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SUMMARY
Complex networks of regulatory relationships between protein kinases comprise amajor component of intra-
cellular signaling. Althoughmany kinase-kinase regulatory relationships have been described in detail, these
tend to be limited to well-studied kinases whereas themajority of possible relationships remains unexplored.
Here, we implement a data-driven, supervisedmachine learningmethod to predict human kinase-kinase reg-
ulatory relationships and whether they have activating or inhibiting effects. We incorporate high-throughput
data, kinase specificity profiles, and structural information to produce our predictions. The results success-
fully recapitulate previously annotated regulatory relationships and can reconstruct known signaling path-
ways from the ground up. The full network of predictions is relatively sparse, with the vast majority of relation-
ships assigned low probabilities. However, it nevertheless suggests denser modes of inter-kinase regulation
than normally considered in intracellular signaling research. A record of this paper’s transparent peer review
process is included in the Supplemental Information.
INTRODUCTION

Cells continually respond and adapt to environmental stimuli.

They employ sophisticated protein networks to propagate,

amplify, and subsequently quench these signals efficiently. A

common mechanism of relaying information from one protein

to another is through reversible post-translational modifications

(PTMs). Protein phosphorylation by kinases is one of the prin-

cipal and best-studied PTMs. It plays a major role in cellular pro-

cesses, such as growth, division, and differentiation (Acosta-Ja-

quez et al., 2009; Basson, 2012; Rhind and Russell, 2012).

Many protein kinases are themselves regulated by phosphor-

ylation, giving rise to complex networks of kinase-kinase regula-

tory relationships. An accumulation of biochemical knowledge

has produced consensus maps of several protein-kinase

signaling pathways, which have been deposited in databases,

such as Reactome (Fabregat et al., 2017), KEGG (Kanehisa

et al., 2017), and SIGNOR (Perfetto et al., 2016). Kinase-kinase

and other kinase-substrate relationships have also been anno-

tated in databases, such as PhosphoSitePlus and Phospho.ELM

(Dinkel et al., 2011; Hornbeck et al., 2015). However, a focus on

well-studied protein kinases in the experimental investigation of

kinase regulatory relationships overrepresents the activities of

these kinases and has left the majority of the kinase-kinase inter-

action space largely unexplored (Invergo and Beltrao, 2018).
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Similar effects have been reported for protein-protein interaction

databases (Gillis et al., 2014). Subsequent proteome-wide ana-

lyses have found protein interactions to be ultimately more

evenly spread across the proteome than previously indicated

(Rolland et al., 2014), and the same is likely to be true for kinase

signaling.

Incomplete maps of regulatory relationships could have

serious impacts on systems-level analyses of signaling path-

ways. There is, therefore, a clear need for new methods

for finding kinase-kinase regulatory relationships. Existing

methods for data-driven reconstruction of signaling networks

are generally designed for data that have been produced for

the study of a specific pathway (e.g., via perturbation experi-

ments) and typically benefit from the incorporation of prior

knowledge about that pathway into the model (see, e.g., Hill

et al., 2016; Invergo and Beltrao, 2018). The use of incomplete

prior knowledge means that these methods are less likely to

provide insight into broader patterns of protein-kinase regula-

tion, especially of understudied kinases or cross-module

signaling. However, recent advances in high-throughput

phosphoproteomics, through liquid-chromatography tandem

mass spectrometry (LC-MS/MS) and other technologies,

show promise in the inference and analysis of signaling net-

works at larger scale (Babur et al., 2018; Rudolph et al.,

2016; Terfve et al., 2015).
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Alternatively, computational methods can be used to priori-

tize future experiments. Numerous previous attempts have

been made to predict kinase-substrate relationships based

on various features, such as amino acid sequences and/or

functional information. Earlier methods, including Scansite

(Obenauer et al., 2003) and NetPhosK (Blom et al., 2004), utilize

position-specific scoring matrices (PSSMs) and neural net-

works to make predictions based on previously annotated sub-

strates. Anothermethod, GPS (group-based prediction system)

(Zhou et al., 2004) bases prediction on peptide similarities and

the Markov Cluster Algorithm. Later methods have integrated

other features, such as probabilistic networks in addition to

consensus sequences (Linding et al., 2007). Notably, however,

thesemethods are geared toward the prediction of target phos-

phosites and do not make predictions about the regulatory

impact of the phosphorylation. Some pathway reconstruction

methods, such as modular response analysis (Kholodenko

et al., 2002) or Bayesian techniques (Hill et al., 2012, 2017;

Oates and Mukherjee, 2012; Oates et al., 2014), can infer ki-

nase-kinase regulatory relationships, but they do not scale

easily for many kinases, and they require purpose-built pertur-

bation experimental data. Other methods scale to incorporate

phosphoproteomic data for generalized predictions, but they

require or benefit from the provision of a prior, literature-derived

network from which to make predictions of regulatory relation-

ships (see, e.g., Köksal et al., 2018; Rudolph et al., 2016; Terfve

et al., 2015; Wilkes et al., 2015).

Here, we propose a supervised machine learning approach to

estimate the probability of a functional, regulatory relationship

between arbitrary pairs of human kinases, as well as to predict

the sign (inhibiting or activating) of the regulation. We train the

predictions on known kinase regulatory relationships by

combining phosphoproteomic and transcriptomic data with ki-

nase-substrate-sequence specificity models and a recently pro-

duced predictor of phosphosite functional impact (Ochoa et al.,

2020). Our models allow us to make inferences even for kinases

that lack any substrate annotations. The resulting network of

predicted kinase-kinase regulatory relationships is highly

modular and partitions into several clusters that reflect known

functional associations, while suggesting denser modes of in-

ter-regulation and feedback than typically assumed.

RESULTS

Regulatory Relationships Can Be Identified by Similar
Phosphorylation Patterns at Functional Phosphosites
and by Kinase Coexpression
We assume that kinases that are activated or inhibited in the

same sets of conditions are more likely to be part of the same

pathway and could form a regulatory interaction. Because

many protein kinases are regulated by phosphorylation, we

measured the correlation of phosphorylation of regulatory phos-

phosites for pairs of kinases across different conditions. If regu-

latory sites on two kinases show similar patterns of phosphory-

lation, one of the kinases might be responsible for regulating

the other’s activity. We assessed correlations of phosphosite

quantification in two large-scale phosphoproteomic experi-

ments (Mertins et al., 2016; Wilkes et al., 2015). Given that regu-

latory phosphosites have only been established for a small sub-
set of kinases, we employed a recently produced computational

predictor of phosphosite functionality (Ochoa et al., 2020). This

provided us with a score from 0.0 to 1.0 for each kinase phos-

phosite, with higher values indicating a stronger prediction of

such sites regulating the kinase activity (‘‘functional sites’’).

We found that kinase-kinase regulatory pairs often exhibit co-

phosphorylation patterns at functional phosphosites. For

example, mitogen-activated protein kinase 3 (MAPK3) is known

to regulate the activity of ribosomal protein S6 kinases (Mérienne

et al., 2000; Smith et al., 1999; Zhao et al., 1996). Indeed, we

found strong correlation between functional sites T202 on

MAPK3 and T577 on S6K-alpha-3 (RPS6KA3); meanwhile, no

such correlation was found for atypical MAPK4, which has no

known regulatory relationship with S6 kinases (Figure 1A). We

quantified this relationship for each pair of sites between two ki-

nases by producing a phosphosite ‘‘coregulation score,’’ in

which the log-transformed p value of the correlation is scaled

by the two sites’ functional scores (Figure 1A). We then checked

whether known regulatory relationships annotated in the Omni-

Path database (T€urei et al., 2016) have higher coregulation

scores than unannotated pairs. In both phosphoproteomic ex-

periments, kinase-kinase regulatory pairs tend to exhibit higher

maximum coregulation scores than pairs with no previously an-

notated relationship (one-sided Wilcoxon rank sum test, W =

2.8 3 107, p < 1 3 10�6 [Mertins et al., 2016]; W = 9.3 3 105,

p < 1 3 10�6 [Wilkes et al., 2015]) (Figure 1B).

We next used two RNA sequencing (RNA-seq) datasets (GTEx

Consortium, 2013; Uhlén et al., 2015) to test whether kinase co-

expression is indicative of regulatory relationships. For example,

if we consider the regulation of tyrosine-protein kinase BTK by

Src-family protein kinases, we see a clear positive correlation

between BTK expression and that of LYN (encoding tyrosine-

protein kinase Lyn, a known regulator) (Cheng et al., 1994;

Park et al., 1996; Rawlings et al., 1996). No such correlation ex-

ists for YES1 (tyrosine protein kinase Yes, which is not known to

regulate BTK) (Figure 1C). In general, we found higher coexpres-

sion between pairs of kinases where a regulatory relationship ex-

ists than for those without any annotated relationship in both

expression datasets (one-sided Wilcoxon rank sum test, W =

1.3 3 108, p < 1 3 10�6 [GTEx Consortium, 2013]; W = 1.3 3

108, p < 1 3 10�6 [Uhlén et al., 2015]) (Figure 1B).

We also found that tissue specificity, as represented by the

skewness of expression values across tissue samples, is further

indicative of kinase regulatory relationships. Continuing from the

previous example, we can see that BTK and LYN both have

skewed expression profiles (high expression in a few tissues),

whereas YES1 has relatively even expression across tissues

(Figure 1D). If we consider the absolute difference between tis-

sue specificities for pairs of protein kinases, we find that pairs

with regulatory relationships tend to have more similar expres-

sion profiles than those with no annotated relationship (one-

sided Wilcoxon rank sum test, W = 8.9 3 107, p < 1 3 10�6 )

(Figure 1B).

