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Abstract— We propose and evaluate the use of Multi-dimensional Dynamic 
Time Warping (MDTW) for comparing dynamic hand rehabilitation gestures that 
would be performed by a patient (query) relative to hand gestures prepared by a 
physiotherapist (reference). MDTW enables us to determine how similar or 
different a query dynamic hand gesture is to a reference one whilst filtering out 
unwanted sources of error resulting from positional, rotational or speed 
differences between the query and the reference actions. It produces a minimum-
distance value of a warp path after aligning a query dynamic hand gesture with a 
reference one. A low minimum-distance value implies the two gestures being 
compared are similar and high minimum-distance value implies the two gestures 
vary to a greater extent. When we deliberately compare a specific hand gesture 
with itself, we obtain a minimum-distance value of 0o indicating the similarity is 
100%. Furthermore, when we compare two closely similar hand gestures i.e. gesture 1 and gesture 4, a minimum-
distance value of 35.9o is obtained. However, when we compare two quite different gestures i.e. gesture 2 and gesture 
3, a minimum-distance value of 248.5o is obtained. Therefore, a physiotherapist can establish whether a patient 
performs hand rehabilitation gestures satisfactorily or an adjustment is required based on the minimum-distance 
values of the warp paths. 

 
Index Terms— Dynamic hand gesture, Hand rehabilitation, Leap Motion controller, Multi-dimensional Dynamic Time 

Warping. 

 

 

I.  INTRODUCTION 

ATIENTS suffering from stroke, neurological disorders, 

hand related injuries etc. usually need different forms of 

hand rehabilitation in order to recover expeditiously [1]. Most 

hand rehabilitation procedures are recommended to be 

executed with help of a physiotherapist that supervises a 

patient so that he or she can perform the correct hand exercises 

or gestures [2]. The cost of rehabilitation related services at 

hospitals or clinics and an increasing size of ageing population 

are responsible for considering the relocation of hand 

rehabilitation related services away from medical centres i.e. 

at home [3] to reduce expense and improve patient 

convenience [4]. With the aid of sensor “gadgets” and 

computing devices, home-based rehabilitation may be a viable 

option to eliminate the presence of a physiotherapist during a 

hand rehabilitation session [2]. However, in such a scenario, 

offline monitoring should be implemented to motivate patients 
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and make corrections to imprecise hand rehabilitation 

exercises [4]. This form of monitoring requires parameters to 

be recorded and submitted to a physiotherapist or an expert for 

analysis and prompt feedback [2]. 

 Hand rehabilitative approaches are generally tailored to the 

patient’s needs and due to this patient-tailoring, a high 

resource demand is likely to be experienced. This is common 

to many rehabilitative treatments [5]. The resource demand 

may include the time a therapist spends interacting with a 

patient, costly instrumentation and testing equipment, the use 

of healthcare facilities and the related overheads [5]. In order 

to reduce these costs, researchers have turned their attention to 

implementing contactless systems with the help of computer 

vision techniques [2]. However, vision-based systems have 

limitations [6]. The Performance of such systems is hindered 

by factors such as the background, illumination contrast, noise 

related factors, ease of use etc. [6]. For instance, a scheme 

proposed in [6] aids rehabilitation whereby a ball is fixed to a 

hand gripper. Even so this may not effectively support hand 

finger rehabilitation since a patient is required to grasp when 

performing a rehabilitation procedure yet he or she may not be 

capable of this depending on severity of the illness [7]. 

There exist markerless devices in healthcare stores that can 

be utilised by people affected with hand injuries when 

executing hand rehabilitation tasks. Examples of these devices 
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include Intel’s RealSense 3-D Camera, the Inertial 

Measurement Unit (IMU) sensor, the Kinect Sensor [8]-[11], 

tilt sensors [12], [13], camera supported devices [14]-[16],  

Leap Motion controller (LM) [17], etc. In addition, wearable 

devices have also been employed in hand rehabilitation 

settings through implementing a number of sensors such as 

optical linear encoder, knitted piezoresistive fabric, smart 

wearable armband [18], etc. In our analysis of different 

sensors, we have discovered that some sensors may make 

patients uncomfortable when using them, at least initially, 

because they need time to familiarize with the setup regime 

before use [4]. For instance, tilt sensors typically require a 

patient to perform a complex start-up process [19]. 

