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A NOTE ON K-FUNCTIONAL, MODULUS OF SMOOTHNESS,

JACKSON THEOREM AND NIKOLSKII-STECHKIN INEQUALITY ON

DAMEK-RICCI SPACES

VISHVESH KUMAR AND MICHAEL RUZHANSKY

Abstract. In this paper we study approximation theorems for L2-space on Damek-

Ricci spaces. We prove direct Jackson theorem of approximations for the modulus of

smoothness defined using spherical mean operator on Damek-Ricci spaces. We also prove

Nikolskii-Stechkin inequality. To prove these inequalities we use functions of bounded

spectrum as a tool of approximation. Finally, as an application we prove equivalence of

the K-functional and modulus of smoothness for Damek-Ricci spaces.
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1. Introduction

The main purpose of this paper is to study the equivalence of the K-functional and the

modulus of smoothness generated by the spherical mean operator on Damek-Ricci spaces.

Damek-Ricci spaces, also known as Harmonic NA groups, are solvable (non-unimodular)
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Lie groups. It is worth mentioning that Damek-Ricci spaces contain non-compact sym-

metric spaces of rank one as a very small subclass and, in general, Damek-Ricci spaces

are not symmetric. Damek-Ricci spaces were introduced by Eva Damek and Fulvo Ricci

in [14] and the geometry of these spaces was studied by Damek [13] and Cowling-Dooley-

Koranyi [6]. Fourier analysis on these spaces has been developed and studied by many

authors including Anker-Damek-Yacoub [1], Astengo-Comporesi-Di Blasio [2] , Damek-

Ricci [15], Di Blasio [16], Ray-Sarkar [40], Kumar-Ray-Sarkar [22]. One of the interesting

features of these spaces is that the radial analysis on these spaces behaves similar to the

hyperbolic spaces as observed in [1] and therefore it fits into the perfect setting of Jacobi

analysis developed by Flensted-Jensen and Koornwinder [23, 19, 20].

The study of the K-functional is a classical and important topic in interpolation the-

ory and approximation theory. Peetre the K-functional is useful for describing the in-

terpolation spaces between two Banach spaces. First, let us recall the definition of the

K-functional. For two Banach spaces A1 and A2, the Peetre the K-functional is given by

K(f, δ, A1, A2) := inf{‖f1‖A1
+ δ‖f2‖A2

: f = f1 + f2, f1 ∈ A1, f2 ∈ A2},

where δ is a positive parameter. Now, the Peetre interpolation space (A1, A2)θ,r for 0 <

θ < 1, 0 < r ≤ ∞, is defined by the norm

|f |(A1,A2)θ,r :=





(∫∞

0
[δ−θK(f, δ, A1, A2)]

r dδ
δ

) 1

r if 0 < r < ∞,

supδ>0 δ
−θK(f, δ, A1, A2) if r = ∞.

The characterizations of the K-functional has several applications in approximation

theory [12]. In [27], Peetre started characterization of the K-functional by proving an

equivalence of it with the modulus of smoothness for Lp-spaces on Rn which proved to

be very helpful to study apporximation theory. Later, in [10] the authors showed its

equivalence in terms of the rearrangement of derivatives for a pair of Sobolev spaces

Wm
p and for the pair (Lp,Wm

p ). In particular, a characterization of the K-functional for

(L2(R),Wm
2 (R)) can be found in the classical book of Berens and Buter [4]. The char-

acterizations of the K-functional for the pair (L2(X),Wm
2 (X)) were explored by several

authors for different choices of X. Classically, this equivalence was proved for X = Rn by

Peetre [27] and after that it was proved forX = [a, b] by De Vore-Scherer [10], for weighted

setting by Ditzian [11], for X = Rn with Dunkl translation by Belkina and Platonov [3],
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for rank one symmetric spaces [18], for Jacobi analysis in [17] and for compact symmetric

spaces on [38]. In this paper our aim is to extend this characterization to more general

setting of solvable (non unimodular) Lie groups. We consider the pair (L2(X),Wm
2 (X))

for X being the Damek-Ricci spaces. We will prove the equivalence of the K-functional

and modulus of smoothness generated by spherical mean operator on Damek-Ricci space.