Linking Sequence Specificity to Phosphosite Functional
Impact Identifies Direct Regulation of Protein-Kinase
Activity
Kinases show preferences for phosphorylating some

substrates over others, determined by the specific
Cell Systems 10, 384–396, May 20, 2020 385
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Figure 1. Correlations in Phosphorylation at

Regulatory Sites or in Tissue Expression Pat-

terns Are Predictive of Kinase-Kinase Regu-

latory Relationships

(A) Top: kinase MAPK3 exhibits cophosphorylation

patterns at functional sites with RPS6KA3, a known

substrate. The same patterns are not observed for

MAPK4. Gray cells indicate missing values. Bottom:

combining cophosphorylation p values and site

functional scores provides an estimator of cor-

egulation.

(B) Phospho-coregulation, tissue coexpression, and

tissue specificity can discriminate cases of kinase-

kinase regulation annotated in the OmniPath data-

base from unannotated cases.

(C) The RNA transcripts encoding SRC-family ki-

nase LYN and known substrate BTK show similar

patterns of expression, while the expression of

SRC-family kinase YES1, not known to regulate

BTK, is unrelated. Shaded area represents 95%

confidence intervals.

(D) Top: kernel-density estimates of the distributions

of expression values across tissue samples forBTK,

LYN, and YES1. Bottom: tissue specificity of RNA

expression was quantified as the skewness of the

kernel-density distributions. Here, YES1 is more

broadly expressed than the tissue-specific LYN

and BTK.
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phosphoacceptor residue and a surrounding amino acid

sequence. By characterizing this specificity in a PSSM, we

can score a kinase’s potential for directly phosphorylating a pu-

tative substrate. However, we also wanted to determine, in an

unbiased way, whether high-scoring substrate sites also tend

to have regulatory effects. To achieve this, we employed the

discounted cumulative gain (DCG)metric often used in the eval-

uation of information retrieval systems (J€arvelin and

Kek€al€ainen, 2002), wherein we treated a PSSM as a phospho-

site ‘‘search function’’ and the functional score as a phospho-

site ‘‘relevance metric.’’

Only 140 protein kinases had sufficient numbers of known

substrate sites to build confident PSSMs. We have recently

shown that proteins within the same kinase family tend to

show similar specificity, which can be attributed to conserved

specificity-determining residues (SDRs) within their protein-ki-

nase domains (Bradley and Beltrao, 2019; Bradley et al., 2018).

We thus investigated this as a means to assign PSSMs to ki-

nases with insufficient substrate annotations. We first estimated

theminimum residue similarity necessary across 10 kinase SDRs

to make accurate PSSM assignments. We found that an SDR

similarity of at least 0.8 (based on the BLOSUM62 amino acid

substitution matrix) is needed to make assignments that are

significantly better than a random assignment (Figure 2A).

Nevertheless, this method of assignment did not substantially

improve upon simply assigning a family-wise, composite

PSSM (Figure 2B). Based on these results, we increased the

coverage of kinases with PSSMs by assigning to under-anno-

tated kinases a family-wise PSSM, where available (n= 208),

or otherwise one via SDR similarity (n= 14), bringing the total
386 Cell Systems 10, 384–396, May 20, 2020
number of protein kinases with specificity profiles to 362

(Figure 2C).

Linking PSSM predictions to phosphosite functional scores

via the DCG is best illustrated by an example. RAC-alpha

serine/threonine-protein kinase (AKT1) has several phospho-

sites, a few of which have high functional scores. We consider

two potential regulators: 3-phosphoinositide-dependent protein

kinase 1 (PDPK1), a known regulator, and protein kinase C

gamma type (PRKGC), not known to regulate AKT1. Some of

AKT1’s sites with the highest functional scores also score highly

with PDPK1’s PSSM, whereas PRKCG’s PSSM favors sites with

low functional scores (Figure 2D). These relationships can be

quantified and visualized via the DCG: substrate sites are ranked

by PSSMscore and a cumulative sumof their functional scores is

calculated, wherein each successive site contributes a smaller

fraction of its functional score (Figure 2E). We can see that,

although the two protein kinases achieve similar maximum

PSSM scores, only PDPK1 produces a high DCG (Figure 2F).

As would be expected, we found that the PSSMs of known

regulators in OmniPath tend to score highly for at least one of

their substrate’s phosphosites (one-sided Wilcoxon rank sum

test, W = 1.03 108, p < 13 10�6 ) (Figure 2G, left). Furthermore,

simply having a substrate site with a high functional score, indi-

cating that the substrate is amenable to regulation by phosphor-

ylation, can be predictive of a regulatory relationship (one-sided

Wilcoxon rank sum test, W = 6.43 107, p < 13 10�6 ) (Figure 2G,

center). Linking these two metrics across all sites on the sub-

strate via the DCG, we produced a score that could discriminate

true regulatory relationships (one-sided Wilcoxon rank sum test,

W = 4.1 3 107, p < 1 3 10�6) (Figure 2G, right).



0

1

2

>−
0.

4
>−

0.
2

>0
.0

>0
.2

>0
.4

>0
.6

>0
.8

du
pli

ca
te

ra
nd

om

SDR similarity

P
S

S
M

 d
is

ta
nc

e

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
PSSM distance

(SDR)

P
S

S
M

 d
is

ta
nc

e
(f

am
ily

)

BA

S/T

Y

0 100 200 300
count

ki
na

se
 ty

pe PSSM source: SDR similarity kinase family ownC

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

T308 T450 S473 T312 T448 S124 S477 S129 S475 S126 T479 S122 T443
AKT1 phosphosite

fu
nc

tio
na

l s
co

re P
S

S
M

 score

PSSM score: PDPK1 PRKCG

functional score:

D

1

2

3

5 10
PSSM−based rank of AKT1 phosphosite

D
C

G
 o

f p
ho

sp
ho

si
te

fu
nc

tio
na

l s
co

re

PDPK1
PRKCG
best case
worst case

0.00

0.25

0.50

0.75

1.00

max. PSSM score DCG score
regulation of AKT1

sc
or

e 
va

lu
e

PDPK1 PRKCG
FE

G

max. PSSM score max. functional score DCG score

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

no known relationship known relationship

Figure 2. Kinase-Kinase Regulatory Relation-

ships Can Be Predicted from Sequence Speci-

ficity and Phosphosite Functional Scores

(A) Similar kinase SDRs also indicate similar PSSMs.

The red line indicates the 97.5th percentile of the dis-

tribution of distances between cross-validation

PSSMs using different subsets of a kinase’s anno-

tated substrates. At an SDR similarity of at least 0.8,

over 50% of assigned PSSMs are less than this dis-

tance from their true values.

(B) Assigning family-wise, composite PSSMs to un-

annotated kinases achieves similar, if not better, per-

formance to SDR-based assignment.

(C) Numbers of PSSMs by source (own annotations =

140, by family = 208, and by SDR similarity = 14).

(D) PSSMs locate functional sites on substrates with

differing performance. Here, the PSSM of PDPK1, a

known regulator of AKT1, scores highly for sites with

high functional scores, while that of PRKCG does not.

(E) DCG quantifies the potential for a kinase to phos-

phorylate a putative substrate at its functional sites.

(F) Although both PDPK1 and PRKCG have similar

maximum PSSM scores for phosphorylating AKT1,

only PDPK1 achieves a high DCG.

(G) Maximum PSSM score, maximum substrate-site

functional score, and DCG all discriminate regulatory

relationships annotated in the OmniPath database

from unannotated ones.

ll
OPEN ACCESSArticle
Protein Sequence and Structure Discriminate
Phosphosites that Induce or Inhibit Kinase Activity
Phosphorylation events can lead to different regulatory out-

comes for the substrate kinase, potentially inducing or inhibiting

its enzymatic activity. Knowing these regulatory effects is essen-

tial to understanding the flow of information across complex net-

works of regulatory relationships. Thus, we sought to infer the

‘‘signs’’ (activating or inhibiting) of regulatory relationships

from data.

To do so, we first evaluated how phosphorylation at a specific

site is likely to affect a given kinase’s activity, according to anno-

tations from the PhosphoSitePlus database (Hornbeck et al.,

2015). We found particular discrimination for sites within

phosphorylation hotspots of the protein-kinase domain
(Strumillo et al., 2019): sites within hotspots

tend overwhelmingly to be activating (i.e.,

within the kinase activation loop) (one-sided

Wilcoxon rank sum test, W = 1.5 3 103, p <

1 3 10�6 ) (Figure 3A, first panel). When

considering the sites’ positions within the

domain, we found that most inhibitory sites

are N-terminal (one-sided Wilcoxon rank

sum test, W = 1.5 3 103, p = 0.045) (Fig-

ure 3A, second panel). On the other hand,

inhibitory sites tended to be more C-terminal

in the overall protein, although the difference

was not significant, (one-sided Wilcoxon

rank sum test, W = 7.5 3 103, p = 0.38) (Fig-

ure 3A, third panel). Lastly, we also observed

that activating sites tend to be in more struc-

tured regions of the protein and inhibitory

sites are more likely to be disordered,
although 50% of all inhibitory sites still were predicted to be in

structured regions (one-sided Wilcoxon rank sum test, W =

5.3 3 103, p = 1.3 3 10�4) (Figure 3A, fourth panel).

We then trained a predictor of phosphosite regulatory sign

using these features (Table S1) via the Bayesian additive

regression trees (BART) method. Cross-validation of the

model showed consistently good performance, with a

maximum mean Matthew’s correlation coefficient of 0.42 at

a cutoff of 0.58 (posterior probabilities lower than the cutoff

are declared to reflect inhibitory functionality), indicating

overall good sign-classification performance (Figure 3B). Ad-

justing these posterior probabilities by the highest-performing

cutoff provided us with a sign score for all phosphosites in

our dataset, with negative scores indicating a prediction of
Cell Systems 10, 384–396, May 20, 2020 387



Figure 3. Evidence of Regulatory Sign (Activating versus Inhibiting) Can Be Uncovered in a Data-Driven Manner
(A) The regulatory sign of a single phosphosite, as annotated in PhosphoSitePlus, can be discriminated by using structural information: whether the site is in a

phosphorylation hotspot, where the site is within the protein-kinase domain (N, N-terminal; C, C-terminal), the relative position of the site within the protein (N,

N-terminal; C, C-terminal), and whether the site is in a disordered region.