During the implementation of our proposed hand 

rehabilitation setup, we deployed LM since it is a lightweight 

and affordable device compared to the most of previously 

mentioned sensors. Moreover, it can be easily operated by a 

patient as required. When connected to a computing device the 

LM can guide patients through hand rehabilitation exercises 

like the ones employed when recovering from strokes or hand 

related injuries, to improve the performance of activities of 

daily living in order to boost wellbeing [2]. In addition, a 

patient can use LM at any convenient location with limited 

investment expenditure, and without the necessary presence of 

a skilled person to calibrate and adjust the equipment [17]. 

However LM can also be applied in various areas. For 

instance, in an automotive industry environment [20], both 

LM and Kinect data were employed for programming the 

robot’s movement and managing the program’s execution in 

an open-ended system. In [21], LM was employed to 

recognize various sign languages. Furthermore, LM is widely 

used in applications of virtual reality (VR) that incorporate 

entertainment industry and education sector [22]. 

In this paper we compare dynamic hand rehabilitation 

gestures such that a physiotherapist or an expert could 

establish how well a patient performs hand dynamic gestures 

in comparison to predefined ones that are recommended by a 

physiotherapist. After establishing the extent to which a 

performed hand gesture matches a reference one, meaningful 

feedback can be generated to correct or encourage a patient to 

refine their actions during a session [23]. We propose and 

implement Multi-dimensional Dynamic Time Warping 

(MDTW) to quantify how similar or different two dynamic 

hand gestures are from each other [24]. Dynamic Time 

Warping (DTW) is a broadly applied technique in speech 

recognition for establishing to what extent any two time series 

are similar or different. Both DTW and MDTW techniques 

utilise a distance metric between a query time-series and a 

reference one and create a discriminating value: a low distance 

value when the two time-series are similar and a high distance 

value when the two time-series are different [25]. 

There exist other possible dissimilarity measures such as 

Longest Common SubSequence [24], [26], edit distance with 

real penalty [24], edit distance on real sequences [24], [27], 

and time warp edit distance [24], [28]. However, MDTW has 

an extra advantage since its implementation is simple and 

efficient. Furthermore, MDTW is superior because it is not 

necessary for both time-series being compared to be of equal 

length as required by typical distances and this behaviour is 

termed elasticity [24]. MDTW is therefore an elastic 

dissimilarity technique that estimates the greatest match within 

two time-series by reducing a distance between them [24]. 

The novel contributions of our paper are: 1) Formulating a 

specific problem regarding the comparison of a dynamic query 

hand gesture with a dynamic reference hand gesture using 

DTW and MDTW; 2) Representing dynamic hand gestures 

using a feature vector in 3-D space; 3) Implementing and 

evaluating the efficacy of the MDTW technique. 

The remaining sections of this paper are arranged as 

follows. Section II discusses potential applications and 

limitations of DTW. Section III presents significant content 

regarding the anatomy of a hand. It further presents how joint 

angles can be calculated. Dynamic time warping is discussed 

in Section IV where the problem formulation regarding both 

DTW and MDTW is illustrated. Section V discusses our 

methodology and experimental results are presented in Section 

VI. Finally, Section VII presents concluding remarks and 

future work. 

II. APPLICATIONS AND LIMITATIONS OF DTW IN LITERATURE 

DTW has been implemented to measure the correlation 

between two brain parts by performing a comparison between 

the synchronization and asynchrony of the time-series [29]. 