Modulus of smoothness for Damek-Ricci space has been introduced in [22]. We prove our

main result by establishing two classical results, namely, Direct Jackson theorem [26] and

Nikolskii-Stechkin inequality [25] for Damek-Ricci spaces. Platonov studied Direct Jack-

son theorem and Nikolskii-Stechkin inequality for compact homogeneous manifolds and

for noncompact symmetric spaces of rank one ([33, 35, 34, 38, 32, 39]).

2. Essentials about harmonic NA groups

For basics of harmonic NA groups and Fourier analysis on them, one can refer to

seminal research papers [13, 14, 15, 16, 1, 2, 6, 40, 22, 21]. However, we give necessary

definitions, notation and terminology that we shall use in this paper.

Let n be a two-step nilpotent Lie algebra, equipped with an inner product 〈 , 〉 . Denote

by z the center of n and by v the orthogonal complement of z in n with respect to the

inner product of n. We assume that dimensions of v and z are m and l respectively as real

vector spaces. The Lie algebra n is H-type algebra if for every Z ∈ z, the map JZ : v → v

defined by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉, X, Y ∈ v, Z ∈ z,

satisfies the condition J2
Z = −‖Z‖2Iv, where Iv is the identity operator on v. It follows

that for Z ∈ z with ‖Z‖ = 1 one has J2
Z = −Iv; that is, JZ induced a complex structure on

v and hence m = dim(v) is always even. A connected and simply connected Lie group N

is called H-type if its Lie algebra is of H-type. The exponential map is a diffeomorphism

as N is nilpotent, we can parametrize the element of N = exp n by (X,Z), for X ∈ v

and Z ∈ z. The multiplication on N follows from the Campbell-Baker-Hausdorff formula

given by

(X,Z)(Z ′, Z ′) = (X +X ′, Z + Z ′ +
1

2
[X,X ′]).

The group A = R∗
+ acts on N by nonisotropic dilations as follows: (X, Y ) 7→ (a

1

2X, aZ).

Let S = N ⋉A be the semidirect product of N with A under the aforementioned action.
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The group multiplication on S is defined by

(X,Z, a)(X ′, Z ′, a′) = (X + a
1

2X ′, Z + aZ ′ +
1

2
a

1

2 [X,X ′], aa′).

Then S is a solvable (connected and simply connected) Lie group with Lie algebra s =

z⊕ v⊕ R and Lie bracket

[(X,Z, ℓ), (X ′, Z ′, ℓ′)] = (
1

2
ℓX ′ −

1

2
ℓ′X, ℓZ ′ − ℓ′Z + [X,X ]′, 0).

The group S is equipped with the left-invariant Riemannian metric induced by

〈(X,Z, ℓ), (X ′, Z ′, ℓ′)〉 = 〈X,X ′〉+ 〈Z,Z ′〉+ ℓℓ′

on s. The homogneous dimension of N is equal to m
2
+ l and will be denoted by Q. At

times, we also use symbol ρ for Q
2
. Hence dim(s) = m+ l+1, denoted by d. The associated

left Haar measure on S is given by a−Q−1dXdZda, where dX, dZ and da are the Lebesgue

measures on v, z and R∗
+ respectively. The element of A will be identified with at = et,

t ∈ R. The group S can be realized as the unit ball B(s) in s using the Cayley transform

C : S → B(s) (see [1]).

To define (Helgason) Fourier transform on S we need to introduce the notion of Poisson

kernel [2]. The Poisson Kernel P : S×N → R is defined by P(nat, n
′) = Pat(n

′−1n), where

Pat(n) = Pat(X,Z) = CaQt

((
at +

|X|2

4

)2

+ |Z|2

)−Q

, n = (X,Z) ∈ N.

The value of C is suitably adjusted so that
∫
N
Pa(n)dn = 1 and P1(n) ≤ 1. The Poisson

kernel satisfies several useful properties (see [22, 40, 2]), we list here a few of them. For

λ ∈ C, the complex power of the Poisson kernel is defined as

Pλ(x, n) = P(x, n)
1

2
− iλ

Q .