(B) Matthews correlation coefficients for different posterior probability cutoffs for the predictor of phosphosite regulatory sign. The cutoff (above which a site or

relationship would be declared to be ‘‘activating’’) that maximizes the coefficient discriminates best between inhibitory and activating sites or relationships. Error

bars represent 95% confidence intervals.

(C) Modifying the phospho-coregulation score to account for predicted phosphosite sign and correlation sign can produce protein-level predictions of regulatory

sign. Here, CDK1 is shown to have an activating relationship with MAPK6 via S189 and an inhibitory relationship with MAP2K2 via S295. Gray cells indicate

missing or removed values.

(D) The signed variants of the coregulation score, functional score, and DCG, all discriminate between inhibitory and activating kinase-kinase regulatory re-

lationships annotated in OmniPath.

(E) Accounting for predicted phosphosite sign can assess the propensity of a kinase to phosphorylate activating or inhibiting sites: BRAF’s PSSMscores highly for

activating sites on MAP2K1, while MAPK3 scores highly for inhibitory sites.

(F) A modified DCG for signed functional scores correctly assigns BRAF as an activator of MAP2K1 andMAPK3 as an inhibitor. Because there are more inhibitory

sites on MAP2K1, a full DCG would be negative in most cases (dotted lines). Instead, we take the most extreme value visited by the sum (solid lines).
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inhibition of activity and positive scores predicting activation

(Table S2).

Kinase Regulatory Sign Can Be Inferred from
Phosphosite Sign and Interaction Evidence
With phosphosite sign predictions in hand, we aimed to predict

the signs of kinase-kinase regulatory interactions. Returning to

the coregulation of functional phosphosites, we tested the

consistency of the observed phosphoproteomic correlation

with the sign of the phosphorylating kinase’s regulatory site. If

phosphorylation of an inhibitory site on a kinase is anticorre-

lated with that of an activating site on a putative substrate,

then the evidence would suggest that the kinase positively

regulates the substrate’s activity. On the other hand, no direct

regulation scenario would explain a positive correlation be-

tween these sites.

For example, cyclin-dependent kinase 1 (CDK1) shows strong

evidence of negative coregulation with dual specificity mitogen-

activated protein kinase kinase 2 (MAP2K2) at its site S295, re-

flecting its role in inhibiting MAP kinase kinases (Rossomando

et al., 1994) (Figure 3C). CDK1 also activates MAPK6 (Tanguay

et al., 2010) and, indeed, we find a strong positive correlation be-

tween two activating sites (CDK1 T161 and MAPK6 S189) on

these kinases (Figure 3C). Overall, we found that the signed

coregulation score was able to discriminate between activating

and inhibitory kinase regulatory relationships, as annotated in

OmniPath, in both phosphoproteomic datasets with activating

relationship tending to have more positive coregulation score

even though, in the case of the Wilkes study, the difference

was not significant (one-sided Wilcoxon rank sum test, W =

6.8 3 102, p = 0.079 [Wilkes et al., 2015] and W = 1.1 3 104,

p = 0.0067 [Mertins et al., 2016]) (Figure 3D, first and second

panels).

We also adapted our DCG methodology after applying our

sign predictions to the site functional scores. Thus, we now

asked whether a kinase’s PSSM tends to find relevant activating

sites or inhibitory sites. For example, dual specificity MAP2K1 is

activated by serine/threonine-protein kinase B-raf (BRAF) (Alessi

et al., 1994; Macdonald et al., 1993; Papin et al., 1995) and is in-

hibited in negative feedback by its downstream substrate,

MAPK3 (Eblen et al., 2004). We found that, indeed, B-raf has

specificity toward MAP2K1’s activating sites while MAPK3 is

specific toward the inhibitory sites (Figure 3E). We then calcu-

lated a DCG on the signed functional scores, taking the most

extreme value visited by the sum (Figure 3F). This method pro-

vides a positive value for BRAF and a negative value for

MAPK3, as expected. Overall, both the signed functional score

and the signed DCG score could discriminate well between

activating and inhibitory relationships (one-sided Wilcoxon

rank sum test, W = 2.1 3 104, p < 1 3 10�6 (signed DCG) and

W= 2.33 104, p < 13 10�6 [signed functional score]) (Figure 3D,

third and fourth panels). However, predictions for inhibitory

relationships overall were less reliable.

A Supervised Learning Model Predicts a Global Network
of Kinase Regulatory Relationships from Diverse
Features
We combined the above evidence into two predictors via ma-

chine learning. The edge predictor predicts whether a kinase-ki-
nase regulatory relationship exists. The sign predictor predicts

whether a given relationship induces or inhibits the substrate’s

kinase activity.

For training and validating the edge predictor, we retrieved

from the OmniPath meta-database (T€urei et al., 2016) a list of

annotated relationships with at least two source databases

supporting them, comprising 825 interactions in all. Because it

is more difficult to prove the absence of a regulatory relationship,

there is a lack of annotations for genuinely false relationships.

We assumed that, in the space of all possible kinase-kinase

interactions, regulatory relationships are rare. Therefore, a

randomly selected pair of kinases is unlikely to show any regula-

tory relationship. We thus assessed the features described

above for their predictive power on a validation set consisting

of the annotated positive cases and random ‘‘negative’’ subsets

of the remaining space of putative interactions.

Overall, each of the edge predictor features (Table S3) ex-

hibited limited but measurable predictive power. We visualized

this by the receiver operating characteristic (ROC) curve,

comparing true-positive and false-positive rates as the score

cutoff for declaring a regulatory relationship is lowered, and by

similarly assessing precision and recall across cutoffs (Fig-

ure 4A). Maximum PSSM score performed the best, with a

mean area under the ROC curve (AUC) of 0.742 (s= 0:007;

n= 100) (Figure S1A). The remaining features had mean AUC

values of less than 0.7. We also noted that the precision decayed

rapidly with lower cutoffs.

We then combined these features into the edge predictor

with the BART method (Chipman et al., 2010) (Table S4). We first

performed 3-fold cross-validation on the model 20 times using

different random iterations of the training set (Figure 4A). The

resulting models had a mean AUC of 0.884 (s= 0:009; n= 60),

representing a significant improvement over the individual

features (Figure S1A).

We applied the same BART method to the regulatory sign

features (Table S5) to produce the sign predictor (Table S4).

We trained the model using regulatory signs annotated in Omni-

Path and evaluated it through cross-validation. Overall, perfor-

mance was similar to the underlying site-level predictor

described above, with a mean maximum Matthews correlation

coefficient of 0.42; however, confidence intervals over the

cross-validation were narrower for kinase-level predictions

than they were for site-level predictions (Figure 4B). The

maximum correlation occurred at a cutoff of 0.484 (i.e., the prob-

ability above which we would declare regulation to activate the

substrate).

We next considered whether known, annotated relationships

tend to rank highly among our edge predictions for each kinase.

After building a new model for each kinase without using any

of its annotated relationships in the training set, we found that

50% of kinases had a known regulatory relationship within the

top 10 of our predictions (Figure 4C). The top ranks were signif-

icantly better than expected, based on random, per-kinase

permutations of the scores (one-sided Wilcoxon rank sum test,

regulator: W = 5;818:5; p<13 10�6; substrate: W = 7;385:5;

p<13 10�6).

To further evaluate our model, we looked at how well it pre-

dicted interactions that were not included in the positive set

due to being supported by only one source in OmniPath
Cell Systems 10, 384–396, May 20, 2020 389



Figure 4. Combining Data-Driven Predictors of Kinase-Kinase Regulatory Relationships

(A) ROC and precision-recall curves of each feature and the final edge predictor. See also Figure S1A.

(B) Matthews correlation coefficients for different posterior probability cutoffs for the sign predictor. Error bars represent 95% confidence intervals.

(C) Annotated regulatory relationships for each kinase tend to rank highly among the predictions, when considering the kinase as either a regulator or a substrate.

Lines indicate quartiles. 50% of kinases had a known regulatory relationship in the top ten predictions, which is significantly better than random expectation. See

also Figure S2B.

(D) Previously annotated relationships supported by only one source in OmniPath score similarly to those supported by two or more sources (used in our training

set), further validating our predictions.

(E) Clusters identified on the regulatory sub-network at a posterior probability cutoff of 0.5 are significantly enriched in annotations for unique sets of pathways.

See also Figures S1B and S1C.

(F) The predicted network expands upon the annotated network, especially for understudied protein kinases. See also Figure S2A.
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(n= 293). These interactions had significantly higher prediction

scores than unannotated regulatory interactions; however, they

were generally lower than the high-confidence set (one-

sided Wilcoxon rank sum test versus unannotated: W = 63

107; p<13 10�6, versus high-confidence set: W = 87;073; p<

13 10�6; Figure 4D).

We also noted several high-probability predictions that, while

not being annotated in OmniPath, have direct or plausible sup-

port in the literature. For example, we predict receptor tyrosine

protein kinase erbB-2 (ERBB2/HER2) to activate ephrin type-A

receptor 2 (EPHA2) (edge probability 0.94 and sign probability

0.79). These two oncogenic kinases form a complex, and in a
390 Cell Systems 10, 384–396, May 20, 2020
mouse model of breast cancer, they appear to cooperate to pro-

mote tumor progression (Brantley-Sieders et al., 2008); however,

no direct regulatory relationship has yet been described.We also

predict that the closely related tyrosine protein kinases Fer (FER)

and Fes/Fps (FES) activate HGF receptor (MET) with equal prob-

abilities (edge probabilities 0.92 and sign probabilities 0.80). In

fact, activation of MET by FER has previously been reported

(Fan et al., 2016); however, this relationship is not annotated in

OmniPath and thus was not present in our training and validation

set. As a final example, we predict tyrosine protein kinase ABL1

to activate focal adhesion kinase 1 (PTK2/FAK1) (edge probabil-

ity 0.92, sign probability 0.81). While, to our knowledge, no such
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regulatory relationship has been described previously, FAK1

plays an important role in acute lymphoblastic leukemia charac-

terized by constitutively active ABL1, and its phosphorylation

was speculated to be ‘‘likely augmented by the direct action of

activated ABL1 itself’’ (Churchman et al., 2016).