DTW was employed because it considers the inherent timing 

and efficacy of functional magnetic resonance imaging (fMRI) 

time-series unlike Pearson correlation. However, in order to 

establish the best community structure of brain networks for 

each subject under consideration, other techniques were 

employed [29].  

One of the limitations of DTW was reported by [30] when 

implemented for signature verification. The implementation 

involves obtaining correspondence and the similarity of two 

planar curves. The limitation was that in portions of the curves 

at locations with sparse sampling, insufficient resolution in the 

matching procedure was experienced attributed to the fact that 

DTW matches only individual samples instead of continuous 

curves. The authors in [30] further proposed that a feasible 

solution to this limitation is to oversample the curves. 

Oversampling can be implemented by employing a spline 

interpolation prior to curve matching. 

In [31] DTW is implemented to measure time-series 

similarity, perform classification, and identify corresponding 

portions between two time-series. One strategy that was 

implemented applies a multilevel technique which repeatedly 

predicts a measurement from a coarse resolution and improves 

the predicted measurement. The strategy possesses linear time 

and space complexity and partially solves the issues of 

quadratic time and space complexity experienced by DTW 

when implemented with large time-series data sets [31]. 

In order to detect, locate, and characterise damage on large 

remote structural areas, DTW has been proposed and 

implemented where it compares guided wave data to a 

baseline signal [32]. DTW performs better compared to 

similar techniques such as baseline signal stretch and scale 

transform [32]. In fact, in this instance DTW takes into 

consideration factors such as large temperature differences, 

long propagation intervals, and high frequencies unlike 

baseline signal stretch and scale transform techniques. 

However, DTW does not completely detect structural changes 

through realigning guided waves to a baseline since is 
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sensitive to temperature changes whilst not being adequately 

sensitive to long propagation distances and high frequencies 

[32]. 

DTW was implemented as a technique to distinguish 

various mechanical diagnostics of on-load tap changer 

(OLTC) [33] devices. OLTC is one of the parts in a 

transformer that is susceptible to faults. In addition, durability 

of the whole power system greatly depends on the OLTC 

status. Experiments demonstrate that DTW can adequately 

diagnose various OLTC faults under diverse fault extremities 

[33]. On the other hand, the implemented DTW could not 

efficiently handle the limitations of excessive match and 

distance estimation [33] and this necessitates further research. 

 

III. BACKGROUND 

We briefly provide an overview of the hand that is essential 

for our MDTW implementation. We further provide how we 

calculate finger joint angles and, lastly, define a dynamic hand 

gesture. 

A. Anatomy of the Hand 

We briefly introduce a hand overview here i.e. the bones of 

the hand and finger joints. 

 

1) Bones of the Hand 

A human hand includes metacarpal bones. These are five 

bones that are located from the wrist to the initial bottom joint 

of every finger. In addition, the hand comprises fourteen small 

bones referred to as phalanges (phalanx for singular). Apart 

from the thumb that possesses only two phalanges, the other 

four fingers possess three phalanges i.e. distal, middle and 

proximal [34], [35]. 

 

2) Finger Joints 

Fig. 1 illustrates the joints and bones of a human hand. The 

finger joints arise when a pair of adjacent finger bones meet. 

Apart from the thumb that has two joints, the four fingers 

(index, middle, ring and little) have three joints. The following 

describes the different fingers joints. 

• Distal Inter-Phalangeal (DIP) Joint 

The DIP joint is situated at the topmost part of the finger in 

the vicinity of the lower part of the fingernail. This joint 

intersects the distal phalanx and the middle phalanx bone. 

Separate from the thumb, the four fingers each possess a DIP 

joint. 

• Proximal Inter-Phalangeal (PIP) Joint 

The PIP joint is the middle joint of each of the four fingers 

but not the thumb. This joint intersects the middle phalanx and 

the proximal phalanx bone. 