It is known ([40, 2]) that for each fixed x ∈ S, Pλ(x, ·) ∈ Lp(N) for 1 ≤ p ≤ ∞ if

λ = iγpρ, where γp =
2
p
− 1. A very special feature of Pλ(x, n) is that it is constant on the

hypersurfaces Hn,at = {nσ(atn
′) : n′ ∈ N}. Here σ is the geodesic inversion on S, that is

an involutive, measure-preserving, diffeomorphism which can be explicitly given by [6]:

σ(X,Z, at) =

((
et +

|V |2

4

)2

+ |Z|2

)−1((
−

(
et +

|X|2

4

)
+ JZ

)
X,−Z, at

)
.
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Let ∆S be the Laplace-Beltrami operator on S. Then for every fixed n ∈ N, Pλ(x, n)

is an eigenfunction of ∆S with eigenvalue −(λ2 + Q2

4
) (see [2]). For a measurable function

f on S, the (Helgason) Fourier transform is defined as

f̃(λ, n) =

∫

S

f(x)Pλ(x, n)dx

whenever the integral converge. For f ∈ C∞
c (S), the following inversion formula holds ([2,

Theorem 4.4]):

f(x) = C

∫

R

∫

N

f̃(λ, n)P−λ(λ, n)|c(λ)|
−2 dλdn,

where C =
cm,l

2π
. The authors also proved that the (Helgason) Fourier transform extends

to an isometry from L2(S) onto the space L2(R+ ×N,C|c(λ)|−2dλdn). In fact they have

the precise value of constants, we refer the reader to [2]. The following estimates for the

function |c(λ)| holds: c1|λ|
d−1 ≤ |c(λ)|−2 ≤ (1+ |λ|)d−1 for all λ ∈ R (e. g. see [40]). In [40,

Theorem 4.6], the authors proved the following version of the Hausdorff-Young inequality:

For 1 ≤ p ≤ 2 we have

(∫

R

∫

N

|f̃(λ+ iγp′ρ, n)|
p′dn |c(λ)|−2dλ

) 1

p′

≤ Cp‖f‖p. (1)

A function f on S is called radial if for all x, y ∈ S, f(x) = f(y) if µ(x, e) = µ(y, e),

where µ is the metric induced by the canonical left invariant Riemannian structure on S

and e is the identity element of S. Note that radial functions on S can be identified with

the functions f = f(r) of the geodesic distance r = µ(x, e) ∈ [0,∞) to the identity. It is

clear that µ(at, e) = |t| for t ∈ R. At times, for any radial function f we use the notation

f(at) = f(t). For any function space F(S) on S, the subspace of radial functions will be

denoted by F(S)#. The elementary spherical function φλ(x) is defined by

φλ(x) :=

∫

N

Pλ(x, n)P−λ(x, n) dn.

It follows ([1, 2]) that φλ is a radial eigenfunction of the Laplace-Beltrami operator ∆S of

S with eigenvalue −(λ2 + Q2

4
) such that φλ(x) = φ−λ(x), φλ(x) = φλ(x

−1) and φλ(e) = 1.

It is also evident from the fact that, for every fixed n ∈ N, Pλ(x, n) is an eigenfunction

of ∆S with eigenvalue −(λ2 + Q2

4
), that, for suitable function f on S, we have

∆̃l
Sf(λ, n) = −(λ2 +

Q2

4
)lf̃(λ, n)
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for every natural number l (see [2, p. 416]). In [1], the authors showed that the radial part

(in geodesic polar coordinates) of the Laplace-Beltrami operator ∆S given by

rad∆S =
∂2

∂t
+ {

m+ l

2
coth

t

2
+

k

2
tanh

t

2
}
∂

∂t
,

is (by substituting r = t
2
) equal to 1

4
Lα,β with indices α = m+l+1

2
and β = l−1

2
, where Lα,β

is the Jacobi operator studied by Koornwinder [23] in detail. It is worth noting that we are

in the ideal situation of Jacobi analysis with α > β > −1
2
. In fact, the Jacobi functions φα,β

λ

and elementary spherical functions φλ are related as ([1]): φλ(t) = φα,β
2λ ( t

2
). As consequence

of this relation, the following estimates for the elementary spherical functions hold true

(see [36]).

Lemma 2.1. The following inequalities are valid for spherical functions φλ(t) (t, λ ∈

R+) :

• |φλ(t)| ≤ 1.

• |1− φλ(t)| ≤
t2

2
(λ2 + Q2

4
).

• There exists a constant c > 0, depending only on λ, such that |1 − φλ(t)| ≥ c for

λt ≥ 1.