We next assessed the topology of regulatory relationships us-

ing a sub-network of high-confidence predictions (probability

greater than 0.5), consisting of 340 kinases and 4,339 regulatory

relationships (representing less than 2% of all possible relation-

ships). We first applied a cluster-detection algorithm to an undi-

rected variant of this network (retaining the higher probability

relationship when two kinases were predicted to regulate each

other, producing 3,716 undirected edges). Four clusters were

detected (103, 45, 105, and 87 kinases, respectively; Table

S6). This division of the network had amodularity of 0.325, which

was significantly higher than expected given the modularity of

randomized networks with the same degree distribution (m=

0:197; s= 0:00339;p<0:001; Figure S1B). To determine if these

clusters reflected known biological associations, we tested

each one for enrichment in pathway annotations from Reactome

(Fabregat et al., 2017). Each cluster was enriched in annotations

for at least one distinct Reactome pathway, indicating that the

network successfully identified clusters of physiologically related

kinases (Figure 4E; Table S7). We also assessed how related the

pathways associated with each cluster were, using the average

number of reactions between the proteins of two pathways as a

proxy for relatedness. We found that the pathways associated

with the same cluster were more closely related to each other

than to those associated with other clusters (p<13 10�6, W =

5:83 105, Wilcoxon rank sum test; Figure S1C).

Because we set out to overcome the shortcomings inherent to

literature-derived signaling pathway annotations, we checked

for relationships between kinase connectivity on the high-confi-

dence network and kinase publication counts (Figure 4F; kinase

publication counts were retrieved from, Invergo and Beltrao,

2018). Interactions between kinases in the top three publica-

tion-count deciles (more than 95 publications) accounted for

only 31% of the network. Conversely, 589 regulatory relation-

ships were predicted between pairs of kinases in the bottom

50% of publication counts (fewer than 40 publications each).

Overall, only 7% of the relationships in the high-confidence

network are annotated in databases. This portion increases as

a higher probability threshold is applied to the network (Table

S8). Although the number of previously annotated interactions

is dwarfed by novel predictions, a significant proportion of this

can be accounted for by the relative sparsity of annotated rela-

tionships for understudied kinases. Restricting the network to

highly studied kinases largely resolves this (Figure S2A). Howev-

er, this can also be explained in part by a persistence of the influ-

ence of better annotation for well-studied kinases in our predic-

tions, as can be seen in a significant correlation between

publication count and top prediction-rank of known relationships

(Figure S2B; Spearman’s rank correlation, as regulator: r= �
0:34;p<13 10�6; as substrate: r= � 0:29;p<1 3 10�6).

The Trained Model Can Reconstruct Known Signaling
Pathways
We next investigated whether our data-driven, signed kinase-ki-

nase regulatory predictions were able to reconstruct known
pathways. For each kinase that we include, we generated a

new model for which all regulatory relationships including the ki-

nase were left out of the training set. These kinase-specific

models were then used to predict the kinase’s regulatory sub-

strates and the signs of the interactions. To these we applied

an edge probability cutoff of 0.5 and a sign cutoff of 0.5. We

started by choosing well-studied kinases that are functionally

related to AKT1 (Figure 5A). Between these kinases, we success-

fully recovered all but one annotated relationship, the regulation

of ribosomal protein S6 kinase beta-1 (RPS6KB1) by AKT1 and

PDPK1. Six predicted relationships are not present in database

annotations. Sign predictions generally fail on a per-substrate

basis. For example, we predict all regulations of serine/threo-

nine-protein kinase mTOR (MTOR) to be inhibitory, while those

that have been annotated are activating. Our predictions also

perform well when considering MAPK signaling, recovering all

but three previously annotated edge, and with two erroneous

predictions of an annotated sign (Figure 5B).

If we begin to include other paralogs of these kinases, which

tend to be less well studied, we quickly accumulate predictions

for previously undescribed relationships. For example, we pre-

dict many modes of inter-regulation between S6 kinases and

glycogen synthase kinases. On the other hand, we fail to predict

several regulatory relationships involving RAC protein kinases

AKT2 and AKT3 (Figure 5C). Expanding the MAPK signaling

network is more successful, with the core signaling events being

recovered between RAFs, MAP2Ks, and MAPKs, including cor-

rect sign prediction, while also filling in the network of interac-

tions for the less well-studied A-Raf (ARAF) and MAP2K3 (Fig-

ure 5D). Both of these examples demonstrate that the

predicted networks quickly become difficult to assess visually

when more than a few kinases are included, particularly those

with fewer annotations, because of the numbers of unvalidated

predictions. However, extrapolating from the overall perfor-

mance and the success on smaller networks, our results suggest

that this complexity is inherent to kinase signaling networks.

Independent Experimental Data Support Predicted

Regulatory Relationships

We next investigated whether our predictions are reflected in ki-

nase-target relationships identified in large-scale phosphopro-

teomics experiments that were not used for training. First, we

employed two recently published datasets. In one, Sugiyama

et al. (Sugiyama et al., 2019) have identified in vitro substrate

phosphosites for 354 human kinases. In the second study, in vivo

phosphosites that are directly or indirectly ‘‘downstream’’ of 103

kinases were determined by phosphoproteomic experiments af-

ter chemical inhibition of kinase activity (Hijazi et al., 2020).

Together, these two datasets define kinase-substrate phospho-

sites relationships, from which we selected kinase-kinase phos-

phorylation relationships that we reasoned should be enriched in

regulatory interactions. We note however that these studies

identify whether a kinase could be responsible (directly or indi-

rectly) for the phosphorylation of another but not necessarily

whether such phosphorylation is regulatory.

We looked at probability scores assigned to relationships

that were corroborated by these experiments. Relationships

included in our validation set were discarded. In both cases,

we observed that the probability score derived from our model

was significantly higher for these experimentally identified
Cell Systems 10, 384–396, May 20, 2020 391



Figure 5. Our Data-Driven Predictor Reconstructs Known Signaling Pathways ‘‘from Scratch’’

Each kinase’s outgoing edges and signs were predicted from models trained after leaving the kinase out from the training set. A probability cutoff of 0.5 and

‘‘activating’’ sign cutoff of 0.5 were used. Black edges are relationships annotated in OmniPath that were correctly recovered. Red edges are annotated re-

lationships that were not predicted. Gray edges are unvalidated predictions. Arrowheads indicate the predicted regulatory sign: arrows indicate activation and

bars indicate inhibition. Black arrows are correctly predicted, red arrows are incorrectly predicted, and gray arrows are unvalidated. Node colors indicate the

number of publications associated with the kinase. Kinases with fewer associated publications (‘‘cool’’ blue/green colors) tend to have more unvalidated edges.

(A) A reconstruction of AKT1 signaling using only well-studied kinases largely recovers the known information flow of the pathway.

(B) Similar performance is seen in reconstructing MAP kinase signaling.

(C) Including lesser-studied kinases in the AKT signaling analysis greatly increases the number of unannotated or missed relationships while also predicting

complex modes of regulatory feedback.

(D) Expanding the MAP kinase signaling pathway to include more paralogs captures a highly interconnected core of previously annotated relationships while

adding numerous unvalidated relationships between lesser-studied kinases.
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kinase-kinase relationships than expected by chance (in vitro:

median probability of 0.075 (W = 2.63 3 108, p < 1 3 10�6);

in vivo: median probability of 0.12 (W = 1.57 3 108, p < 1 3

10�6); background: median probability of 0.030) (Figure 6A).

In addition, a subset of these experimental target sites was

found at positions with a higher regulatory potential based

on the phosphosite functional score (Ochoa et al., 2020).

When filtering the in vitro and in vivo kinase-kinase interac-

tions by the phosphosite functional score cutoff of 0.5

we observe an increase in the median probability from our

model (Figure 6A), in particular for the in vivo kinase-kinase

target set (Figure 6A, ‘‘in vivo fnc’’). Both the in vitro set

(W = 1.03 3 108, p < 1 3 10�6 ) and in vivo set (W = 8.81 3

107, p < 1 3 10�6) filtered by the phosphosite functional score

have a significantly higher edge probability than the back-

ground set. Furthermore, predicted network edges corrobo-

rated by either study had a higher probability of being

included in our validation set with Fisher’s exact test (OR =

3.98 and p = 1.6 3 10�4 for the in vivo study and OR = 4.51

and p < 1 3 10�6 for the in vitro study). We provide in Table

S9 the list of kinase-kinase regulatory relationships that have

a high predicted score from our model having also in vivo or

in vitro supporting evidence. This includes 3 cases of unanno-

tated kinase-kinase relationships with support from both the

in vitro and in vivo experiments.
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Finally, as an application of our predictions, we tested whether

phosphorylation perturbation data could be used to discover

novel pathways within the inferred network. To this end, we

measured changes in phosphorylation after treatment of human

cells (Kasumi-1 cell line) with MEK and PI3K inhibitors via phos-

phoproteomics (Table S10). A total of 9,183 phosphopeptides

were quantified for MEKi and PI3Ki and control condition, with

66 and 112 phosphosites identified as significantly downregu-

lated after inhibition. Of measured phosphosites, 650 had a

known upstream kinase included in our high-probability network

leading to 1,019 kinase-substrate interactions being added to

the network. After omitting sites known to be direct substrates

of MEK and PI3K as well as sites without any known kinase, 6

and 11 downregulated phosphosites were considered for subse-

quent analysis. We then asked if the inhibition of MEK (MAP2K1

and MAP2K2) and PI3K kinases could be linked to the downre-

gulated phosphosites via connections predicted by our model.