• Inter-Phalangeal (IP) Joint 

The IP joint is situated at the topmost part of the thumb in 

the vicinity of the base of the nail. This joint intersects the 

distal phalanx and the middle phalanx bone. 

• Meta-Carpo-Phalangeal (MCP) Joint 

The MCP joint is situated at the bottom part of all five 

fingers i.e. all the fingers possess a MCP joint. This joint 

intersects the metacarpal bone and the initial phalanx bone. 

B. Joint Angle Calculation 

Equation (1) and Fig. 2 provide a demonstration of how to 

calculate a specific joint angle of a finger of a hand. In the 

figure, an index finger is considered and the angle θ is the 

Proximal Inter-Phalangeal (PIP) joint angle. u illustrates the 

direction vector that describes the middle phalanx bone and v 

illustrates the direction vector that describes the proximal 

phalanx bone. 

( . )
cos

( )

u v

u v
 =                (1) 

C. Definition of a Dynamic Gesture 

A dynamic hand gesture is represented as a sequence of 

postures changing over time and each posture is described by 

a set of joint angles. Mathematically, a dynamic hand gesture 

is illustrated using a set of K measured finger joint angles that 

evolve over time i.e. a dynamic hand gesture gt at an instant t 

is described by 1 2{ , ,..., }.t t t Ktg   =  

IV. DYNAMIC TIME WARPING 

A. Problem Formulation for Dynamic Time Warping 
(DTW) 

Our objective is to establish how similar or different a query 

dynamic hand gesture is in comparison to a reference dynamic 

hand gesture whilst compensating for differences in the 

duration of gestures, rotation of the hand, reasonable distance   

from LM sensor etc. For simplicity, we initially assume the 

feature vector constitutes only one measured feature in order 

to illustrate how traditional DTW works. In later discussion, 

we extend DTW to Multi-dimensional Dynamic Time 

Warping (MDTW) so that it suits our proposed framework.  

 

 
Fig. 1.  Hand bones and joints. 

 

 
Fig. 2.  Calculation of the PIP joint angle θ of the index finger. 
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We let a query dynamic hand gesture and a reference 

dynamic hand gesture be represented by X and Y, respectively 

[36]. Specifically 1 2( , ,..., )MX x x x=  where M  and 

1 2( , ,..., )NY y y y= where .N   From now onwards, we 

use i and j to represent an entry in time series X and Y, 

respectively. We define the Euclidean distance between any 

two samples in time series X and Y as [36], 

( , ) ( )( )i j i jd i j x y x y= − −          (2) 

where 1 ,i M   and 1 .j N   

A two-dimensional N by M cost matrix D is created and 

every individual value of the D(i, j) is determined as follows: 

(1,1) (1,1)D d=                (3) 

 

(1, ) (1, 1) (1, )D j D j d j= − +   2 j N     (4) 

 

( ,1) ( 1,1) ( ,1)D i D i d i= − +    2 i M     (5) 

( , 1)

( , ) ( , ) min ( 1, 1)

( 1, )

D i j

D i j d i j D i j

D i j

− 
 

= + − − 
 − 

     (6) 

Equation (6) holds for the same range of i and j as for (4) and 

(5) i.e. 2 i M  and 2 .j N   

Then a warping path 1 2, ,..., rW w w w=  is an adjacent 

collection of some matrix constituents that are always close to 

the diagonal. These matrix elements when added together are 

equivalent to a minimum-distance of a warp path. 

The minimum-distance of a warp path illustrates a mapping 

between X and Y that fulfils the subsequent requirements [37]. 

 

1) Boundary Requirements 

1 (1,1)w =  and ( , )rw M N=  where r is the length of the 

warping path.  

 

2) Continuity Conditions 

Given ( , )zw a b=  and 1 ( , )zw a b−
 = , then 1a a−   

and 1b b−   must be fulfilled.  

 

3) Monotonicity Requirements 

Given ( , )zw a b=  and 1 ( , )zw a b−
 = , then 0a a−   

and 0b b−   must be satisfied. 

