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ABSTRACT
Violin makers and musicians describe the timbral qualities of violins using semantic terms coming from
natural language. In this study we use regression techniques of machine intelligence and audio features to
model in a training-based fashion a set of high-level (semantic) descriptors for the automatic annotation
of musical instruments. The most relevant semantic descriptors are collected through interviews to violin
makers. These descriptors are then correlated with objective features extracted from a set of violins from the
historical and contemporary collections of the Museo del Violino and of the International School of Luthiery
both in Cremona. As sound description can vary throughout a performance, our approach also enables the
modelling of time-varying (evolutive) semantic annotations.

1. INTRODUCTION

The art of violin making begun in Cremona, Italy,
five centuries ago and has grown to be what it
is today thanks to the renowned families of Am-

∗This research activity has been partially funded by the
Cultural District of the province of Cremona, Italy, a Fon-
dazione CARIPLO project, and by the Arvedi-Buschini Foun-
dation

ati, Stradivari and Guarnieri. Cremona is currently
home to over 150 violin makers, and thousands more
have studied there and spread the tradition. In the
year 2012 UNESCO crowned Cremona as a World
Heritage Site for the art of lutherie confirming the
leading role that this city has had for the tradition
of violin making.

The study of the sound qualities of violins has been
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the subject of intense scientific investigation [1, 2]
for decades. However, the physical phenomena that
are involved in the characterization of their timbral
quality are still far from being fully understood [3].
In past few years there has been a renewed frenzy
in research, aimed at pushing the boundaries of our
physical understanding of the quality of violin tone.
This recently motivated a proliferation of research
initiatives in the city of Cremona and the start of a
new research projects with the Politecnico di Milano
(for aspects of musical acoustics) and the University
of Pavia (for aspects of material analysis), aimed at
exploring new directions in contemporary lutherie.

Among the many goals of the projects are the in-
vestigation of the timbral quality of violins and, in
particular, understanding the links that exist be-
tween objective and semantic descriptors related to
such instruments. The former are geometric, vibro-
acoustic, acoustic and timbral features; physical and
chemical properties of materials, etc. The latter are
the terms of natural language that are customarily
used for describing qualities of the instrument.

In order to study the sound proprieties of musical
instruments, one classical approach consists of ex-
tracting objective descriptors (Low-Level Features -
LLF ) [4, 5] and analyzing how such descriptors clus-
ter up in feature space. As far as timbral character-
ization of violins based on low-level descriptors is
concerned, some works have been presented in the
literature. In [6, 7] the authors uses a set of MPEG
spectral and harmonic descriptors for the character-
isation of the violin sound quality. Whereas in [8],
the author uses the long term cepstral coefficients.
However, these descriptors are not semantically rich
in nature, and do not match descriptions that are
commonly used by violin makers and musicians (nat-
ural language). Examples of such terms are warm
and bright, which are at a higher level of abstrac-
tion (Semantic Descriptors or High-Level Features -
HLF ). In the past decades, several studies have been
presented in the literature [9, 10]. The main pur-
pose of these studies is to build multi-dimensional
perceptual spaces where semantic descriptors could
be arranged. Similar approaches have been adopted
also for the semantic description of the violin timbre
[11, 12, 13, 14, 15].

Though our way of describing sounds is based
on subjective Semantic Descriptors, there exists a

strong connection between sound description, sound
perception and physics. Our brain, in fact, processes
stimuli from the auditory system in order to formu-
late a proper description. Understanding what as-
pects of the sound influence our perception [14] is not
an easy task. For this reason, even if some remark-
able work has been done [16, 17], this connection is
still not fully understood. In the literature this is
known as the semantic gap between Low-Level and
High-Level Features.

