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Abstract

Patients with schizophrenia often display impairments in the expression of emotion and speech

and those are observed in their facial behaviour. Such impairments present valuable inform-

ation for the psychiatrists, as they can be used for diagnosis. However, behaviour analysis

is subjective in clinical settings and time-consuming in research settings. In this thesis, our

aim is to develop fully-automatic methodologies for a) quantifying patient’s facial behaviour,

b) estimating symptom severity in schizophrenia, and c) determining whether the symptoms

have improved or not by a given treatment. In the analysis, videos of professional-patient inter-

views of symptom assessment, that were recorded in realistic conditions, are used. This helps

in moving from controlled contexts used in the literature to similar-to-real clinical settings.

Firstly, an architecture is proposed for automatic facial expression analysis. The proposed ar-

chitecture address the data imbalance and threshold selection problems in multilabel classific-

ation, and is trained using several datasets recorded in controlled environments. Then, the ex-

pression analysis is moved from the controlled environments to the recent in-the-wild settings,

where VGG-16 networks are trained using 4 recent datasets captured in the wild. In-the-wild

analysis helps in analyzing more patients and leads to better results in symptom estimation.

Secondly, a deep learning approach is proposed for estimating expression-related symptoms

of schizophrenia in two different assessment interviews, namely PANSS and CAINS. The pro-

posed approach consists of Gaussian Mixture Model and Fisher Vector layers for extracting

compact statistical features over the whole video interview. Experiments show promising res-

ults both on statistical analysis and symptom estimation. Finally, two methods are proposed

for addressing directly the problem of treatment outcome estimation in schizophrenia – more

specifically, are aimed at determining whether specific symptoms have improved or not by

analysing jointly two videos of the same patient, one before and one after the treatment.
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CHAPTER 1

Introduction

Contents

1.1 Mental illnesses – Schizophrenia . . . . . . . . . . . . . . . . . . . . . 1

1.2 Non-verbal behaviour in schizophrenia . . . . . . . . . . . . . . . . . . 2

1.3 Facial expression analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Mental illnesses – Schizophrenia

The European Union Green Papers published in 2005, stated that mental health problems af-

fect one in four citizens at some point during their lives and too often lead to suicide [49].

Mental illnesses are different from other illnesses, as they often affect people in their working

age causing significant losses and burdens to the economic system, as well as the social, edu-

cational, and justice systems. Subsequently, improving the diagnosis and treatment of mental

illnesses have become a priority within the National Health Service (NHS).

One of the severe mental illnesses is schizophrenia. Around 0.7% of the world population

is affected by schizophrenia [110]. Schizophrenia affects the way a person thinks, feels, and

behaves. Schizophrenia affects not only the patients, but also their families and the society as
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1.2. Non-verbal behaviour in schizophrenia

a whole. The overall cost of schizophrenia in the UK was estimated to be £11.8 billion per

year [9].

Symptoms of schizophrenia include positive and negative symptoms. Positive symptoms

refer to behaviour or thoughts that are usually not seen in healthy people (e.g. hallucina-

tions, delusions), while negative symptoms indicate a lack of normal mental functions like

motivation, concentration, or/and expression (e.g. flat affect, impoverished speech). Neg-

ative symptoms are persistent [98], and have a greater effect on patients’ quality of life in

comparison with other symptoms [59]. Such symptoms are particularly difficult to assess

and quantify [112]. Therefore, in this thesis we will focus mainly on negative symptoms of

schizophrenia.

1.2 Non-verbal behaviour in schizophrenia

Patients with schizophrenia often show impairment in the expression of emotion and speech

in comparison with non-patients [131] – this is manifested in their facial expression [93],

vocal expression [85, 99], and expressive gestures [21, 134]. Patients can also show impair-

ment in the non-verbal behaviour that invites social interaction during clinical and nonclinical

interviews [82]. Non-verbal behaviour was found to change during interviews according to

symptom severity [40, 81, 147]. For instance, patients with high symptom severity tend to

avoid interaction by nodding less, smiling less, and looking less at the interviewer [40]. Such

impairments present valuable information for the psychiatrists, as they can be used for assess-

ing symptom severity. However, non-verbal behaviour is subjectively rated during clinical

interviews.

Some psychiatric researches are concerned with the relation between schizophrenia and the

patients’ non-verbal behaviour [37, 40, 81, 134, 147]. To perform quantitative analysis, in

these works the video intervals were manually annotated in terms of the patients’ non-verbal

behaviour and, subsequently, statistical analysis, such as calculation of the correlations of that

behaviour with the severity of the symptoms was performed. However, manual annotation of

2



1.3. Facial expression analysis

videos is a hard and time-consuming task and requires a special training. Therefore, building

an architecture that detects automatically patients’ behaviour could be highly beneficial in the

diagnosis and research purposes.

Recently, there has been a growing interest in studying behaviour differences in groups of

patients with schizophrenia and healthy controls, as well as diagnosing schizophrenia using

Automatic Facial Expression Analysis (AFEA) [7, 135, 137, 142]. The reason for the interest

is that AFEA allows objective and fast measurement of facial expressions and that can be

valuable for both research and diagnosis. However, the datasets that are used in current works

contain only a few patients (4-34 patients) and are recorded while they were performing con-

trolled tasks (e.g. listening to life vignettes).

1.3 Facial expression analysis

Facial expressions are facial changes that manifest due to the motion of one or more of the

facial muscles. Facial expressions are a type of non-verbal communication, that can identify

human affect, emotions, and personality [14]. Two of the earliest works in facial expression

analysis are the work done by Guillaume Duchenne in 1862 for determining which muscles

in the face are responsible for the different facial expressions [42], and the work of Charles

Darwin in 1872 for describing the universality of facial expression of emotion across different

cultures [36]. Following these distinctive works, facial expression analysis has been an active

research area in behavioural sciences.

Two main approaches are used in behavioural sciences for studying/measuring facial ex-

pressions (or non-verbal behaviour) [32]. In the first approach, behavioural scientists interpret

the message communicated by a facial pattern, where the message is an emotional/cognitive

state (e.g. anger, disgust, happiness). This approach is known as judgment-based approach. In

the second approach, scientists describe the facial pattern in a coded way, that is, they decom-

pose the facial pattern into subtle actions corresponding to the movements of different facial

muscles. This approach is known as sign-based approach and can describe a wide range of

3



1.3. Facial expression analysis

facial expressions.

A common sign-based approach used by psychiatrists to code patients’ non-verbal beha-

viour in schizophrenia is the Ethological Coding System for Interviews (ECSI) [132]. ECSI

includes 37 different behaviour patterns – 15 of which are facial expressions. Using ECSI in

our analysis would require the availability of datasets (images or videos) that are annotated

in terms of ECSI items. ECSI-annotated datasets in the literature are not publicly available,

limiting subsequently the use of ECSI in our analysis. On the other hand, there is another

sign-based approach that has been extensively used by behavioral scientists in many fields,

named Facial Action Coding System (FACS) [44]. FACS has different combinations of facial

muscle movements, that result in different facial expressions. These muscle movements are

represented by Action Units (AUs). By comparing FACS and ECSI, we found that 12 out

of 15 facial ECSI items are either the same or similar to AUs in FACS. Moreover, there are

many FACS-annotated datasets, that are publicly available in the literature. For this reason,

we turned the problem from ECSI to FACS items detection. Table 1.1 shows ECSI and FACS

similarities.

Manual annotation of facial expressions (or AUs) is a very hard task as it requires hours for

annotating a minute of a video. Subsequently, building an automatic and reliable architecture

for AUs detection will have a great impact on many fields e.g. affect recognition, and psycho-

logical studies. In 1978, Suwa et al. presented an attempt for Automatic Facial Expression

Analysis (AFEA) from an image sequence [125]. Following that, AFEA has received remark-

able attention from the Computer Vision community – where it has been developed signific-

antly, moving from the recognition of basic emotional expressions to the detection of subtle

AUs. Moreover, the analysis moved from posed to spontaneous expressions detection. How-

ever, most of the analysis was performed on frontal or near-frontal faces, and in controlled

settings. In the last few years, the focus of the researchers is directed to real-life conditions,

where facial expressions are analyzed at different head poses and recording conditions (aka in

the wild).

4



1.4. Problem definition

Table 1.1: The similarities between FACS and ECSI items.

No. ECSI ECSI describtion FACS FACS describtion

1 Flash A quick raising and
lowering of the eyebrows. AU1 + Inner Brow Raiser +

2 Raise The eyebrows are raised AU2 Outer Brow Raiser
and kept up for some time.

3 Smile The lip corners are AU12 Lip Corner Pullerdrawn back and up.

4 Lips in The lips are drawn slightly AU28 Lip Suckin and pressed together.

5
Mouth The corners of the mouth
corners are drawn back but AU14 Dimpler

back not raised as in smile.
6 Shut The eyes are closed. AU43 Eyes Closed

7 Frown The eyebrows are drawn together AU4 Brow Lowererand lowered at the center.

8
Small The lip corners are brought

mouth towards each other so that AU23 Lip Tightener
the mouth looks small.

9 Wrinkle A wrinkling of the skin on AU9 Nose Wrinklerthe bridge of the nose.

10
The mouth opens widely, roundly

Yawn and fairly slowly, closing AU27 Mouth Stretch
more swiftly.

11 Laugh The mouth corners are drawn up AU12 + Lip Corner Puller +
and out, remaining pointed. AU25 Lips part

12 Neutral A face without expression and AU0 Neutral faceface without particular muscular tension.

1.4 Problem definition

The main problem we wish to solve in this thesis is to develop fully-automatic AFEA-based

methodologies for diagnosis and treatment of schizophrenia, that can work in real clinical set-

tings. We divide this problem into 3 subproblems; a) quantifying patients’ facial behaviour, b)

diagnosing the patient, and c) determining the treatment outcome. Specifically, our first goal

is to automatically detect facial behaviour/cues that can be used to assess symptom severity

and the response of patients to a treatment. The second goal is to use the detected expres-

sions/cues for the automatic diagnosis of schizophrenia, that is, estimating the severity of the

expression-related symptoms. The third goal is to determine whether the symptoms have im-

proved or not after a given treatment, by comparing patient’s facial expressions in two given

video interviews, one recorded before and one recorded after the treatment. In all our analysis,

we use videos of symptom-assessment interviews, which were recorded in realistic conditions
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1.4. Problem definition

either at the patients’ homes or at mental health services.

1.4.1 Challenges

In the following paragraphs we will describe the main challenges of the problems we are

solving; a) AFEA in schizophrenia, b) symptom severity estimation, and c) determining the

treatment outcome. Following each challenge, we will describe briefly how it is going to be

addressed.

a) AFEA in schizophrenia. In this thesis we focus on using FACS for analyzing patients’

facial expressions (i.e. detecting patients’ AUs), as FACS can represent a wide range of facial

expressions. AUs detection is a challenging task in Computer Vision due to head pose vari-

ation, appearance differences, and limitations of the available datasets, i.e. lack of sufficient

positive samples for certain AUs and limited number of annotated subjects. On the other hand,

the symptom assessment interviews used in our analysis were recorded at variety of places,

leading to a wide range of camera viewpoints and illumination levels in the recorded videos.

Moreover, patients with schizophrenia tend to gaze down or away from the interviewer, or to

occlude the face by different hand gestures. This makes facial expression analysis even more

challenging. In order to handle with such challenges, we first propose an architecture for

AUs detection in settings where subjects exhibit spontaneous behaviour. This architecture is

trained using 4 different datasets (available in the literature by this time), so as to a) increase

the size of the training set (more subjects and video frames), and b) include different recording

conditions. The main challenges in implementing this architecture are the following:

• AUs are subtle and differ according to face appearance, shape, and dynamics. Sub-

sequently, a discriminative and rich feature representation is required for detecting dif-

ferent AUs. We use a Deep Learning architecture that fuses information from several

sources (CNNs, MLPs, B-RNNs).

• Many works in the literature train several binary classifiers for AUs detection, that is,

a binary classifier is used for each AU, in order to learn AU-specific features. Sub-
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sequently, the complexity and the computational cost of the whole architecture increase

linearly with the number of detected AUs. In our architecture we use a single multilabel

classifier for different AUs, in order to learn general AUs features, and the embedded

AUs correlations.

• The number of positive examples for the different AUs vary wildly (i.e. data imbalance).

This results in the biasing of the classifier towards the class with the most samples

(typically the negative class). While this can be solved in binary classification problems,

for example with oversampling or undersampling. In multilabel problems, balancing

the data (typically the current batch) with respect to one class (AU in our case) using

oversampling or undersampling will inevitably result in unbalancing it with respect to

another class. The multilabel classifier used in our architecture is modified to address

the data imbalance problem by dynamically adapting the cost function.

• Different AU-annotated datasets are available for the research community. Combin-

ing datasets can improve classifier performance, however it seems a hard task when

a multilabel classifier is used, since not all of the datasets are annotated for the same

AUs. In this work, we adapt a multilabel classifier to be trained on all datasets by back-

propagating only the errors coming from the annotated AUs in each dataset. This helps

in improving the training process.

The proposed architecture shows promising performance in analyzing patients’ facial expres-

sions, and achieves the state-of-the-art results in AUs detection (by this time). However, it is

restricted to frontal or near-frontal views, and to a limited range of recording conditions, as the

architecture is trained using datasets collected in controlled settings. To solve this limitations,

we second move to the recent in-the-wild analysis. That is, we train Convolutional Neural

Networks (CNNs) using 4 recent datasets collected in the wild, for the detection of 10 AUs.

The number of positive examples in these datasets vary immensely from one AU to another

(ranging approx. between 0.6k - 35k) – this results in a heavily imbalanced data problem

that is hard to be solved using the previously proposed data-balancing method. So a separate
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network is trained for each AU and data imbalance is solved by undersampling in each. Fur-

thermore, as the number of training examples are limited for some AUs, we refine VGG-16

(trained on object recognition [116]) for AUs detection. We show that in-the-wild analysis

helps in analyzing more patients and leads to better results in schizophrenia diagnosis.

b) Symptom severity estimation has three main challenges. First, videos of symptom-

assessment interviews used in our analysis have different lengths, as the length of the interview

depends on the time spent by the patient in speaking and recollection about the interview ques-

tions. On the other hand, classifiers like MLPs or SVMs work with data of fixed dimensional-

ity. Hence, in order to regress varying-length videos, a fixed-length representation is required

to be extracted from each video. Second, videos were recorded in realistic conditions, so the

conventional hand-crafted features are difficult to generalize over the different videos/patients.

Third, the number of patients available for training and testing is relatively limited. In order

to handle such challenges we use trainable Gaussian Mixture Model and Fisher Vector layers

for extracting deep and fixed statistical representation over the whole video interview – this

representation is then used with a regression layer for estimating symptom severity. The pro-

posed model has relatively limited number of trainable parameters, which helps in reducing

overfitting.

c) Treatment outcome estimation is aimed at determining whether symptoms have im-

proved or not by a given treatment – by analysing jointly two video interviews of the same

patient, one before and one after the treatment. Although symptom estimation methods could

be used for this purpose, by estimating the symptom level before and after treatment, and

then comparing the estimated levels, they do not perform well because the change in these

symptoms is typically small [112], and falls within their margin of error. So we propose two

architectures for addressing directly the problem of treatment outcome estimation in schizo-

phrenia. Both architectures exploit deep neural networks for learning differences in patients’

behaviour (facial expressions) before and after treatment.
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1.5 Contributions

In this section the main contributions of the thesis are listed. In the first main chapter (Chapter

3), two architectures are developed for AUs detection, the first one is trained using data cap-

tured in controlled settings while the second is trained in the wild. The main contributions of

this chapter can be listed as follows:

• A Deep Learning architecture that fuses different deep models (CNNs, MLPs, B-RNNs)

together is proposed. The different models learn various kinds of information/features.