A probability cutoff of 0.5 was used to retain a network of highly

probable edges and owing to the fact that PI3K is a lipid kinase,

PI3K was linked to the network via its known substrate kinases.

The regulated phosphosites were added to the predicted kinase

network based on prior knowledge, and the distances between

the inhibited kinases and the downregulated phosphosites

were calculated as the sum of weights across the shortest

weighted path on the predicted network. We found that
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Figure 6. Network Validation with Independent Experimental Data

(A) Edges corroborated by either in vitro or in vivo datasets had higher probability, 0.075 (n = 1,596) and 0.12 (n = 856), respectively, compared with otherwise

unsupported edges, 0.030 (n = 251,159). Edges filtered by functional score had yet higher probability assigned to them; 0.083 (n = 602) and 0.15 (n = 456).

(B) Downregulated phosphosites tended to be closer in terms of weighted shortest path to perturbed kinases.

(C) Connecting downregulated phosphosites to perturbed kinases by traversing through the shortest weighted path in the network yielded two predicted in-

teractions corroborated by the in vitro data (SRC and CDK1/2) and one predicted interaction supported by both the in vitro and in vivo datasets (MAPK1 and

PRFF4B). Known edges were derived from the OmniPath validation set apart from the edge between PI3K and SRC, which was derived from KEGG.
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downregulated phosphosites were closer to the inhibited ki-

nases than all other quantified phosphosites (W = 1.4 3 104,

p = 0.0028) (Figure 6B). We then selected paths connecting the

inhibited kinases with downregulated phosphosites via edges

that had support from at least one of the kinase-target experi-

ments described above (Figure 6C). In this way, we identified pu-

tative kinase regulatory interactions that have a high-probability

score (>0.5), are supported by in vitro or in vivo kinase-target ex-

periments, and help to explain downregulation of phosphosites

from our kinase inhibition experiments. This includes 2 related

relationships (Figure 6C) between SRC and two CDKs (CDK1

and CDK2) and the predicted regulation of PRPF4B by

MAPK1. The latter was supported by both the in vitro and in vivo

studies.

DISCUSSION

The task of experimentally testing all possible kinase-kinase re-

lationships in order to produce a complete regulatory network

is daunting. We have thus taken a data-driven supervised

machine learning-based approach to predict these regulatory re-

lationships. Although we do not suggest that these predictions

can replace established methods for confirming regulatory rela-

tionships, they can nevertheless be used to reduce the vast

space of possible relationships under consideration in order to

form credible hypotheses and to prioritize experiments, particu-

larly for understudied kinases.

Previous efforts to produce kinome-scale inferences of regula-

tory relationships have depended on scaffolding data-driven
predictions to existing protein networks. For example, Rudolph

et al. (2016) derived signaling pathways through a network

diffusion technique with phosphoproteomic data on a litera-

ture-derived protein-protein interaction network. However,

such analyses are strongly impacted by the incompleteness of

the existing networks and the overrepresentation of well-studied

kinases therein (Gillis et al., 2014; Invergo and Beltrao, 2018;

Rolland et al., 2014). To our knowledge, there has only been

one other attempt to predict kinase regulatory sign (Hernandez

et al., 2010). The authors inferred signs from quantitative phos-

phoproteomic data on a literature-derived kinase network, in

which the method in part depended upon the connectivity of

the kinases on this network. However, missing or erroneous an-

notated relationships could have major impacts on the results.

Our supervised machine learning approach can make predic-

tions for kinases with no previously known information, in this

way improving the coverage in our predicted network. We only

retain a literature influence, which might affect the generality of

our model, from using annotated substrates in the construction

of our kinase specificity models and from the construction of

the training set. The former can be resolvedwith high-throughput

methods to measure kinase specificity profiles (see, e.g., Ima-

mura et al., 2014, Sugiyama et al., 2019). The latter, which could

omit highly specialized modes of regulation, can be improved as

more relationships are experimentally validated.

Many factors can affect the nature of a kinase-kinase regula-

tory relationship and each such relationship will be unique,

owing to the particular properties of the kinases involved.

Thus, making generalized predictions that apply to all of them
Cell Systems 10, 384–396, May 20, 2020 393
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is inherently difficult. Nevertheless, some features are funda-

mental, such as regulation by phosphorylation, and identifica-

tion of how much each of such features contribute to the spec-

ificity in kinase-substrate interaction will be key in predicting the

regulatory roles of phosphorylation sites. To this end, the per-

formance of the predictions via identifying patterns of phos-

phorylation will improve with more data. Given the importance

of PSSMs in our results, there is a clear need for producing

robust PSSMs for every kinase in order to prune indirect regu-

latory effects. As for correlative methods on phosphoproteomic

data, many conditions are needed to confidently discriminate

the phosphoregulation of over 500 kinases. Importantly, large-

scale phosphoproteomics experiments are needed across a

more diverse array of tissues or cell lines to properly capture

the activities of more tissue-specific kinases. Because we

only used data from experiments using the breast cancer cell

line MCF7, many kinases were not represented in the phospho-

proteomic data. Furthermore, the use of data derived from can-

cer cell lines might introduce errors in the resulting network

since cancer initiation and progression disrupt intracellular

signaling (Sever and Brugge, 2015).

We assumed in the construction of our predictor that the true

network is sparse, and indeed we assign to 75% of all possible

relationships posterior probabilities of less than 0.09, far below

any probability cutoff that we considered. Nevertheless, even

at stringent cutoffs, isolating a sub-network of more than a few

kinases produces a denser topology of regulatory relationships

than is typically considered for kinase signaling. It is possible

that this is an artifact of not considering cellular context (e.g.,

protein expression or cellular localization). There is also an un-

avoidable accumulation of false-positives as more predictions

are considered. Despite these caveats, our results suggest

that the kinase regulatory network is richer in feedback and

cross-module regulation than expected based on the current

view of kinase pathways. Further developments in experimental

approaches for hypothesis-free kinase regulatory network

reconstruction are needed to confirm the predicted modularity

and density of regulatory relationships in kinase signaling

networks.
Key Changes Prompted by Reviewer Comments
In response to reviewer comments, we have added validation

analyses on the external in vitro (Sugiyamaet al., 2019) and in vivo

(Hijazi et al., 2020) datasets, as well as validation on a newly

generated phosphoproteomic dataset. This resulted in the addi-

tion of Figure 6. We also added statistical tests to support the

assessment of each feature’s discriminatory power. We updated

the methodology used to generate Figure 5 in order to assure

that each kinase was removed from the training set before pre-

dicting its regulatory relationships. Finally, we added Table S8

to better illustrate the network at different score cutoffs. For

context, the complete transparent peer review record is included

within the Supplemental Information.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Pedro Beltrao

(pbeltrao@ebi.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Kasumi-1 cells (Male) were routinely cultured using RPMI (10% FBS, 1%penicillin/streptomycin) at 37�C, in a humidified atmosphere

containing 5%CO2. Each kinase inhibitor was diluted to 1000 times the desired concentration for treatment using DMSO. Cells were

incubated at a density of 0.5x106 cells/mL and the following day Trametinib or GDC-0941 were added at 0.5 mM for one hour prior

to lysis.

METHOD DETAILS

Data
Wedefined the human kinome as the list of 504 human proteins identified as protein kinases in the UniProt/Swiss-Prot Protein Knowl-

edgebase, pkinfam (accessed 8 November 2017 at https://www.uniprot.org/docs/pkinfam). Quantitative phosphoproteomic data

were retrieved from two publications. The first included phosphosite quantifications of 213 phosphosites for 100 kinases across

22 kinase-inhibitory conditions in MCF7 cells (Wilkes et al., 2015). The second quantified 1537 phosphosites on 193 kinases across

83 breast tumor samples (Mertins et al., 2016). Tissue RNA expression data for protein kinases were retrieved from the GTEx project

(GTEx Consortium, 2013) as provided by Expression Atlas (E-MTAB-5214, timestamp 26April 2018) (Papatheodorou et al., 2018).We

furthermore retrieved tissue RNA expression data from the Human Protein Atlas project (accessed from www.proteinatlas.org 1

December 2017) (Uhlén et al., 2015). Lists of human phosphosites, kinase substrates, and kinase regulatory sites were retrieved

from the PhosphoSitePlus database (accessedMay 1, 2018) (Hornbeck et al., 2015). Amino acid frequencies in the human proteome

were derived from the UniProt proteome database (UniProt Consortium, 2018). In vitro kinase substrate list was retrieved from a pub-

lication by Sugiyama and colleagues (Sugiyama et al., 2019). In vivo kinase substrate list was retrieved from apublication byHijazi and

colleagues (Hijazi et al., 2020).

Protein Kinase Specificity Models
Constructing Kinase Specificity Models

We estimated kinase specificity through the construction of position-specific scoring matrices (PSSMs) from the amino acid se-

quences around known substrate sites (+/�7 residues), omitting autophosphorylation sites. We required at least 10 known sub-

strates in order to build a PSSM for a given kinase, resulting in PSSMs for 140 protein kinases. In order to reduce the influence of

redundant sequences on the construction of the matrices, we employed a position-based sequence-weighting method (Henikoff

and Henikoff, 1994).

