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This article proposes an encoder-decoder network model for Acoustic Scene Classification (ASC), the task

of identifying the scene of an audio recording from its acoustic signature. We make use of multiple

low-level spectrogram features at the front-end, transformed into higher level features through a well-

trained CNN-DNN front-end encoder. The high-level features and their combination (via a trained feature

combiner) are then fed into different decoder models comprising random forest regression, DNNs and

a mixture of experts, for back-end classification. We conduct extensive experiments to evaluate the

performance of this framework on various ASC datasets, including LITIS Rouen and IEEE AASP Challenge

on Detection and Classification of Acoustic Scenes and Events (DCASE) 2016 Task 1, 2017 Task 1, 2018

Tasks 1A & 1B and 2019 Tasks 1A & 1B. The experimental results highlight two main contributions;

the first is an effective method for high-level feature extraction from multi-spectrogram input via the

novel CNN-DNN architecture encoder network, and the second is the proposed decoder which enables

the framework to achieve competitive results on various datasets. The fact that a single framework is

highly competitive for several different challenges is an indicator of its robustness for performing general

ASC tasks.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Considering a general recording of an acoustic environment,

this can be said to contain both a background sound field as well

as various foreground events. If we regard the background as noise

and the foreground as signal, we would find that the signal-to-

noise ratio exhibits high variability due to the diverse range of

environments and recording conditions. To complicate matters fur-

ther, a lengthy sound event could be considered background in

certain contexts and foreground in others. For instance, a pedes-

trian street recording may have a generally quiet background, but

with short engine foreground events, as traffic passes. However,

a lengthy engine sound in an on bus recording would be con-

sidered a background sound. Furthermore, both background and

foreground contain true noise – continuous, periodic or aperiodic

acoustic signals that interfere with the understanding of the scene.

* Corresponding author.

E-mail address: ldp7@kent.ac.uk (L. Pham).

These variabilities and difficulties make acoustic scene classifica-

tion (ASC) particularly challenging.

To deal with such challenges, recent ASC papers have tended

to focus on two main machine hearing areas. The first aims to

solve the lack of discriminative information by exploiting various

methods of trained low-level feature extraction. In particular, re-

searchers transform input audio data into one-dimentional frame-

based [1] or two-dimensional spectrogram representations [2] to

be fed into a back-end classifier.

Frame-based representations often utilise Mel Frequency Cep-

stral Coefficients (MFCC) [3], providing powerful feature extraction

capabilities, which is borrowed from the automatic speech recog-

nition (ASR) community. MFCCs are often combined with other

low-level features such as intensity, zero-crossing rate, etc. [1],

or modified features such as perceptual linear prediction (PLP),

power nomalised cepstral coefficients (PNCC), robust compressive

gamma-chirp filter-bank cepstral coefficients (RCGCC) or subspace

projection cepstral coefficients (SPCC) [4]. Some systems first trans-

form audio into spectrograms, then attempt to learn different as-

pects of those spectrograms to extract frame-based features. For

https://doi.org/10.1016/j.dsp.2020.102943
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instance, Alain et al. [5] applied non-negative matrix factorisation

(NMF) techniques over a log-mel spectrogram. Meanwhile Song et

al. [6] applied the auditory statistics of a cochlear filter model to

extract discriminative features directly from audio signals. Con-

ventionally, frame-based approaches are combined with machine

learning methods, such as Gaussian mixture models (GMM) [4,7],

support vector machines (SVM) [1,6] and so on, for the role of

back-end classification. Spectrogram-based approaches use linear,

log-mel or other short-time fast Fourier transform (STFT) spectra,

stacked into a two-dimensional image. Recent papers have utilised

diverse combinations of log-mel and different types of spectro-

grams such as mel-based nearest neighbour filter (NNF) spectro-

gram [2], constant-Q transform (CQT) [8], or gammatonegram [9].

To test a wavelet-transform derived spectrogram representation,

Ren et al. [10] compared results from STFT spectrograms and both

Bump and Morse scalograms. By exploiting channel information,

Sakashita and Aono [11] generated multi-spectrogram inputs from

two channels, their average and side channels, and even explored

separated harmonic and percussive spectrograms from mono chan-

nels to achieve good results. Some papers proposed combining

spectrogram and vector features such as log-mel spectrogram and

x-vector in [8]. Comparing between frame-based and spectrogram

representations, the latter provides richer low-level feature input

detail and appears to enable better performance [9,12,13].