We can now illustrate how to obtain a minimum-distance 

warp path with an example. Given X = (1,2,4,3,5,3,2,3,2,5) 

that represents a query series and Y = (1,1,2,4,3,5,3,2,3,2) 

which represents a reference series, we can construct a cost 

matrix D. The minimum-distance of a warp path is traced 

through the matrix constituents from D(1,1) to D(M,N), 

highlighted in pink, as shown in Fig. 3. The minimum-

distance of the warp path using Euclidean distance as a metric 

is three. The above DTW formulation can only be 

implemented if a framework considers a single feature 

alignment i.e. one-dimensional measurements [36]. 

B. Problem Formulation for Multi-dimensional Dynamic 
Time Warping (MDTW) 

Since in our framework, we are considering up to 14 joint 

angles to describe a dynamic hand gesture at an instant, we 

employ MDTW. For MDTW, the two time-series X and Y 

must be initially created as multi-dimensional matrices where 

each row represents the time-series of a single measured 

feature and each column represents all the measured features 

at a given instant. The matrices X and Y can now be written as 

illustrated below. M and N are samples of dynamic query hand 

gesture and dynamic reference hand gesture, respectively, and 

K is the number of measured features being considered. 

 

1,1 1,

,1 ,

M

K K M

x x

X

x x

 
 

=  
 
 

 

 

1,1 1,

,1 ,

N

K K N

y y

Y

y y

 
 

=  
 
 

 

 

We now define Euclidean distance between X and Y as 

( , ) ( ) ( ).T

i j i jd i j X Y X Y= − −         (7) 

The entries in the cost matrix D can then be determined as 

shown in (4), (5) and (6). Then the MDTW algorithm searches 

for a minimum-distance warp path that runs close to the 

diagonal line from D(1,1) to D(M,N). The warping path must 

fulfil all three requirements as described in the case for DTW. 

If the minimum-distance of a warp path is of a lower value, 

then the two time-series, i.e. the two dynamic hand gestures 

being compared, are similar, otherwise the two dynamic hand 

gestures being compared are effectively different to a 

quantifiable extent. 

V. METHODOLOGY 

In our proposed MDTW implementation, we make use of 

an LM device that can be readily purchased by a patient or 

clinic at an affordable price [38]-[40]. Fig. 4 demonstrates 

how to configure LM in an experimental setup. In the figure 

the LM device is attached to a computing device such as a 

laptop on the right. 

 
Fig. 3.  Cost matrix and the minimum-distance of the warp path. 
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A. Architecture of the Proposed System 

We obtain an input signal when a hand is placed above the 

LM that is connected to a computing device using a USB 

cable. On the computing device, the LM application and a 

Java customised application are started simultaneously and 

frames of data that represent palm and finger movements are 

displayed. We then calculate joint angles of the fingers from 

the frames of data and, consequently, obtain feature vectors 

that represent various hand gestures. 

After obtaining feature vectors that represent both the 

dynamic query hand gesture and the dynamic reference hand 

gesture, we apply MDTW on both feature vectors and the 

minimum-distance value of a warp path is obtained. The 

minimum-distance value signifies how similar or different the 

two hand gestures are. A low minimum-distance value implies 

the two hand gestures that are compared are similar. On the 

other hand, a high minimum-distance value implies the two 

hand gestures vary to a certain extent. Fig. 5 illustrates the 

architecture of the MDTW comparison process. 

B. Description of the Feature Vector 

A dynamic hand gesture is represented using a set of 

fourteen measured finger joint angles that evolve over time. 

The fourteen finger joint angles that constitute the feature 

vector are illustrated in Table 1. Other features e.g. the angles 

between the finger and palm position are sufficient to be 

included in the feature vector. However, we choose to limit 

the feature vector to only finger joint angles since including 

other features does not contribute a considerable effect on the 

experimental results regarding the application of MDTW. 