Given a set of nR10 substrate amino-acid sequences, S= fS1;S2;.;Si;.;Sn�1;Sng, where Si = fSi1;Si2;.;Si14;Si15g and Sij rep-

resents the amino acid at position j of sequence i, we give a weight to each of amino acid a at position j as follows:

wða; jÞ = 1

cj

Pn
i = 1ðSij = aÞ

where cj is the number of unique amino acids found in position j among the substrates in S. Next, a weight is calculated for each

sequence as the sum of its position-specific residue weights:

WðSiÞ =
X15

j = 1

wðSij; jÞ

Finally, each sequence weight was normalized by the sum of all sequence weights:

cWðSiÞ = WðSiÞPn
k = 1WðSkÞ

A 20 315 PSSM can then be constructed as follows. First, we construct matrix r, such that entry raj contains the weighted count of

amino acid a at position j across the sequences in S:

raj = n
Xn

i =1

VðSij; aÞ
VðSij; aÞ =
� cWðSiÞ; if Sij = a

0; otherwise
e2 Cell Systems 10, 384–396.e1–e9, May 20, 2020
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There is a non-zero probability of observing each residue at a position in the sequence; however, at small sample sizes, we are

unlikely to accurately estimate low-probability occurrences. To overcome this, we added pseudocounts based on proteome-wide

amino-acid frequencies in a position-specificmanner (Henikoff and Henikoff, 1996). For each column j in the PSSM, we select a num-

ber of pseudocounts, Bj, to add:

Bj = m3 cj

wherem is a tune-able parameter and cj is defined as above. Thus, empirically constrained positions (e.g. the +1 position for proline-

directed kinases) will receive fewer pseudocounts, and thus lower baseline probabilities of observing other residues, than highly var-

iable positions. We found that our results were not strongly dependent onm, so we fixed it at 1. A 20 315 matrix of pseudocounts, b,

was then calculated as follows:

baj = Bj 3 fa

where fa is the occurrence frequency of amino acid a in the proteome. This allows us to derive an empirical matrix of probabilities, p, of

observing amino acid m at position j:

pða; jÞ = baj + raj
Bj +

P
araj

The final PSSM was arrived at by calculating the log2 fold-change of paj versus the proteome-wide amino acid frequencies:

PWMaj = bpða; jÞ= log2

�
pða; jÞ
fa

�
Assigning PSSMs to Protein Kinases

In order to increase our coverage of specificity profiles to include protein kinases with few or no known substrates, we assigned to

them either composite, family-wise PSSMs or PSSMs of protein kinases with similar specificity determining residues (SDRs) (Bradley

et al., 2018). For each protein kinase family, we constructed a family-wise PSSM as described above using known substrates of all

kinases in the family, as defined by the KinBase resource (Manning et al., 2002) (http://kinase.com/web/current/kinbase/). This fam-

ily-wise PSSM was then assigned to any member of the family for which we could not construct a unique PSSM. PSSMs were as-

signed to 209 protein kinases in this manner.

Finally, for the remaining protein kinases for which no family-wise PSSM was available, we attempted to assign a PSSM based on

SDR similarity. Towards this end, 10 kinase domain positions were selected, representing residues known to covary with kinase

specificity and that are proximal (<4Å distance) to the kinase substrate at the active site (Bradley et al., 2018). For a given pair of ki-

nases, sequence similarity across the 10 SDRs was calculated by summing BLOSUM62 substitution scores for each position. An

‘SDR similarity’ score was then calculated by dividing this sum by the maximum possible score across the 10 SDRs, such that iden-

tical kinases would yield a similarity score of 1.0.

As represented in Figure 2A, the relationship between SDR similarity and PSSM distance was explored systematically to decide

upon an SDR similarity threshold to use for PSSM assignment. For this purpose, SDR similarity scores and PSSM distances were

calculated for all possible pairwise comparisons of kinases with known specificity. Here, similarity between PSSMs was quantified

using the Frobenius distance, which represents the sum of squared element-wise distances between matrix values, followed by tak-

ing the square-root (Ellis and Kobe, 2011). For reference, pairwise Frobenius distances were also calculated for PSSMs of the same

kinase by subsampling known target sites of a given kinase, using a sample size of 25 targets sites (corresponding to the median

number of target sites used for PSSM construction). The distribution of all possible pairwise distances among these ‘duplicate’

PSSMs had a median of 1.00 and a 97.5th percentile of 1.10 (Figure 2A, red line). We interpret PSSM distances below the 97.5th

percentile to represent kinases with the same active site specificity. An SDR similarity threshold of 0.8 was therefore selected as

more than half of kinase pairs above this value have PSSM distances below the 1.10 threshold. For PSSM assignment, targets

from the most similar kinase(s) in the human kinome were selected, provided the SDR similarity score was above 0.8. We assigned

PSSMs to a further 14 kinases through this method. For all PSSM comparisons, the phospho-acceptor column (P0: S/T/Y) was not

used when calculating the Frobenius distance.

The predictive performance of family-based and SDR-based PSSM predictions was compared in Figure 2B. For every kinase of

known specificity, a PSSM was assigned using the family-based and SDR-based approaches described above, and then the Fro-

benius distance between empirical and predicted PSSMs was calculated for both prediction methods.

Scoring Phosphosites with PSSMs
For each directed protein kinase-kinase relationship, we scored each known phosphosite on the substrate kinase using the upstream

kinase’s PSSM. For the +/-7 motif sequence around a given phosphosite (omitting the phosphosite itself), we calculated the PSSM

score, s, as:

s =
X
js8

bpða; jÞ
Cell Systems 10, 384–396.e1–e9, May 20, 2020 e3
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In order to make scores comparable between kinases, we then calculated a normalized score, bs, against the minimum and

maximum scores attainable with the PSSM:

smin =
X
js8

bpðargmin
a

bpða; jÞ; jÞ

X

smax =
js8

bpðargmax
a

bpða; jÞ; jÞ

s
bs =
� smin

smax � smin

Phosphosite Functional Scores
Predictions of functional relevance of phosphosites were retrieved from (Ochoa et al., 2020). The predictions were made on a variety

of phosphosite structural, evolutionary and biochemical features. As the predictions were originally made on a strictly defined set of

phosphosites derived from a reanalysis of a set of high-throughput phosphoproteomics experiments, not all of the phosphosites

available in the PhosphoSitePlus database were represented. We log10-transformed the raw scores and normalized them against

the minimum and maximum values to arrive at functional scores valued between 0.0 and 1.0, with larger scores reflecting a greater

expectation of a functional impact of phosphorylation at that site.

Linking PSSMs to Phosphosite Functional Scores
We assessed a kinase’s potential to phosphorylate a putative substrate at sites of likely functional relevance by linking the kinase’s

PSSM to the substrate’s phosphosite functional scores via a Discounted Cumulative Gain calculation (DCG). In effect, we treat the

PSSM as a ‘‘search function’’ and we employ the functional scores as relevance scores to determine how well a PSSM ‘‘finds’’ func-

tional sites. For each substrate phosphosite with a functional score available, we calculate the PSSM score bs as above. Next, the n

sites are ranked by bs in descending order, producing an associated ordering of functional scores F = fF1;F2;.;Fi;.;Fn�1;Fng. The
DCG for this kinase-substrate pair is then calculated as:

DCG =
Xn

i = 1

Fi

log2ði + 1Þ

Sites with higher PSSM scores, and thus lower rank i, contribute larger fractions of their functional scores to the sum. The DCGwill

be highest, then, if sites with high functional scores tend to have high PSSM scores.

In order to make DCG scores comparable between different kinase-substrate pairs, we normalized each score by the minimum

and maximum possible DCG scores for the substrate. The minimum DCG for a substrate can be found by sorting the sites in

ascending order of their functional scores; likewise, the maximum can be found by sorting the sites in descending order of their func-

tional scores. Thus, the normalized DCG is:

nDCG =
DCG� DCGmin

DCGmax � DCGmin

Coexpression and Tissue Specificity
Coexpression of protein kinases across tissues in the GTEx and Protein Atlas RNA expression datasets was calculated via Spear-

man’s correlation after setting missing values to 0.0.

The tissue specificity of each kinase was calculated by assessing the skewness of its distribution of Protein Atlas expression values

(in transcripts per million, or ‘‘TPM’’) across the samples, defined as

b1 =
m3

s3
=

1
n

Pn
i =1ðxi � xÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn
i = 1ðxi � xÞ2

q 3

where x is the kinase’s set of expression values across all tissues, x is the sample mean expression value, s is the sample standard

deviation, and m3is the third central moment of the distribution. Skewness was calculated using the ‘‘e1071’’ package for R

(https://CRAN.R-project.org/package=e1071).

Phospho-Coregulation
We assessed coregulation of a pair of protein kinases bymeasuring the correlation between phosphorylation of their regulatory phos-

phosites across conditions (Wilkes et al., 2015) or tissue samples (Mertins et al., 2016) of phosphoproteomic experiments. Both

experiments consisted of a table of log2fold-changes for each quantified phosphosite across the conditions or samples, measuring
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the relative intensities of the phosphosite as detected bymass spectrometry under each condition or sample versus a reference. The

data for each experiment was quantile normalized by condition or sample (Bolstad et al., 2003).

Within an experiment, for each pair of phosphosites on two protein kinases, we calculated the correlation between fold-changes of

the sites across all conditions or samples for which a quantification was available, where at least five such conditions or samples

existed. We first removed any conditions in which one of the kinases was under chemical inhibition. The correlation was calculated

using Spearman’s rho and a p-value estimated for the correlation via the asymptotic t approximation. p-values were then �
log10-transformed; in the case that the estimated p was 0, we set the final value to 6. This value was then scaled by the functional

scores of both sites such that only two sites with high functional scores and a high phosphorylation correlation would have a high final

coregulation score. We then took the maximum such score across all site pairs as the final coregulation score for the kinase pair.

Finally, the coregulation scores for all kinase pairs were normalized according to the maximum and minimum values of all pairs.

Prediction of Regulatory Relationships
Training and Validation Set

We retrieved a high-confidence set of known, directed kinase-kinase regulatory relationships from OmniPath (T€urei et al., 2016)

(fetched Jan 22, 2018 via the Python API). To ensure the quality of the relationships we only used those that were supported by at

least two sources, providing a ‘‘positive’’ set of 825 relationships. It is more challenging to define a ‘‘negative’’ set of regulatory re-

lationships, given the difficulty in unequivocally demonstrating a lack of regulation under all conditions. However, we assume that

regulatory relationships are rare and that, given a random pair of kinases, there is unlikely to be a regulatory relationship between

them. Working under this assumption, we constructed negative sets by randomly sampling from the space of possible relationships.