Let σt be the normalized surface measure of the geodesic sphere of radius t. Then σt

is a nonnegative radial measure. The spherical mean operator Mt on a suitable function

space on S is defined by Mtf := f ∗ σt. It can be noted that Mtf(x) = R(fx)(t), where

fx denotes the right translation of function f by x and R is the radialization operator

defined, for suitable function f, by

Rf(x) =

∫

Sν

f(y) dσν(y),

where ν = r(x) = µ(C(x), 0), here C is the Cayley transform, and dσν is the normalized

surface measure induced by the left invariant Riemannian metric on the geodesic sphere

Sν = {y ∈ S : µ(y, e) = ν}. It is easy to see that Rf is a radial function and for

any radial function f, Rf = f. Consequently, for a radial function f, Mtf is the usual

translation of f by t. In [22], the authors proved that, for a suitable function f on S,

M̃tf(λ, n) = f̃(λ, n)φλ(t) whenever both make sense. Also, Mtf converges to f as t → 0,

i.e., µ(at, e) → 0. It is also known that Mt is a bounded operator on L2(S) with operator
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norm equal to φ0(at). In particular, for f ∈ L2(S), we have ‖Mtf‖2 ≤ φ0(at)‖f‖2. The

following Lemmata are taken from [5].

Lemma 2.2. Let α > −1
2
. Then there are positive constant c1,α and c2,α such that

c1,αmin{1, (λt)2} ≤ 1− jα(λt) ≤ c2,αmin{1, (λt)2},

where jα is the usual Bessel function of first kind normalized by jα(0) = 1.

Lemma 2.3. Let α > −1
2

and t0 > 0. Then, for all λ ∈ R, there exist a constant c1 > 0

such that for all 0 ≤ t ≤ t0, the function φλ satisfies

|1− φλ(t)| ≥ c1|1− jα(λt)|,

where jα is the usual Bessel function of first kind normalized by jα(0) = 1.

3. Main results

In this section we present our main results. Throughout this section, we denote a Damek-

Ricci space by S. We denote by L2(S) the Hilbert space of all square integrable function

on S with respect to Haar measure λ on S.We begin this section by recalling the definition

of Sobolev spaces on Damek-Ricci spaces.

The Sobolev space Wm
2 (S) on Damek-Ricci space S is defined by

Wm
2 (S) := {f ∈ L2(S) : ∆l

Sf ∈ L2(S), l = 1, 2, . . . , m}.

The space Wm
2 (S) can be equipped with seminorm |f |Wm

2
(S) := ‖∆m

S f‖2 and with the

norm ‖f‖Wm
2

(S) = ‖f‖2 + ‖∆m
S f‖2.

The modulus of smoothness (continuity) Ωk is defined by using the spherical mean

operator Mt as follows:

Ωk(f, δ)2 := sup
0<t≤δ

‖∆k
t f‖2,

where ∆k
t f = (I − Mt)

kf. The modulus of smoothness Ωk(f, δ)2 satisfies the following

properties:

(i) The function δ 7→ Ωk(f, δ)2 is a decreasing function and satisfies

Ωk(f ± g, δ)2 ≤ Ωk(f, δ)2 + Ωk(g, δ)2

for all f, g ∈ L2(S).
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(ii) Ωk(f, δ)2 ≤ (φ0(at) + 1)k‖f‖2 and Ωk(f, δ)2 ≤ (1 + φ0(at))
k−lΩl(f, δ)2 for l ≤ k.

(iii) If f ∈ Wm
2 (S) then we have Ωk(f, δ)2 ≤ δ2k‖∆k

Sf‖2, k ≤ m.

The proof of (i) and (ii) follows from the definition of modulus of continuity and norm

estimate for Mt on L2(S). To show (iii), we note, by Plancherel formula, that,

‖∆k
t f‖

2
2 =

∫ ∞

0

∫

N

|(̃∆k
t f)(λ, n)|

2 |c(λ)|−2dλ dn.

Since (̃∆k
t f)(λ, n) = |1− φλ(at)|

kf̃(λ, n) we have, by Lemma 2.1, that

‖∆k
t f‖

2
2 =

∫ ∞

0

∫

N

|1− φλ(at)|
2k|f̃(λ, n)| |c(λ)|−2dλ dn

≤ t4k
∫ ∞

0

∫

N

(λ2 +
Q2

4
)2k|f̃(λ, n)| |c(λ)|−2dλ dn

= t4k
∫ ∞

0

∫

N

|∆̃k
Sf(λ, n)|

2 |c(λ)|−2dλ dn = t4k‖∆k
Sf‖

2
L2(S).

3.1. Direct Jackson theorem. This subsection is devoted for proving the Direct Jack-

son theorem of approximations theory for Damek-Ricci spaces. For the approximation we

will use the functions of bounded spectrum. The functions of bounded spectrum were used

by Platonov [39, 32, 33, 34] to prove Jackson type direct theorem for Jacobi transform

and for symmetric spaces. Such kind of functions also appear in the work of Pesenson

[31] under the name of Paley-Wiener functions for studying approximation theory on

homogeneous manifolds.