Specifically, CNNs and MLPs learn deep appearance and geometric features, respect-

ively. Moreover, a Recurrent Neural Network (RNN) is added on the top of each CNN

and MLP for learning temporal features in addition to the spatial ones. In all the net-

works, a multilabel classifier is used, this classifier at test phase simultaneously detects

all AUs.

• The inherent data imbalance in multilabel problems, and in particular in AU-annotated

datasets, is addressed. Specifically, the cost term associated with each AU positive ex-

ample is adjusted with the ratio of negative to positive examples in the current batch and

therefore control the back-propagated error. This allows us having a single architecture

for detecting several AUs, as well as addressing the data imbalance problem.

• The problem of threshold selection at the output neurons at test time is addressed. In

our architecture, in order to avoid threshold selection, each class is represented by two

neurons, one for positive activation while the other for negative activation. During train-

ing, those output neurons are supervised with complementary information, and during

testing, the maximum of the two neurons is chosen to represent the activation.

• A comparison is presented between the two proposed architectures for AUs detection,

the one trained using data captured in controlled settings and the other trained in the

wild. The comparison is two-fold. First, the performance of both architectures on AUs

detection is compared, and then strengths and weaknesses of each architecture are high-
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lighted (in Chapter 3). Second, the effect of each architecture on the performance of

symptom severity estimation in schizophrenia is showed (in Chapter 4).

In the following chapter (Chapter 4), an architecture is proposed for diagnosing schizo-

phrenia (i.e. estimating symptom severity) in settings that are similar to the ones found in

clinics and hospitals. The main contributions of this chapter can be listed as follows:

• Moving from controlled environments used in the literature to similar-to-real-life settings,

where professional-patient interviews of symptom assessment are analyzed. More spe-

cifically, research interviews in which symptoms were assessed in a standardised way

as they should/may be assessed in real life clinical encounters, are used in the analysis.

The interviews were recorded either at the patients’ homes or at the premises of mental

health services across the UK. Subsequently, the recorded videos have a wide range of

camera viewpoints and illumination levels that are representative of the variety of set-

tings found in clinics. In addition, interviews of 91 outpatients are used in the analysis

– this is almost 3 times the highest number of patients used in other studies.

• A Deep Neural Network (DNN) architecture, called SchiNet, is proposed. SchiNet

learns deep and fixed statistical representations over videos of different lengths, and

then uses these representations for estimating expression-related symptoms in two dif-

ferent assessment interviews. More specifically, SchiNet first uses one of the developed

architectures in Chapter 3 for detecting patients’ facial expressions/AUs at each frame

(low-level features). Then, SchiNet uses a DNN consisting of a) Gaussian Mixture

Model and Fisher Vector layers for extracting a fixed statistical feature vector over the

detected expressions in the whole video interview (high-level features), and b) a regres-

sion layer for estimating symptom severity. SchiNet has relatively limited number of

trainable parameters – this helps in reducing overfitting when trained on the available

number of patients.
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• Our experimental results show three main findings. First, some automatically detected

facial expressions are significantly correlated to symptoms of schizophrenia – this con-

firms that symptom levels of patients with schizophrenia are expressed in the degree

of their impairments in expression of emotion and social interaction. Second, several

symptoms in the PANSS and CAINS interviews can be estimated with a MAE less than

1 symptom level. Third, the AUs detection architecture trained in the wild leads to more

significant correlations and better symptom estimation results than the one trained using

data captured in controlled settings.

Finally, in the last main chapter of this thesis (Chapter 5), two Deep Learning architec-

tures are proposed for addressing directly the problem of treatment outcome estimation in

schizophrenia – more specifically, are aimed at determining whether specific symptoms have

improved or not by analysing jointly two videos of the same patient, one before and one after

the treatment. In both architectures, patient’s facial expressions in the two videos are first

detected, and then used as input to a deep neural network. To the best of our knowledge,

these are the first works to address directly the problem of treatment outcome estimation in

schizophrenia. The two architectures can be summarized as follows:

• Our first proposed architecture uses stacked RNNs for learning local and global differ-

ences in patient’s behaviour (facial expressions) before and after treatment. Specifically,

a Gated Recurrent Unit (GRU) is used for learning the local differences/changes in the

patient’s behaviour over short concatenated clips from both videos. Then, another GRU

uses the clip-level features for learning global (i.e. patient-level) features, and outputs

the treatment outcome, that is a binary label that encodes whether a symptom has im-

proved or not. This architecture is called “Stacked-RNNs”. Stacked-RNNs assumes

that patient’s videos are aligned and have equal length (videos with different lengths are

clipped).

• The second architecture, named Temporal Attentive Relation Network (TARN), learns
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to align and compare representations (i.e. videos) of variable temporal length. The

architecture consists of two modules: the embedding module and the relation module.

In the embedding module, a GRU is used to extract short representations/embeddings

over the facial expressions detected in short clips/segments of videos. In the relation

module, a segment-by-segment attention mechanism is used first to align segment em-

beddings from the pair of videos. Then, the aligned segments are compared. The effect

of using different comparator functions is explored. Finally, the comparison outputs are

aggregated using a deep neural network consisting of two fully-connected layers and an

average pooling layer – this network gives as output the treatment outcome.

The two architectures have two main differences. First, TARN is trained in an end-to-end

fashion, while Stacked-RNNs is trained in two steps, and consequently TARN is easier to train

and test. Second, Stacked-RNNs assumes that the patient’s interviews are aligned and have

equal lengths – this requires clipping videos of different lengths, and losing by that possibly

useful information. On the other hand, TARN uses an attention mechanism for aligning and

comparing videos of different lengths, avoiding by that any information loss. Experimental

results show that using attention and the entire videos in the analysis improve the performance

of the treatment outcome estimation. It is worth noting that symptom estimation methods

could be used for this purpose. However, they do not perform well because the change in

negative symptoms is often small [112], and falls within the error margin of these methods.

1.6 Outline of the thesis

The rest of the thesis is structured as follows. In Chapter 2, we start by reviewing the related

work in analysing and diagnosing mental illnesses using automatic facial expression analysis.

Then, we review the state-of-the-art methods in AUs detection. In Chapter 3, we follow by

introducing the developed architectures for AUs detection, first, the one trained using data

captured in controlled settings, and then the other trained in the wild. Chapter 4 presents the

proposed SchiNet for estimating symptom severity in schizophrenia. Moreover, in this chapter
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we introduce the clinical dataset used in our analysis. In Chapter 5, we present the first two

works for addressing the problem of treatment outcome estimation in schizophrenia. Finally,

we draw our conclusions in Chapter 6.
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CHAPTER 2

Related work

Contents

2.1 Automatic behaviour analysis for mental illnesses . . . . . . . . . . . . 15

2.2 State-of-the-art methods in AUs detection . . . . . . . . . . . . . . . . . 23

2.3 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 25

In psychiatry, a lot of research focused on studying the non-verbal behaviour of patients with

mental illnesses, like schizophrenia [134, 147], depression [51, 91], and anxiety [46, 121]. In

these works, the non-verbal behaviour was manually annotated by human raters. Manual

annotation is a rigorous, time-consuming process. Furthermore, the non-verbal behaviour is

rated subjectively during clinical assessments. For these reasons, in the last few years there has

been a growing interest in the application of automatic behaviour analysis methods for ana-

lyzing patients with mental illnesses – more specifically, for a) studying patients’ behaviour,

b) classifying subjects (patients vs non-patients), and c) diagnosing (i.e. estimating symptom

severity) of mental illnesses. In the first section of this chapter, we will review related work

in automatic behaviour analysis for mental illnesses.

Many of the related works use Automatic Facial Expression Analysis (AFEA) for analyz-

ing patients’ non-verbal behaviour, detecting mostly either basic emotional expressions, or

facial Action Units (AUs). AUs are facial muscle movements that result in different facial

expressions. In this thesis we will use AUs detection methods for analyzing patients with
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2.1. Automatic behaviour analysis for mental illnesses

schizophrenia, as AUs can represent a wide range of expressions. In the second section of

this chapter, we will describe briefly the recent works in AUs detection, and refer the reader

looking for a more detailed summary to surveys/books such as [47, 94, 128].

2.1 Automatic behaviour analysis for mental illnesses

In the last years, there has been a growing interest in the application of automatic behaviour

analysis methods for studying and diagnosing mental illnesses. Two of the earliest works in

this area are the work done by Alvino et al. [7] in 2007 for studying the differences in facial

behaviour between patients with schizophrenia and healthy controls, and the work done by

Cohn et al. [33] in 2009 for classifying depression using facial and vocal expression analysis.

Following these two works, automatic behaviour analysis in mental illnesses has been an active

research area in Affective Computing. In the following subsections, we will describe briefly

the work done in; a) schizophrenia, b) depression, c) bipolar disorder, and d) Autism Spectrum

Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). Note that different

objective markers have been used in the literature for analyzing mental illnesses, like visual

markers [103, 58, 27, 65], speech/audio markers [35, 53, 63], and physiological markers [22,

43, 28] – in this chapter, the visual markers will be our main focus on presenting the related

work.

2.1.1 Schizophrenia

We will review the related works in schizophrenia in terms of the datasets and the AFEA

methods that are used, in addition to the main objectives of these works.

Datasets. Due to the difficulty and the ethical issues in the collection and management of

data depicting patients’ behaviour, there are only a few datasets available in the domain of

schizophrenia. Two datasets are used in a number of works; the first one is collected in a

mental health centre at the University of Pennsylvania (Penn), while the second at the Hebrew

University of Jerusalem (HUJI). In this thesis we refer to the former as Penn-dataset, and the
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later as HUJI-dataset. The Penn-dataset consists of videos and images that were collected at

two different sessions. In the first session, patients with schizophrenia and healthy controls

were asked to express basic emotions at 3 different intensities. In the second session, they

were recorded while listening to vignettes about a situation in their life that is presented by

them before recording. Each vignette is expected to evoke 1 of 4 basic emotions; happiness,

sadness, anger and fear. The number of participants in this dataset varies across different

studies [7, 57, 58, 142, 143], but it is at most 28 patients and 26 controls. The HUJI-dataset

is recorded while subjects (patients and healthy controls) were participating in structured in-

terviews. During these interviews, the participants were asked emotional questions, and also

shown 20 emotional images from the International Affective Picture System. This dataset has

34 patients and 33 healthy controls, and it is used in [135, 136, 137].

AFEA methods. Different methods have been used/proposed in the literature for analysing

patients’ facial behaviour. In [7], Alvino et al. detected statically emotional expressions

by measuring a deformation between a neutral face and a face with expression, which was

then classified using an SVM classifier. In [142], Wang et al. proposed the use of temporal

facial information (as opposed to only static) for analysing emotional expressions. To do

so, first an SVM classifier trained using geometric features was applied for estimating the

probabilities of expressions at each video frame and then a sequential Bayesian estimation,

with the goal of propagating probabilities throughout the video, was applied. In [57, 58],

Hamm et al. moved from analysing basic emotions to the detection of 15 AUs at every frame

of the sequence. AUs were detected by training a Gentle Adaboost classifier using geometric

and texture features. A problem with those AFEA methods is that they were trained on frontal

views and on evoked expressions from professional actors. Similar results are reported in other

studies: For example, [24] reported that the commercial 3D facial analysis technique used for

detecting 23 AUs in [135, 136, 137], has restrictions on the distance between the user and the

camera as well as the working environment.

Analysis. Several studies focused on comparing a group of patients with schizophrenia to
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a group of healthy controls in terms of information/features extracted from facial expression

analysis investigating the existence of differences between them. In addition, correlations

between these features and the flatness and inappropriateness symptoms in the SANS scale

[8] were tested. Various features were extracted in these studies. In [7, 142], the average

probability of 4 emotions and neutral expression were calculated. In [143], 2D geometric

features and 3D curvature features were used in the comparison. In [57], features as frequency

of some single and combined AUs were extracted, while in [58] information theory measures

were used as features for comparing and assessing ambiguity and distinctiveness of subjects’

facial expressions. Correlations were found to be significant with the flatness symptom, and

insignificant with the inappropriateness symptom. Furthermore, in [136] the facial activity of

patients and controls, watching a set of emotionally evocative pictures, was analysed and used

for differentiating flat and incongruent affects in schizophrenia. Variance analysis over the

facial activity was used to measure flatness (variance in expressions) and incongruity (relative

variance in response to similar stimuli).

A few studies by Tron et al. [135, 137] go beyond studying the differences in behaviour

between patients and healthy controls, and more specifically, use automatic analysis of facial

behaviour for the classification and severity estimation of some symptoms in the PANSS scale

[75] (especially the flat affect). In these studies, different features were extracted and used

with a two-step SVM based algorithm for the classification and symptom severity estimation.

In [135], features related to the intensity and dynamics of each AU (e.g. frequency, activation

length, change ratio) were extracted, while in [137], clustering analysis was used over all

AUs for extracting 3 flatness-related features; richness (number of facial clusters appeared),

typicality (the similarity to a prototype), and cluster distribution (the activation frequency of

different clusters). These features were calculated over short video segments, and used for

training an SVM classifier for segment-level label prediction. Then, another SVM classifier

was trained using the mean and standard deviation of the segment-level predictions of each

video for predicting the video-level score. [135] obtained the best classification accuracy

(85%) and symptom-estimation correlation (0.53) in schizophrenia.
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2.1.2 Depression

The related work in depression will be summarized based on the work main objective into

3 parts; a) classification of depression (depressed vs non-depressed), b) depression severity

estimation, and c) studying depression behaviour.

a) Classification of depression. The aim of of such methods is to develop automatic meth-

odologies for classifying/detecting depression in a group of depressed and non-depressed

people. In [33], Cohn et al. trained an SVM classifier using Active Appearance Model

(AAM) [34] based features for depression detection. Specifically, frame-to-frame differences

in the coefficients of each AAM shape eigenvector were used for calculating segment-based

statistical features (e.g. mean and standard deviation) for classification. In that work, a dataset

consisting of 107 interviews (66 depressed, 41 non-depressed) from 51 subjects were used in

the analysis. In [69], patients’ upper body movements and facial changes were analyzed us-

ing spatio-temporal texture features such as Space-Time Interest Points (STIP) [80] and Local

Binary Pattern on Three Orthogonal Planes (LBP-TOP) [155]. Then, these features were

clustered to reduce dimensionality, and used for training a classifier for depression detection.

Different classifiers have been tested in the analysis like probabilistic neural network, SVM,

and Restricted Boltzmann Machine (RBM). RBM trained using STIP features achieved the

best performance among other classifiers. In [70], Joshi et al. used relative movement of 9

body parts with respect to the torso, in addition to the whole body movements (STIP features)

for depression detection. In [71], the contribution of the expressions/gestures of the differ-

ent upper body parts (face, head, entire upper body) in depression detection was investigated.

In [70, 71], an SVM classifier was used to classify between depressed patients and healthy

controls.

Psychological research showed differences in eye movements (e.g. horizontal pursuit, blink

rate) between depressed and non-depressed people [1, 87, 92]. Depressed people also showed

less head movements (e.g. nodding) during speech than healthy controls [48, 56]. Based on

that, ALGhowinem et al. proposed two methods for depression detection based on the eye
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and head movements [5, 6]. In [5], AAM was used to annotate 74 points on the subjects’ eyes,

and then these points were used for extracting statistical features for; a) looking directions, b)

blinking and eye closure, and c) horizontal, vertical, and eyelid movements. In [6], AAM was

used for obtaining the subjects’ head pose (yaw, roll, and pitch), and then statistical features

for the different looking and tilting directions were extracted. [5, 6] trained two classifiers

for depression detection, a generative classifier (Gaussian mixture model) and a discriminat-

ive one (SVM). The Gaussian mixture model classifier learns to model the feature subspace

that belongs to one class, while the SVM classifier learns boundaries between classes. In

[2], ALGhowinem et al. investigated the generalisability of using the eye and head move-

ments/features for depression detection across three datasets collected at three countries; Aus-

tralia [3], Germany [139], and USA [151]. The eye activity showed good performance over

the three datasets, proving its discrimination in depression detection across different cultures.