Systems using spectrograms [14,15] as low-level features tend

to be associated with more complex deep learning classifiers. In

general, input spectrograms are first transformed to high-level fea-

tures containing condensed information before feeding into a final

classifier [16]. In some systems, both high-level feature extraction

and classification are integrated into one learning process as an

end-to-end model. If the high-level feature transformer is well

designed and effective at obtaining disciminative features, it is

reasonable to assume that final classifier performance will ben-

efit. From this inspiration, the second research trend focuses on

constructing and training powerful learning models to transform

spectrograms into discriminative higher level features. For instance,

Lidy and Schindler [17] proposed two parallel CNN-based mod-

els with different kernel sizes to learn from a CQT spectrogram

input, capturing both temporal and frequency information. Simi-

larly, Bae et al. [18] applied a parallel recurrent neural network

(RNN) to capture sequential correlation and a CNN to capture local

spectro-temporal information over an STFT spectrogram. Focusing

on pooling layers where high-level features are condensed, Zhao et

al. [19,20] proposed an attention pooling layer that showed effec-

tive improvement compared to conventional max or mean pooling

layers. With the inspiration that different frequency bands in a

spectrogram contain distinct features, Phaye et al. [21] proposed

a SubSpectralNet network which was able to extract discriminative

information from 30 sub-spectrograms. Recently, Song et al. [22]

proposed a new way to handle distinct features in a sound scene

recording, where a deep learning model extracts a bag of features

from log-mel spectrograms, including similar and dissimilar ones,

then a back-end network exploits this to enhance accuracy.

Looking at the recent approaches surveyed above, we see three

main factors explored by all authors: low-level feature input, high-

level feature extraction, and output classification. All of these affect

final system accuracy. All are chosen in a task-specific way, and no

consensus has emerged regarding an optimum choice for any of

the three factors. In this paper, we address all three factors in the

following way:

1. Firstly, we believe that low-level features often contain valu-

able and complementary information, hence we develop a

method to effectively combine three different spectrogram in-

put features, namely log-mel, gammatone filter (Gamma) and

CQT spectrograms.

Fig. 1. System view of feature extraction process.

2. To extract high-level features from a multi-spectrogram input,

we propose a novel encoder-decoder architecture comprising

three parallel CNN-DNN paths. Each CNN block learns to map

one spectrogram into high-level features, and we also com-

bine these high-level features from the middle layers of the

networks to form a combined feature.

3. In terms of decoder as final classifier, we evaluate three differ-

ent models – random regression forest, a deep neural network,

and a mixture of experts. We compare the performance of

each against state-of-the-art approaches.

Rather than selecting a single task, we evaluate over a wide set:

LITIS Rouen, DCASE 2016 Task 1, DCASE 2017 Task 1, DCASE 2018

Tasks 1A & 1B and DCASE 2019 Tasks 1A & 1B. We will see that

the performance of our proposed system is competitive with (and

for two tasks, outperforms) the state-of-the-art systems. The re-

mainder of this paper is organised as follows. Our motivation for

a combined multi-spectrogram approach with a retraining (two-

pass) model architecture is described in Section 2. Section 3 de-

scribes the evaluation process. Results are discussed in Section 4,

and we conclude in Section 5.

2. The proposed system

The overall proposed system is outlined in Fig. 1. Firstly, au-

dio from channel 1 of a recording (some datasets evaluated in this

paper have two channels) is represented by a spectrogram. Hav-

ing tested numerous spectrogram types in our research, we have

found – and will demonstrate below – that different spectrograms

perform better for different types of scene or task. We therefore

design an architecture that is able to effectively combine the ben-

efits of log-mel, gammatonegram (Gamma) and CQT spectrograms.

The window size, hop size and number of filters is set empirically

to 43ms, 6ms and 128 for each spectrogram. Spectrograms are

then split into matching non-overlapping patches of size 128×128.

We apply mixup data augmentation [23,24], over the patches to

increase variation, forcing the learning model to enlarge Fisher’s

criterion (i.e. the ratio of the between-class distance to the within-

class variance in the feature space). After mixup, patches are input

to the encoder network.

2.1. Low-level feature with multiple spectrograms

As mentioned in Section 1 and depicted in Fig. 1, we employ

three different types of spectrograms as low-level features:

a) Log-mel spectrogram (log-mel) is popular for ASC tasks, ap-

pearing in many recent papers. It begins with a set of short-time

Fourier transform (STFT) spectra, computed from

X[k,m] =

N−1
∑

n=0

x[n +m]w[n]e−i2πnk/N (1)

2
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Fig. 2. High-level feature extraction from the encoder network.

where x[n+m] is the discrete audio signal input, w[n] is a window

function, typically Hamming, and N is length of audio input signal.

