorem 4.4]):

$$f(x) = C \int_{\mathbb{R}} \int_{N} \widetilde{f}(\lambda, n) \,\mathcal{P}_{-\lambda}(\lambda, n) |c(\lambda)|^{-2} \,d\lambda dn,$$

where $C = \frac{c_{m,l}}{2\pi}$. The authors also proved that the (Helgason) Fourier transform extends to an isometry from $L^2(S)$ onto the space $L^2(\mathbb{R}_+ \times N, C|c(\lambda)|^{-2}d\lambda dn)$. In fact they have the precise value of constants, we refer the reader to [2]. The following estimates for the function $|c(\lambda)|$ holds: $c_1|\lambda|^{d-1} \leq |c(\lambda)|^{-2} \leq (1+|\lambda|)^{d-1}$ for all $\lambda \in \mathbb{R}$ (e. g. see [40]). In [40, Theorem 4.6], the authors proved the following version of the Hausdorff-Young inequality: For $1 \leq p \leq 2$ we have

$$\left(\int_{\mathbb{R}}\int_{N}|\widetilde{f}(\lambda+i\gamma_{p'}\rho,n)|^{p'}dn\,|c(\lambda)|^{-2}d\lambda\right)^{\frac{1}{p'}} \leq C_{p}\|f\|_{p}.$$
(1)

A function f on S is called *radial* if for all $x, y \in S$, f(x) = f(y) if $\mu(x, e) = \mu(y, e)$, where μ is the metric induced by the canonical left invariant Riemannian structure on Sand e is the identity element of S. Note that radial functions on S can be identified with the functions f = f(r) of the geodesic distance $r = \mu(x, e) \in [0, \infty)$ to the identity. It is clear that $\mu(a_t, e) = |t|$ for $t \in \mathbb{R}$. At times, for any radial function f we use the notation $f(a_t) = f(t)$. For any function space $\mathcal{F}(S)$ on S, the subspace of radial functions will be denoted by $\mathcal{F}(S)^{\#}$. The elementary spherical function $\phi_{\lambda}(x)$ is defined by

$$\phi_{\lambda}(x) := \int_{N} \mathcal{P}_{\lambda}(x, n) \mathcal{P}_{-\lambda}(x, n) \, dn.$$

It follows ([1, 2]) that ϕ_{λ} is a radial eigenfunction of the Laplace-Beltrami operator Δ_S of S with eigenvalue $-(\lambda^2 + \frac{Q^2}{4})$ such that $\phi_{\lambda}(x) = \phi_{-\lambda}(x)$, $\phi_{\lambda}(x) = \phi_{\lambda}(x^{-1})$ and $\phi_{\lambda}(e) = 1$. It is also evident from the fact that, for every fixed $n \in N$, $\mathcal{P}_{\lambda}(x, n)$ is an eigenfunction of Δ_S with eigenvalue $-(\lambda^2 + \frac{Q^2}{4})$, that, for suitable function f on S, we have

$$\widetilde{\Delta_S^l}f(\lambda,n) = -(\lambda^2 + \frac{Q^2}{4})^l \widetilde{f}(\lambda,n)$$

for every natural number l (see [2, p. 416]). In [1], the authors showed that the radial part (in geodesic polar coordinates) of the Laplace-Beltrami operator Δ_S given by

$$\operatorname{rad}\Delta_{S} = \frac{\partial^{2}}{\partial t} + \left\{\frac{m+l}{2}\operatorname{coth}\frac{t}{2} + \frac{k}{2}\operatorname{tanh}\frac{t}{2}\right\}\frac{\partial}{\partial t},$$

is (by substituting $r = \frac{t}{2}$) equal to $\frac{1}{4}\mathcal{L}_{\alpha,\beta}$ with indices $\alpha = \frac{m+l+1}{2}$ and $\beta = \frac{l-1}{2}$, where $\mathcal{L}_{\alpha,\beta}$ is the Jacobi operator studied by Koornwinder [23] in detail. It is worth noting that we are in the ideal situation of Jacobi analysis with $\alpha > \beta > \frac{-1}{2}$. In fact, the Jacobi functions $\phi_{\lambda}^{\alpha,\beta}$ and elementary spherical functions ϕ_{λ} are related as ([1]): $\phi_{\lambda}(t) = \phi_{2\lambda}^{\alpha,\beta}(\frac{t}{2})$. As consequence of this relation, the following estimates for the elementary spherical functions hold true (see [36]).

Lemma 2.1. The following inequalities are valid for spherical functions $\phi_{\lambda}(t)$ $(t, \lambda \in \mathbb{R}_+)$:

- $|\phi_{\lambda}(t)| \leq 1.$
- $|1 \phi_{\lambda}(t)| \le \frac{t^2}{2}(\lambda^2 + \frac{Q^2}{4}).$
- There exists a constant c > 0, depending only on λ , such that $|1 \phi_{\lambda}(t)| \ge c$ for $\lambda t \ge 1$.