In a previous work of ours [3], we studied the cor-
relation between LLF and HLF using a set of cor-
relation indices. In this study, we use machine
learning techniques for modelling Semantic Descrip-
tors using a large set of LLFs for automatic an-
notation and retrieval. In particular, we consider
a generative approaches based on regression analy-
sis, which was recently applied to Music Emotion
Recognition [18, 19, 20] with very good results. In
order to perform the mapping from LLF and HLF
we explore parameter prediction using Multiple Lin-
ear Regression (MLR) [21], Ridge Regression [21],
Polynomial Regression [21], Support Vector Regres-
sion (SVR) [22], Ada-boost Regression [23], Gradi-
ent Boost Regression[24].

In order to build the model for semantic descriptors
we need to collect the low-level and the high-level
representations of a large set of instruments. As
far as the low-level representation is concerned we
recorded thirteen historical violins (three Amati, two
Guarnieri del Gesù and eight Stradivari) and fifteen
modern violins from the collection of the “Museo del
Violino” in Cremona and “International School of
Lutherie” (Stradivari Institute) in Cremona, played
by a professional musician according to a specific
protocol. For each recording we extracted a large
set of LLFs selected in order to capture timbral and
harmonic proprieties of the instrument.

As far as HLFs are concerned, we collected the anno-
tations by asking four professional violin makers to
provide a description for each violin using a subser
of the semantic descriptors presented in a previous
work of ours [3]. In [3] we collected the set of most
relevant terms used in lutherie to describe the sound
of violins. In the listening test, each descriptor were
presented along with its opposite (e.g. warm/not
warm). The testers were asked to assign a graded
annotation ranging from 0 to 1.
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Although it is possible to provide an overall descrip-
tion of the sound quality of instruments, these pro-
prieties tend to vary during a performance. Exploit-
ing the short-time analysis, in this study we also use
the regression approach in order to capture the evo-
lution of the semantic descriptors over time.

2. LOW-LEVEL AUDIO FEATURES FOR MU-
SICAL INSTRUMENT CHARACTERIZATION

The study of timbral perception is still an open issue
in music research. The ability of humans to discrim-
inate, isolate and describe sounds has been subject
of studies in many disciplines including psychology,
sociology, acoustics, signal processing and music in-
formation retrieval. A comprehensive knowledge of
the perceptual mechanisms involved in the human
decision process is yet to achieve. However, many
studies show how this tendency is mainly related to
sets of simple acoustics and structural cues (LLF)
[5, 25]. These cues are objective descriptors of sound
that can be obtained by means of mathematical pro-
cedures. Each feature capture one specific aspect of
the sound. In this study we are interested in under-
standing which cues are play a relevant role for each
semantic descriptor.

The features that we select come from those exten-
sively used in the music information retrieval field
and exhaustively explained in [5, 25, 19].

In order to provide a measure of the noisiness of the
sound the features that can be used are Zero Cross-
ing Rate (ZCR), Spectral Flatness and Spectral Ir-
regularity. The ZCR is defined as the normalized
frequency at which the audio signal s(n) crosses the
zero axis. Spectral Flatness features are measures of
the similarity between the spectral magnitude of the
signal and the spectrum of a white noise signal (i.e.
a flat spectrum).

As noisy signals tend to exhibit a weak correlation in
the spectrum of successive temporal frame of anal-
ysis, Spectral Irregularity feature is used to capture
the variation of the successive peaks of the spectrum,
and it is defined as

FIR =

K∑
k=1

(Sl(k) + Sl(k + 1))2

K∑
k=1

Sl(k)2
, (1)

where Sl(k) is the magnitude spectrum at the l-th
frame and the k-th frequency bin.

In order to provide a measure of the harmonicity we
also consider Chromagram features. The Chroma-
gram is a compact representation of the spectrum
in the logarithmic scale. The spectrum is projected
into 12 bins representing the 12 distinct semitones
(or chroma) of the musical octave.