To further reflect the presumed sparsity of the true network, we chose to construct a negative set that was 8 times larger than the

positive set, which provided a slight improvement in prediction performance. This value was arbitrarily chosen to balance the dimin-

ishing performance boost from increasing negative set size with the rapidly increasing memory resources required to perform the

training computations.

Feature Validation

Weevaluated the performance of the following features for predicting protein kinase regulatory relationships: maximumPSSM score,

maximum substrate phosphosite functional score, DCG, phosphoproteomic coregulation scores, tissue RNA coexpression, and

regulator and substrate tissue expression specificity. Each feature was evaluated 100 times against a randomly sampled two-thirds

of the positive set and an 8-fold larger randomized negative set.

Model Training and Prediction

In order to build a final predictive model of kinase-kinase regulatory relationships, we employed the Bayesian Additive Regression

Trees (BART) method (Chipman et al., 2010). Briefly, BART is a ‘‘sum-of-trees’’ method, in which a series decision trees are fit to

the data and used to classify data. Each tree consists of binary decision nodes reflecting a decision based on one of the features,

e.g. ‘‘max. PSSM score > 0.75’’ or ‘‘GTEx coexpression < 0.3’’. The terminal nodes of the tree contain values which, once selected,

contribute to the final classification value; in a sum-of-treesmodel, the decision values from each tree are summed to produce a value

upon which this final classification is made. The BART method, in particular, uses a fixed number of trees, on which it places regu-

larizing priors that ensure that each tree is a ‘‘weak learner’’, i.e. each tree contributes a small fraction of the final classification value. It

does this by restricting the tree depth, shrinking terminal leaf nodes to themedian, and adding noise to avoid over-fitting. Trees are fit

to the data through Bayesian approaches to estimating the parameters, such as Markov-Chain Monte Carlo (MCMC) backfitting

(Chipman et al., 2010).

We applied the BARTmodel to our data as implemented in the R package ‘‘bartMachine’’ version 1.2.3 (Kapelner andBleich, 2016).

A notable extension of the original method provided by bartMachine is to incorporate data missingness into predictions (Kapelner

and Bleich, 2015). For example, a missing phosphoproteomic coregulation value might be informative as it would indicate that phos-

phosites on the two kinases were never detected in the same conditions by the mass spectrometer, and thus a decision tree node

asking ‘‘is the coregulation score missing?’’ can contribute to the final classification. We used this feature by enabling the ‘‘use_mis-

sing_data’’ and ‘‘use_missing_data_dummies_as_covars’’ parameters and disabling the ‘‘replace_missing_data_with_x_j_bar’’ and

‘‘impute_missingness_with_x_j_bar_for_lm’’ parameters. These settings in effect disable any imputation ofmissing data and produce

new ‘‘dummy’’ variables that indicate whether a value is missing, which can then be incorporated in the decision trees. Model hyper-

parameters including the number of trees were determined using the built-in 5-fold cross-validation routine provided by the ‘‘bart-

MachineCV’’ function.

In addition to the quantitative features listed in the previous section, we also included the kinase types (serine/threonine versus

tyrosine) for the regulating kinase and the substrate kinase as additional features. We evaluated the BART model on these features

using the full ‘‘positive’’ training set and random ‘‘negative’’ training sets as outlined above. To this end, we performed 20 iterations of

3-fold cross-validation, using a different random ‘‘negative’’ set each iteration. We evaluated the true-positive rate, false-positive

rate, the precision (positive predictive value) and the recall (sensitivity) of the model based on the calculated posterior probabilities

assigned to the validation set. Performance metrics were calculated using the R package ROCR (Sing et al., 2005).

In order to produce our final classifications, we trained 100 different BART models to the training set, each with a different random

instantiation of the ‘‘negative’’ set. Each model was then used to produce a posterior probability of a regulatory relationship for all

kinase-kinase pairs. Finally, we took the mean of the 100 posterior probabilities for each relationship as the final classification score.

For the assessment of rankings of known regulators or substrates (Figure 4C) and for the reconstruction of knownpathways (Figure 5),
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we applied a similar procedure. For each kinase under consideration, we built 3 different models using the ‘‘positive’’ set, after

removing all relationships including that kinase, and random instantiations of the ‘‘negative’’ set. The mean posterior probability of

each of that kinase’s relationships from these 3 models was used as the final prediction for the analysis.

Network Clustering and Pathway Enrichment
The resulting networkwas divided into clusters using themethod of Blondel et al. (2008) as implemented by the R package ‘‘igraph’’ in

the function ‘‘cluster_louvain’’ (Csárdi and Nepusz, 2006). This is a heuristic method that identifies clusters by optimizing modularity.

The algorithm can be divided into two steps: first, a cluster is assigned to each node in the network. Next, one node i is iteratively re-

assigned to each of its neighbors’ clusters and the impact on the network’s modularity is assessed. Node i is then re-assigned to the

cluster where its inclusion results in the greatest gain in modularity. This process is repeated until no gain in modularity can be

achieved, that is, a local maximum has been found. In the second step, a new network is constructed from the identified clusters.

Edge weights between the nodes, including self-loops, are computed by summing over the weights of the links that connect nodes

in each cluster. The first step is then reapplied on the resulting network. These two steps are then repeated iteratively to improve the

cluster assignments.

Our aim is to predict regulatory relationships between kinases and as a result our network is directed, that is up to two directed

edges connect each pair of kinases, one for each direction of regulation. As this method only clusters networks with at most one

edge connecting each node pair, we retained the higher-probability edge of the two linking each pair of nodes. Prior to clustering,

we removed regulatory relationships with posterior probabilities less than 0.5 in order to only retain high confidence predictions.

The remaining probabilities were then max-min scaled to derive edge scores on the scale 0.0 to 1.0.

In order to determine if the derived clusters reflected known physiological relationships, we tested the clusters for enrichment in

pathway annotations from the Reactome database (Fabregat et al., 2017). For the clusters with 10 or more kinases, we tested the

relative frequency of pathway annotations of the kinases assigned to the cluster relative to the frequency of those annotations for

the entire set of 504 kinases using the hypergeometric test as implemented by the ReactomePA package for R (Yu and He,

2016).We adjusted test p-values using the Benjamini-Hochbergmethod for controlling the false-discovery rate (Benjamini andHoch-

berg, 1995) and we set a critical value of 0.05 for testing significance. 315 kinases were annotated in Reactome V. 62 accessed

through reactome.db version 1.62.0 with 6151 pathway annotations altogether.

Pathway-Annotation Distances
We extracted the human protein-protein interaction network from IntAct (version: Oct. 2018) (Stutz et al., 2013). Additionally, on this

network, we integrated the human phosphorylation events extracted from SIGNOR, PhosphoSitePlus and OmniPath (T€urei et al.,

2016), resulting in a network containing 17089 nodes and 166757 edges. Given a pair of pathway annotations, we computed the

mean of all shortest path distances between the proteins annotated for the pair.

These distances were divided into two sets: distances between pathways that are enriched in the same cluster (n= 811) and dis-

tances between enriched pathways across clusters (n= 1019). Furthermore, we excluded distances between pathways that shared

kinases, which reduced our within-cluster set to 67. We used the Wilcoxon rank sum test to determine if there was a significant dif-

ference in distance between the two sets.

Network Modularity
To assess themodularity of our network we compared it to a set of randomly generated networks. Our reference network was gener-

ated by discarding all edges with probability lower than 0.5. The remaining edges were then min-max scaled to get an edge weight

distribution of values between 0 and 1. A set of randomized networks (n= 1000) with the same degree distribution as the reference

network were generated with the sample_degseq function in the igraph package. The ‘‘vl’’ method was used for network generation

(Viger and Latapy, 2005). At each randomization, the edge weights of the reference network were shuffled and assigned to the ran-

domized network. These were then clustered as described above. The modularity of the of the clustering was calculated with mod-

ularity.igraph as implemented in igraph (Clauset et al., 2004; Csárdi and Nepusz, 2006):

Q =
1

2m

 X
ij

�
Aij � kikj

2m

�
dðci; cjÞ

!

Wherem is the number of edges in the network, A is the adjacency matrix, k denotes the degree of the nodes in question and d is an

indicator function returning 0 if nodes i and j are both members of cluster c, and 1 otherwise. Applying this procedure to the random

networks provided us with an empirical distribution of modularity values from which we derived an empirical p-value for the modu-

larity of the reference network.

Prediction of Phosphosite Functional Sign
As a prerequisite for predicting the sign (activating versus inhibiting) of regulatory relationships, we first built a model to classify in-

dividual phosphosites as having either an inhibitory or activating effect on the substrate protein. As features, we used: the percentage

position of the site relative to the start and end of the protein kinase domain (i.e. between 0 and 1 for sites that fall within the domain);

the percentage position of the site along the protein’s length; the domain (if any) in which the phosphosite lies, including, but not
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limited to, protein kinase domains; the phosphosite residue (serine/threonine or tyrosine); whether or not the substrate is a tyrosine

kinase; an estimate of secondary sequence disorder, as calculated by DISOPRED (Ward et al., 2004); and the � log10p-value of the

site being in a phosphorylation hot-spot (Strumillo et al., 2019).

To train and validate our model, we fetched a list of human protein kinase phosphosites annotated as inducing or inhibiting activity

from PhosphoSitePlus (Hornbeck et al., 2015). We built our model using BART as described above. We evaluated model perfor-

mance via 20 iterations of 3-fold cross-validation on a training/validation set of 50 activating and 50 inhibiting phosphosites, sampled

randomly each iteration. The final model was trained using the full training set and posterior probabilities of a phosphosite being an

activating site were calculated.