Let σ_t be the normalized surface measure of the geodesic sphere of radius t. Then σ_t is a nonnegative radial measure. The spherical mean operator M_t on a suitable function space on S is defined by $M_t f := f * \sigma_t$. It can be noted that $M_t f(x) = \mathcal{R}(f^x)(t)$, where f^x denotes the right translation of function f by x and \mathcal{R} is the radialization operator defined, for suitable function f, by

$$\mathcal{R}f(x) = \int_{S_{\nu}} f(y) \, d\sigma_{\nu}(y),$$

where $\nu = r(x) = \mu(C(x), 0)$, here C is the Cayley transform, and $d\sigma_{\nu}$ is the normalized surface measure induced by the left invariant Riemannian metric on the geodesic sphere $S_{\nu} = \{y \in S : \mu(y, e) = \nu\}$. It is easy to see that $\mathcal{R}f$ is a radial function and for any radial function f, $\mathcal{R}f = f$. Consequently, for a radial function f, $M_t f$ is the usual translation of f by t. In [22], the authors proved that, for a suitable function f on S, $\widetilde{M_t}f(\lambda, n) = \widetilde{f}(\lambda, n)\phi_{\lambda}(t)$ whenever both make sense. Also, $M_t f$ converges to f as $t \to 0$, i.e., $\mu(a_t, e) \to 0$. It is also known that M_t is a bounded operator on $L^2(S)$ with operator norm equal to $\phi_0(a_t)$. In particular, for $f \in L^2(S)$, we have $||M_t f||_2 \leq \phi_0(a_t) ||f||_2$. The following Lemmata are taken from [5].

Lemma 2.2. Let $\alpha > \frac{-1}{2}$. Then there are positive constant $c_{1,\alpha}$ and $c_{2,\alpha}$ such that

$$c_{1,\alpha} \min\{1, (\lambda t)^2\} \le 1 - j_{\alpha}(\lambda t) \le c_{2,\alpha} \min\{1, (\lambda t)^2\},\$$

where j_{α} is the usual Bessel function of first kind normalized by $j_{\alpha}(0) = 1$.

Lemma 2.3. Let $\alpha > \frac{-1}{2}$ and $t_0 > 0$. Then, for all $\lambda \in \mathbb{R}$, there exist a constant $c_1 > 0$ such that for all $0 \le t \le t_0$, the function ϕ_{λ} satisfies

$$|1 - \phi_{\lambda}(t)| \ge c_1 |1 - j_{\alpha}(\lambda t)|,$$

where j_{α} is the usual Bessel function of first kind normalized by $j_{\alpha}(0) = 1$.

3. Main results

In this section we present our main results. Throughout this section, we denote a Damek-Ricci space by S. We denote by $L^2(S)$ the Hilbert space of all square integrable function on S with respect to Haar measure λ on S. We begin this section by recalling the definition of Sobolev spaces on Damek-Ricci spaces.

The Sobolev space $W_2^m(S)$ on Damek-Ricci space S is defined by

$$W_2^m(S) := \{ f \in L^2(S) : \Delta_S^l f \in L^2(S), \quad l = 1, 2, \dots, m \}.$$

The space $W_2^m(S)$ can be equipped with seminorm $\|f\|_{W_2^m(S)} := \|\Delta_S^m f\|_2$ and with the norm $\|f\|_{W_2^m(S)} = \|f\|_2 + \|\Delta_S^m f\|_2$.

The modulus of smoothness (continuity) Ω_k is defined by using the spherical mean operator M_t as follows:

$$\Omega_k(f,\delta)_2 := \sup_{0 < t \le \delta} \|\Delta_t^k f\|_2,$$

where $\Delta_t^k f = (I - M_t)^k f$. The modulus of smoothness $\Omega_k(f, \delta)_2$ satisfies the following properties:

(i) The function $\delta \mapsto \Omega_k(f, \delta)_2$ is a decreasing function and satisfies

$$\Omega_k(f \pm g, \delta)_2 \le \Omega_k(f, \delta)_2 + \Omega_k(g, \delta)_2$$

for all $f, g \in L^2(S)$.

(ii) $\Omega_k(f,\delta)_2 \le (\phi_0(a_t)+1)^k ||f||_2$ and $\Omega_k(f,\delta)_2 \le (1+\phi_0(a_t))^{k-l} \Omega_l(f,\delta)_2$ for $l \le k$.