Since part of the human perceptual process is still
not well understood and since the process is mainly
related to timbral characteristics, we include ba-
sic spectral descriptors to the set: Spectral Bright-
ness, Roughness, Spectral Centroid, Spectral Kurto-
sis, Spectral Rolloff, Spectral Spread, Spectral Skew-
ness, Mel-Frequency Cepstral Coefficients, Spectral
Contrast. In particular, Spectral Roughness is an
estimation of dissonance [26]. MFCC offer a com-
pact representation of the spectrum, based on the
human auditory model. They are obtained as the
coefficients of the discrete cosine transform (DCT)
applied to a reduced Power Spectrum. The reduced
Power Spectrum derived as the log-energy of the
spectrum is measured

ci =

Kc∑
k=1

log(Ek) cos

[
i

(
k − 1

2

)
π

Kc

]
1 ≤ i ≤ Nc,

(2)
where ci is the ith MFCC component, Ek is the spec-
tral energy measured in the critical band of the ith
mel filter and Nc is the number of mel filters, Kc is
the number of cepstral coefficients ci extracted from
each frame.

Spectral Contrast coefficients, which have been used
in many MIR applications [18, 27], attempt to cap-
ture the relative distribution of the harmonic and
non-harmonic components in the spectrum. The
spectrum is divided in sub-bands, and the samples
from each subb-and are sorted in descending order.
At this point the peaks and spectral valleys of the
i-th can be calculated as follow:

Pi = log

 1

αNi

αNi∑
j=1

s′i,j

 , (3)

Vi = log

 1

αN i

αNi∑
j=1

s′i,Ni−j+1

 . (4)
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Fig. 1: Comparison of the distribution of the first
sub-bands of SC feature and the Hard/Soft descrip-
tor.

Finally, the Spectral Contrast can be calculated as
their difference:

SCi = Peaki −Valleyi, (5)

where alpha is a corrective factor used in order to
ensure the steadiness of the feature, s′i,j is the j-th
sample of the sorted i-th sub-band and Ni is total
number of samples in the j-th sub-band. In this
study we keep both peaks, valleys and SCs as low-
level descriptors (29 descriptors). Fig. 1 depicts the
distribution of the first sub-bands of SC feature and
the correspondent Hard/Soft descriptor for each in-
strument. The figure outlines the SC highly descrip-
tive attitude for the Hard/Soft modeling since values
of the two features has similar distribution.

The total number of LLFs that we use in this study
is 59.

3. REGRESSION APPROACH

The goal of regression analysis is to model the re-
lationship between a dependent variable and a set
of independent variables of a formulated problem.
From a different perspective, regression analysis in-
cludes a set of methods for discovering the set of
coefficients for a function that best fits predefined
data observations. According to the latter formula-
tion, regressors have been recently widely applied as
predictors in machine learning applications [18]. In-
deed, they can be used to predict a real value from a
set of observed variable by projecting a multidimen-
sional feature space into a novel continuous space
with a limited number of dimensions. In our case, for
each semantic descriptor, the LLF space is mapped
into a novel conceptual one-dimensional space of real
values (HLF).

Formally, given (xi, yi), i ∈ {1, ..., N} a set of N
pairs, where xi is a 1 × M feature vector and yi
is the real HLF value to predict, a regressor r(·)
is defined as the function that minimize the mean
squared error (MSE) ε:

ε =
1

N

N∑
i=1

(yi − r(xi))2 (6)

Based on this idea, several regression methods have
been presented in the past few years. Since it is
not clear the correlation between LLF and HLF,
in order to discover the most appropriate method,
in this study we use a set of regression functions
resulted to be effective in many MIR applications
[18, 27]: Multiple Linear Regression (MLR) [21],
Polynomial Regression [21], Ridge Regression [21],
Polynomial Regression [21], Support Vector Regres-
sion (SVR) [22], Ada-boost Regression [23], Gradi-
ent Boost Regression[24].

4. METHODOLOGY

The overall scheme of the method is depicted in Fig.
2. The figure shows the approach adopted for a sin-
gle HLF and it follows a classic schema of a training-
based technique. As described so far in this study,
human attitude to sound discrimination and descrip-
tion is mainly based on acoustic cues and it is per-
formed through spectral analysis. For this reason,
the low-level characterization of each recording is
provided through the extraction of the set of low-
level features described in section 2. Each record-
ing is then represented by a feature vector xi ∈ RD
where D is the number of features. In the training
phase, the generative models (regressors) are trained
on the high dimensional feature space computed on
a training dataset of recordings. At this end, the
regressors take as input a set of pairs 〈xi; yi〉, where
yi ∈ R is the real value subjective annotation for the
recording.