In [4], statistical features representing speaking behaviour, eye activity, and head pose were

fused for depression detection. This work achieved one of the best classification accuracies

(88.3%) in depression detection. In [2, 4], an SVM classifier with a radial basis function was

used for depression detection. These works [2, 4, 5, 6, 69, 70, 71] used a dataset consisting

of 30 depressed patients and 30 healthy subjects. Video recordings in this dataset include two

parts, reading sentences and an interview with the subjects.

b) Depression severity estimation. In 2013, Valstar et al. released a publicly-available

dataset/challenge for depression severity estimation (called AVEC 2013) [139]. AVEC 2013

includes patients performing 14 different tasks, like counting from 1 to 10, reading speech, and

telling a story from subjects own past. In 2014, Valstar et al. released AVEC 2014 [138] with a

few changes from AVEC 2013. The changes include replacing a few videos, and focusing on 2

tasks out of the 14 included in AVEC 2013. AVEC 2014 has a total of 300 videos, recorded

for 84 subjects by a webcam and a microphone.

Based on AVEC 2013 and AVEC 2014, many methods have been proposed for depression

severity estimation. In [73], Kächele et al. fused audio and visual features using a hierarchical
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regressor system for estimating depression. Local Phase Quantization (LPQ) was used for

extracting local appearance features over the subjects’ faces. These features were regressed

using a hierarchy of classifiers consisting of an ensemble of sparse regressors (e-SVR) at the

base, and then two stages of multilayer perceptron. In [115], two regression models were

used for estimating depression. In the first model, a single regressor was trained for predicting

the full scale of depression (0-63). In the second model, a binary classifier was first used for

detecting the presence and absence of depression, and then a regressor was used to predict the

depression score within each class. These models were trained using audio and visual (LGBP-

TOP) features. In [145], Williamson et al. used 20 facial AUs in addition to other audio

features for estimating depression. That is, the time delay correlation and covariance matrices

over four separate time delays were computed over the AUs predictions. Then, Gaussian

Mixture Model (GMM) and Extreme Learning Machine (ELM) predictors were trained using

the different facial and audio features for predicting the depression score. Finally, the GMM

and ELM predictions were fused to give the final output using weights based on the accuracy

of each predictor. This paper achieved the best RMSE (8.12) and MAE (6.31), and is the

winner of the AVEC 2014 challenge.

In [66], Jan et al. proposed a 1D Motion History Histogram (MHH) for extracting the

dynamics in the facial and vocal expressions. For the facial expressions, different texture

features (LBP, LPQ, EOH) were first extracted from the facial images, and then the 1D MHH

was applied for extracting a single feature vector over the different texture features. The

proposed 1D MHH showed better performance than MHH that was applied to raw images in

[97]. In [67], Jan et al. explored using deep visual features in addition to the hand-crafted

ones in depression analysis – more specifically, the facial images were fed to a pretrained

deep network (i.e. VGG-Face or AlexNet), and then the output features at the last fully-

connected layers were acquired and used along with audio features for depression severity

estimation. Moreover, [67] also proposed a feature dynamic history histogram for capturing

temporal movements across the extracted features. In [66, 67], two regressors, Partial Least

Squares (PLS) and Linear Regression (LR) were first trained using the extracted features for
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depression score prediction, and then the PLS and LR predictions were combined using a

weighted sum rule to give the final score. [67] achieved better results than the AVEC 2014

challenge winner (7.43 for RMSE and 6.14 for MAE).

c) Studying depression behaviour. Some works used automatic behaviour analysis for

studying the behaviour of patients with psychological disorders, like depression. In [52],

Girard et al. studied the relationship between the non-verbal behaviour and the severity of

depression. Head motion and four AUs (AU12, AU14, AU15, AU24) were chosen for the

analysis, these AUs are highly correlated to smiling, sadness, contempt, and anger, respect-

ively. In this study, patients were compared with themselves so as to keep personal attributes

the same. Specifically, patients’ behaviour before treatment (high severity) is compared to

their behaviour after treatment (low severity). Results showed that when the severity is high,

patients avoid social affiliation by showing less head motion, smiling (AU12), and sadness

(AU15), and high contempt (AU14), than when the severity is low.

In [113], Scherer et al. used behaviour analysis for analyzing three disorders; depression,

anxiety, and Post-Traumatic Stress Disorder (PTSD). Four behaviour descriptors were used in

the analysis; vertical head gaze, vertical eye gaze, smile intensity, and smile duration. Scherer

found that patients with these disorders are characterized by significant increase in gazing

downwards. In addition, the patients have considerable decrease in smile intensity, and smile

duration, compared to those with no/less symptoms. In [122], Stratou et al. proposed to

analyse depression and PTSD behaviour in terms of gender. Behaviour descriptors used in this

study include basic emotions, facial AUs, and head gesturing. Experiments show that some

behaviour descriptors are impacted by depression and PTSD, and this impact has different

directions for males and females. Moreover, this impact may affect one gender, while the other

is not affected. For instance, depression shows increase in AU4 for males while decrease for

females. Also, contempt for PTSD increases in females while there is no difference in males.

This study used virtual human assessment interview so as to test participants under the same

interactions and stimuli conditions.
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2.1.3 Bipolar disorder

The Audio/Visual Emotion Challenge and Workshop (AVEC 2018) introduced the Bipolar

Disorder (BD) challenge for classifying patients suffering from BD into one of three cat-

egories; mania, hypo-mania, and remission [108]. Based on AVEC 2018, some works used

automatic behaviour analysis for BD classification [41, 126, 148, 150]. For instance, [126]

surmised that sudden changes (i.e. turbulence) in feature contours manifest the erratic beha-

viour of patients with BD. The turbulence in features/behaviour (such as eye-gaze, head pose,

AUs occurrence) trajectories was used to capture changes in movement and emotion. Then,

the extracted features used for training two types of classifiers, SVM with a linear kernel, and

greedy ensembles of weighted Extreme Learning Machines. In [150], Yang et al. used facial

AUs and body-based features for BD classification. Specifically, Yang first estimated the 2D

patient’s body pose, and then features like displacement between patient left and right hands,

moving speed of the upper body joints were extracted, and the occurrence histogram of dif-

ferent AUs were extracted. Moreover, [150] used a multi-stream classification scheme along

with ensemble learning for classification, that is, a video session was divided into a number of

segments and then for each segment a group of random forest and statistical classifiers were

trained using the extracted video and audio features for BD classification. The BD dataset con-

sists of structured interviews for 46 Turkish speaking subjects. The best unweighted average

recall achieved on the test partition of the BD challenge is 57.41% [108, 126, 150].

2.1.4 ASD and ADHD

Some works used automatic behaviour analysis for analyzing Autism Spectrum Disorder

(ASD) and Attention Deficit Hyperactivity Disorder (ADHD). In [65], Jaiswal et al. presented

an architecture for the classification of ASD and ADHD in adults. Specifically, histogram-

based features from the head pose, facial AUs, Kinect animation units, and questions response

time, were extracted, and used for training an SVM for classification. In [23], Canavan et al.

used features like eye gaze angle, average gaze fixation, and subject demographic information

(age, gender) for training different classifiers (e.g. random forests, C4.5) for ASD classifica-
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tion in children. [65, 23] achieved classification accuracies > 90%. In [107], the engagement

level of children with ASD in social interactions was predicted using low-level optical flow

based features. In addition, [107] showed that head pose orientation is a highly discriminative

descriptor in the engagement level prediction.

2.2 State-of-the-art methods in AUs detection

AUs detection has been the focus of many researchers for a long time. In this section, we will

present some of the state-of-the-art methods so as to illustrate the main trends and highlight

their shortcomings.

One of the critical steps in AUs detection is feature extraction. Extracted features can be di-

vided roughly into hand-crafted [13, 78, 152, 156], and learned features [50, 55, 64, 157]. Each

of these features can be further split into appearance and geometric ones. Learned features

have shown better performance than hand-crafted ones across different contexts [79, 84, 11].

Recently, learned features and in particular appearance ones learned by Convolutional Neural

Networks (CNNs) have been used in AUs detection. For instance, in [50] a CNN with 3 con-

volutional and 2 fully-connected layers was trained for detecting different AUs. In [30], Chu

et al. used a deeper CNN consisting of 5 convolutional and 3 fully-connected layers. In [157],

Zhao et al. replaced the conventional CNN filters by region-specific ones to capture local

appearance changes at different facial regions. In spite of the good performance achieved by

the appearance features, extracting deep geometric features and fusing them with deep ap-

pearance features have not been discovered yet in AUs detection. In [72], Jung et al. proved

that better performance can be achieved in emotion recognition, when both deep appearance

and geometric features are used. Also in [13], Baltruvsaitis et al. fused hand-crafted appear-

ance features (i.e. HOGs) along with geometric features (i.e. non-rigid shape parameters and

landmark locations) for better AUs detection performance.

The extracted features are then used for training several binary classifiers or a multilabel

classifier for AUs detection. In [13, 64, 140], a binary classifier was used for each AU in order
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2.2. State-of-the-art methods in AUs detection

to learn AU-specific features. Using AU-specific classifier increases linearly the complexity,

and the computational cost of the whole architecture. In [50, 55], a single multilabel classifier

was used for different AUs, in order to learn general AUs features, and the embedded AUs

correlations. In [157], a similar multilabel classifier was used, but replacing the conventional

CNN filters by region-specific ones. Although, these filters showed good performance in AUs

detection, they led to a network with a large number of trainable parameters (approx. 56

million). This can easily make the network overfit when trained on limited data or subjects.

Another aspect is the domain for extracting the features, which can either be spatial or

spatio-temporal domain. Most of the recent works focused on extracting features at the spatial

domain [50, 55, 157]. In [64], Jaiswal and Valstar proposed to extract the short-term spatio-

temporal features by using a 3D CNN, and the long-term ones by adding a bidirectional Long

Short Term Memory (LSTM) to the 3D CNN. Although, the CNN-LSTM model showed good

performance in extracting the spatio-temporal features, multiple single-label classifiers were

trained, one for each AU, and therefore the AUs correlations were discarded. Unlike [64], [30]

trained a single multi-label classifier for AUs detection using concatenated deep spatial and

temporal features, that were extracted by a CNN and an LSTM.

The normalization of the features or the face images using the subject’s neutral face helps in

extracting more discriminative features. In [50], Ghosh et al. proposed to normalize the face

images using the subject’s mean (neutral) face. In [13], Baltrusaitis et al. proposed to nor-

malize the extracted features by using features calculated from the subject’s median (neutral)

face. Although, subtracting the mean/median face can improve the performance significantly,

the calculated mean/median face is not always the neutral face. Larger improvement can be

achieved if an accurate neutral face image is fed to the network.

Different AU-annotated datasets are available for the research community. The way that

these datasets are used in training and testing affects the AUs detection performance, and

reflects the generalization of the classifier. In [64, 152], models were trained and tested on the

same dataset. In [50], one dataset was used for training, while another for testing. In [13],
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different datasets were combined for specific AUs so as to increase the number of training

examples. Although combining datasets can improve the classifier performance, it seems a

hard task when a multilabel classifier is used since not all of the datasets are annotated for the

same AUs.

Finally, the literature shows that different methods have been proposed for AUs detec-

tion [13, 55, 50, 64, 157], differing in various aspects e.g. kind of classifier (single- or

multi-label), domain for extracting features, and feature normalisation. However, most of

these methods used datasets that were recorded in controlled environments, and from frontal

or near-frontal views. Recently, the focus of the researchers is directed to real-life conditions,

where facial expressions are analyzed at different head poses and recording conditions (aka in

the wild).

2.3 Conclusion and discussion

Conclusion. In the first section of this chapter we have mentioned and briefly described

some of the approaches that used automatic behaviour analysis for classifying, diagnosing,

and studying mental illnesses. Generally over the different illnesses, we can first conclude

that the majority of the work is focused on depression. More datasets and approaches are

required for the analysis of other mental illnesses. Second, most of the conducted research

used structured interviews in their analysis. Third, the classification of mental illnesses showed

high performance, reaching sometimes more than 90%. However, the diagnosis (symptom

severity estimation) of mental illnesses is still in an early stage from reaching the performance

required in medical applications. Finally, most of the methods proposed for classifying and

diagnosing mental illnesses rely on conventional hand-crafted features.

Focusing specifically on schizophrenia as it is the mental illness we are going to work

on, we can first conclude that most of the conducted research focuses on studying behaviour

differences between patients and healthy individuals and that only a couple of works address

the classification and symptom estimation problem in schizophrenia. Second, the datasets used
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in these works contain a relatively small number of patients (4-34 patients) and were recorded

while the patients were performing controlled tasks, such as listening to life vignettes, or

answering emotional questions. Third, the architectures used/proposed for facial expression

analysis work either on frontal views or in a specific environment. Finally, all the features

used in the classification and symptom estimation of schizophrenia are hand-crafted ones. By

contrast, in our work we use video recordings of 91 patients in conditions that are similar to

realistic symptom-assessment interviews. We also train the proposed AFEA methods either in

the wild or using different datasets in order to be robust to different recording conditions. In

addition, we use statistical deep features for estimating symptom severity.

In the second section of this chapter, we can conclude that many works address the problem

of AUs detection as a binary classification problem, where a different model is built for each

AU, and ignoring in this way informative correlations between the different AUs. Other works

that pose the problem as a multilabel classification problem are faced with the inherent im-

balance of the data, since the number of positive examples for the different AUs vary wildly.

Moreover, combining different datasets in the training process becomes an impediment, as the

datasets are annotated in terms of different AUs. In our work, we first train a single architec-

ture with a multilabel classifier using different datasets (collected in controlled settings) for

AUs detection. Then, we move to the recent in-the-wild analysis, and train VGG-16 networks

for the detection of AUs at more various recording settings.

Discussion. One of the common gabs that need to be addressed across different illnesses

is the use of structured interviews in the analysis. These interviews are different from the

ones conducted in clinics and hospitals. Moving the analysis from controlled to real settings

can raise many challenges. More specifically, interviews recorded in realistic conditions can

have different recording conditions (illumination levels and camera poses), this can severely

affect the behaviour analysis architectures. Moreover, interviews recorded in real scenarios

can have different lengths, and classifiers like MLPs or SVMs work with features of fixed

dimensionality. Hence, in order to regress varying-length videos, a fixed-length representa-
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tion is required to be extracted from each video. In our work in schizophrenia we use video

recordings of symptom-assessment interviews, that were recorded in similar-to-real-life set-

tings.

Across the different illnesses, the methods that are typically used/proposed for analysing

facial expressions of patients perform well primarily in a specific, controlled environment –

these methods are hard to be used in real scenarios. In Chapter 3, we propose two architectures

for analysing facial expressions, that are either trained in the wild or using different datasets

in order to be robust to different recording conditions. First, a single architecture with a

multilabel classifier is trained using 4 different datasets so as to increase the size of the training

set, and include different recording conditions. In the heart of this architecture, we address

the data imbalance problem in multilabel classification, and propose a novel way for selecting

threshold automatically at the output neurons. Second, another architecture is trained using

the recent in-the-wild datasets for the detection of AUs at more various recording conditions.