(iii) If $f \in W_2^m(S)$ then we have $\Omega_k(f, \delta)_2 \le \delta^{2k} \|\Delta_S^k f\|_2$, $k \le m$.

The proof of (i) and (ii) follows from the definition of modulus of continuity and norm estimate for M_t on $L^2(S)$. To show (iii), we note, by Plancherel formula, that,

$$\|\Delta_t^k f\|_2^2 = \int_0^\infty \int_N |\widetilde{(\Delta_t^k f)}(\lambda, n)|^2 |c(\lambda)|^{-2} d\lambda \, dn.$$

Since $\widetilde{(\Delta_t^k f)}(\lambda, n) = |1 - \phi_\lambda(a_t)|^k \widetilde{f}(\lambda, n)$ we have, by Lemma 2.1, that $\|\Delta_t^k f\|_2^2 = \int_0^\infty \int_N |1 - \phi_\lambda(a_t)|^{2k} |\widetilde{f}(\lambda, n)| |c(\lambda)|^{-2} d\lambda \, dn$ $\leq t^{4k} \int_0^\infty \int_N (\lambda^2 + \frac{Q^2}{4})^{2k} |\widetilde{f}(\lambda, n)| |c(\lambda)|^{-2} d\lambda \, dn$ $= t^{4k} \int_0^\infty \int_N |\widetilde{\Delta_S^k f}(\lambda, n)|^2 |c(\lambda)|^{-2} d\lambda \, dn = t^{4k} \|\Delta_S^k f\|_{L^2(S)}^2.$

3.1. Direct Jackson theorem. This subsection is devoted for proving the Direct Jackson theorem of approximations theory for Damek-Ricci spaces. For the approximation we will use the functions of bounded spectrum. The functions of bounded spectrum were used by Platonov [39, 32, 33, 34] to prove Jackson type direct theorem for Jacobi transform and for symmetric spaces. Such kind of functions also appear in the work of Pesenson [31] under the name of Paley-Wiener functions for studying approximation theory on homogeneous manifolds.

A function $f \in L^2(S)$ is called a function with bounded spectrum (or a Paley-Wiener function) of order $\nu > 0$ if

$$\mathcal{F}f(\lambda, n) = 0 \text{ for } |\lambda| > \nu.$$

Denote the space of all function on S with bounded spectrum of order ν by $BS_{\nu}(S)$. The best approximation of a function $f \in L^2(S)$ by the functions in $BS_{\nu}(S)$ is defined by

$$E_{\nu}(f) := \inf_{g \in BV_{\nu}(S)} \|f - g\|_{L^{2}(S)}.$$

Lemma 3.1. Let $\nu > 0$. For any function $f \in L^2(S)$, the function $P_{\nu}(f)$ defined by

$$P_{\nu}(f)(x) := \mathcal{F}^{-1}(\mathcal{F}f(\lambda, n)\chi_{\nu}(\lambda)),$$

where χ_{ν} is a function defined by $\chi_{\nu}(\lambda) = 1$ for $|\lambda| \leq \nu$ and 0 otherwise, satisfies the following properties:

- (i) For every $f \in L^2(S)$, $P_{\nu}(f) \in BS_{\nu}(S)$.
- (ii) For every function $f \in BS_{\nu}(S), P_{\nu}(f) = f$.
- (iii) If $f \in L^2(S)$ then $\|P_{\nu}(f)\|_{L^2(S)} \le \|f\|_{L^2(S)}$ and $\|f P_{\nu}(f)\|_{L^2(S)} \le 4E_{\nu}(f)$.

Proof. (i) This is trivial to see. Indeed, by definition we have

$$\mathcal{F}P_{\nu}(f)(x) = \mathcal{F}f(\lambda, n)\chi_{\nu}(\lambda) = 0$$

for $|\lambda| > \nu$. Therefore, $P_{\nu}(f) \in BS_{\nu}(S)$.

(ii) Let $f \in BS_{\nu}(S)$. Then $\mathcal{F}f(\lambda, n) = 0$ for $|\lambda| > \nu$ and $\mathcal{F}P_{\nu}(f)(\lambda, n) = \mathcal{F}f(\lambda, n)$ for $|\lambda| \le \nu$. So, by using the inversion formula we have

$$P_{\nu}(f)(x) = C \int_{\mathbb{R}} \int_{N} \mathcal{F}P_{\nu}(f)(\lambda, n) |c(\lambda)|^{-2} d\lambda \, dn$$
$$= C \int_{|\lambda| \le \nu} \int_{N} \mathcal{F}f(\lambda, n) |c(\lambda)|^{-2} d\lambda \, dn$$
$$= C \int_{\mathbb{R}} \int_{N} \mathcal{F}f(\lambda, n) |c(\lambda)|^{-2} d\lambda \, dn = f(x)$$