C. Robotic Hand 

In order to simulate the repetitive nature of dynamic hand 

gestures and provision of carefully controlled experimental 

conditions, we used a robotic hand during data collection. In 

addition, compared to a human hand, a robotic hand permits 

gestures to be performed frequently in a short time provided 

the movements of all the necessary servo controllers are 

suitably programmed for a specific hand gesture. Furthermore, 

the dynamic hand gestures are performed with minimum 

positional or temporal errors and this provides a suitable 

working environment to reduce “unintentional” errors during 

experimentation. The robotic hand was fitted with a glove so 

that it can be easily recognised by the LM. Fig. 6 illustrates 

the robotic hand performing some dynamic hand gestures. 

 

 
Fig. 4.  A hand above the LM device in an experimental setup. 

 
Fig. 5.  Architecture of the proposed MDTW implementation setup. 

D. Gestures Under Consideration 

We have considered four different dynamic hand gestures. 

These hand gestures are similar to those implemented in [41] 

for hand strengthening exercises in chronic stroke patients. 

Dynamic hand gesture 1 is when a hand is performing a full 

fist gesture where all the five fingers move close to the palm. 

Dynamic hand gesture 2 is where only the thumb and index 

move close to the palm whereas the rest of the 3 fingers 

remain stationary. Dynamic hand gesture 3 is performed when 

the middle, ring and little fingers move close to the palm 

whereas the thumb and index do not move. Finally, dynamic 

hand gesture 4 involves motion of the index, middle, ring and 

little fingers moving close to the palm whereas the thumb 

remains stationary. Fig. 6 illustrates two of these dynamic 

hand gestures. 

 

VI. RESULTS AND DISCUSSION 

A. Evaluation of MDTW 

Here, we compare a particular hand gesture with itself, 

meaning the same vector describing how the fourteen finger  

joints evolve over successive time frames is compared to 

itself. When the comparison is completed, the minimum-

distance value of a warping path obtained is 0o. This is a 

perfect result since the similarity is 100%. 

B. Comparing Different Gestures to a Reference 
Gesture 

Here we designed 4 different hand gesture comparisons 

where in comparison 1 i.e. cf. #1, hand gestures 2, 3 and 4 are 

compared to hand gesture 1. In cf. #2, hand gestures 1, 3 and 4 

are compared to hand gesture 2. In cf. #3, hand gestures 1, 2 

and 4 are compared to hand gesture 3 and finally in cf. #4, 

hand gestures 1,2 and 3 are compared to hand gesture 4. 

From Fig. 7, hand gesture 1 and hand gesture 4 are similar 

since a minimum-distance of lowest value of 35.9o is obtained. 

 
TABLE I 

FEATURE VECTOR IN THE EXPERIMENTAL SET-UP 

Fingers of the Hand MCP PIP DIP/IP 

Thumb θ1  θ2 

Index θ3 θ4 θ5 
Middle θ6 θ7 θ8 

Ring θ9
 θ10 θ11 

Little θ12 θ13 θ14 
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On the other hand, hand gesture 2 and hand gesture 3 

experience the largest variation since a high value of 

minimum-distance of 248.5o is obtained. From our 

experimental design, this makes sense since hand gesture 1 is 

nearly identical to hand gesture 4 whereas hand gesture 2 can 

be regarded as the direct opposite to hand gesture 3. 

C. Comparing Gestures at Varied Distances from the 
LM 

In this experimental setup we considered four different 

configurations i.e. D1 is 5 cm to the right of the centre-line of 

the LM from the middle of the palm of the robotic hand 

whereas D2 is 5 cm to the left. D3 is 5 cm in front of the 

centre-line of the LM from the middle of the palm of the 

robotic hand whereas D4 is 5 cm behind. During the execution 

of a dynamic hand gesture, we maintained a moderate speed, a 

vertical distance of 15 cm from the surface of the LM to the 

palm of the robotic hand, and the robotic hand was fixed in a 

horizontal position relative to the LM with its palm facing 

downwards. 