Another gab in the literature is the relatively low performance in estimating the severity of

schizophrenia/depression. One of the possible reasons behind that is the hand-crafted features

used in the analysis – these features are difficult to generalize over different videos/patients,

and subsequently can have implications on the performance of the regression models. Hand-

crafted features have shown inferior performance in comparison to learned ones and in partic-

ular those learned by Deep Neural Networks. However, training deep architectures requires

a large amount of data, and the number of patients available for the analysis in this kind of

problems is relatively limited, due to the difficulty and the ethical issues in the collection of

data depicting patients’ behaviour. Subsequently, developing deep architectures that can learn

distinctive features over limited number of patients is highly needed in the field. Note that

training deep architectures with a large number of parameters like CNNs over limited data

can easily lead to overfitting. Also, training temporal models like RNNs over long video

sequences tend to suffer from the vanishing or exploding gradients problem – hence, building

and training an appropriate deep architecture is quite challenging.
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In the literature, we can see that across the different illnesses researchers have focused

on extracting different statistical features (e.g. average, standard deviation, etc) from the

detected behaviour or behaviour-related low-level features. Statistical features have shown

good performance in depression classification [4, 5, 6], depression severity estimation [66,

105, 145], and schizophrenia symptom estimation [135]. Subsequently, in Chapter 4 we pro-

pose a deep statistical-based architecture (named SchiNet) for estimating symptom severity in

schizophrenia. SchiNet consists of trainable Gaussian Mixture Model and Fisher Vector lay-

ers for extracting deep and fixed statistical representation over varying-length videos. SchiNet

has relatively limited number of trainable parameters.

Although many works have focused on classifying or estimating the severity of mental

illnesses. To the best of our knowledge, no works have addressed the problem of treatment

outcome estimation, that is, determining whether symptoms have improved or not by a given

treatment. In Chapter 5, we propose two architectures for estimating the treatment outcome

in schizophrenia. The first architecture uses stacked Recurrent Neural Networks (RNNs) for

learning local and global differences in patient’s behaviour before and after treatment. One

RNN is used for learning behaviour differences over short video segments, while the other

uses the segment-level features for learning global features. The second architecture consists

of a similarity/relation network and an attention mechanism to align and compare videos of

variable temporal length. The use of relation networks for estimating the treatment outcome is

inspired by their success in data-limited problems (i.e. few-shot and zero-shot learning) [123].
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CHAPTER 3
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Our aim in this chapter is to automatically detect facial cues/behaviour that can be used to

assess the symptom severity and the response of the patients with schizophrenia to a given

treatment. In the literature, many psychiatric researches studied the patients’ facial behaviour.

A common framework that was used for studying patients’ facial behaviour is the Ethological

Coding System for Interviews (ECSI) [132]. Although, the ECSI behaviour items showed

good correlations to symptom severity [40, 81, 147], there are not ECSI-annotated datasets

that are publicly available in the literature – these datasets are essential for training of the

automatic architectures. Other framework that has been used across many fields is the Facial

Parts of this chapter have been published in [17] and [18].
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3.1. Facial expression analysis in controlled settings

Action Coding System (FACS). Many facial expressions in ECSI and FACS are similar (see

Table 1.1), in addition FACS has several annotated datasets. Hence, we focus on using FACS

for analyzing facial expressions (i.e. detecting AUs). In this chapter, we detect some of the

AUs that are similar to ECSI items, in addition, we explore other AUs that can be possibly

meaningful in schizophrenia.

AUs detection has received significant attention from the Computer Vision community, due

to the application of facial expression analysis in areas such as affect recognition and psy-

chological studies. AU-annotated datasets in the literature can be divided roughly into two

categories, one category (conventional) includes datasets consisting of videos recorded for

participants in controlled environments and from the frontal or near-frontal views, while the

other category (recent) includes datasets consisting of Internet images captured at different

head poses and recording conditions (i.e. in-the-wild). The two categories vary in different

aspects e.g. recording conditions, kind of data (static or dynamic), number of annotated sub-

jects and frames/images, etc. In this chapter we develop two different architectures for AUs

detection, one for each category. Each architecture is trained using the datasets available in

the corresponding category. Moreover, we present a qualitative and quantitative comparison

between the two architectures in different settings, in order to highlight strengths and weak-

nesses of each architecture. The two architectures will be explained, validated, and compared

in detail in the following sections.

3.1 Facial expression analysis in controlled settings

In this section we propose our first architecture for AUs detection in controlled settings.

The proposed architecture fuses information from several specialized Deep Neural Networks

(CNNs, MLPs, B-RNNs), each of which models a different aspect of the AUs detection prob-

lem. At the core of our architecture is a method for training each of the individual deep

networks as a multilabel classifier that at test phase simultaneously detects all AUs. We adopt

this multilabel classifier to address the data imbalance and threshold selection problems. This

30



3.1. Facial expression analysis in controlled settings

allows us to design a more general architecture that can be trained across several datasets and

for the detection of many AUs. Extensive experimental results show that our approach outper-

forms the state of the art by a considerable margin. In the next subsections, we will describe

the proposed multilabel training scheme and fusion architecture.

3.1.1 Multilabel training scheme

AUs detection can be naturally seen as a multilabel classification problem in which, at each

example, one or typically more AUs are activated. Several works address the AUs detec-

tion problem as independent binary classification problems, where a different classifier is

trained for each AU. However, the complexity of such an approach increases as the num-

ber of classes/AUs increases. In addition, [156] showed that using a multilabel classifier that

exploits AUs relations/dependencies can outperform standard binary classifiers. More spe-

cifically, the occurrence of AUs is correlated, for instance the occurrence of brow lowerer

(AU4) is correlated to tightening of the eye lids (AU7) during anger situations, and the oc-

currence of lip puller (AU12) is correlated to opening of the mouth (AU25) and raising of

the cheeks (AU6) in happiness contexts. Moreover, the occurrence of some AUs disable the

occurrence of others. For example, raising the eyebrows (AU1 and AU2) can not occur with

lowering the eyebrows (AU4), and closing the eyes (AU43) can not occur with raising the

eyelids (AU5). This kind of information (i.e. label dependencies) is discarded when the AUs

detection problem is treated as independent binary classification problems. Subsequently, in

our first architecture we use the deep multilabel classifier used in [101], in order to reduce

the complexity of our architecture and learn the embedded label dependencies (or independ-

encies). Such multilabel classifier is employed in each of our specialized models, that will be

described in the next subsection.

Deep Learning architectures have many parameters that can easily overfit when trained on

a limited number of subjects or data. Hence, increasing the training set size by combining

different datasets can help in improving the training process, and learning more distinctive

features. The main impediment for using combined datasets in training a multilabel classifier
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3.1. Facial expression analysis in controlled settings

is the unequal number of AUs annotated in these datasets. In order to solve this problem and

exploit all the available datasets, each image in the used datasets is annotated in terms of 18

AUs, with a ground truth label q ∈ {0, 1,NL}. The AU presence is labeled by 1, AU absence

by 0, and NL if the image is not annotated for this AU. The computed cost for the NL-labelled

AUs is discarded, and does not take part in the average back-propagated cost. Therefore, the

computed cost is only for the annotated AUs in each batch.

One of the contributions that we make in this field is addressing the problem of threshold

selection in AUs detection. Typically, in order to make a binary decision on whether the

AU in question is activated or not, the corresponding neuron output is thresholded either at

0.5 or, more commonly, by a threshold that is chosen based on the training set. However,

different conditions (e.g. head motion, lighting effects) can affect the neuron output, and

therefore using a certain threshold for all images is not the best choice. In order to overcome

this problem and choose the threshold automatically, each AU i is represented by 2 neurons,

one representing AU presence AU i1 while the other representing AU absence AU i0. During

training, the 2 neurons are supervised by complementary information, and during testing the

one with the highest output is selected. Doing so allows the network to choose the threshold

automatically according to the given input conditions.

Another contribution that we make in this field is a scheme that addresses the problem

of data imbalance. Data imbalance is a common problem in many applications including

AUs detection and results in the biasing of the classifier towards the class with the most

samples. Typically, positive examples are limited - this can be tackled by duplicating the

positive examples (named “Oversampling”), or removing some negative examples (named

“Undersampling”) [25]; however, this is only possible in a binary classification problem – in

a multilabel classification problem balancing the data with respect to one AU will result in

unbalancing it with respect to other AUs. In our architecture, we propose a new method for

balancing the data in a multilabel classifier. For each batch in the training set, let us denote by

pi the number of the positive examples and ni the number of negative examples for the AU i.
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Then, the ratio ri of the negative to positive examples is computed as:

ri =


ni
pi
, if ni and pi 6= 0

1, otherwise,

(3.1)

where the index i ∈ {1, 2, 3, ..., 2K}where 2K is twice the number of the detected AUs, as we

use 2 neurons for representing each AU. Then, we create a weight matrix M , having the same

size of the output batch. In the weight matrix, we set the 0-labeled examples by 1, the NL-

labeled by 0, and the 1-labeled by ri, where ri is given by Equation 3.1. This weight matrix is

multiplied elementwise by the output cost matrix. By doing so we adjust the misclassification

cost of the positive examples so as to prevent the biasing of the network towards the negative

class when a few positive examples are available. We use the binary cross-entropy as a cost

function. That is, the total batch cost is:

C = − 1

2K

2K∑
i=1

1

zi

bs∑
j=1

Mij(tij log qij + (1− tij) log(1− qij)) (3.2)

zi =

bs∑
j=1

Mij , (3.3)

where zi denotes the sum of the weights at AU i, bs the batch size, t the target value and q is the

predicted value. Figure 3.1 shows how the automatic threshold selection method formulate the

ground truth of a training batch, and also shows the weight matrixM generated for balancing

the data samples in this batch.

3.1.2 Fusion architecture

The proposed architecture for AUs detection consists of multiple deep networks, as depicted

in Figure 3.2. Specifically, two CNNs are used for extracting appearance features, and two

MLPs are used for extracting geometric features. Then, a RNN is added on the top of each of

the spatial models (CNNs, MLPs) for learning the temporal dynamics of the AUs. Finally, the

predictions of the different networks are fused using a linear layer – this layer picks the best

weights for each AU over the different networks. In the following paragraphs we will explain

the proposed architecture.
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Figure 3.2: The proposed architecture.

a) Preprocessing steps. Preprocessing is crucial to ensure that a stream of aligned face

images and landmarks are fed to our architecture. Preprocessing consists of 4 steps. First, we

detect the subject’s face using two face detectors; the OpenCV face detector, trained on frontal

and profile faces, and the Zhu-Ramanan face detector [158]. We first use OpenCV due to its
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(a) (b) (c) (d) (e) (f)

Figure 3.3: The preprocessing steps. (a) Input frame. (b) Detected face. (c) Detected facial
landmarks. (d) Aligned face. (e) Resized face image. (f) Gray-scale face image.

fast performance, and then the Zhu-Ramanan face detector is used as a complementary model

to process the failed frames. Second, we use [149] for extracting 49 facial landmarks. Third,

we align the detected landmarks to a reference frame using Procrustes transform. We use in

the alignment the points that are invariant to facial expressions (i.e. eye corners and nose tip).

Finally, we scale the faces to a fixed resolution of 48×48, and then convert it to the gray scale.

The aligned faces and landmarks are then used as inputs to the CNNs and MLPs, respectively.

The complete preprocessing steps are shown in Figure 3.3.

b) Convolutional Neural Networks (CNNs). AUs detection is recently being treated as a

pattern recognition problem, where one trains in a supervised manner classifiers that receive

as input an image, or features extracted from it, and give at the output a set of binary labels, as

many as the AUs that the method detects. In recent years the low-level feature extraction and

the classifiers are replaced by CNNs [64, 157], since they have shown to learn better and more

general appearance features compared to hand-crafted ones [79]. In our architecture, we use

two CNNs for extracting deep appearance features. The first CNN (called CNN1) uses as input

normalised face images, that is the aligned face images normalised by subtracting subject’s

mean face (neutral face) in the whole video. CNN1 can learn distinctive features away from

the subjects’ appearance differences. The other CNN (called CNN2) uses as input the aligned

face images. This network works better than CNN1 when the calculated neutral face is not

accurate enough. More specifically, the assumption of using the mean of all subject’s frames

as the neutral face is not always accurate. Figure 3.4 shows the mean face for 4 subjects,
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Figure 3.4: The mean faces for some subjects (selected from the BP4D dataset).

the first two images are almost neutral, while the last two are not (as the mouth is slightly

opened in them). Subsequently, we use CNN2 to better classify AUs when the neutral face

is not accurate enough. CNN1 and CNN2 complement each other for better AUs detection

performance.

CNNs take as input face images of size 48×48. Each image is randomly cropped into

44×44 smaller sub-image, and then randomly flipped horizontally with a probability of 0.5

so as to augment the data and avoid overfitting problems. At test time, we use 44×44 sub-

images cropped from the center of the aligned face images. Each CNN consists of three

convolutional and one Fully Connected (FC) layers, and each convolutional layer is followed

by a max-pooling layer. For the first and the second convolutional layers, we use 64 filters of

size 9×9 and 5×5, respectively, and for the last convolutional layer, we use 128 filters of size

5×5. The max-pooling layers have filters of size 2×2. The FC layer consists of 2K sigmoid

units, where K is equal to the number of the detected AUs. The activation function used in

the three convolutional layers is the Rectified Linear Unit (ReLU) [100]. We use dropout for

regularization [120]. We train CNN1 and CNN2 using stochastic gradient descent with 0.005

learning rate, 0.9 momentum, and 0.25 dropout. The learning rate decays (with increasing

epochs) at a rate of 0.001 for CNN1 and 0.0005 for CNN2.

c) Multi-Layer Perceptron (MLP). The inspiration of using MLP along with CNN for

AUs detection, comes from its success in emotion recognition in [72]. In our architecture, we

use two MLPs for extracting deep geometric features. The first MLP (called MLP1) is trained

using normalised facial landmarks, that is the aligned landmarks normalised by subtracting

the subject’s mean landmarks (neutral face landmarks) in the whole video. The other MLP
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(called MLP2) is trained using facial landmarks normalized according to the method in [72].

The idea of using two MLPs is the same as with CNNs, they complement each other when the

subject’s neutral landmarks are not accurate enough.

The number of the detected landmarks is 49, and each landmark has two coordinates, so

the length of the input feature vector is 98 (49×2). We use two hidden layers for each MLP,

each consisting of 600 neurons. The output layer consists of 2K sigmoid units, where K is

the number of the detected AUs. We use ReLU as an activation function after each hidden

layer. We train MLP1 and MLP2 using stochastic gradient descent with 0.005 learning rate,

0.9 momentum, and 0.25 dropout.

d) Recurrent Neural Networks (RNNs) is a class of neural networks that is used for learn-

ing sequential information. RNNs have been extensively used in many areas such as speech

recognition [54] and natural language processing [118]. In our architecture, we use the Bi-

directional RNNs (B-RNNs) proposed in [114] for extracting temporal features over a se-

quence of frames. B-RNNs transform a sequence of inputs X to a sequence of outputs Y

based on the input values, and previous and future information. Following [83], we use the

ReLU function and the scaled identity initialization in our B-RNNs. At frame t, the output yt

is calculated as follows:

yt = a(W f
outh

f
t +W b

outh
b
t + bout), t ∈ {1, 2, ..., T} (3.4)

hft = a(W f
inxt +W f

h h
f
t−1 + bfh) (3.5)

hbt = a(W b
inxt +W b

hh
b
t+1 + bbh) , (3.6)

where W f
out, and W b

out are the output weight matrices connecting the forward and backward

hidden states to the output layer, respectively. W f
in, and W b

in are the input weight matrices

connecting the input layer to the forward and backward hidden states, respectively. W f
h , and

W b
h are the forward and backward hidden weight matrices, respectively. bout, b

f
h, and bbh are
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the output, forward and backward hidden bias vectors, respectively. T is the length of the

video sequence. The activation function a is the sigmoid function for the output layer, and the

ReLU function for the hidden layers.