(iii) Take $f \in L^2(S)$. By Plancherel formula, we get

$$\begin{split} |P_{\nu}(f)||_{L^{2}(S)}^{2} &= \int_{0}^{\infty} \int_{N} |\mathcal{F}P_{\nu}(f)(\lambda,n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn \\ &= \int_{0}^{\nu} \int_{N} |\mathcal{F}f(\lambda,n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn \\ &\leq \int_{0}^{\infty} \int_{N} |\mathcal{F}f(\lambda,n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn = \|f\|_{L^{2}(S)}^{2}. \end{split}$$

Also, for proving second inequality take any $g \in BS_{\nu}(S)$ such that

$$||f - g|| \le 2E_{\nu}(f)_2.$$

Now, by using the fact that $P_{\nu}(g) = g$ we get

$$\|f - P_{\nu}(f)\|_{L^{2}(S)} = \|f - g - P_{\nu}(g - f)\|_{L^{2}(S)}$$
$$\leq \|f - g\|_{L^{2}(S)} + \|f - g\|_{L^{2}(S)} \leq 4E_{\nu}(f)_{2}.$$

The following two theorems are analogues of Jackson's direct theorem in classical approximation theorem for Damek-Ricci spaces.

Theorem 3.2. If $f \in L^2(S)$ then for every $\nu > 0$ we have

$$E_{\nu}(f) \le c_k \ \Omega_k \left(f, \frac{1}{\nu}\right)_2, \quad k \in \mathbb{N},$$
(2)

where c_k is a constant.

Proof. The Plancherel formula gives that

$$\begin{split} \|f - P_{\nu}(f)\|_{L^{2}(S)}^{2} &= \int_{0}^{\infty} \int_{N} |\mathcal{F}(f - P_{\nu}(f))(\lambda, n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn \\ &= \int_{0}^{\infty} \int_{N} |1 - \chi_{\nu}(\lambda)|^{2} |\mathcal{F}(f(\lambda, n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn \\ &= \int_{\lambda \geq \nu} \int_{N} |\mathcal{F}(f(\lambda, n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn. \end{split}$$

By Lemma 2.1 we have $|1 - \phi_{\lambda}(\frac{1}{\nu})| \ge c$ for $\lambda \ge \nu$. Therefore, by Plancherel formula, we get

$$\begin{split} \|f - P_{\nu}(f)\|_{L^{2}(S)}^{2} &\leq c^{-2k} \int_{\lambda \geq \nu} \int_{N} |1 - \phi_{\lambda}(1/\nu)|^{2k} |\mathcal{F}f(\lambda, n)|^{2} |c(\lambda)|^{-2} \, d\lambda \, dn \\ &= c^{-2k} \int_{\lambda \geq \nu} \int_{N} |\mathcal{F}((I - M_{1/\nu})^{k} f)(\lambda, n)|^{2} |c(\lambda)|^{-2} \, d\lambda \, dn \\ &\leq c^{-2k} \int_{0}^{\infty} \int_{N} |\mathcal{F}((I - M_{1/\nu})^{k} f)(\lambda, n)|^{2} |c(\lambda)|^{-2} \, d\lambda \, dn \\ &= c^{-2k} \|(I - M_{1/\nu})^{k} f\|_{L^{2}(S)}^{2}. \end{split}$$

Therefore, as $P_{\nu}(f) \in BS_{\nu}(S)$, we get

$$E_{\nu}(f) = \inf_{g \in \mathrm{BV}_{\nu}(S)} \|f - g\|_{L^{2}(S)} \le \|f - P_{\nu}(f)\|_{L^{2}(S)} \le c^{-k} \|(I - M_{1/\nu})^{k} f\|_{L^{2}(S)}$$
$$= c^{-k} \|\Delta_{1/\nu}^{k} f\|_{L^{2}(S)} \le c_{k} \Omega_{k} \left(f, \frac{1}{\nu}\right)_{2},$$

proving (2) and hence the theorem is proved.

Theorem 3.3. Let $r \in \mathbb{N}$ and $\nu > 0$. Assume that $f, \Delta_S f, \Delta^2 f, \dots, \Delta^r f$ are in $L^2(S)$. Then

$$E_{\nu}(f) \le c'_k \ \nu^{-2r} \Omega_k \left(\Delta_S^r f, \frac{1}{\nu} \right)_2, \quad k \in \mathbb{N},$$
(3)

where c'_k is a constant.