For comparison purposes, D1D2 implies the dynamic hand 

gesture performance at D1 is compared with the dynamic hand 

gesture performance at D2. This notation is applied to the 

remaining cases as well, for example D3D4 implies dynamic 

hand gesture performance at D3 is compared with dynamic 

hand gesture performance at D4. 

From Fig. 8, the minimum-distances range is from around 

5o to 12.5o. These are quite low values compared to minimum-

distance values obtained in Fig. 7 where we compared 

dynamic hand gestures to a specific gesture. Hence reasonable 

distance from the centre-line of the LM to the middle of the 

palm of a hand does not affect gesture performance. 

 

 
Fig. 6.  Some of the hand gestures used to facilitate implementation of 
MDTW. 
 

 
Fig. 7.  Minimum-distance against gesture comparison. 

 
Fig. 8.  Varied distances for hand gesture comparisons. 

D. Comparing Gestures at Varied Speeds 

In this experimental setup, we arranged four different 

configurations, i.e. S1 is the baseline case, where a dynamic 

hand gesture is performed at a slow speed, S2 is when a 

dynamic hand gesture is performed at a speed twice as fast as 

a baseline one, S3 is when a dynamic hand gesture is 

performed at a speed three times faster than the baseline case 

and S4 is when a dynamic hand gesture is performed at a 

speed four times faster than the baseline one. 

For comparison purposes, S1S2 implies the dynamic hand   

gesture performance at S1 is compared with the dynamic hand 

gesture performance at S2. This notation applies to the 

remainder of the experimental setup, for example, S3S4 

implies dynamic hand gesture performance at S3 is compared 

with dynamic hand gesture performance at S4. During a 

dynamic hand gesture evaluation we placed the robotic hand at 

the LM centre-line, maintaining a vertical distance of 15 cm 

from the surface of the LM to the palm of the robotic hand, 

and the robotic hand was fixed in a horizontal position with its 

palm facing downwards. 

As illustrated in Fig. 9, the minimum-distances range from 

approximately 3o to 11o. It is important to note that these 

values are in the same range as those obtained when 

comparisons are made based on distances from the LM to the 

robotic hand (Fig. 8). This implies variable speed of hand 

gestures does not significantly affect gesture comparison 

performance. 

E. Comparing Gestures when the Robotic Hand is 
Rotated 

In this setup we rotate the robotic hand while performing 

dynamic hand gestures considering four different scenarios, 

i.e. R1, R2, R3, and R4. R1 is when the palm of the robotic 

hand is in horizontal position and facing downwards. R2 is 

when the robotic hand is roughly rotated at 30o and its thumb 

facing upwards. R3 is when the robotic hand is roughly rotated 

at 60o and its thumb facing upwards. R4 is when the robotic 

hand is in a vertical position and its thumb facing upwards. All 

these rotations are relative to the surface of LM. During this 

dynamic hand gesture evaluation, we placed the robotic hand 

at LM centre-line, maintained a vertical distance of 15 cm 

from the surface of the LM to the palm of the robotic hand, 

and maintained a moderate speed. 
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For comparison purposes, R1R2 implies the dynamic hand 

gesture performance at R1 is compared with the dynamic hand 

gesture performance at R2. This notation applies to the 

remaining cases as well, for example R3R4 implies dynamic 

hand gesture performance at R3 is compared with dynamic 

hand gesture performance at R4. 

 As shown in Fig. 10, the minimum-distances range from 

approximately 4o to 14o. These minimum-distance values are 

in the same range as those in Fig. 8 and Fig. 9. However, it is 

important to note that the RIR2 comparison registers the 

lowest minimum-distance values. On the other hand, RIR4 

registers the highest minimum-distance values. This may 

suggest that a physiotherapist should encourage patients to 

avoid unnecessary rotations of their hands. 