A Mel filter bank, which simulates the overall frequency selectiv-

ity of the human auditory system using the frequency warping

fmel = 2595log10(1+ f /700) [25], is then applied to generate a Mel

spectrogram. Logarithmic scaling is applied to obtain the log-mel

spectrogram. We use the Librosa toolbox [26] in our experiments.

b) Gammatonegram (Gamma): Gammatone filters are designed

to model the frequency-selective cochlea activation response of the

human inner ear, as given by

g[k] = kP−1T P−1e−2bπkT cos(2π f kT + θ) (2)

where P is the filter order, θ is the phase of the carrier, b is filter

bandwidth, and f is central frequency, and T is sampling period.

As with the log-mel spectrogram, the audio signal is first trans-

formed into STFT spectra before applying a gammatone weighting

to obtain the gammatone spectrogram, as in [27].

c) Constant Q Transform (CQT): the CQT is designed to model

the geometric relationship of pitch, which makes it likely to be

effective when undertaking a comparison between natural and ar-

tificial sounds, as well as being suitable for frequencies that span

several octaves. As with the log-mel spectrogram, we also use Li-

brosa [26] to generate the CQT.

Since these spectrograms are derived from different auditory

models, it is plausible that they can each contribute distinct fea-

tures for classification. This provides an inspiration to explore the

three spectrograms. In particular, to design a novel architecture

able to extract high-level features from a combination of the three,

as described in the following section.

2.2. Encoder network to extract high-level feature

High-level features are extracted by the parallel CNN-DNN

front-end paths as shown in Fig. 2, referred to as the encoder net-

work. Image patches of size 128×128 pixels, after mixup, are fed

into the three parallel networks each of which comprises a CNN

and a DNN-01 block, like the VGG-7 architecture [28]. The three

parallel networks (each containing CNN and DNN-01) will learn

to extract high-level features from one type of spectrogram each.

While the structure of these three CNNs is identical and the struc-

ture of the three DNN-01 blocks is identical, they will contain very

different weights after training. In Fig. 2, the three paths are de-

noted by subscripts LM, GA, and CQ, respectively, referring to the

kind of spectrogram they process. The architecture of the CNN and

DNN-01 blocks is described in the upper and middle sections of Ta-

ble 1. While each CNN comprises six sub-blocks employing layers

of batch normalization (Bn), convolution (Cv [kernel size]), recti-

fied linear units (Relu), average pooling (Ap [kernel size]), global

Table 1

Encoder network structures of the CNN (top), DNN-01 (middle) and DNN-02 (bot-

tom).

Network architecture Output

CNN

Input layer (image patch) 128×128×1

Bn - Cv [9×9] - Relu - Bn - Ap [2×2] - Dr (10%) 64×64×32

Bn - Cv [7×7] - Relu - Bn - Ap [2×2] - Dr (15%) 32×32×64

Bn - Cv [5×5] - Relu - Bn - Dr (20%) 32×32×128

Bn - Cv [5×5] - Relu - Bn - Ap [2×2] - Dr (20%) 16×16×128

Bn - Cv [3×3] - Relu - Bn - Dr (25%) 16×16×256

Bn - Cv [3×3] - Relu - Bn - Gp - Dr (25%) 256

DNN-01

Input layer (vector) 256

Fl - Softmax C

DNN-02

Input layer (vector) 256

Fl - Dr (30%) 512

Fl - Dr (30%) 1024

Fl - Softmax C

average pooling (Gp), and dropout (Dr(%)) layers, DNN-01 block

comprises of a fully-connected (Fl) followed by a Softmax layer

with dimensions given in the table. “C” is the number of classes

found within the given dataset, which depends on the particular

evaluation task.

The output of each of the CNN blocks shown in the upper part

of Table 1 is a 256-dimensional vector. We refer to the vector ex-

tracted from each individual spectrogram, as a high-level feature,

and we will explore the relationship between these later. A size

of 256 was selected after evaluation of power-of-two dimensions

from 64 to 1024 on DCASE 2018 Task 1B.

The Combiner block in Fig. 2 has the role of combining the three

high-level feature vectors into one composite feature vector. We

will evaluate three methods of combining the high-level features.

Consider vectors xLM/GA/CQ [x1, x2, ..., x256] as the high-level fea-

ture outputs of the CNN blocks. The first combination method we

evaluate, called sum-comb, is the unweighted sum of the three vec-

tors. i.e. the individual vectors contribute equally to the combined

high-level feature,

xsum−comb = xLM + xGA + xCQ (3)

The second method, which is called max-comb, obtains xmax−comb[x1, x2, ...,

by selecting the element-wise maximum of the three vectors

across the dimensions as in eqn. (4). The motivation is to pick

the most important (highest magnitude) feature from among the

three high-level feature vectors,

xmax−comb[xi] =max(xLM[xi],xGA[xi],xCQ[xi]) (4)

For the final method, we assume elements of three vectors to have

a linear relationship across dimensions. We then derive a sim-

ple data-driven combination method called lin-comb by employing

a fully-connected layer trained to weight and combine the three

high-level features, as in

xlin−comb = ReLU {xLMwLM+ ...

xGAwGA + xCQwCQ +wbias

}

(5)

where wLM/GA/CQ/bias[w1, w2, ..., w256] are the trained parameters.