Proof. Let $r \in \mathbb{N}$ and t > 0. Suppose that $f, \Delta_S f, \Delta_S^2 f, \ldots, \Delta_S^r f$ are in $L^2(S)$. Then Lemma 2.1 and Plancherel formula give that

$$\begin{aligned} \|(I - M_t)f\|_{L^2(S)}^2 &= \int_0^\infty \int_N |\mathcal{F}((I - M_t)f)(\lambda, n)|^2 |c(\lambda)|^{-2} \, d\lambda \, dn \\ &= \int_0^\infty \int_N |1 - \phi_\lambda(a_t)|^2 |\mathcal{F}f(\lambda, n)|^2 |c(\lambda)|^{-2} \, d\lambda \, dn \\ &\leq \frac{t^4}{4} \int_0^\infty \int_N (\lambda^2 + \frac{Q^2}{4})^2 |\mathcal{F}f(\lambda, n)|^2 |c(\lambda)|^{-2} \, d\lambda \, dn \\ &= \frac{t^4}{4} \int_0^\infty \int_N |\mathcal{F}(\Delta_S f)(\lambda, n)|^2 |c(\lambda)|^{-2} \, d\lambda \, dn = \frac{t^4}{4} \|\Delta_S f\|_{L^2(S)}^2. \end{aligned}$$

Therefore,

$$\|(I - M_t)f\|_{L^2(S)} \le \frac{t^2}{2} \|\Delta_S f\|_{L^2(S)}.$$
(4)

By proceeding similar to the proof of Theorem 3.2 we get

$$\|f - P_{\nu}(f)\|_{L^{2}(S)} \le c^{-(k+r)} \|(I - M_{1/\nu})^{k+r} f\|_{L^{2}(S)}.$$
(5)

By applying inequality (4) on the right hand side of (5) r-times we obtain that

$$\|f - P_{\nu}(f)\|_{L^{2}(S)} \leq c^{-(k+r)} 2^{-r} \nu^{-2r} \|(I - M_{1/\nu})^{k} \Delta_{S}^{r} f\|_{L^{2}(S)}$$
$$= c_{k}' \nu^{-2r} \Omega_{k} \left(\Delta_{S}^{r} f, \frac{1}{\nu}\right)_{2},$$

where $c'_k = c^{-(k+r)}2^{-r}$. Now, the theorem follows from the definition of $E_{\nu}(f)$ by noting that

$$E_{\nu}(f) = \inf_{g \in \mathrm{BV}_{\nu}(S)} \|f - g\|_{L^{2}(S)} \le \|f - P_{\nu}(f)\|_{L^{2}(S)} \le c_{k}' \nu^{-2r} \Omega_{k} \left(\Delta_{S}^{r} f, \frac{1}{\nu}\right)_{2},$$

completing the proof.

3.2. Nikolskii-Stechkin inequality. In this subsection, we will prove Nikolskii-Stechkin inequality [25] for Damek-Ricci spaces.

Theorem 3.4. For any $f \in L^2(S)$ and $\nu > 0$ we have

$$\|\Delta_{S}^{k}(P_{\nu}(f))\|_{L^{2}(S)} \leq c_{3} \nu^{2k} \|\Delta_{1/\nu}^{k} f\|_{L^{2}(S)}, \quad k \in \mathbb{N}.$$
(6)

11

Proof. First note that

$$\mathcal{F}(\Delta_S^k P_\nu(f))(\lambda, n) = (-1)^k \left(\lambda^2 + \frac{Q^2}{4}\right)^k \mathcal{F}(P_\nu(f))(\lambda, n).$$

Using Plancherel formula we have

$$\begin{split} \|\Delta_{S}^{k}(P_{\nu}(f))\|_{L^{2}(S)}^{2} &= \int_{0}^{\infty} \int_{N} |\mathcal{F}(\Delta_{S}^{k}P_{\nu}(f))(\lambda,n)|^{2}|c(\lambda)|^{-2} d\lambda \, dn \\ &= \int_{|\lambda| \leq \nu} \int_{N} \left(\lambda^{2} + Q^{2}/4\right)^{2k} |\mathcal{F}f(\lambda,n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn \\ &= \int_{0}^{\infty} \int_{N} \frac{(\lambda^{2} + Q^{2}/4)^{2k} \chi_{\nu}(\lambda)}{|1 - \phi_{\lambda}(1/\nu)|^{2k}} |1 - \phi_{\lambda}(1/\nu)|^{2k} |\mathcal{F}f(\lambda,n)|^{2} |c(\lambda)|^{-2} d\lambda \, dn. \end{split}$$