A function f ∈ L2(S) is called a function with bounded spectrum (or a Paley-Wiener

function) of order ν > 0 if

Ff(λ, n) = 0 for |λ| > ν.

Denote the space of all function on S with bounded spectrum of order ν by BSν(S). The

best approximation of a function f ∈ L2(S) by the functions in BSν(S) is defined by

Eν(f) := inf
g∈BVν(S)

‖f − g‖L2(S).

Lemma 3.1. Let ν > 0. For any function f ∈ L2(S), the function Pν(f) defined by

Pν(f)(x) := F−1(Ff(λ, n)χν(λ)),

where χν is a function defined by χν(λ) = 1 for |λ| ≤ ν and 0 otherwise, satisfies the

following properties:
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(i) For every f ∈ L2(S), Pν(f) ∈ BSν(S).

(ii) For every function f ∈ BSν(S), Pν(f) = f.

(iii) If f ∈ L2(S) then ‖Pν(f)‖L2(S) ≤ ‖f‖L2(S) and ‖f − Pν(f)‖L2(S) ≤ 4Eν(f).

Proof. (i) This is trivial to see. Indeed, by definition we have

FPν(f)(x) = Ff(λ, n)χν(λ) = 0

for |λ| > ν. Therefore, Pν(f) ∈ BSν(S).

(ii) Let f ∈ BSν(S). Then Ff(λ, n) = 0 for |λ| > ν and FPν(f)(λ, n) = Ff(λ, n) for

|λ| ≤ ν. So, by using the inversion formula we have

Pν(f)(x) = C

∫

R

∫

N

FPν(f)(λ, n) |c(λ)|
−2dλ dn

= C

∫

|λ|≤ν

∫

N

Ff(λ, n) |c(λ)|−2dλ dn

= C

∫

R

∫

N

Ff(λ, n) |c(λ)|−2dλ dn = f(x).

(iii) Take f ∈ L2(S). By Plancherel formula, we get

‖Pν(f)‖
2
L2(S) =

∫ ∞

0

∫

N

|FPν(f)(λ, n)|
2 |c(λ)|−2 dλ dn

=

∫ ν

0

∫

N

|Ff(λ, n)|2 |c(λ)|−2 dλ dn

≤

∫ ∞

0

∫

N

|Ff(λ, n)|2 |c(λ)|−2 dλ dn = ‖f‖2L2(S).

Also, for proving second inequality take any g ∈ BSν(S) such that

‖f − g‖ ≤ 2Eν(f)2.

Now, by using the fact that Pν(g) = g we get

‖f − Pν(f)‖L2(S) = ‖f − g − Pν(g − f)‖L2(S)

≤ ‖f − g‖L2(S) + ‖f − g‖L2(S) ≤ 4Eν(f)2.

�

The following two theorems are analogues of Jackson’s direct theorem in classical ap-

proximation theorem for Damek-Ricci spaces.
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Theorem 3.2. If f ∈ L2(S) then for every ν > 0 we have

Eν(f) ≤ ck Ωk

(
f,

1

ν

)

2

, k ∈ N, (2)

where ck is a constant.

Proof. The Plancherel formula gives that

‖f − Pν(f)‖
2
L2(S) =

∫ ∞

0

∫

N

|F(f − Pν(f))(λ, n)|
2 |c(λ)|−2 dλ dn

=

∫ ∞

0

∫

N

|1− χν(λ)|
2 |F(f(λ, n)|2 |c(λ)|−2 dλ dn

=

∫

λ≥ν

∫

N

|F(f(λ, n)|2 |c(λ)|−2 dλ dn.

By Lemma 2.1 we have |1− φλ

(
1
ν

)
| ≥ c for λ ≥ ν. Therefore, by Plancherel formula, we

get

‖f − Pν(f)‖
2
L2(S) ≤ c−2k

∫

λ≥ν

∫

N

|1− φλ (1/ν) |
2k|Ff(λ, n)|2 |c(λ)|−2 dλ dn

= c−2k

∫

λ≥ν

∫

N

|F((I −M1/ν)
kf)(λ, n)|2 |c(λ)|−2 dλ dn

≤ c−2k

∫ ∞

0

∫

N

|F((I −M1/ν)
kf)(λ, n)|2 |c(λ)|−2 dλ dn

= c−2k‖(I −M1/ν)
kf‖2L2(S).