The combined high-level feature vector from the output of the

Combiner block is then fed into DNN-02, with the structure shown

in the lower part of Table 1. Note that the combined high-level

feature vectors, like the individual high-level vectors, have a di-

mension of 256 – meaning that the higher layer classifier of the

decoder can be set for evaluation with either individual or com-

bined feature input, without changing its structure or complexity.

3
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Regarding training loss, we define four loss functions to train

the encoder network; three to optimize individual spectrograms,

and the final one for their combination. Eventually, the overall loss

function is computed as

LossEN = α(LLM + LGA + LC Q ) + βLcom (6)

and LLM , LGA, LC Q and Lcom are individual losses from the log-mel,

Gamma and CQT spectrograms, and their combinations. These are

depicted in Fig. 2 and will be defined in Section 3.3. The balancing

parameters α and β focus on learning particular features or combi-

nations and are set to 1/3 and 1.0 here, making the contributions

from each spectrogram equal.

2.3. Decoders for back-end classification

Our previous work [29], which introduced a CNN-DNN struc-

ture for individual spectrograms, found mixup to be beneficial for

training feature extractors. The new architecture introduces a fea-

ture combiner, so we maintain the previous mixup to help train

the low-level features, but introduce a second mixup stage, for

high-level features when training the decoder. Furthermore, we

will evaluate three types of decoder: A random forest regressor

(RFR) with classifier, a DNN, and a mixture of experts (MoE), de-

scribed below

a) Random Forest Regression (RFR-decoder): A regression for-

est [30] is a type of ensemble model, comprising multiple regres-

sion trees. The role of each tree is to map the complex input space

defined by the high-level features from the encoder network, into

a continuous class-dimension output space. Its nonlinear mapping

is achieved by dividing the large original input space into smaller

sub-distributions. Individual trees are trained using a subset ran-

domly drawn from the original training set. By using many trees

(e.g. 100), the structure is effective at tackling overfitting issues

that can occur with single trees. We also believe the regressor

structure benefits from the continuous mixed-class training la-

bels provided by employing mixup. Eventually, the decoded output

spaces are classified as in our previous work [31] by mean pooling

the output over all trees.

b) Deep Neural Network (DNN-decoder): In this paper, we

propose a DNN architecture, denoted DNN-03 for output classi-

fication in the decoder. The network comprises four fully con-

nected dense blocks with same dropout (30%), having node sizes of

512 − 1024 − 1024 − C , where “C” is the number of classes in the

task being evaluated. Note that this is similar to the DNN-02 archi-

tecture in Fig. 1, but incorporates one additional fully-connected

and one dropout layer, which is useful in practice to refine the ac-

curacy for similar classes.

c) Mixture of Experts (MoE-decoder): An MoE is a machine

learning technique that divides the problem spaces into homo-

geneous regions by using an array of different trained (but in

this case identical structure) models, referred to as experts [32].

A conventional MoE architecture comprises many experts and in-

corporates a gate network to decide which expert is applied in

which input region. In this paper, we apply the MoE technique to

the combined high-level features, as shown in Fig. 3. Specifically,

the 256-dimensional input vector goes through three dense layers

with dropout (30%), having 512, 1024 and 1024 hidden nodes, re-

spectively. The output enters the MoE layer, which is expanded in

Fig. 3. The combined result from all experts is gated before passing

through a softmax to determine the final C class scores. Each MoE

expert comprises a dense block with a ReLU activation function. Its

input dimension is 1024 and its output size is C . The gate network

Fig. 3. Proposed mixture of experts within its deep back-end decoder network.

is implemented as a Softmax Gate – an additional fully-connected

layer with softmax activation and a gating dimension equal to the

number of experts.

Let e1,e2, . . .eK ∈ RC be the output vectors of the K experts,

and g1, g2, . . . , gK be the outputs of the gate network where gk ∈

[0,1],
∑K

k=1 gk = 1 The predicted output is then found as,

ŷ = sof tmax

{

K
∑

k=1

ekgk

}

(7)

3. Evaluation methodology

To clearly demonstrate the general performance of the proposed

systems we will evaluate using five different ASC tasks. While it

is relatively easy to perform well in one challenge, it is consid-

erably more difficult to do so for all – this helps us to explore

one of the hypothesised strengths of our combined-spectrogram

approach, that it can be more generic. Four of the datasets we use

are derived from annual DCASE challenges, whereas the fifth is the

extensive LITIS Rouen dataset. Each is described briefly below.