In our architecture, we use four B-RNNs, one on the top of each of the spatial models

(CNNs, MLPs). Specifically, B-RNNs take as input the outputs of the CNNs and MLPs over

different video frames. We partition videos into segments of length 90 frames. We initialize

the weights of the hidden layers by a scaled identity matrix, where 0.1 is chosen as the scale

value. We train all B-RNNs using stochastic gradient descent, with a learning rate of 0.01,

gradient clipping at 1.0, and batches of size 32 sequences.

e) Decision fusion. Appearance, geometric, and temporal features have varying AUs de-

tection performances. In our architecture, we use decision fusion for combining the outputs

of the eight deep networks (2 CNNs, 2 MLPs, 4 B-RNNs) – this helps in exploiting several

sources of information/features, and boosting the AUs detection performance. Specifically,

we combine the predictions of the different classifiers using a linear model, whose parameters

are optimized with random search [16, 74]. In the random search, one weight is given for each

AU/class in each network, and the final AU prediction is the weighted sum of all networks

predictions. Random sampling from a uniform distribution is used to get weights between 0

and 1, and then each class weights are normalized to 1. We choose the best sampled weights

based on the best F1-score. In our architecture, we initially use 25,000 iterations, and then a

local random search is performed around the best weights chosen for the different classes. The

weights for the local search are sampled from a Gaussian distribution with a mean equal to the

best chosen weights, and standard deviation std of 0.5. The local search is repeated around

the best chosen weights after every 1000 iterations, and at each time the std is decreased by a

factor of 0.8, and stopped when it is smaller than 0.001.

38



3.1. Facial expression analysis in controlled settings

3.1.3 Experiments and results

Datasets. In our experiments, we use four spontaneous datasets that are available in the liter-

ature (by this time); UNBC [90], DISFA [95], and FERA [140] (FERA includes two datasets:

BP4D [153] and SEMAINE [96]). The UNBC dataset consists of videos recorded for pa-

tients (suffering from shoulder pain) performing some shoulder exercises. 25 subjects were

involved in the study, and for each subject eight sessions were recorded. In total, 200 videos

with 48,398 frames were annotated in terms of 11 AUs. The DISFA dataset contains videos

recorded for subjects watching short video clips. These clips were chosen to elicit spontan-

eous emotions. 27 subjects were recorded in this dataset, where each subject was recorded

for almost 4 minutes, giving in total approximately 130,000 frames. These frames were an-

notated in terms of 12 AUs. FERA 2015 challenge contains two datasets; SEMAINE and

BP4D. The FERA organisers divided SEMAINE and BP4D into training, validation, and test-

ing sets. The training and validation sets are released for researchers, while the testing set is

kept sequestered by the FERA organizers, and researchers willing to participate in the chal-

lenge have to submit their codes for testing. The SEMAINE dataset was recorded to study

social signals occurring during conversations. SEMAINE consists of videos recorded for 43

subjects responding to virtual humans. The 43 recordings were annotated in terms of 33 AUs,

and divided into 16 for training, 15 for validation, and 12 for testing. The SEMAINE training

and validation sets have in total 93,000 annotated frames. The BP4D dataset contains videos

of people responding to emotion electing tasks. 61 subjects were involved in the study, where

each subject was recorded during eight different tasks. FERA divided the 61 subjects into 21

training, 20 validation and 20 testing. The BP4D videos were annotated in terms of 27 AUs.

The BP4D training and validation sets have in total 328 videos and approximately 146,000 an-

notated frames. We fused the different datasets for training our proposed architecture for the

detection of 18 AUs, only AUs with sufficient number of positive examples are chosen for the

analysis. The 18 AUs and their label distribution across the UNBC, DISFA, and SEMAINE

and BP4D training and validation sets, are shown in Table 3.1. The reason we fused different

datasets in the training is to a) increase the size of the training set (more subjects and video
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3.1. Facial expression analysis in controlled settings

Table 3.1: The label distribution of the 18 AUs used in our analysis (number of positive ex-
amples / number of negative examples) across four spontaneous datasets; UNBC [90], DISFA
[95], SEMAINE [96] (training and validation sets) and BP4D [153] (training and validation
sets).

AU UNBC DISFA SEMAINE BP4D
AU1 - 8778 / 122036 6503 / 86497 31043 / 115804
AU2 - 7364 / 123450 9232 / 83768 25110 / 121737
AU4 1074 / 47324 24594 / 106220 3512 / 89488 29755 / 117092
AU6 5557 / 42841 19484 / 111330 4975 / 88025 67677 / 79170
AU7 3366 / 45032 - 1801 / 91199 80617 / 66230
AU9 423 / 47975 7132 / 123682 240 / 92760 8512 / 138335

AU10 525 / 47873 - 1654 / 91346 87271 / 59576
AU12 6887 / 41511 30794 / 100020 17407 / 75593 82531 / 64316
AU14 - - 965 / 92035 68376 / 78471
AU15 - 7862 / 122952 957 / 92043 24869 / 121978
AU17 - 12930 / 117884 2527 / 90473 50407 / 96440
AU23 - - 1143 / 91857 24288 / 122559
AU24 - - 3053 / 89947 22229 / 124618
AU25 2407 / 45991 46052 / 84762 16171 / 76829 -
AU26 2093 / 46305 24976 / 105838 5790 / 87210 -
AU28 - - 1673 / 91327 5697 / 141150
AU43 2434 / 45964 - 3882 / 89118 -
AU45 - - 15647 / 77353 -

frames), and b) include different recording conditions.

Experimental setup. In our first experiment, we use BP4D to show the effect of the pro-

posed methods for data balancing and automatic threshold selection on a multilabel classifier.

In the second experiment, we combine the FERA training set, UNBC, and DISFA for training

our architecture, and use the FERA validation set for testing. In this experiment, we show in

detail how each of the eight deep networks and their fusion model perform on AUs detection.

In the third experiment, the code of the trained fusion model is submitted to the FERA organ-

izers in order to be tested on the FERA testing set. FERA specifies 6 AUs on SEMAINE, and

11 AUs on BP4D for challenging. Using the FERA platform allows all participants to test their

architectures in similar conditions. In the last experiment, we partition the BP4D dataset into

3 folds, and then iteratively use two folds for training and one fold for testing. The average

performance over the 3 folds is compared to the results reported in [29, 86, 156, 157].

Performance metrics. We use the accuracy and F1-score for evaluating the performance
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3.1. Facial expression analysis in controlled settings

of our architecture. Accuracy is a widely used and powerful metric, but when the ratio of the

negative to positive examples is large, the detection accuracy of the positive class is almost

neglected. On the other hand, F1-score depends mainly on the detection performance of the

positive class, but the number of the true negatives does not take a part in the computation. In

what follows we report both metrics.

Results. In the first experiment, we show the effect of adding the Automatic Threshold

Selection (ATS), Data Balancing (DB), and Cross-Dataset Training (CDT) to the MultiLabel

Classifier (MLC). As an illustrative case we show the performance of one of the eight models

(which is CNN1) on the BP4D dataset, which is divided in a 2:1 ratio of training to validation.

We report the performance on the 14 AUs annotated in BP4D. When ATS is not used, the AU

threshold is chosen based on the best F1-score and when CDT is selected, several datasets (i.e.

UNBC, DISFA, SEMAINE, BP4D) are used in the training.

Table 3.2 summarizes the obtained results for the different settings (ATS, DB, CDT). Using

only ATS seems to reduce the average F1-score compared to the simple MLC – a reason for

that is that the increase in false negatives for AUs in which the positive/negative ratio is very

low, where one output neuron is biased towards the more frequent class (i.e. “0”) and the

other output neuron is biased towards the most infrequent class (i.e. “1”). Our cost adaptation

method for data balancing improves the MLC performance by 0.7% in F1-score and 0.5% in

accuracy, but larger improvement is obtained when adding ATS with DB, where the F1-score

is improved by approximately 3.3% (with a slight drop in accuracy). Finally, using ATS and

DB with the expansion of the training set adds an additional 0.6% to the F1-score but reduces

accuracy by almost 2.5% – a reason for that is that training and testing a model on data drawn

from the same distribution, is more likely to perform better than a generic model that is trained

and tested on data with different distribution [130]. Subsequently, we use ATS, DB, and CDT

in the training of the 8 deep networks.

In order to show the importance of fusing information from several sources, and how the

different networks perform on different AUs, the FERA (SEMAINE and BP4D) validation
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3.1. Facial expression analysis in controlled settings

Table 3.2: The F1-score and accuracy obtained for the different settings of the proposed mul-
tilabel classifier.

AU
MLC ATS DB ATS + DB ATS + DB

+ CDT
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

AU1 0.514 83.02 0.517 84.84 0.502 83.73 0.551 81.13 0.502 73.73
AU2 0.356 78.27 0.358 82.20 0.357 81.81 0.371 76.82 0.403 73.73
AU4 0.545 80.23 0.510 81.14 0.555 81.67 0.556 78.74 0.515 74.28
AU6 0.775 77.30 0.787 79.10 0.792 78.19 0.791 78.65 0.805 77.86
AU7 0.735 68.75 0.736 70.04 0.745 69.46 0.743 70.70 0.763 69.12
AU9 0.269 92.00 0.229 93.04 0.269 92.69 0.351 89.84 0.349 83.49
AU10 0.804 75.40 0.836 79.03 0.816 76.70 0.809 76.50 0.846 79.50
AU12 0.861 83.23 0.859 82.98 0.856 82.19 0.865 83.79 0.868 83.71
AU14 0.647 64.88 0.613 63.92 0.685 66.31 0.628 62.80 0.648 61.98
AU15 0.371 78.15 0.287 79.78 0.345 76.67 0.454 76.17 0.465 69.87
AU17 0.616 71.34 0.596 74.40 0.629 71.97 0.637 73.15 0.656 70.42
AU23 0.398 79.54 0.352 82.26 0.423 79.49 0.465 75.82 0.461 73.42
AU24 0.445 83.82 0.287 82.55 0.397 81.83 0.525 83.29 0.562 82.49
AU28 0.363 95.33 0.429 96.70 0.426 96.46 0.416 95.17 0.403 94.89
Avg 0.550 79.38 0.533 80.86 0.557 79.94 0.583 78.75 0.589 76.32

set is used for testing our architecture. The F1-score and accuracy obtained by the different

networks, are shown in Table 3.3. By comparing the performance of the appearance (CNNs)

and geometric (MLPs) features, we found that the appearance features perform better on aver-

age. However, the AUs detection performance varies over MLPs and CNNs – typically, CNNs

detect better AUs that are characterized by a subtle change in the appearance (e.g. AU2, AU6,

AU10, AU17), while MLPs perform better for AUs characterized by a large displacement in

the landmarks’ locations (e.g. AU25, AU26, AU28).

The effectiveness of the neutral face subtraction can be inferred from the good performance

achieved by CNN1 in comparison to CNN2. On average, CNN1 outperforms CNN2 on both

F1-score and accuracy. CNN1 works better for most of the AUs, except some of those related

to the mouth area (e.g. AU15, AU17, AU24, AU25). This is due to the inaccuracy in the

neutral face detection at the mouth region. Similarly, comparing the performance of MLP1

and MLP2 gives similar conclusions. The fusion of the four spatial models (CNN1, CNN2,

MLP1, MLP2) leads to the second best performing model, where the F1-score is improved by

approximately 3% and the accuracy by 1% compared to the best spatial model CNN1.
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3.1. Facial expression analysis in controlled settings
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3.1. Facial expression analysis in controlled settings
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(b) Angry

Figure 3.5: Results obtained by the proposed method on some videos. The 18 detected AUs
are shown on the processed frames. If any of the AUs are detected, the associated text turns
into green, otherwise its colour stays red.

Table 3.3 also shows the effect of adding RNN for each spatial model. The F1-score is not

affected for CNN2 and MLP2, but for CNN1 and MLP1, we obtain an improvement of 1.5%

and 2.5%, respectively. Adding RNN to CNN1 led to the third best model. The decision fusion

of the 4 spatial models with the 4 temporal models led to the best performing model, where the

F1-score is improved by 0.28% and the accuracy by 1.2% compared to the second best model

(CNNs-MLPs fusion). The fusion of the 8 deep networks helps in exploiting several sources

of information/features, and boosting the AUs detection performance. Figure 3.5 shows some

of the detection results obtained by the proposed method on some videos depicting different

emotional expressions.

The proposed fusion architecture is also tested on the FERA (BP4D and SEMAINE) testing

set. Table 3.4 and table 3.5 show the obtained results on the BP4D and SEMAINE testing

sets, respectively, along with other results reported in the literature [13, 55, 64, 140, 152].
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3.1. Facial expression analysis in controlled settings

Table 3.4: The F1-score obtained by the proposed method as well as other state-of-the-art
methods on the BP4D testing set.

AU B-LGBP B-Geo BCNN CDPSL DLE CNN- Proposed
[140] [140] [55] [13] [152] LSTM [64]

AU1 0.180 0.188 0.399 0.260 0.261 0.280 0.349
AU2 0.159 0.185 0.346 0.250 0.167 0.280 0.370
AU4 0.225 0.197 0.317 0.250 0.283 0.340 0.345
AU6 0.671 0.645 0.718 0.730 0.729 0.700 0.756
AU7 0.751 0.799 0.776 0.800 0.785 0.780 0.776
AU10 0.799 0.801 0.797 0.840 0.802 0.810 0.807
AU12 0.792 0.801 0.793 0.820 0.779 0.780 0.836
AU14 0.666 0.720 0.681 0.720 0.625 0.750 0.636
AU15 0.139 0.238 0.235 0.340 0.348 0.200 0.344
AU17 0.245 0.311 0.368 0.330 0.380 0.360 0.376
AU23 0.239 0.320 0.309 0.340 0.441 0.410 0.426
Avg 0.442 0.473 0.522 0.516 0.508 0.520 0.547

Table 3.5: The F1-score obtained by the proposed method as well as other state-of-the-art
methods on the SEMAINE testing set.

AU B-LGBP B-Geo BCNN CDPSL DLE CNN- Proposed
[140] [140] [55] [13] [152] LSTM [64]

AU2 0.755 0.569 0.372 0.410 0.655 0.800 0.505
AU12 0.517 0.595 0.707 0.570 0.769 0.740 0.702
AU17 0.066 0.091 0.067 0.200 0.215 0.320 0.108
AU25 0.400 0.445 0.602 0.690 0.623 0.850 0.810
AU28 0.009 0.250 0.040 0.260 0.251 0.330 0.338
AU45 0.209 0.396 0.257 0.420 0.325 0.570 0.451
Avg 0.326 0.391 0.341 0.425 0.481 0.600 0.486

We achieved the best F1-score on the BP4D dataset, and the second best on the SEMAINE

dataset.

Finally, in order to compare our work with other methods in the literature, in the last ex-

periment, a 3-fold partitioning is adopted on the combined BP4D training and validation sets,

where 2 partitions are combined with UNBC, DISFA, and SEMAINE datasets for architec-

ture training, while the remaining partition is used for testing. We report the average F1-score

over the 3 runs for the 12 AUs mentioned in [157]. Our architecture is compared with other

state-of-the-art methods, namely JPML [156], DRML [157], CNN-RNN [29], and EAC [86],

in table 3.6. The proposed architecture outperforms the other methods on 9 out of 12 AUs,

and gets the best average F1-score by a considerable margin.
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3.2. Facial expression analysis in the wild

Table 3.6: The F1-score obtained by the proposed method as well as other state-of-the-art
methods on the 3-folded BP4D dataset.