During the training, the regression processes aims
at finding the hypersurface that best fits the data in
order minimize the error in eq. 6. Whereas, in test
phase, generated models are used to predict the real
value label on a set of previously unseen recording.

Moreover, since some features are not informative
for all the HLFs, feature selection methods can be
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Fig. 2: General example-based regression learning schema. Models are the result of the training phase,
performed over low-level features extracted by the excerpts in the training dataset and using the subjective
annotation as the ground truth. Models are then used in the testing phase in order to analyze a previously
unseen audio excerpt.

applied. To this end, in this study we used the Uni-
variate Feature Selection algorithm that resulted to
be very effective in music classification applications
in the literature [28].

4.1. Data collection and Feature Extraction
The set of semantic descriptors used in this work

represents the most used set of terms described in
[3], which it has been obtained by several interviews
to professional violin makers. The list of terms used
in this study is shown in table 1.

Bright Dark
Warm Not Warm
Sweet Harsh
Full Not Full
Soft Hard
Deep Not Deep

Table 1: List of terms related to timbre used in this
work. Terms in the same row and the same column
are considered synonyms; terms in the same row but
in different column are considered opposites.

With the intent to validate our method, a dataset
of recordings has been conveniently collected.
We recorded 28 violins of different qualities and
ages: thirteen historical violins (three Amati, two
Guarnieri del Gesu‘ and eight Stradivari) and fifteen
modern violins from the collection of the Museo del
Violino in Cremona and Scuola di Liuteria Istituto
Stradivari in Cremona. Recordings have been per-

formed in a semi-anechoic room using high-quality
recording system and 44100 Hz as sample rate. A
unique professional musician were performing for all
the the recordings. In order to best emphasize the
timbre characteristics of the instruments, the musi-
cian were asked to play a set short pieces of songs.

We collected the subjective annotation for each in-
strument through a listening test to 4 professional vi-
olin makers. For each pair of Semantic Descriptor in
table 1, testers were asked to place the instruments
on a mono-dimensional space. The position in the
space represents how the violin is described by the
two terms and corresponds to a real value ranging
from 0 to 10. As an example, in figure 3, the violin
2 has been placed very close to Dark. This means
that the timbre of the instrument is quite dark, it is
darker than the violin 5 and it has assigned the value
1.1. The tester were allowed to listen the recordings
of all the instruments. We computed the average
of the annotations in order to obtain a single HLF
value for each violin.

Fig. 3: Screenshot of the listening test related to a
single HLF.

In order to enrich the dataset, we segmented each
recording by extracting segments each 5 seconds
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with an overlap of the 60%. We considered each seg-
ment as an independent recording. The final dataset
is composed by 500 segments, 70% used for compose
the training dataset and 30% used for test dataset.
The train dataset and the test dataset have been
populated by randomly chosen segments.

The features have been extracted from each segment
using the MIR toolbox [25].

5. EXPERIMENTAL RESULTS AND EVALUA-
TIONS

Since we proposed to study the relation existing be-
tween acoustic cues and semantic descriptors, we are
also interested in studying the contribute of differ-
ent feature sets. More specifically, we performed the
evaluation using the following groups: MFCC, Spec-
tral Contrast, Chromagram, All (all the features),
All+FS (use of a feature selection procedure applied
to the whole set of features).

We evaluate the performance of the proposed regres-
sion approach in terms of R2 index [21], which is a
standard metric for measuring the accuracy of the
fitting of regression models and in terms of Mean
Squared Error (MSE). Let us notice that a negative
value of R2 means the prediction model is worse than
simply taking the sample mean, whereas the value
of R2 represents the best performance.