3.1. DCASE datasets

We adopt datasets from the DCASE 2016 [7], 2017 [33],

2018 [34] and 2019 [35] challenges. For DCASE 2016, both de-

velopment set (1170 segments) and evaluation set (390 segments)

were published and recordings were sampled at 44100Hz, with

30 s duration per segment over the 15-class challenge. DCASE 2017

reused all DCASE 2016 dataset and added more recording data,

with 4680 and 1620 segments for development and evaluation,

respectively (segments are of 10 s duration). For DCASE 2016 and

2017, we use the development set (dev. set) for training, and report

the classification accuracy over the evaluation set (eva. set). DCASE

2018 and 2019 Task 1A datasets contain 10 s segments, recorded at

48000Hz and spanning 10 classes. Unlike DCASE 2016 and 2017,

these recent challenges only released the development set pub-

licly, providing 8640 and 13370 segments for DCASE 2018 and

2019, respectively. Moreover, DCASE 2018 and 2019 also proposed

a different ASC challenge type that involves mismatched recording

devices. This is known as Task 1B. Specifically, all recorded seg-

ments from device A (Soundman OKM II Klassik/studio A3 electret

microphone and a Zoom F8 audio recorder) for the conventional

ASC task (the 1A dataset) were reused in Task 1B. Then additional

segments were recorded using two different devices B & C (e.g.

recorded from a variety of smart phones and cameras) and added,

but with unbalanced recording times of 4 and 6 hours respectively.

4
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This is much less than the approximately 24 and 37 hours of de-

vice A recordings included in DCASE 2018 and 2019, respectively.

In this paper, we follow the setting of the DCASE 2018 challenge;

subdividing the development dataset into two subsets; a training

set (train set) and a testing set (test set), respectively. For the most

recent DCASE 2019 dataset, we report the results over the eva. set

(noting that this set has not been released publicly yet), as used

for the Kaggle competition associated with the DCASE 2019 chal-

lenge.1

3.2. LITIS rouen dataset

This extensive dataset [5] comprises 19 urban scene classes

with 3026 segments, divided into 20 training/testing splits. The au-

dio was recorded at a sample rate of 22050Hz, with each segment

duration being 30 s. We follow the mandated settings for 20 times

cross validation, obtaining final classification accuracy by averaging

over the 20 testing folds.

3.3. Experimental setup

All of our proposed networks are built on the Tensorflow frame-

work using cross-entropy loss,

Loss(θ) = −
1

N

N
∑

i=1

yilog
{

ŷi(θ)
}

+
λ

2
||θ ||22 (8)

where Loss(θ) is the loss function over all parameters θ , constant

λ is set to 0.0001, yi and ŷi are ground-truth and network out-

put, respectively. Experiments use the Adam optimiser to adjust

learning rate, with a batch size of 50. Results were obtained after

200 epochs (in practice we lose only a small degree of perfor-

mance by not continuing beyond this). As aforementioned, we also

performed mixup data augmentation [23,24]. For the pre-training

process on the extractor, each of the raw 128×128 dimensional

features was repeated twice by including same-dimension beta and

Gaussian distribution mixup images of the same dimensions. When

training the decoder, we applied mixup to the high-level feature

vectors prior to the final classifier. In this case it doubles the num-

ber of 256 element feature vectors by including same-length beta

distribution mixup vectors. In each case, we incorporated both

original and generated mixup data into the training processes to

improve performance, at the cost of increasing the training time.

The experiment were performed on a Nvidia GPU-V100 with 16Gb

RAM for both training and inference jobs. The training time de-

pended on the particular dataset used, but on average each of

the sound scene datasets required around four days to train each

Encoder-Decoder framework entirely. The inference computation for

the datasets was much quicker, requiring less than one second for

each 10-s audio segment.

4. Experimental results and comparison

In this section we will analyse the performance of the encoder

network to specifically understand the contribution made by dif-

ferent spectrogram types, as well as their combinations. We will

then analyse the performance of the decoder to assess different

back-end classifiers, then compare overall performance to a range

of state-of-the art methods.

Fig. 4. Performance comparison of different spectrograms types, and their combina-

tion, for the DCASE 2018 Task 1B dev. set.

4.1. The performance of each spectrogram by class

We first evaluated the baseline architecture to determine how

different spectrogram types contributed to the performance of dif-

ferent classes. To do this, we began by training three CNN-DNN en-

coder networks, comprising CNN and DNN-02 blocks, each encoder

for an individual spectrogram input. We trained another CNN-DNN

encoder network, the entire network as in Fig. 2, for spectrogram

combination. These four trained systems were subsequently used

as high-level feature extractors to train the decoder and then to

test the overall system. We trained four different decoders using

the DNN-03 architecture from Section 2.3 to assess individual spec-

trogram performance, as well as the performance of the combined

high-level features – using the lin-comb method from Section 2.2.