AU JPML [156] DRML [157] CNN-RNN [29] EAC [86] Proposed
AU1 0.326 0.364 0.314 0.390 0.563
AU2 0.256 0.418 0.311 0.352 0.471
AU4 0.374 0.430 0.714 0.486 0.570
AU6 0.423 0.550 0.633 0.761 0.791
AU7 0.505 0.670 0.771 0.729 0.768
AU10 0.722 0.663 0.450 0.819 0.843
AU12 0.741 0.658 0.826 0.862 0.878
AU14 0.657 0.541 0.729 0.588 0.662
AU15 0.381 0.332 0.340 0.375 0.431
AU17 0.400 0.480 0.539 0.591 0.602
AU23 0.304 0.317 0.386 0.359 0.435
AU24 0.423 0.300 0.370 0.358 0.512
Avg 0.459 0.483 0.532 0.559 0.627

3.2 Facial expression analysis in the wild

Recently, there has been a growing interest in analyzing facial expressions in real-life condi-

tions (aka in the wild), that is at different head poses and recording conditions – this is driven

with the release of new in-the-wild datasets like EmotioNet [45]. These datasets consist only

of images, and vary wildly in the number of annotated samples, and in the ratio of the posit-

ive/negative examples. In order to handle with such challenges, we develop a new architecture

for AUs detection in the wild, different from the one proposed in Section 3.1. The proposed

architecture will be explained in the following subsections.

3.2.1 Proposed method

As the datasets released in the wild have only images, we can use here only appearance and

geometric features. However, extracting meaningful landmarks-based geometric features is

quite challenging, due to the wide range of head poses existing in the used facial images.

Subsequently, in our architecture we extract only appearance features using a very deep CNN.

The proposed architecture is trained using four datasets, for the detection of 10 AUs in the

wild. The proposed architecture is shown in Figure 3.6.

Preprocessing steps. We first apply SmileNet [68] to detect the bounding box of the face
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3.2. Facial expression analysis in the wild

Figure 3.6: The proposed architecture for facial expression analysis in the wild.

and whether it is smiling or not. SmileNet is robust to different head poses and illumination

conditions. Then, we crop and scale the detected face to a fixed resolution of 100×100.

Finally, we subtract the mean RGB value of the training set from the face image – this image

is used as an input to a CNN. Note that no face-registration is applied to the extracted faces.

Convolutional Neural Networks (CNNs). Following the great success achieved by AlexNet

in image classification [79], CNNs have been extensively used for different Computer Vision

problems in the last years. CNNs learn better appearance features than the designed ones.

Furthermore, networks trained on large datasets on surrogate tasks (e.g. image classification)

have been shown to perform well for feature extraction on other tasks. Motivated by this, we

refine very deep CNNs (VGG-16 [116]) for the detection of 10 AUs. More specifically, we

treat the problem of AUs detection, as several binary classification problems and refine separ-

ately a VGG-16 for each AU. We replace the output layer of the VGG-16 by another with a

single sigmoid unit, since each network deals with a binary classification problem. We use the

binary cross-entropy as the classification cost function. That is, the total batch cost is:

Cc(t, q) = −
1

B

B∑
b=1

(tb log qb + (1− tb) log(1− qb)), (3.7)

where B denotes the batch size, t the target value and q the predicted value.

Since the occurrence of AUs is correlated, some works deal with AUs detection as a mul-

tilabel classification problem [50, 55, 18]. In this architecture, we train a separate network for
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3.2. Facial expression analysis in the wild

each AU, because the number of positive examples vary immensely from one AU to another

(ranging approx. between 0.6k - 35k) – this results in a heavily imbalanced data problem and

networks that are tuned to the most populated AUs/classes. This is hard to be solved using the

previously proposed data-balancing method.

In total, 11 facial expressions are analysed, ten of which are facial AUs detected using the

architecture described above, and one is smile recognized using the SmileNet proposed in [68].

3.2.2 Experiments and results

Datasets. We use four datasets collected in the wild (EmotioNet [45], ExpW [154], CelebA

[89], and CEW [119]), that are available in the literature (by this time), for the detection of 10

AUs – Table 3.7 shows the used datasets, as well as the detected AUs. We use different datasets

in our analysis so as to detect more AUs. The facial images in these datasets were collected

by searching Internet images using certain words in a variety of search engines. The collected

images have different recording conditions and head poses – this improves the robustness of

our model to those conditions.

The EmotioNet dataset [45] consists of 1 million images, among which 950,000 images

form the training set and are automatically annotated using a developed AUs detection archi-

tecture, while 50,000 images are manually annotated and divided equally between the valid-

ation and testing sets. The EmotioNet testing set is kept sequestered by the organisers for

challenging. The EmotioNet dataset consists of annotations for 12 AUs. Out of 12 annotated

AUs in EmotioNet, only 7 that have sufficient number of positive examples are selected for

analysis. In our analysis, only manually-annotated images in the validation set are used in

the training and testing of our proposed architecture. Note that, each image in EmotioNet is

annotated by “0” if the AU is inactive, “1” if active, and “999” if the AU is occluded. The

Expression in-the-Wild (ExpW) dataset [154] consists of 91,793 facial images downloaded

using Google search engine. Each image was manually annotated with one of the six basic

emotional expressions (anger, fear, disgust, happiness, sadness and surprise) and the neutral

48



3.2. Facial expression analysis in the wild

Table 3.7: The label distribution of the AU(s) in the EmotioNet [45] validation set, and ExpW
[154], CelebA [89], and CEW [119] datasets.
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Datasets EmotioNet ExpW CelebA CEW
No. of positive examples 1268 612 2673 779 3793 6089 9643 34883 23329 1192
No. of negative examples 17655 18616 16877 18393 14620 8547 9732 56910 179270 1231

expression. CelebA is a large-scale dataset [89] consisting 10,000 identities and 200,000 facial

images. Each image in CelebA is annotated with 40 face attributes. We use the annotations of

only the narrow eyes attribute (which represents the lid tightener expression) for training our

architecture. Finally, the Closed Eyes In The Wild (CEW) dataset consists of 2423 facial im-

ages, selected from the Labeled Face in the Wild (LFW [62]) dataset. CEW has 1192 images

showing subjects with both eyes closed, and 1231 images showing subjects with eyes open.

Table 3.7 shows the label distribution of the 10 AUs used in our analysis.

Training settings. We split the datasets (CEW [119], CelebA [89], EmotioNet [45], ExpW

[154]) into 75% for training, 10% for validation, and 15% for testing. Many of the detected

AUs have a high ratio of negative to positive examples (i.e. imbalanced data). In order to

avoid the biasing of the classifier to the most frequent class (negative class), the positive and

negative examples are balanced in the training set by undersampling [25]. The ExpW [154]

dataset is annotated for 6 emotional expressions and the neutral expression. In order to keep

the training set balanced and diverse when training for the detection of the neutral expression,

negative examples equal to positive examples are drawn from all the 6 emotional expressions.

For the EmotioNet dataset we trained different networks for the detection of 12 AUs, however

only the networks of 7 AUs (shown in Table 3.7) show good detection performance, as these

AUs have sufficient number of positive examples – those AUs are selected for further analysis.

The training set of each expression/AU is augmented with random flipping, rotation, shift-

ing, shearing, and zooming, in order to avoid overfitting. We initialize the parameters of
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3.2. Facial expression analysis in the wild

Table 3.8: The classification results obtained by the proposed method in the wild on the 15%
testing splits of the EmotioNet [45], ExpW [154], CelebA [89], and CEW [119] datasets.
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Proposed method
Acc 0.941 0.869 0.903 0.857 0.880 0.908 0.919 0.731 0.855 0.980 0.884
F1 0.459 0.319 0.632 0.304 0.716 0.897 0.912 0.718 0.526 0.977 0.646

the AUs detection networks by the parameters of the VGG-16, and then refine them using

stochastic gradient descent with adaptive learning rate (RMSprop [129]), with a decay coeffi-

cient set to 0.7 and initial learning rate to 10−4. Depending on the size of the training set for

each AU, the batch size is set either to 64 or 128.

Results. The accuracy and F1-score obtained by the proposed method on the 15% testing

splits are shown in Table 3.8. We observe that the performance is highly dependent on the

number of training samples and the variance in AU-appearance. More specifically, AUs like

lips part (AU25), and eyes closed (AU43) have a high value for both F1-score and accuracy,

due to the relatively large number of training examples as well as the fewer differences in AU-

appearance among subjects. On other AUs like brow lowerer (AU4), and lid tightener (AU7)

we obtain moderately good performance due to the large variance in AU-appearance among

different people. Finally, we obtain low F1-score values for the outer brow raiser (AU2) and

the upper lid raiser (AU5) as the EmotioNet dataset has relatively small number of positive

examples for those two classes. Figure 3.7 shows some of the detection results obtained by

the proposed method on some YouTube videos.

In [15], Benitez-Quiroz et al. presented the EmotioNet challenge dedicated to AUs detec-

tion in the wild. The EmotioNet testing set was used as a common benchmark for comparing

different methods. As the deadline for the challenge has passed and the testing set is not avail-

able for download, we couldn’t compare the proposed method to other methods trained in the

wild. But in general, the results we got on our testing sets are comparable to the ones reported

in the challenge.
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3.2. Facial expression analysis in the wild

Neutral Expression
Inner Brow Raiser
Outer Brow Raiser
Brow Lowerer
Upper Lid Raiser
Cheek Raiser
Lid Tightener
Lip Puller
Lips Part
Eyes Closed
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Lid Tightener
Lip Puller
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Eyes Closed

Neutral Expression
Inner Brow Raiser
Outer Brow Raiser
Brow Lowerer
Upper Lid Raiser
Cheek Raiser
Lid Tightener
Lip Puller
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Eyes Closed

Neutral Expression
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Outer Brow Raiser
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Lid Tightener
Lip Puller
Lips Part
Eyes Closed

Figure 3.7: Results obtained by the proposed method in the wild on some YouTube videos.
The 10 detected AUs are shown on the processed frames. If any of the AUs are detected, the
associated text turns into green, otherwise its colour stays red.
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3.3. Controlled versus in-the-wild facial expression analysis

3.3 Controlled versus in-the-wild facial expression analysis

In this section we compare the proposed architectures for AUs detection, the one trained in

controlled settings and the other trained in the wild. The comparison is two-fold. First we test

how both architectures perform on AUs detection – highlighting pros and cons of each one

(in this section). Second, we show how each architecture affects the performance of symptom

severity estimation in schizophrenia (in Chapter 4).

In both comparisons, only the 8 AUs that are detected by both architectures are used. Fur-

thermore, in the comparisons we use two versions of the proposed method in Section 3.1, one

version has the full architecture and is working on dynamic videos, while the other consists

only of 2 out of the 8 deep networks used in the full architecture and is working on static im-

ages. More specifically, in the second version we use two spatial networks that operate on the

raw facial images and the coordinates of the facial landmarks without subtraction of the mean

face or landmarks (i.e. CNN2, MPL2). In what follows we will refer to the full architecture

as “Full” and the simplified static version as “Static”. We will first compare the performance

of both architectures on AUs detection in controlled settings, and then on AUs detection in the

wild.

Comparison in controlled settings. One of the main differences between the proposed ar-

chitectures is the kind of extracted features. Specifically, the first method (in Section 3.1) uses

various kinds of features (e.g. appearance, geometric, temporal), while the second method (in

Section 3.2) uses only appearance features. This has an effect on the detection performance of

each architecture. That is, moderate and intense AUs with obvious change in facial-appearance

can be detected by both methods, while subtle AUs can be only detected by the first method,

as they are learnt from the temporal features, or through the subtraction of the subjects’ mean

face/landmarks. Figure 3.8 shows a qualitative comparison between the two architectures on

the FERA (BP4D and SEMAINE) validation set. Each of these images has a face with an act-

ive AU. For the first method, we use the full architecture as we are dealing here with videos.

We can see that the second method can detect only AUs with high intensity, while the first
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3.3. Controlled versus in-the-wild facial expression analysis

Table 3.9: The classification results obtained by the proposed architectures on the FERA val-
idation set.
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First method (Full)
Acc 0.819 0.824 0.885 0.852 0.794 0.832 0.812 0.938 0.845
F1 0.466 0.439 0.552 0.775 0.718 0.841 0.775 0.340 0.613

Second method
Acc 0.858 0.800 0.895 0.803 0.606 0.794 0.827 0.408 0.749
F1 0.070 0.101 0.291 0.638 0.318 0.777 0.767 0.155 0.390

method detect both low- and high-intensity AUs. The first method fails when images hav-

ing low intensity AUs are not well registered (i.e. faces are shifted or/and rotated from the

reference frame). In Table 3.9, we show the performance of both architectures on the FERA

validation set – we observe that on average over the 8 AUs, the first method outperforms the

second method by a large margin. This considerable difference in performance is mainly due

to two reasons. First, the second method is trained using facial images with high-intensity

AUs (i.e. apex), while FERA has a lot of images with subtle AUs. Second, the second method

uses only appearance features for AUs detection.

Comparison in the wild. The second method can work at different head poses and re-

cording conditions, as it is trained using images captured in the wild – in contrast to the first

method which is trained using datasets recorded from frontal or near-frontal views, and in spe-

cific recording conditions. Figure 3.9 shows another qualitative comparison between the two

architectures on different facial images drawn from the testing splits of the in-the-wild data-

sets (i.e. EmotioNet, CEW, and CelebA). Each of these images has a face with an active AU.

Note that here we use the Static version of the first method, as we are dealing with images. We

can see that Static version of the first method performs well mainly for frontal or near-frontal

faces, while the second method can detect AUs at several head poses and illumination levels.

However, the second method fails when the AUs are subtle, or when the faces are captured

under too dark or bright illumination conditions. Furthermore, in Table 3.10 we show the

performance of both architectures on the testing splits – we observe that on average over the
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3.3. Controlled versus in-the-wild facial expression analysis

Inner Brow Raiser

Outer Brow Raiser

Brow Lowerer
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Lips Part
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Second Method
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Figure 3.8: Qualitative comparison between the proposed architectures on the FERA valida-
tion set. Each row shows the positive examples of a certain AU. The true positives and false
negatives achieved by each method are shown on the top part of the figure. The Full version
of the first method shows better performance in detecting different levels of intensity of AUs,
compared to the second method.

8 AUs, the second method outperforms the first method by a large margin. This considerable

difference in performance is mainly due to two reasons. First, the first method is trained using

facial images captured in controlled environments, and with a limited variation in the head

pose. Second, only 2 out of the 8 deep networks in the first method are used for AUs detec-

tion. The first method showed that the full architecture can achieve better performance than

both single and combined networks.
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Figure 3.9: Qualitative comparison between the proposed architectures on the EmotioNet [45],
CelebA [89], and CEW [119] testing splits. Each row shows the positive examples of a certain
AU. The true positives and false negatives achieved by each method are shown on the top part
of the figure. The second method shows better performance in detecting AUs at several head
poses and illumination conditions, compared to the Static version of the first method.

Table 3.10: The classification results obtained by the proposed architectures on the EmotioNet
[45], CelebA [89], and CEW [119] testing splits.
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First method (Static)
Acc 0.679 0.669 0.752 0.806 0.823 0.708 0.670 0.617 0.716
F1 0.166 0.130 0.354 0.544 0.792 0.697 0.268 0.422 0.422

Second method
Acc 0.941 0.869 0.903 0.880 0.908 0.919 0.855 0.980 0.907
F1 0.459 0.319 0.632 0.716 0.897 0.912 0.526 0.977 0.680

The preceding qualitative and quantitative comparisons show the strengths and weaknesses

of each of the proposed methods for AUs detection. Specifically, the first method can detect
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3.4. Conclusion

AUs at different levels of intensity, but it is working mainly on frontal or near-frontal faces and

in controlled settings, while the second method detects only moderate/intense AUs (with obvi-

ous facial change), but at different head poses and recording conditions. We believe that better

AUs detection can be achieved if temporal datasets, annotated for AUs in the wild, became

available to the research community. In the next chapter we will test how each architecture

affects the performance of symptom severity estimation in schizophrenia.

3.4 Conclusion

In this chapter we have developed two different architectures for facial expression analysis

(AUs detection), one working in controlled settings while the other is working in the wild.