Now note that by Lemma 2.3 we have

$$\sup_{\lambda \in \mathbb{R}} \frac{(\lambda^2 + Q^2/4)^{2k} \chi_{\nu}(\lambda)}{|1 - \phi_{\lambda}(1/\nu)|^{2k}} = \nu^{4k} \sup_{|\lambda| \le \nu} \frac{((\lambda^2 + Q^2/4)/\nu^2)^{2k}}{|1 - \phi_{\lambda}(1/\nu)|^{2k}}$$
$$\leq \frac{\nu^{4k}}{c_1} \sup_{|\lambda| \le \nu} \frac{((\lambda^2 + Q^2/4)/\nu^2)^{2k}}{|1 - j_{\alpha}(\lambda/\nu)|^{2k}}$$
$$= \frac{\nu^{4k}}{c_1} \sup_{|t| \le 1} \frac{(t^2 + Q^2/4\nu^2)^{2k}}{|1 - j_{\alpha}(t)|^{2k}} = \frac{C'}{c_1} \nu^{4k}$$

where $C' = \sup_{|t| \le 1} \frac{\left(t^2 + Q^2/4\nu^2\right)^{2k}}{|1 - j_{\alpha}(t)|^{2k}}.$

Therefore, we get

$$\begin{split} \|\Delta_{S}^{k}(P_{\nu}(f))\|_{L^{2}(S)}^{2} &\leq \frac{C'}{c_{1}}\nu^{4k}\int_{0}^{\infty}\int_{N}|1-\phi_{\lambda}(1/\nu)|^{2k}|\mathcal{F}f(\lambda,n)|^{2}|c(\lambda)|^{-2}\,d\lambda\,dn\\ &= \frac{C'}{c_{1}}\nu^{4k}\int_{0}^{\infty}\int_{N}|\mathcal{F}(\Delta_{1/\nu}^{k}f)(\lambda,n)|^{2}|c(\lambda)|^{-2}\,d\lambda\,dn\\ &= \frac{C'}{c_{1}}\nu^{4k}\|\Delta_{1/\nu}^{k}f\|_{L^{2}(S)}^{2}. \end{split}$$

Hence, $\|\Delta_S^k(P_\nu(f))\|_{L^2(S)} \le c_3 \nu^{2k} \|\Delta_{1/\nu}^k f\|_{L^2(S)}$.

As noted in Lemma 3.1 that $P_{\nu}(f) = f$ for any $f \in BS_{\nu}(S)$, the following corollary is immediate.

Corollary 3.5. For $\nu > 0$, $k \in \mathbb{N}$ and $f \in BV_{\nu}(S)$ we have the following inequality:

$$\|\Delta_{S}^{k}f\|_{L^{2}(S)} \leq c_{3} \nu^{2k} \|\Delta_{1/\nu}^{k}f\|_{L^{2}(S)}.$$

The following corollary follows from the definition of modulus of smoothness.

Corollary 3.6. For $\nu > 0$, $k \in \mathbb{N}$ and $f \in L^2(S)$ we have the following inequality:

$$\|\Delta_{S}^{k}f\|_{L^{2}(S)} \leq c_{3} \nu^{2k} \Omega_{k}\left(f, \frac{1}{\nu}\right)_{2}$$

3.3. Equivalence of the K-functional and modulus of smoothness. Our main objective will be proved here. We will prove in the following theorem that the K-functional for the pair $(L^2(S), W_2^m(S))$ and modulus of smoothness generated by spherical mean operators are equivalent. The Peetre the K-functional $K(f, \delta, L^2(S), W_2^m(S))$ for the pair $(L^2(S), W_2^m(S))$ is defined by

$$K_m(f,\delta) := \inf\{\|f - g\|_{L^2(S)} + \delta \|\Delta_S^m g\|_{L^2(S)} : f \in L^2(S) \ g \in W_2^m(S)\}.$$

The next theorem presents the equivalence of the K-functional $K_m(f, \delta^{2m})$ and the modulus of smoothness $\Omega_m(f, \delta)_2$ for $f \in L^2(S)$ and $\delta > 0$.

Theorem 3.7. For $f \in L^2(S)$ and $\delta > 0$ we have

$$\Omega_m(f,\delta)_2 \asymp K_m(f,\delta^{2m}). \tag{7}$$

In other words, there exist $c_1 > 0$, $c_2 > 0$ such that for all $f \in L^2(S)$ and $\delta > 0$ we have

$$c_1 \Omega_m(f,\delta)_2 \le K_m(f,\delta^{2m}) \le c_2 \Omega_m(f,\delta)_2.$$