These experiments were conducted using the DCASE 2018 Task 1B

dev. set.

To compare performance, class-wise accuracies for the three

spectrograms and their combinations are shown in Fig. 4, with

overall average performance shown at the bottom. Clearly, the

combined features performed best overall, with the log-mel and

gammatonegram performing similarly, and both being better than

CQT. However a glance at the per-class accuracy shows some in-

teresting variation. For example, the CQT spectrogram was partic-

ularly good at discriminating the Bus and Metro classes, compared

to the other spectrograms. Also, while log-mel and Gamma per-

formances were similar, the former excelled on Airport and Pub-

lic Square classes, whereas the latter tended to be slightly better

for classes containing vehicular sounds (with the exception of the

Metro class).

We conclude from this that the three spectrograms represent

sounds in ways that have affinity for certain types of sounds (mir-

roring a conclusion in [36], albeit on very different types of sound

data). It is therefore unsurprising that intelligently combining the

three spectrograms into a high-level feature vector can achieve sig-

nificant performance gain over single spectrograms.

1 1A: https://www.kaggle.com/c/dcase2019-task1a-leaderboard/overview,

1B: https://www.kaggle.com/c/dcase2019-task1b-leaderboard/leaderboard.
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Fig. 5. Performance comparison for different recording devices within the DCASE

2018 Task 1B dev. set.

Fig. 6. Classification performance as a function of the length of the test signal over

DCASE 2018 Task 1B dev. set - all devices.

4.2. Spectrogram performance for each device

DCASE 2018 task 1B includes highly unbalanced data recordings

from three different devices as described in Section 3. We analysed

the performance of different spectrograms for those three devices,

with results plotted in Fig. 5. The device with the largest amount

of training data (Device A) obviously scored best, achieving around

9% better accuracy than devices B and C. Again, the Gamma and

log-mel results were similar, but each ‘preferred’ a different mi-

nority device. Although there were not enough devices included in

the dataset for the evidence to be conclusive, this variability sug-

gests that spectrograms differ in their affinity for different devices

(or device locations, or channels). Again, the combined features ef-

fectively leveraged the advantages of each spectrogram type.

4.3. Spectrogram performance by segment length

Inspired by a number of previous works that considered the

ability of systems to recognise a sound class early [37,38], we also

evaluated this ability for the different spectrogram types. Figs. 6

and 7 plot early classification accuracy for DCASE 2018 Task 1B

for all devices and for devices B+C, respectively. Early classifica-

tion means that class assignment is performed only on the first

part of the audio recording, rather than the entire duration (i.e. on

cropped audio). Performance is plotted for a number of cropped

segment lengths between 1 s and the full 10 s.

From both plots, immediate observations are that the com-

bined high-level features performed much better than the individ-

ual spectrogram types. The CQT performed worst while the other

Fig. 7. Classification performance as a function of the length of the test signal over

DCASE 2018 Task 1B dev. set - devices B&C.

Table 2

Performance of re-trained models (encoder/decoder Acc. %) over DCASE 2018 Task

1B dev. set.

Device A RFR-decoder DNN-decoder MoE-decoder

sum-comb 71.5/75.6 71.5/72.2 71.5/71.9

max-comb 74.1/75.3 74.1/74.7 74.1/75.5

lin-comb 73.7/75.2 73.7/75.5 73.7/75.9

Devices B & C: RFR-decoder DNN-decoder MoE-decoder

sum-comb 63.9/64.4 63.9/65.6 63.9/63.9

max-comb 61.4/65.3 61.4/63.9 61.4/63.9

lin-comb 64.2/68.9 64.2/69.2 64.2/70.6

two spectrograms had similar performance (as in the experiments

above). Looking closer at Fig. 6 (accuracy for all devices), the score

for all features continued to climb as duration progressed towards

the full 10 s. This provides a strong indication that the system was

data-constrained and is likely to perform better with longer dura-

tion recordings.

By contrast, Fig. 7 contains indications that the performance of

the log-mel and Gamma spectrograms began to plateau as duration

exceeded 5 s, indicating that performance might not substantially

increase if longer duration recordings were available. However the

continued improvement of the CQT representation as length in-

creased gave the combined features an ability to gain higher ac-

curacy from longer recordings: The strength of CQT may lie in the

analysis of longer recordings.