In the first architecture, we fused different deep models (CNNs, MLPs, B-RNNs) together, in

order to capture deep appearance, geometric, and temporal features. In the core of our archi-

tecture, we proposed a novel method for addressing the data imbalance problem in multilabel

classification without adding any extra computational cost, in addition to a novel way for se-

lecting threshold automatically at the output neurons. Moreover, we trained our architecture

across several datasets (with unequal number of annotated AUs). This allowed us to design a

more general architecture for the detection of many AUs. Experimental results show that the

first method achieved the state-of-the-art results on the BP4D dataset, and outperformed other

works in the literature by a significant margin.

As the datasets in the wild have only images, and vary wildly in the number of annotated

samples, and in the ratio of the positive/negative examples – we developed another architecture

for AUs detection in the wild. In this architecture, we refined a deep pretrained CNN (VGG-

16) for AUs detection. Experiments show promising detection results at different head poses

and recording conditions. In the end of this chapter, we presented a qualitative and quantitative

comparison between the proposed architectures in different settings (controlled and in-the-

wild), showing the pros and cons of each architecture.
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Symptom severity estimation in

schizophrenia
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Patients with schizophrenia often display impairments in the expression of emotion and

speech and those are observed in their facial behaviour. Automatic analysis of patients’ facial

expressions that is aimed at estimating symptoms of schizophrenia has received attention re-

cently. However, the datasets that are typically used for training and evaluating the developed

methods, contain only a small number of patients (4-34) and are recorded while the subjects

were performing controlled tasks such as listening to life vignettes, or answering emotional

questions. Furthermore, the methods proposed up to now for estimating symptom severity

in schizophrenia rely on conventional hand-crafted features [135, 137]. Across different con-

Parts of this chapter have been published in [17].
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texts, hand-crafted features have shown inferior performance in comparison to learned ones

and in particular those learned by Deep Neural Networks [79, 84, 11].

Our first contribution in this chapter is that we move from controlled environments to

similar-to-real-life settings and use videos of professional-patient interviews, in which symp-

toms were assessed in a standardised way as they should/may be assessed in real life clinical

encounters. The interviews involve a selection of patients with negative symptoms – such

symptoms are particularly difficult to assess and quantify [112]. The interviews were recor-

ded either at the patients’ homes or at the premises of mental health services across the UK.

Subsequently, the collected videos have a wide range of camera viewpoints and illumination

levels that are representative of the variety of settings found in clinics. In addition, we auto-

matically analyse the facial behaviour of 91 outpatients – this is almost 3 times the highest

number of patients used in other studies.

The second contribution is that we propose a novel Deep Neural Network (DNN) architec-

ture, called SchiNet, that first uses one of the developed architectures in the previous chapter

for detecting patients’ facial expressions/AUs at each frame (low-level features). Then, uses

a DNN consisting of a) Gaussian Mixture Model (GMM) and Fisher Vector (FV) layers for

extracting a compact statistical feature vector over the detected expressions in the whole video

interview (high-level features), and b) a regression layer for estimating symptom severity. The

GMM, the FV and the regression layer are trained in an end-to-end fashion. The proposed

architecture has relatively limited number of trainable parameters, which helps in reducing

overfitting.

The proposed SchiNet has been trained in a patient-independent manner to predict expression-

related symptoms from two commonly-used assessment interviews; Positive and Negative

Syndrome Scale (PANSS) [75], and Clinical Assessment Interview for Negative Symptoms

(CAINS) [61]. Experimental results show that analyzing facial expressions in the wild de-

livers better performance on symptom severity estimation in comparison to the analysis in

controlled settings. Furthermore, we show that high and statistically significant correlations
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4.1. Clinical dataset of schizophrenia

between the detected expressions and the severity of several symptoms in both the PANSS

and CAINS can be obtained, and that the proposed network for estimating symptom severity

delivers promising results.

This chapter is organized as follows: In Section 4.1, we introduce the clinical dataset of

schizophrenia that we used in our analysis. In Section 4.2, we present the proposed SchiNet

for estimating symptoms of schizophrenia. Finally, we report the experimental results and

conclude the paper in Section 4.3 and Section 4.4, respectively.

4.1 Clinical dataset of schizophrenia

In this chapter we use a dataset called “NESS”, that was collected for studying the effective-

ness of group body psychotherapy on negative symptoms of schizophrenia [106]. The reason

we use the NESS trial is that it was recorded in realistic conditions and in settings that are sim-

ilar to the ones found in clinics and hospitals. The participants in the NESS trial were recruited

from mental health services at four different places in the UK; East London, South London,

Liverpool, and Manchester. In total, 275 participants were included in this study. Participants

aged between 18-65, and they had a total negative symptoms score ≥ 18 on the PANSS in-

terview, that is, the study focused on patients with negative symptoms. Those symptoms are

typically difficult to assess and quantify [112].

The participants were assessed at three different stages throughout the study; BaseLine

(BL) – before the start of the treatment, End of Treatment (EoT ) – after completing 20

session of group body psychotherapy, and 6 Months Follow-Up (6MFU) – 6 months after the

end of treatment. Each assessment interview lasted between 40 and 120 minutes, depending

on the time spent by patients in speaking and recollection about the interview questions. The

patients were assessed at the interview in terms of PANSS [75] including negative, positive

and general psychopathology symptoms, and CAINS [61] including experience-related and

expression symptoms. In addition, other scales related to depression, quality of life and client

satisfaction for patients with schizophrenia were also assessed. The interviews were completed
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4.1. Clinical dataset of schizophrenia

Table 4.1: The distribution of the labels for the CAINS expression symptoms.

CAINS Symptoms

Scale
0 1 2 3 4

EXP - Facial Expression 4 16 41 41 8
EXP - Vocal Expression 6 27 42 26 9

EXP - Expressive Gestures 10 21 27 40 12
EXP - Quantity of Speech 30 32 27 17 4

Table 4.2: The distribution of the labels for the expression-related PANSS negative symptoms.

PANSS Symptoms

Scale
1 2 3 4 5 6 7

NEG - Flat Affect 4 8 25 39 24 8 2
NEG - Poor Rapport 10 10 40 31 13 6 -

NEG - Lack of Spontaneity
and Flow of Conversation 22 22 29 11 21 5 -

in a standardised way by researchers/psychologists as they should/may be done in real life

clinical encounters.

Only the assessment of the PANSS and CAINS were video-recorded from the whole inter-

view. Most of the videos were recorded at 25 frames/s and at a resolution of 1920×1080. Out

of the 275 patients, 110 accepted to be recorded at BL, 93 at EoT , and 69 at 6MFU . Since

the focus of this chapter is building a model that estimates the symptom severity for unseen

patients (i.e. a generic model), only the 110 patients recorded at theBL session are used in our

analysis. The average length of the recorded BL interviews is 41 minutes. The distribution of

the labels for the expression-related symptoms in the PANSS and CAINS scales (across the

110 BL patients), is shown in Table 4.1 and 4.2, respectively. Note that each symptom in the

PANSS scale is rated between 1 (absent) and 7 (extreme), and each CAINS symptoms has a

value between 0 and 4 (0=no impairment and 4=severe impairment). More information about

the dataset can be found in [106].
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4.2. Proposed architecture

4.2 Proposed architecture

4.2.1 Overview

In this section we present a deep architecture, named SchiNet, for estimating symptom severity

in schizophrenia from videos depicting the non-verbal behaviour of patients. Figure 4.1(a)

shows an overview of the system. SchiNet takes as input a video interview for patient symptom

assessment and gives as output the estimated values of expression-related symptoms and the

total scale/symptoms score. Intermediate results include detection of facial expressions at

frame level and statistical representations of their activations in the whole image sequence.

SchiNet performs the analysis in 4 stages; preprocessing, low-level feature extraction at

frame level, high-level feature extraction at video level and symptoms regression. At the first

stage, we detect the patients’ faces in the video frames using a body detector [88] and a robust

face detector. At the second stage, the face regions are cropped and passed to one of the de-

veloped architectures in the previous chapter for AUs detection. Encoding the patients’ facial

behaviour at each frame is considered as the first/low-level feature extraction. At the third

stage, a Gaussian Mixture Model (GMM) and a Fisher Vector (FV) layer are used to represent

the patient facial behaviour over the whole video by a compact feature vector (i.e. FV rep-

resentation). The FV representation is considered as the second/high-level feature extraction.

Finally, the FV is fed to two fully-connected layers for estimating the symptoms and the total

score.

The training of the SchiNet is done in 3 stages, as shown in Figure 4.1(b). At each stage,

a different cost is optimised. In the first stage, the network that extracts video-based repres-

entations is trained in an unsupervised manner, taking as input the sequence of the outputs

of the AUs detection architecture when applied to the professional-patient interviews. More

specifically, the distribution of the AUs probabilities in a video is modelled using a GMM that

is implemented as a network layer. Then, the estimated GMM parameters are used to extract

a FV representation for the whole video. In the second stage the FV representations are used
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4.2. Proposed architecture

as input to a regression layer that estimates symptoms of schizophrenia (flat affect, poor rap-

port, and lack of spontaneity and flow of conversation symptoms in the case of PANSS and 4

Expression symptoms in the case of CAINS). Following [102], we refine the GMM, the FV

and the first regression layer in an end-to-end fashion using a discriminative cost. Finally, in

the third stage, we train a second regression layer that takes as input the individual symptom

scores and estimates the total scale/symptoms score. The SchiNet architecture as well as the

training stages are explained in detail in the following subsections.

4.2.2 Preprocessing steps

In order to process each video in the NESS dataset, we first extract the region of interest (i.e.

the patient’s face) at each frame. First, we detect the patient’s body at each frame using the

Single Shot Detector (SSD) proposed in [88]. We then extend the detected body-bounding box

by a factor of 1.2 to ensure that the whole head is included, and then, within the resulting re-

gion, we apply the preprocessing steps (including face detection, scaling, and face registration

for the method in Section 3.1) of the AUs detection architecture chosen for the analysis.

Despite the robustness of the face detection, it still fails in some videos due to the position

of the camera. In those cases, not only the face is sometimes not detected but, even in the

cases that it is, it is hard to be further analysed in terms of the facial expressions. For this

reason, we consider only the videos in which we can successfully detect the faces (or the faces

and landmarks) in more than 90% of the frames. As the preprocessing steps vary according

to the used AUs detection architecture, out of the total 110 that participated in the baseline

session, we retain the videos of 74 patients when the first method (in Section 3.1) is used, and

91 patients when the second method (in Section 3.2) is used.

4.2.3 Low-level feature extraction

In the second stage of the proposed method, one of the developed architectures in the previous

chapter is used to code the patients’ facial behaviour in terms of the Facial Action Coding

System (FACS) [44], that is, detect the activation of facial AUs, the absence of which is
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4.2. Proposed architecture

expected to be informative in the assessment of negative symptoms of schizophrenia. FACS

has been extensively used for facial expression analysis in different contexts [141, 146, 31, 94].

Using the first AUs detection method (in Section 3.1) results in an 18-dimensional feature

vector for each frame, while the second method (in Section 3.2) in an 11-dimensional vector,

where each dimension represents the probability of one of the detected AUs.

Some patients in the NESS dataset have part of their faces occluded by wearable items e.g.

have their eyes occluded by sunglasses or thick eyeglasses, or their eyebrows covered by a

beanie hat. This results in wrong detection of the AU related to the occluded area – typically

we observe false positive activations. In order to prevent these false detections from affecting

the subsequent analysis steps, for each patient/video, the mean activation over each AU is

calculated and subtracted from the activations of the AU in question.

4.2.4 High-level feature extraction

In section 4.2.3, we extracted frame level representations, i.e. at each frame t of the sequence

we extracted a vector xt ∈ RM , containing the probability of the occurrence ofM facial AUs.

In this section, we represent the set of vectors that are extracted for the whole video using a

Fisher Vector (FV) representation. The FV representation is extracted by two custom DNN

layers – the first layer learns a Gaussian Mixture Model and the second layer extracts the FV

representation. The first layer is first trained using a generative cost, and then both layers are

refined using a discriminative cost.

We first train a Gaussian Mixture Model (GMM) to model the distribution of the nor-

malized AUs probabilities x ∈ RM using a weighted sum of K Gaussian distributions [111].

Clearly, the distribution is over the set of x that are extracted over the whole training data-

set, one x for every frame of each sequence. In this context, each GMM component would

represent a commonly occurring combination of facial AUs. The GMM is expressed as:

uλ(x) =

K∑
k=1

wkuk(x), (4.1)

64



4.2. Proposed architecture

where wk is the weight component of the k-th Gaussian distribution uk(x). uk(x) is defined

as:

uk(x) =
1

(2π)
M
2 |Σk|

1
2

exp

(
−1

2
(x− µk)′Σ−1k (x− µk)

)
. (4.2)

Each Gaussian uk(x) has three parameters associated to it, namely the weight component

wk, the mean vector µk, and the covariance matrix Σk. The responsibility of each Gaussian

component uk(x) in generating the input feature sample xt, is called k-th posterior, and is

given by:

γt(k) =
wkuk(xt)∑K
l wlul(xt)

. (4.3)

In this work we follow [102], and implement the GMM as a neural network layer, that

during training given a set of x learns the parameters of the GMM and during testing given

an x produces K GMM posteriors {γt(k), k = 1, ...,K} at its output (see Figure 4.1(a)). The

GMM layer is first trained in unsupervised way using the Expectation-Maximization (EM)

algorithm [38], that is, by minimizing the negative log likelihood (i.e. the generative cost) of

the complete training data.

Once the parameters of the GMM are learned, we then represent a professional-patient

video interview using a Fisher Vector (FV) representation – more specifically, we represent

the set of low-level features, i.e. the set of vectors xt extracted at each frame of the video

in question, by a single high-dimensional vector (the Fisher Vector). The later describes how

the GMM parameters should change in order to better represent the distribution of the new set

of features [111], and is formed by stacking in a vector the gradients of the posteriors with

respect to the GMM parameters; wk, µk, and Σk. Formally:

GX
λ =

(
GX
w1
, . . . ,GX

wK
,GX′

µ1 . . . ,G
X′
µK
,GX′

σ1 . . . ,GX′
σK

)′
, (4.4)

where the gradient vectors GX
wk

, GX
µk

, and GX
σk

are calculated as follows:

GX
wk

=
(
S0
k − Twk

)
/
√
wk, (4.5)

GX
µk

=
(
S1
k − µkS0

k

)
/ (
√
wkσk) , (4.6)
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GX
σk

=
(
S2
k − 2µkS

1
k + (µ2

k − σ2
k)S

0
k

)
/
(√

2wkσ
2
k

)
, (4.7)

where S0
k , S1

k , and S2
k denote the 0-order, 1st-order, and 2nd-order GMM statistics, respect-

ively, and are defined as:

S0
k =

T∑
t=1

γt(k), (4.8)

S1
k =

T∑
t=1

γt(k)xt, (4.9)

and

S2
k =

T∑
t=1

γt(k)x
2
t , (4.10)

where γt(k) is the k-th posterior, and T is the number of local descriptors which in our case is

the video length. Following [111], the extracted FV is normalized using both power normal-

ization, and L2 normalization.

In [102], the FV descriptor is implemented as a neural network layer, taking as input both

the GMM posteriors and VGG features, and giving as output the FV. The FV layer is used also

in this work, but replacing the VGG features by the normalized probabilities of the detected

AUs. The layer output or the FV has a length of K(2M + 1), where K is the number of

GMM components and M is the feature dimensionality, which in our case is the number of

the detected AUs. Note that the length of the FV does not depend on the length of the video.