The evaluation are collected in table 2. Let us notice
that the feature selection procedure is not applied
to ADABoost and GradientBoost cases, since they
already include a feature selection method.

As shown in table 2, the overall performance is
very prominent. The best results (R2 = 0.763)
are obtained combining the feature selection proce-
dure applied on the whole set of features and the
Linear Regression for the Hard/Soft descriptor. In
general the overall accuracy is prominent (R2 over
0.4). For the Dark/Bright descriptor the best result
(R2 = 0.507) is obtained computing the Polynomial
regression using the feature selection procedure ap-
plied to the whole set of features. Feature selec-
tion results to be effective also for Hard/Soft de-
scriptors where the best score is obtained using the
Linear regression (R2 = 0.763), which is the overall
best result. For the Warm/Not Warm, Harsh/Sweet

and Full/Not Full descriptors, the best score is ob-
tained using Spectral Contrast features respectively
using Ridge regression (R2 = 0.405), ADABoost re-
gression (R2 = 0.560) and Polynomial regression
(R2 = 0.594). The MFCC features result to be the
best solution only for the Deep/Not Deep descrip-
tor by means of the SVR regression with the RBF
kernel (R2 = 0.428).

Let us provide some general consideration. Since less
informative features can produce noise in the classifi-
cation process, feature selection resulted to be very
effective on almost all the cases. Moreover, Spec-
tral Contrast features are very discriminant since
obtained high score for all the HLFs. This confirms
that the human ability to recognize bootlegs mainly
relies on spectral cues.

In Fig. 5 and in Fig. 4 we present a pair of ex-
amples of the prediction for an historical violin and
for a modern violin. The plots provide an intuitive
description of the overall sound quality of the in-
strument. The annotations and the predictions are
represented as curves in order to better outline the
similarities.

The use of short segments for the training makes our
method valid also for short-time analysis to capture
the evolution of semantic descriptors along the per-
formance. Fig. 6 shows that the method is effective
also for small segments (1s).

Fig. 6: R2 score varying the length of segments
for training and test dataset in the case of the
Harsh/Sweet descriptor using ADABoost regression
and Spectral Contrast.

6. CONCLUSIONS
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Chromagram Spectral Contrast MFCC All All+Selection
Descriptor Regressor MSE R2 MSE R2 MSE R2 MSE R2 MSE R2
Dark/Bright Linear 1.712 0.075 1.090 0.411 1.175 0.365 0.950 0.486 1.031 0.443

Ridge 1.703 0.080 1.276 0.310 1.177 0.364 0.928 0.498 1.046 0.435
Polynomial 1.488 0.196 1.116 0.396 1.131 0.388 1.021 0.448 0.912 0.507
SVR 1.406 0.240 1.385 0.251 1.303 0.296 1.003 0.458 1.436 0.224
GradBoost 1.596 0.138 1.184 0.360 1.299 0.298 1.198 0.353 - -
ADABoost 1.715 0.073 1.347 0.272 1.554 0.160 1.360 0.265 - -

Warm Linear 0.820 -0.095 0.538 0.281 1.215 -0.624 0.762 -0.018 0.604 0.191
Ridge 0.846 -0.131 0.445 0.405 1.078 -0.441 0.522 0.301 0.554 0.259
Polynomial 0.759 -0.014 0.646 0.135 1.292 -0.727 0.807 -0.079 0.835 -0.116
SVR 0.759 -0.014 0.647 0.134 0.997 -0.333 0.544 0.271 0.552 0.261
GradBoost 0.890 -0.189 0.649 0.131 1.262 -0.686 0.592 0.208 - -
ADABoost 0.711 0.0492 0.532 0.289 1.429 -0.909 0.531 0.289 - -