However, in these experiments, CQT performance lagged the

combined features by around 15% absolute, with the other spectro-

grams lagging by only around 5% absolute – apart from the area in

Fig. 7 where they plateaued. Most remarkable, though, is that with

just 2 s of input data from a recording, our proposed combined

high-level feature was able to match or outperform any of the indi-

vidual spectrograms operating with the full 10 s of input data. This

clearly demonstrates a major advantage of the proposed system.

It effectively captures the advantages of the individual spectro-

gram features, which vary in their affinity for different classes and

devices, and yields extremely good performance even when a re-

stricted amount of data is available for classification.

4.4. Performance of classifiers in the decoder

Three methods were proposed in Section 2.2 to incorporate the

three high-level spectrogram features into a combined high-level

feature in the encoder network. These were namely sum-comb,

max-comb and lin-comb. To make use of the combined features, we

then introduced three back-end classifier methods for the decoder

6
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Table 3

Comparison to DCASE 2018 baselines for Task 1B dev. set (using lin-comb for the pre-training process).

Device A Devices B & C

Classes D.2018 RFR-decoder DNN-decoder MoE-decoder D.2018 RFR-decoder DNN-decoder MoE-decoder

Airport 73.4 67.5 60.4 66.8 72.5 55.6 69.4 75.0

Bus 56.7 78.5 80.2 80.2 78.3 88.9 86.1 88.9

Metro 46.6 67.0 72.8 69.3 20.6 75.0 63.9 66.7

Metro Stn. 52.9 84.6 82.6 80.3 32.8 50.0 61.1 50.0

Park 80.8 89.7 86.8 88.4 59.2 91.7 91.7 94.4

Pub. Sq. 37.9 47.7 52.8 50.9 24.7 52.8 47.2 47.2

Shop. Mall 46.4 74.6 75.3 73.8 61.1 80.6 80.6 80.6

Str. Ped. 55.5 65.6 72.5 71.3 20.8 66.7 75.0 77.8

Str. Traffic 82.5 91.1 90.7 92.3 66.4 75.0 77.8 77.8

Tram 56.5 83.1 79.3 83.1 19.7 52.8 38.9 47.2

Average 58.9 75.2 75.5 75.9 45.6 68.9 69.2 70.6

Table 4

Comparison of the proposed system (lin-comb+MoE-decoder) to state-of-the-art results, with best performance in bold (Upper part: Dataset; Middle part: top-ten DCASE

challenges; Lower part: State-of-the-art papers).

D.2016 Acc. D.2017 Acc. D.2018-1A Acc. D.2018-1B Acc. D.2019-1A Acc. D.2019-1B Acc. LITIS Acc

(eva. set) (eva. set) (dev. set) (dev. set) (eva. set) (eva. set) (20-fold ave.)

Wei [39] 84.1 Zhao [40] 70.0 Li [41] 72.9 Baseline [34] 45.6 Mingle [42] 79.9 Baseline [35] 61.6 Bisot [43] 93.4

Bae [18] 84.1 Jung [44] 70.6 Jung [45] 73.5 Li [46] 51.7 Wu [47] 80.1 Kong [48] 61.6 Ye [49] 96.0

Kim [50] 85.4 Karol [51] 70.6 Hao [52] 73.6 Tchorz [53] 53.9 Gao [54] 80.5 Waldekar [55] 62.1 Huy [31] 96.4

Takahasi [56] 85.6 Ivan [57] 71.7 Christian [58] 74.7 Kong [59] 57.5 Wang [60] 80.6 Wang [61] 70.3 Yin [62] 96.4

Elizalde [63] 85.9 Park [64] 72.6 Zhang [65] 75.3 Wang [66] 57.5 Jung [67] 81.2 Jiang [68] 70.3 Huy [9] 96.6

Valenti [69] 86.2 Lehner [70] 73.8 Li [46] 76.6 Waldekar [71] 57.8 Huang [72] 81.3 Song [73] 72.2 Ye [74] 97.1

Marchi [1] 86.4 Hyder [75] 74.1 Dang [76] 76.7 Zhao [19] 58.3 Haocong [77] 81.6 Primus [78] 74.2 Huy [79] 97.8

Park [4] 87.2 Zhengh [80] 77.7 Octave [81] 78.4 Truc [2] 63.6 Hyeji [82] 82.5 Hamid [83] 74.5 Zhang [84] 97.9

Bisot [85] 87.7 Han [86] 80.4 Yang [87] 79.8 Hamid [83] 83.8 Gao [54] 74.9 Zhang [88] 98.1

Hamid [89] 89.7 Mun [90] 83.3 Golubkov [91] 80.1 Chen [92] 85.2 Kosmider [93] 75.3 Huy [12] 98.7