Therefore, as Pν(f) ∈ BSν(S), we get

Eν(f) = inf
g∈BVν(S)

‖f − g‖L2(S) ≤ ‖f − Pν(f)‖L2(S) ≤ c−k‖(I −M1/ν)
kf‖L2(S)

= c−k‖∆k
1/νf‖L2(S) ≤ ck Ωk

(
f,

1

ν

)

2

,

proving (2) and hence the theorem is proved. �

Theorem 3.3. Let r ∈ N and ν > 0. Assume that f,∆Sf,∆
2f, . . . ,∆rf are in L2(S).

Then

Eν(f) ≤ c′k ν−2rΩk

(
∆r

Sf,
1

ν

)

2

, k ∈ N, (3)

where c′k is a constant.
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Proof. Let r ∈ N and t > 0. Suppose that f,∆Sf,∆
2
Sf, . . . ,∆

r
Sf are in L2(S). Then

Lemma 2.1 and Plancherel formula give that

‖(I −Mt)f‖
2
L2(S) =

∫ ∞

0

∫

N

|F((I −Mt)f)(λ, n)|
2|c(λ)|−2 dλ dn

=

∫ ∞

0

∫

N

|1− φλ(at)|
2|Ff(λ, n)|2|c(λ)|−2 dλ dn

≤
t4

4

∫ ∞

0

∫

N

(λ2 +
Q2

4
)2|Ff(λ, n)|2|c(λ)|−2 dλ dn

=
t4

4

∫ ∞

0

∫

N

|F(∆Sf)(λ, n)|
2|c(λ)|−2 dλ dn =

t4

4
‖∆Sf‖

2
L2(S).

Therefore,

‖(I −Mt)f‖L2(S) ≤
t2

2
‖∆Sf‖L2(S). (4)

By proceeding similar to the proof of Theorem 3.2 we get

‖f − Pν(f)‖L2(S) ≤ c−(k+r)‖(I −M1/ν)
k+rf‖L2(S). (5)

By applying inequality (4) on the right hand side of (5) r-times we obtain that

‖f − Pν(f)‖L2(S) ≤ c−(k+r)2−rν−2r‖(I −M1/ν)
k∆r

Sf‖L2(S)

= c′k ν−2rΩk

(
∆r

Sf,
1

ν

)

2

,

where c′k = c−(k+r)2−r. Now, the theorem follows from the definition of Eν(f) by noting

that

Eν(f) = inf
g∈BVν(S)

‖f − g‖L2(S) ≤ ‖f − Pν(f)‖L2(S) ≤ c′k ν−2rΩk

(
∆r

Sf,
1

ν

)

2

,

completing the proof.

�

3.2. Nikolskii-Stechkin inequality. In this subsection, we will prove Nikolskii-Stechkin

inequality [25] for Damek-Ricci spaces.

Theorem 3.4. For any f ∈ L2(S) and ν > 0 we have

‖∆k
S(Pν(f))‖L2(S) ≤ c3 ν

2k‖∆k
1/νf‖L2(S), k ∈ N. (6)
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Proof. First note that

F(∆k
SPν(f))(λ, n) = (−1)k

(
λ2 +

Q2

4

)k

F(Pν(f))(λ, n).

Using Plancherel formula we have

‖∆k
S(Pν(f))‖

2
L2(S) =

∫ ∞

0

∫

N

|F(∆k
SPν(f))(λ, n)|

2|c(λ)|−2 dλ dn

=

∫

|λ|≤ν

∫

N

(
λ2 +Q2/4

)2k
|Ff(λ, n)|2 |c(λ)|−2 dλ dn

=

∫ ∞

0

∫

N

(λ2 +Q2/4)
2k
χν(λ)

|1− φλ(1/ν)|2k
|1− φλ(1/ν)|

2k|Ff(λ, n)|2 |c(λ)|−2 dλ dn.