Harsh/Sweet Linear 1.224 0.269 0.653 0.610 1.789 -0.067 1.230 0.265 0.820 0.510
Ridge 1.232 0.264 0.845 0.495 1.711 -0.021 0.880 0.474 0.880 0.474
Polynomial 1.185 0.292 0.873 0.478 1.670 0.003 1.348 0.195 0.911 0.456
SVR 2.037 -0.215 1.514 0.096 1.503 0.103 1.312 0.217 1.384 0.173
GradBoost 1.441 0.140 1.107 0.339 1.559 0.069 0.922 0.449 - -
ADABoost 0.926 0.447 0.736 0.560 1.862 -0.111 0.818 0.511 - -

Full Linear 1.687 0.327 1.024 0.591 2.124 0.153 2.071 0.174 1.033 0.588
Ridge 1.762 0.297 1.197 0.522 2.016 0.196 1.266 0.495 1.186 0.527
Polynomial 1.503 0.400 1.017 0.594 2.012 0.198 1.959 0.219 1.074 0.571
SVR 2.627 -0.047 2.217 0.116 1.874 0.252 1.701 0.321 1.222 0.512
GradBoost 1.643 0.344 1.392 0.445 1.914 0.236 1.359 0.458 - -
ADABoost 1.451 0.421 1.289 0.486 2.220 0.114 1.249 0.501 - -

Hard/Soft Linear 0.696 0.417 0.306 0.743 0.872 0.269 1.230 0.265 0.281 0.763
Ridge 0.735 0.383 0.428 0.641 0.912 0.236 0.880 0.474 0.450 0.623
Polynomial 0.607 0.493 0.329 0.724 0.837 0.298 1.348 0.195 0.318 0.734
SVR 0.641 0.463 0.422 0.646 0.841 0.294 1.312 0.217 0.526 0.560
GradBoost 0.723 0.395 0.566 0.526 0.830 0.305 0.922 0.449 - -
ADABoost 0.570 0.523 0.541 0.546 1.151 0.035 0.818 0.512 - -

Deep Linear 1.773 0.131 1.257 0.384 1.144 0.292 1.737 0.148 1.415 0.306
Ridge 1.803 0.116 1.182 0.421 1.523 0.253 1.198 0.412 1.202 0.411
Polynomial 1.679 0.177 1.288 0.369 1.380 0.323 2.012 0.016 1.370 0.328
SVR 2.234 -0.094 1.756 0.139 1.167 0.428 1.902 0.067 1.592 0.220
GradBoost 1.926 0.055 1.707 0.163 1.746 0.144 1.552 0.239 - -
ADABoost 1.826 0.105 1.658 0.187 1.962 0.038 1.494 0.267 - -

Table 2: Performance for each regressor expressed with the R2 score and the MSE

In this work we modeled a set of high-level descrip-
tors for violin timbre, employing regression tech-
niques typically used in machine learning and low-
level audio features. The descriptors have been col-
lected by means of interviews to violin makers and
the ground truth came from a listening test where
the subjects had to annotate every violin with the
collected descriptors.

The results highlighted important aspects of timbre
perception. As we imagined, only features related
to spectral components achieved good performances
(regression scores obtained using the Chromagram
were low). Moreover, the use of feature selection
techniques improved the results, since the presence
of useless features made the data noisier. The ac-

curacy was satisfying in many cases, reaching values
of 0.76 for the R2 score and 0.28 for the MSE. Fi-
nally, it is not possible to define a regression method
that well suits all the high-level descriptors: each de-
scriptor needs a specific method to be designed and
tuned.

With our model it is possible to predict the highl-
level timbral description of an instrument, starting
from a recording. We also showed that with the
right setting we can perform a time-varying predic-
tion, by segmenting the audio file and processing
each segment separately.

In future studies, new low-level features, specifically
designed for violin sound analysis, will be tested.
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Fig. 4: Circular HLF description for an historical
violin

Fig. 5: Circular HLF description for an modern
violin

Moreover, since the feature selection process is very
complex and important, we want to test other selec-
tion algorithms.

The semantic gap represents an arduous obstacle in
the study of sound perception. Nevertheless, this
work can be considered a further step toward the
comprehension of the relations that exist between
physical attributes of violin sounds and the descrip-
tion of its timbre.
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