Proof. Take $g \in W_2^m(S)$. Now by using the properties of modulus of continuity $\Omega_m(f, \delta)_2$ we get

$$\Omega_m(f,\delta)_2 \le \Omega_m(f-g,\delta)_2 + \Omega_m(g,\delta)_2$$

$$\le (\phi_0(a_t) + 1)^m \|f-g\|_{L^2(S)} + \delta^{2m} \|\Delta_S^m g\|_{L^2(S)}$$

$$\le \tilde{c}(\|f-g\|_{L^2(S)} + \delta^{2m} \|\Delta_S^m g\|_{L^2(S)}),$$

where $\tilde{c} = (\phi_0(a_t) + 1)^m$. By taking the infimum over all $g \in W_2^m(S)$, we obtain

$$\Omega_m(f,\delta)_2 \lesssim K_m(f,\delta^{2m}).$$

Now, to prove the other side we take $g = P_{\nu}(f)$ for $\nu > 0$, then, from the definition of $K_m(f, \delta^{2m})$, it follows that

$$K_m(f,\delta^{2m}) \le \|f - P_\nu(f)\|_{L^2(S)} + \delta^{2m} \|\Delta_S^m(P_\nu(f))\|_{L^2(S)}.$$
(8)

Now, from Lemma 3.1 (iii), (2) and Corollary 3.6 we get that

$$K_m(f,\delta^{2m}) \le 4E_v(f) + c_3\delta^{2m}\nu^{2m}\Omega_m\left(f,\frac{1}{\nu}\right)_2$$

$$\le 4c_2\Omega_m\left(f,\frac{1}{\nu}\right)_2 + c_3(\delta\nu)^{2m}\Omega_m\left(f,\frac{1}{\nu}\right)_2 \le c_4(1+(\delta\nu)^{2m})\Omega_m\left(f,\frac{1}{\nu}\right)_2.$$

By taking $\nu = \frac{1}{\delta}$ we get

$$K_m(f,\delta^{2m}) \lesssim \Omega_m(f,\delta)_2$$

proving (7).

Acknowledgment

VK and MR are supported by FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations. MR is also supported by the Leverhulme Grant RPG-2017-151 and by EPSRC Grant EP/R003025/1.

References

- Anker, J-P., Damek, E., Yacoub, C. Spherical analysis on harmonic AN groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 4, 643-679.
- Astengo, F., Camporesi, R., Di Blasio, B. The Helgason Fourier transform on a class of nonsymmetric harmonic spaces. *Bull. Austral. Math. Soc.* 55 (1997), no. 3, 405-424.
- Belkina, E.S., Platonov, S.S. Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations. *Izv. Vyssh. Uchebn. Zaved. Mat.* 315(8) (2008) 315.
- Berens, H., Buter, P.L. Semigroups of operators and approximation. In: Grundlehren der mathematischen Wissenschaften, vol. 145, pp. XII, 322. Springer, Berlin (1967)
- Bray, W. O., Pinsky, M. A. Growth properties of Fourier transforms via moduli of continuity. J. Funct. Anal. 255 (2008), no. 9, 2265-2285.
- Cowling, M., Dooley A., Koranyi, A., Ricci, F. H-type groups and Iwasawa decompositions, Adv. Math. 87 (1991), no. 1, 1-41.
- 7. Dai, F. Some equivalence theorems with K-functionals. J. Appr. Theory. 121 (2003) 143-157.
- De Vore, R. Degree of approximation, Approximation Theory II (Proc. Conf. Austin, Texas, 1976), pp. 117-161. Academic Press, New York (1976)
- De Vore, R., Popov, V. Interpolation spaces and nonlinear approximation. In: Cwikel, M., Peetre, J., Sagher, Y., Wallin, H. (eds.) Functions Spaces and Approximation, vol. 1302. Springer, Berlin (1986). (Springer Lecture Notes in Math. 191-207 (1988))
- De Vore, R., Scherer, K. Interpolation of linear operators on Sobolev spaces. Ann. of Math. 109, (1979) 583-599