Now note that by Lemma 2.3 we have

sup
λ∈R

(λ2 +Q2/4)
2k
χν(λ)

|1− φλ(1/ν)|2k
= ν4k sup

|λ|≤ν

((λ2 +Q2/4)/ν2)
2k

|1− φλ(1/ν)|2k

≤
ν4k

c1
sup
|λ|≤ν

((λ2 +Q2/4)/ν2)
2k

|1− jα(λ/ν)|2k

=
ν4k

c1
sup
|t|≤1

(t2 +Q2/4ν2)
2k

|1− jα(t)|2k
=

C ′

c1
ν4k,

where C ′ = sup|t|≤1
(t2+Q2/4ν2)

2k

|1−jα(t)|2k
.

Therefore, we get

‖∆k
S(Pν(f))‖

2
L2(S) ≤

C ′

c1
ν4k

∫ ∞

0

∫

N

|1− φλ(1/ν)|
2k|Ff(λ, n)|2 |c(λ)|−2 dλ dn

=
C ′

c1
ν4k

∫ ∞

0

∫

N

|F(∆k
1/νf)(λ, n)|

2 |c(λ)|−2 dλ dn

=
C ′

c1
ν4k‖∆k

1/νf‖
2
L2(S).

Hence, ‖∆k
S(Pν(f))‖L2(S) ≤ c3 ν

2k ‖∆k
1/νf‖L2(S). �

As noted in Lemma 3.1 that Pν(f) = f for any f ∈ BSν(S), the following corollary is

immediate.

Corollary 3.5. For ν > 0, k ∈ N and f ∈ BVν(S) we have the following inequality:

‖∆k
Sf‖L2(S) ≤ c3 ν

2k ‖∆k
1/νf‖L2(S).

The following corollary follows from the definition of modulus of smoothness.
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Corollary 3.6. For ν > 0, k ∈ N and f ∈ L2(S) we have the following inequality:

‖∆k
Sf‖L2(S) ≤ c3 ν

2k Ωk

(
f,

1

ν

)

2

.

3.3. Equivalence of the K-functional and modulus of smoothness. Our main

objective will be proved here. We will prove in the following theorem that theK-functional

for the pair (L2(S),Wm
2 (S)) and modulus of smoothness generated by spherical mean

operators are equivalent. The Peetre the K-functional K(f, δ, L2(S),Wm
2 (S)) for the pair

(L2(S),Wm
2 (S)) is defined by

Km(f, δ) := inf{‖f − g‖L2(S) + δ‖∆m
S g‖L2(S) : f ∈ L2(S) g ∈ Wm

2 (S)}.

The next theorem presents the equivalence of the K-functional Km(f, δ
2m) and the

modulus of smoothness Ωm(f, δ)2 for f ∈ L2(S) and δ > 0.

Theorem 3.7. For f ∈ L2(S) and δ > 0 we have

Ωm(f, δ)2 ≍ Km(f, δ
2m). (7)

In other words, there exist c1 > 0, c2 > 0 such that for all f ∈ L2(S) and δ > 0 we have

c1Ωm(f, δ)2 ≤ Km(f, δ
2m) ≤ c2Ωm(f, δ)2.

Proof. Take g ∈ Wm
2 (S). Now by using the properties of modulus of continuity Ωm(f, δ)2

we get

Ωm(f, δ)2 ≤ Ωm(f − g, δ)2 + Ωm(g, δ)2

≤ (φ0(at) + 1)m‖f − g‖L2(S) + δ2m‖∆m
S g‖L2(S)

≤ c̃(‖f − g‖L2(S) + δ2m‖∆m
S g‖L2(S)),

where c̃ = (φ0(at) + 1)m. By taking the infimum over all g ∈ Wm
2 (S), we obtain

Ωm(f, δ)2 . Km(f, δ
2m).

Now, to prove the other side we take g = Pν(f) for ν > 0, then, from the definition of

Km(f, δ
2m), it follows that

Km(f, δ
2m) ≤ ‖f − Pν(f)‖L2(S) + δ2m‖∆m

S (Pν(f))‖L2(S). (8)
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Now, from Lemma 3.1 (iii), (2) and Corollary 3.6 we get that

Km(f, δ
2m) ≤ 4Ev(f) + c3δ

2mν2mΩm

(
f,

1

ν

)

2

≤ 4c2Ωm

(
f,

1

ν

)

2

+ c3(δν)
2mΩm

(
f,

1

ν

)

2

≤ c4(1 + (δν)2m)Ωm

(
f,

1

ν

)

2

.

By taking ν = 1
δ
we get

Km(f, δ
2m) . Ωm (f, δ)2

proving (7). �
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