Mun [94] 86.3 Zhao [10] 64.0 Bai [95] 66.1 Zhao [20] 63.3

Li [96] 88.1 Yang [97] 69.3 Gao [98] 69.6 Truc [99] 64.7

Hyder [100] 88.5 Waldekar [101] 69.9 Zhao [20] 72.6 Truc [102] 66.1

Song [6] 89.5 Wu [103] 75.4 Phaye [21] 74.1

Yin [62] 91.0 Chen [104] 77.1 Heo [105] 77.4

Our system 88.2 Our system 72.6 Our system 77.5 Our system 70.6 Our system 76.8 Our system 72.8 Our system 98.9

block, namely RFR-decoder, DNN-decoder and MoE-decoder in Sec-

tion 2.3. In total, the three classifiers and three combiners yield

9 models to evaluate. In this section, we compare performance

among these 9 models on the DCASE 2018 Task 1B dev. dataset.

We separately note the accuracy of the encoder network (i.e. the

feature extractor, alone), as well as the full system accuracy (i.e.

incorporating the decoder).

Results are presented in Table 2, again split into Device A

and Device B & C performance. Best performance for both device

sets, highlighted in bold, was achieved by the MoE-decoder classi-

fier with the lin-comb combiner. However some interesting trends

were evident. Firstly, DNN-decoder was only very slightly inferior

to MoE-decoder for all combiners and device types. Secondly, look-

ing at the encoder network results for the Device A evaluation, the

max-comb combiner actually outperformed lin-comb, although the

latter performed best for most of the full systems. This means that

the optimal high-level feature combiner for the full system was not

the best combiner for loss computation when training the encoder

network. However the situation reverses when looking at Devices

B & C – an indication that the performance gain of lin-comb may

have been due to better generalisation.

4.5. Per-class performance of decoders

Given that the results presented so far indicate that the lin-

comb combiner performed best, we now feed those high-level

combined features into the three alternative decoders to explore

class-by-class performance. Table 3 presents results for DCASE

2018 Task 1B (dev. dataset). Device A and Device B & C results

are again shown separately, and the “D.2018” column is the DCASE

2018 baseline. Results show that the three classifiers all outper-

formed the baseline – with the mixture of experts system improv-

ing accuracy by 17.0% and 25.0% absolute, for Device A and Devices

B & C, respectively.

4.6. Performance comparison to state-of-the-art systems

While performance against the baseline score of DCASE 2018 is

good, we now evaluate the same model configuration (i.e. lin-comb

combiner and MoE-decoder back-end classifier) on various datasets

and competitions, to compare performance against the state of the

art at time of writing. The results, listed in Table 4, show that the

system proposed in this paper achieves the highest accuracy for

two datasets – achieving 70.6% and 98.9% for DCASE 2018 Task 1B

dev. and LITIS Rouen, respectively. For DCASE 2016, an accuracy of

88.2% was achieved, taking second position on the challenge table,

and ranked top-four among state-of-the-art systems. DCASE 2017

performance is a little less competitive at 72.6% (note that the sys-

tem used for that was slightly modified in that it normalized the

input data). Our DCASE 2018 Task 1A performance was 77.5%, tak-

ing third place on the challenge table. We also entered the system

to the recent DCASE 2019 challenge, achieving 76.8% and 72.8% for

DCASE 2019 Task 1A and 1B, respectively. The accuracies reported

in Table 4 are collected from the latest cited papers and technical

reports.

7
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5. Conclusion

This paper has presented a robust framework for acoustic scene

classification. Using a feature approach based upon three kinds of

time-frequency transformation (namely log-mel, gammatone filter-

bank and constant Q transform), we presented a two-step training

method to first train a front-end encoder network, and then train a

decoder to perform back-end classification. To deal with the many

challenges implicit in the ASC task, we investigated how the differ-

ent time-frequency spectrogram types can be combined effectively

to improve classification accuracy. In terms of results, the classi-

fication accuracy obtained from the proposed system, comprising

a trained feature combiner and utilising an MoE-based decoder

performs particularly well. As experimental results on DCASE and

LITIS Rouen datasets, the proposed method achieves highly com-

petitive results compared to state-of-the-art systems for all tasks,

in particular achieving the highest LITIS Rouen and DCASE 2018

Task 1B accuracy at the time of writing.

In future we envisage further exploration related to the Decoder

CNN. A framework such as VGG will be evaluated with different

architectures such as Resnet or Inception. We believe that there

is still potential to extract better combined features from the CNN

part. Secondly, the final pooling layer of the Decoder, where high-

level features are extracted and condensed, should be investigated.

An attention layer may be good approach to replace the final pool-

ing layer for extracting better individual features as well as com-

bined features. There is also potential for multi-scale processing as

the duration of the auditory components of scenes and events is

inherently non-uniform.
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