- 11. Ditzian, Z.: On interpolation of $L^p[a, b]$ and weighted Sobolev spaces, *Pac. J. Math.* 90, (1980) 307-323.
- 12. Ditzian, Z., Totik, V. Moduli of Smoothness. Springer, Berlin (1987)
- Damek, E. The geometry of a semidirect extension of a Heisenberg type nilpotent group. Colloq. Math. 53 (1987), no. 2, 255-268.
- Damek, E., Ricci, F. A class of nonsymmetric harmonic Riemannian spaces. Bull. Amer. Math. Soc. 27 (1992), no. 1, 139142.
- Damek, E., Ricci, F. Harmonic analysis on solvable extensions of H-type groups. J. Geom. Anal. 2 (1992), no. 3, 213248.
- Di Blasio, B. Paley-Wiener type theorems on harmonic extensions of H-type groups. Monatsh. Math. 123 (1997), no. 1, 2142.
- El Hamma, M., Daher, R. Equivalence of K-functionals and modulus of smoothness constructed by generalized Jacobi transform. *Integral Transforms Spec. Funct.* 30(12) (2019), 1018-1024.
- El Ouadih, S. An equivalence theorem for a K-functional constructed by BeltramiLaplace operator on symmetric spaces. J. Pseudo-Differ. Oper. Appl. (2020). https://doi.org/10.1007/s11868-020-00326-2
- Flensted-Jensen, M., Koornwinder, Tom H. The convolution structure for Jacobi function expansions. Ark. Mat. 11 (1973), 245-262.
- 20. Flensted-Jensen, M., Koornwinder, Tom H. Jacobi functions: the addition formula and the positivity of the dual convolution structure. *Ark. Mat.* 17 (1979), no. 1, 139151.
- Kaplan, A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. *Trans. Amer. Math. Soc.* 258 (1980), no. 1, 147-153.
- Kumar, P., Ray, S. K., Sarkar, R. P. The role of restriction theorems in harmonic analysis on harmonic NA groups. J. Funct. Anal. 258 (2010), no. 7, 2453-2482.
- 23. Koornwinder, Tom H. Jacobi functions and analysis on noncompact semisimple Lie groups. Special functions: group theoretical aspects and applications, 1-85, *Math. Appl.*, Reidel, Dordrecht, (1984).
- Löfstrom, J., Peetre, J. Approximation theorems connected with generalized translations, *Math. Ann.* 181, (1969) 255-268.
- Nikolskii, S.M. A generalization of an inequality of S. N. Bernstein. Dokl. Akad. Nauk. SSSR 60(9), (1948) 1507-1510.
- Nikolskii, S.M. Approximation of Functions in Several Variables and Embedding Theorems. Nauka, Moscow (1977).
- 27. Peetre, J. A theory of interpolation of normed spaces, *Notes de Universidade de Brasilia*, Brasilia (1963) pp. 88.
- 28. Peetre, J. New thoughts on Besov spaces. Duke University Mathematics Series, Durham (1976).
- 29. Pesenson, I. Interpolation spaces on Lie groups. Dokl. Akad. Nauk SSSR 246(6), (1979) 1298-1303.

- Pesenson, I. The Bernstein inequality in representations of Lie groups. Dokl. Akad. Nauk SSSR 313(4), (1990) 803-806. (translation in Soviet Math. Dokl. 42/1 (1991), 87-90).
- Pesenson, I. A sampling theorem on homogeneous manifolds. Trans. Am. Math. Soc. 352(9), (2000) 4257-4269.
- Platonov, S. S. On Jackson-type theorems on a compact symmetric space of rank 1. (Russian) Dokl. Akad. Nauk 353(4) (1997) 445-448.
- Platonov, S. S. Approximation of functions in L²-metric on noncompact rank 1 symmetric space. Algebra Analiz. 11(1), 244270 (1999).
- Platonov, S. S. Approximation of functions in the L²-metric on noncompact symmetric spaces of rank 1. (Russian) Algebra i Analiz 11 (1999), no. 1, 244-270; translation in St. Petersburg Math. J. 11(1) (2000) 183-201.
- Platonov, S. S. Jackson-type theorems on compact symmetric spaces of rank 1. (Russian) Sibirsk. Mat. Zh. 42 (2001), no. 1, 136-148, iii; translation in Siberian Math. J. 42 (2001), no. 1, 119-130
- Platonov, S. S. The Fourier transform of functions satisfying a Lipschitz condition on symmetric spaces of rank 1. *Sibirsk. Mat. Zh.* 46(6), 1374-1387 (2005).
- Platonov, S. S. The Fourier transform of functions satisfying a Lipschitz condition on symmetric spaces of rank 1. (Russian) *Sibirsk. Mat. Zh.* 46 (2005), no. 6, 1374-1387; translation in *Siberian Math. J.* 46 (2005), no. 6, 1108-1118.
- Platonov, S. S. On some problems in the theory of the approximation of functions on compact homogeneous manifolds. (Russian) Mat. Sb. 200(6) (2009) 67-108; translation in Sb. Math. 200(5-6) (2009) 845-885.
- 39. Platonov, S. S. Fourier-Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L^2 metric: Jacksons type direct theorems. *Integral Transforms Spec. Funct.* 30(4) (2019) 264-281.
- Ray, S. K., Sarkar, R. P. Fourier and Radon transform on harmonic NA groups. Trans. Amer. Math. Soc. 361 (2009), no. 8, 4269-4297.

VISHVESH KUMAR

DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS GHENT UNIVERSITY, BELGIUM *E-mail address*: vishveshmishra@gmail.com

MICHAEL RUZHANSKY DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS GHENT UNIVERSITY, BELGIUM AND SCHOOL OF MATHEMATICS

17

QUEEN MARY UNIVERSITY OF LONDON

UNITED KINGDOM

 $E\text{-}mail\ address\ michael.ruzhansky@ugent.be$