From the preceding analysis, regarding comparisons 

between gestures that are supposedly performed by patients 

with those that would be recommended by a physiotherapist, 

we observe that there is no concern about requiring a patient to 

maintain a particular horizontal distance from the LM to their 

hand for sensible rotations of the hand, and varying speed of 

gestures performed by different patients with various kinds of 

hand related injuries, as these factors do not significantly 

affect the gesture comparison. However, it is important to note 

that we maintained vertical distances around 15 cm from the 

surface of the LM to the palm of the robotic hand in all our 

experiments due to our previous work [17], where we 

established that accurate LM readings are obtained around this 

height. 

F. Detailed Comparison for Hand Gestures 

Here we undertake a comparison of all the four dynamic 

hand gestures performed in all the scenarios we explained in 

subsections C through to E i.e. at various distances, at various 

speeds, and at various rotations. For each of the four dynamic 

hand gestures, both query and reference gestures were at D1, 

D2, D3, D4, S1, S2, S3, S4, R1, R2, R3, and R4.  

For gesture 1, the lowest minimum-distance value is 0o and 

the highest value is 12.8o. For gesture 2, it was observed that 

the minimum-distance values range from 0o to 18.2o. For 

gesture 3, the minimum-distance values range from 0o to 17.4o 

and for gesture 4, the minimum-distance values range from 0o 

to 18.8o. 0o was obtained when a dynamic hand gesture was 

compared to itself in the same scenario under the same 

conditions. This is expected since the similarity is 100%. The 

same scenario same condition situations were when, for 

example, a query at D1 was matched with a reference at D1, 

or a query at R1 was compared with a reference at R1, etc. 

Furthermore, minimum-distance values are lower compared to 

those obtained when comparison is made between different 

hand gestures. This signifies the acceptable distance from the 

LM to the hand and indifference to speed of hand gestures 

during rehabilitation hand exercises. Sensible rotations of the 

hand also have little impact on hand gesture comparison 

performance. 

  

 

 
Fig. 9.  Varied speeds for hand gesture comparisons. 
 

G. Experimental Limitations 

Although the four different hand rehabilitation dynamic 

gestures were sufficient for the implementation and evaluation 

of MDTW, it could have been a good idea to extend the 

number of gestures. In this study we were constrained by the 

robotic hand performing only flexing and extending finger 

gestures. It was unable to execute complex hand gestures like 

abduction and adduction of fingers. Further, there was no need 

to recruit patients with hand related injuries like those 

recovering from stroke though if patient evaluation was 

considered could have added more significant benefits in the 

field of hand therapy.  

VII. CONCLUSION AND FUTURE WORK 

We have proposed, implemented and evaluated Multi-

dimensional Dynamic Time Warping (MDTW) to establish 

how similar or different a query dynamic hand gesture could 

be in relation to a reference dynamic hand gesture. The 

approach is robust in the way that it can distinguish quite 

different hand dynamic gestures by yielding a high value of a 

minimum-distance metric. Furthermore, the method can 

produce a low value of a minimum-distance if the hand 

dynamic gestures under comparison are closely similar. 

Therefore, in the context of dynamic rehabilitation hand 

gestures performed by a patient and compared with reference 

gestures recommended by a physiotherapist, meaningful 

feedback can be generated concerning how well the patient is 

mimicking the reference gestures.  

In the future we shall extend on the kinds of hand gestures 

by possibly improvise another different robotic hand that can 

perform abduction and adduction of fingers gestures. It would 

also be relevant to recruit both patients with hand related 

injuries and healthy individuals and evaluate how the two 

groups perform hand rehabilitation gestures. Obtained results 

can help a physiotherapist generate a more realistic feedback 

to the patient. Finally, since the recognition rate in LM could 

slightly vary depending on the speed of hand gestures, this can 

also be an interesting area for future research. 
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Fig. 10.  Varied rotations for hand gesture comparisons. 
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