We next found the probability cutoff that maximizes the Matthew’s Correlation Coefficient (MCC) for classifying sites as either acti-

vating or inhibiting:

MCC =
TA3TI� FA3FIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTA+FAÞðTA+ FIÞðTI+FAÞðTI+FIÞp

where TA, TI, FA, and FI are the numbers of true activating, true inhibiting, false activating and false inhibiting predictions at a given

cutoff. Values above the cutoff were taken as ‘‘activating’’ predictions and those below were ‘‘inhibitory’’ predictions. The cutoff that

maximizes theMCCwas then subtracted from all predicted probabilities, yielding a score of less than zero for ‘‘inhibitory’’ predictions

and greater than zero for ‘‘activating’’ predictions. Finally, these scores were rescaled so that the largest absolute value was 1 while

maintaining a midpoint at zero.

Prediction of Regulatory Sign
We followed a similar procedure for classifying kinase-kinase regulatory relationships as being activating or inhibiting. The predictive

features that we used were: the regulator and substrate protein kinase types (serine/threonine versus tyrosine kinases); the signed

functional score; a signed formulation of the DCG; and a signed coregulation score. To derive a signed functional score, we simply

assigned the sign of the phosphosite sign prediction (negative for ‘‘inhibiting’’, positive for ‘‘activating’’) to the site’s functional score.

We then used the signed formulation of the substrate’s highest functional score as the final feature.

Signed Discounted Cumulative Gain
We modified the DCG calculation to determine whether a regulating kinase tends to ‘‘find’’ inhibitory or activating phosphosites on

the substrate kinase. To achieve this, we applied a DCG-like calculation to the signed functional scores, where a positive sum would

indicate an activating relationship and a negative sum would indicate an inhibitory one.

If the substrate phosphosites with the highest PSSM scores tend to have high functional scores with the same sign, the initial steps

of the DCG cumulative sum will move in one direction. However, if the substrate has many sites and the predicted signs of the sites

are unevenly distributed, the sheer number of sites alone would overcome the initial signal from the high PSSM-scoring sites. For

example, if the substrate has 3 predicted inhibitory sites which all have high PSSM scores for the regulator and 10 predicted acti-

vating sites that have low PSSM scores (but high functional scores), the final DCG on the signed functional scores would ultimately

be positive regardless of the site-ordering by PSSM. Thus, we formulated the signedDCG in terms of themost extreme value reached

by the sum.

We begin, as with the standard DCG, by ranking the n substrate sites according to decreasing PSSM scores (bs, as described

above). This produces an ordered set of their signed functional scores, F� = fF�
1 ;F

�
2 ;.;F�

i ;.;F�
n�1;F

�
ng. We then calculate a partial

DCG on this set, up to the index that produces the largest absolute sum:

DCG� =
Xj

i = 1

F�
i

log2ði + 1Þ
 �� k
j = argmax
k

��� X
i = 1

F�
i

log2ði + 1Þ
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!
%n

We then normalize DCG�against the most extreme value of the same sign possible for that substrate, retaining the sign. That is, if

DCG�<0 we rank the substrate sites by increasing signed functional score to find DCG�
min, the most extreme negative sum possible

for the substrate; and otherwise we rank the sites by decreasing signed functional score to find DCG�
max, the most extreme positive

sum possible. Thus,

nDCG� =

8>>><>>>:
DCG��

DCG�
max

DCG�>0

�DCG��
DCG�

min
DCG�<0
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Signed Coregulation Score
In order to produce a signed coregulation score, we followed the same procedure described above for the coregulation score. How-

ever, rather than using the p value of the correlation test, we used the signed correlation statistic (Spearman’s rho). In order to make

the test statistics comparable in spite of differing numbers of data points (i.e. number of conditions or samples in which two phos-

phosites have both been quantified), we z-transformed the scores:

z =

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

1:06

r
3 artanhðrÞ

where n is the number of coquantified conditions/samples for the pair of sites and r is the estimated correlation coefficient. In order to

isolate correlations between likely regulatory sites, we then scaled z by the signed functional scores of the two sites. Finally, for a

given pair of protein kinases, we took the most extreme scaled z value as their signed coregulation score.

In calculating these signed coregulation scores, we encountered cases that are inconsistent with a direct regulatory relationship

between one protein kinase and another that is governed by a functional phosphosite on the regulator. In particular, in a direct reg-

ulatory relationship, the sign of the functional site on the regulator must be the same as the sign of the correlation. For example, if a

phosphosite on the regulator is inhibitory (negative), a positive correlation of phosphorylation state with a substrate functional site

could only occur through the activity of a third protein kinase (although we note that in kinases with more complicated rules of

multi-site regulation, such correlations might be possible). In order to better discriminate strong signals of coregulation, we therefore

removed site pairs in which the sign of the regulator’s site was incoherent with the sign of the correlation.

Training and Validation of the Sign Predictor
Webuilt a predictivemodel of regulatory sign from these features using BART as described above. As a training and validation set, we

used 503 signed regulatory relationships (394 activating, 109 inhibitory) between protein kinases from the OmniPath database that

were supported by at least two data sources. The model was validated via 20 iterations of 3-fold cross-validation, where each iter-

ation used a different random sample of 109 activating relationships for the training/validation set.

We built 20 iterations of the final model using similar random instantiations of the training set. Finally, for each directed kinase-ki-

nase pair, we assigned the mean posterior probability produced by these 20 models as a final regulatory sign score, where a higher

value would indicate an activating relationship and a lower score would predict an inhibitory relationship. For sign prediction in the

reconstruction of known pathways (Figure 5), we followed a similar ‘‘leave-one-out’’ procedure as described for prediction of the re-

lationships. For each kinase under consideration, we built 3 different models after removing all relationships including that kinase

from the training set. The mean posterior probability of each of that kinase’s relationships being ‘‘activating’’ from these 3 models

was used as the final prediction for the analysis.

Kinase Inhibitor Experiments
Phosphoproteomic analysis to test the predictions was carried out as described in Wilkes et al (Wilkes et al., 2015). Briefly, the Ka-

sumi-1 cell line, growing in RPMI medium supplemented with 10% FBS, was treated with 1mM trametinib or GDC-0941 for 1 h. Cells

were then lysed in a urea based lysis buffer. After trypsin digestion, phosphopeptides were enriched using TiO2 chromatography and

analyzed in a LS-MS/MS system consisting of an Ultimate 3000 ultra-high pressure chromatograph connected to a Q-Exactive Plus

mass spectrometer. Data analysis was performed using the Mascot search engine and Pescal as described (Wilkes et al., 2015).

Identification of Down-regulated Phosphosites
By analysing phosphoproteomic data treated with trametinib (MEKi) and GDC-0941(PI3Ki), we looked for phosphosites that were

down regulated by either inhibitor. We considered serine, threonine and tyrosine phosphorylated peptides even for multi-phosphor-

ylated peptides. We log2 transformed and quantile normalized the data to ensure that each sample followed the same distribution. To

identify phosphosites that were down-regulated in each condition, we used the limma function as implemented by the R package

limma (reproducibility-optimized statistical testing) (3.40.6)(Ritchie et al., 2015). Down-regulated phosphosites were selected by

applying the cutoff of log2 ratio to control of less than -1 and false discovery rate of lower than 0.1. p values were adjusted with

the Benjamini–Hochberg method.

Kinase-Substrate Shortest Paths
To see if any novel pathways could be established from the perturbed kinases, we looked for the shortest path from the kinases per-

turbed by trametinib (MAPK2K1 and MAP2K2) and GDC-0941 (PI3K) to phosphosites down-regulated by their perturbation. Since

PI3K is a lipid kinase we added edges between PI3K and kinases regulated by hsa:5290 (PIK3CA) and hsa:5291 (PIK3CB) and their

substrate, Phosphatidylinositol-3,4,5-trisphosphate, in the KEGG database (accessed 16 October, 2019)(Kanehisa, 2019; Kanehisa

and Goto, 2000; Kanehisa et al., 2019). Therefore, we added edges from PI3K to PRKCD (e.g. KEGG: hsa:04750), PRKCI (e.g KEGG:

hsa:04910), PRKCZ (e.g KEGG: hsa:04910), SRC (e.g. KEGG: hsa:04926), AKT1 (e.g. KEGG: hsa:04151), AKT2 (e.g. KEGG:

hsa:04151), ILK (e.g KEGG: hsa:04510), MTOR (e.g. KEGG: hsa:04150/hsa04910), PDPK1 (e.g. KEGG: hsa:04150), PDPK2 (e.g.

KEGG: hsa:04068), ITK (e.g KEGG: hsa:04062) and PTK2 (e.g. KEGG: hsa:04062) were added to the network.
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In order to calculate distance between perturbed kinase and down-regulated phosphosites, known kinase-substrate interactions

from PhosphoSitePlus (Hornbeck et al., 2015) were added to the network as well as interactions predicted by both the in vivo (Hijazi

et al., 2020) and in vitro (Sugiyama et al., 2019) experiments. Phosphosites that are known substrates of the perturbed kinases were

not considered for analysis. In the case of PI3K, substrates of kinases linked to PI3K were discarded as well. We removed all edges

with probability scores of less than 0.5. The function all_shortest_paths() as implemented in the R package igraph(Csárdi and Nepusz,

2006) was used to identify the shortest directed paths from the perturbed kinases to the phosphosites added to the network. The

parameter mode = ‘‘out’’ was used and the edge weights were calculated by subtracting the min-max scaled edge probabilities

from one. An interaction was considered novel if it was corroborated by either in vivo or in vitro experiment.

QUANTIFICATION AND STATISTICAL ANALYSES

All statistical tests and sample sizes are described in the Results section. Significance was determined at a significance level of 0.05.

The tests were carried out using the R statistical computing environment (R Core Team, 2016).

DATA AND CODE AVAILABILITY

The code generated during this study is available at GitHub (https://github.com/evocellnet/kinase-activity-net/). The published article

includes all other data generated during this study.
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