Comparing the dimensionality of the low-level features (circa 500k for a 30-min video with

25 f/s and 11 detected AUs) to the FV dimensionality (368 for K = 16 and M = 11), shows

how the GMM and FV layers can efficiently reduce dimensionality. This is important in cases

where the number of data samples is not very large, as is typically the case in the domain of

mental illnesses.

4.2.5 Regression layers

In order to estimate the symptom severity in schizophrenia, we use two Fully Connected (FC)

layers that receive as input the output of the FV layer. The first layer “FC1” is used for
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estimating individual expression-related symptoms, while the second layer “FC2” estimates

the total scale/symptoms score (e.g. CAINS Expression scale). The number of neurons in FC1

is adjusted according to the number of the estimated symptoms in each scale (flat affect, poor

rapport, and lack of spontaneity and flow of conversation symptoms in the case of PANSS and

4 Expression symptoms in the case of CAINS). Two discriminative costs are used for training

the regression layers as shown in Figure 4.1(b); the first for fine-tuning the GMM with the FV

and FC1 layers in an end-to-end fashion, and the second for training the FC2 layer. The mean

square error is used as the discriminative cost function, and is calculated as follows:

Cd(p, t) =
1

V

V∑
v=1

1

W

W∑
w=1

(pvw − tvw)2, (4.11)

where V denotes the total number of videos/patients in our training set, W is the number of

symptoms estimated, and p and t represent the model’s estimated symptom and the ground-

truth value, respectively. The activation function used in FC1 and FC2 is the Rectified Linear

Unit function. As the symptoms of schizophrenia have integer-based scores, the final outputs

are rounded to the nearest integer during testing.

Number of trainable parameters in SchiNet. The GMM layer consists of K Gaussian

distributions, and each distribution k has 3 trainable parameters wk, µk and Σk, where wk is

a scalar, µk is a M -dimensional vector, and Σk is a diagonal matrix containing M trainable

parameters (M is the number of detected AUs). The first regression layer (FC1) has Q ×W

dimensional weight matrix and a W -dimensional bias vector, where Q is the dimensionality

of the FV representation and W is the number of estimated symptoms. The second regression

layer (FC2) hasW - and 1- dimensional weight and bias vectors, respectively. The total number

of trainable parameters in SchiNet is K(2M + 1) +W (K(2M + 1) + 1) + (W + 1). As an

example, a network with K = 16, M = 11 and W = 4, has only 1849 trainable parameters.

4.3 Experiments and results

In this section, we first measure the correlations between facial expressions and different

symptoms of schizophrenia. Then, we report the performance of the proposed SchiNet in
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estimating symptom severity and compare it to other works in the literature.

4.3.1 Statistical analysis

The goal in this section is to calculate and examine how well a very simple feature extracted

for each of the automatically detected AUs, namely, the frequency of the occurrence of the

AU in question, correlate with the different symptom scales of schizophrenia. We show that

for several symptoms, high and significant correlations with AUs are observed.

Symptom scales. In the NESS dataset that we use, the severity of symptoms of schizo-

phrenia is assessed by two observer-rated scales, PANSS [75], and CAINS [61]. PANSS

consists of a total of 30 symptoms divided into 3 scales: Negative (NEG), Positive (POS)

and General Psychopathology (GEN). Out of the 30 symptoms, 7 are grouped to form the

NEG scale, 7 form the POS scale, and the remaining 16 symptoms form the GEN scale. Each

symptom in the PANSS is rated between 1 (absent) and 7 (extreme). On the other hand,

CAINS consists of 13 symptoms, divided into 2 scales: Motivation and Pleasure (MAP), and

Expression (EXP). MAP has 9 symptoms and EXP has 4 symptoms. Each symptom in the

CAINS has a value between 0 and 4 (0=no impairment and 4=severe impairment). In PANSS,

the total NEG, POS and GEN scores are the summation of the scores of the NEG, POS, and

GEN symptoms, respectively. In CAINS, the total EXP score is the summation of the scores

of the 4 EXP symptoms. More details on the PANSS and CAINS scales can be found in

Appendix A.

Calculating correlations. We use the Spearmans’s correlation for measuring the associ-

ation between the ground-truth symptom levels and the activation frequency of each AU. In

order to calculate the frequency, first we get a binary vector for each video frame, represent-

ing the presence or absence of each of the M expressions, and then compute the activation

frequency as follows:

fi =
Ni

Ntotal
, i ∈ {1, 2, ...,M}, (4.12)

where Ni is the number of frames for which AU i is activated and Ntotal is the total number
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of video frames with a successful face detection. Note that the number of detected AUs M is

18 for the first AUs detection architecture (in Section 3.1), and 11 for the second architecture

(in Section 3.2).

The faces of some patients are occluded by a wearable item (e.g. thick eyeglasses) – this

sometimes results in the related AU being wrongly detected. In order to avoid these false

detections, only frequencies that fall in the range of −1.5σi ≤ fi ≤ 1.5σi are considered,

where σi is the standard deviation over the frequencies of AU i in the NESS dataset. Note that

this step is applied only during statistical analysis and is replaced by the normalization step

during symptom estimation.

Results. In our analysis, we measure all the possible correlations between the PANSS/CAINS

symptoms and the detected AUs – however, we report only the significant correlations found,

and discard the weak and insignificant ones, in order to have compact and focused tables

of results. Table 4.3 and 4.4 show the significant correlations found between some CAINS

and PANSS symptoms on the one hand, and AUs detected by the method in Section 3.1 (the

one trained in controlled settings) on the other hand. In CAINS (Table 4.3), significant as-

sociations are found between mouth opening AUs (AU25 and AU26), which are commonly

activated during patients’ speech, and symptoms like quantity of speech and vocal expression.

Also, a significant correlation is found between AU26 and the facial expression symptom.

Furthermore, significant correlations are found between AUs and the total score of the CAINS

and PANSS scales. For instance, brow lowerer (AU4) has significant associations with the

CAINS-EXP and PANSS-GEN total scores.

Table 4.5 and 4.6 show the significant correlations found between AUs detected by the

method in Section 3.2 (the one trained in the wild) on the one hand, and some symptoms

in both of the CAINS and PANSS scales on the other hand. In CAINS (Table 4.5), signi-

ficant associations are found between lips part (AU25), commonly activated during speech,

and symptoms like quantity of speech, vocal expression, and facial expression. Similarly,

in PANSS (Table 4.6), higher levels of symptoms like lack of spontaneity and flow of con-
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Table 4.3: Correlations found between the CAINS symptoms and AUs detected by the method
trained in controlled settings.

Symptoms

Facial
Expressions

A
U

4
–

B
ro

w
L

ow
er

er

A
U

15
–

L
ip

C
or

ne
r

D
ep

re
ss

or

A
U

25
–

L
ip

s
Pa

rt

A
U

26
–

Ja
w

D
ro

p

EXP - Facial Expression - - - −0.34∗
EXP - Vocal Expression −0.36∗ - - −0.32∗

EXP - Quantity of Speech - - −0.33∗ -
MAP - Motivation for Close Family Relationships - −0.34∗ - -

EXP - Total Score −0.35∗ - - -
∗ indicates p 6 0.01

Table 4.4: Correlations found between the PANSS symptoms and AUs detected by the method
trained in controlled settings.

Symptoms

Facial
Expressions

A
U

4
–

B
ro

w
L

ow
er

er

A
U

26
–

Ja
w

D
ro

p

A
U

45
–

B
lin

k
GEN - Motor Retardation - - −0.34∗

GEN - Unusual thought content - 0.35∗ -
GEN - Total Score 0.34∗ - -

∗ indicates p 6 0.01

versation, poor rapport, and flat affect are associated with lower frequencies of the lips part.

Moreover, symptoms related to the impairment in social interaction (e.g. poor rapport, flat af-

fect, facial expression) are found to be correlated to smile and smile-related behaviour (cheek

raiser). Finally, correlations are also found between AUs and the total score of the CAINS and

PANSS scales. For instance, CAINS-EXP scale has significant associations with many AUs

e.g. neutral expression, cheek raiser and lips part.

The two AUs detection architectures have different preprocessing steps, resulting in differ-

ent number of patients being processed (74 for the first architecture and 91 for the second) –

subsequently, the correlations obtained by the two architectures are not directly comparable.

Moreover, the two architectures perform differently in AUs detection, that is, the first method

can detect AUs at different levels of intensity, but it is working mainly on frontal or near-frontal
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4.3. Experiments and results

Table 4.5: Correlations found between the CAINS symptoms and AUs detected by the method
trained in the wild.
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EXP - Facial Expression 0.45∗∗ −0.43∗∗ - −0.4∗∗ −0.33∗ −0.42∗∗ -
EXP - Vocal Expression 0.35∗∗ −0.38∗∗ −0.34∗ - −0.41∗∗ - -

EXP - Expressive Gestures - −0.32∗ - - −0.43∗∗ - -
EXP - Quantity of Speech 0.38∗∗ - - - −0.41∗∗ - -

MAP - Motivation for Recreational Activities - - - - - - −0.47∗∗

MAP - Frequency of Pleasurable Recreational
Activities - Past Week - - - - - - −0.35∗∗

EXP - Total Score 0.42∗∗ −0.41∗∗ - - −0.46∗∗ −0.29∗ -
∗∗ indicates p 6 0.001, ∗ indicates p 6 0.01

Table 4.6: Correlations found between the PANSS symptoms and AUs detected by the method
trained in the wild.
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NEG - Flat Affect 0.28∗ - - −0.33∗∗ - −0.37∗∗ −0.29∗
NEG - Poor Rapport - - - −0.36∗∗ - −0.34∗ −0.28∗

NEG - Lack of Spontaneity and Flow of
Conversation 0.32∗ - - - - −0.31∗ -

POS - Suspiciousness/Persecution - - 0.36∗∗ - - - -
GEN - Somatic Concern - 0.29∗ - - 0.33∗ - -

GEN - Anxiety - - 0.29∗ - - - -
NEG - Total Score - - - - - −0.30∗ −0.30∗
POS - Total Score - 0.31∗ 0.30∗ - - 0.29∗ -
GEN - Total Score - - - - 0.37∗∗ - -

∗∗ indicates p 6 0.001, ∗ indicates p 6 0.01

faces and in controlled settings, while the second method detects only moderate/intense AUs,

but at different head poses and recording conditions – this affects the correlation values ob-

tained by the two architectures. However, we still can see similarities in the correlations, e.g.

the correlations found between the mouth opening AUs (AU25 and AU26), and some CAINS

symptoms like quantity of speech, vocal expression, and facial expression. In general, facial

expression analysis in the wild leads to more patients being analyzed in the NESS dataset,

and more significant correlations compared to the analysis in controlled settings. In the next
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section, we will show how each architecture affects the performance of the symptom severity

estimation in schizophrenia.

We compare the correlations found in Table 4.5 and 4.6 to the ones reported in the literat-

ure, and specifically to the works that used automatic facial expression analysis in studying

schizophrenia like [57, 135]. In [57], Hamm et al. compared patients with schizophrenia to

healthy controls in terms of the temporal profiles of different AUs. [57] found that controls

show more cheek raiser (AU6), lid tightener (AU7), and lip corner puller (AU12) than pa-

tients – this intersects with our findings, that is, we found that the frequencies of these AUs

decrease with higher levels of symptoms like facial expression, vocal expression, or/and flat

affect. Moreover, Tron et al. in [135] compared patients with severe negative symptoms to

healthy controls in terms of the mean activity of several AUs. [135] found significant differ-

ence in smile activity between patients and controls (patients show less smiles). Similarly, we

found that increased negative symptoms like flat affect, and PANSS-NEG and CAINS-EXP

total scores are associated with decreases in the smiling behaviour. A similar finding was

found for the lips part (AU25) behaviour (named lips up in [135]). On the other hand, [135]

found significant difference in the frown (AU4) activity between patients and controls, while

no association was found in our work. Also, our work found that patients with high severity

show less cheek raiser (AU6) than those with low severity, while the opposite was found in

[135] – these differences need further investigation in future studies.

The correlations found in Table 4.5 and 4.6 are also compared to those found in other works

in psychiatry like [10, 21, 40, 133, 147]. In psychiatry, patients’ non-verbal behaviour was

manually annotated in terms of ECSI [132]. Annotated ECSI items are then grouped into 8 be-

haviour categories; affiliative, submission, prosocial, flight, assertion, gesture, displacement,

and relaxation. Then, the correlations between these categories and the PANSS/CAINS sub-

scales were measured. Each behaviour category includes facial expressions as well as head and

body gestures. Here, we compare the categorical correlations found in psychiatry to the cor-

relations of the category-related expressions found in our work. Although, the correlations are
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4.3. Experiments and results

not directly comparable, we still can see some similarities. For instance, in [10, 133, 147] the

prosocial category was negatively associated with the CAINS-EXP/PANSS-NEG total score,

and similarly in our work the smiling behaviour, which is one of the prosocial behaviour, was

negatively associated with the CAINS-EXP and PANSS-NEG scores. Also, our work and

[147] found no association between the assertion category or the frown (an assertion-related

expression), and the CAINS/PANSS subscales. Furthermore, [10] found that the affiliative

category is positively correlated to the positive symptoms, and similarly our work found that

AU1 and AU2 (affiliative-related expressions) are positively correlated to the PANSS-POS

total score.

On the other hand, we can see differences between the correlations found in our work and

other works in psychiatry. For instance, [40, 147] found no correlation between the relaxation

category and the CAINS/PANSS subscales, while in our work a significant correlation was

found between the neutral expression (a relaxation-related expression) and the CAINS-EXP

total score. A possible reason is that [40, 147] used a scoring system that annotates behaviour

present more than once in a segment of 30 seconds with the same score – this cannot capture

the variance in activity for frequent behaviour like neutral expression. Moreover, [21, 40, 147]

found significant correlation between the flight category and the CAINS-EXP and PANSS-

NEG total scores, however, no correlation was found in our work between the closure of eyes

(a flight-related expression) and the CAINS-EXP/PANSS-NEG subscales – these differences

in correlations need further investigation.

We have explored in our work how some AUs (that are not part of ECSI) like AU5, AU6,

AU7 and AU25, correlate to symptoms of schizophrenia. AU6, AU7 and AU25 showed signi-

ficant correlations with many symptoms in the PANSS and CAINS scales, while AU5 showed

no correlations. Hence, we encourage researchers to include AU6, AU7 and AU25 in their

behaviour analysis.
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4.3.2 Symptom severity estimation

Among the different types of symptoms of schizophrenia, negative symptoms are particularly

difficult to assess and quantify. The assessment requires the quantification of observed verbal

and especially non-verbal behaviour so that ratings commonly involve a large degree of sub-

jectivity. Thus, an objective method for assessing these symptoms would be an important

achievement. It is being debated as to what extent negative symptoms do or do not change

in treatment interventions [112], and measures that are obtained in an automatic way may es-

tablish symptoms with higher accuracy and reliability and therefore help to clarify whether

changes do or do not occur. Motivated by that, we focus in this chapter on assessing the

highly correlated negative symptoms in both the CAINS and PANSS interviews through the

automatic analysis of the video interviews.

Training settings. For CAINS, the GMM and FV layers are trained firstly end-to-end with

the FC1 layer for estimating the 4 EXP symptoms. Then, the GMM and FC1 parameters

are kept fixed and the FC2 layer is trained on estimating the total EXP score. Similarly, the

three highly correlated NEG symptoms in PANSS, namely flat affect, poor rapport, and lack

of spontaneity and flow of conversation, are estimated at the FC1 layer, and the total NEG

score is estimated at the FC2 layer. Note that the number of neurons in FC1 layer is equal to

the estimated symptoms at each scale.

We use the Theano/Lasagne framework [127, 39] for implementing the GMM, FV, and FC

layers. The number of GMM components (K) is set to 16. Following [111], we use variance

flooring to avoid instability in the calculations – the minimum variance allowed is 0.001.

Moreover, whenever the posterior is below a threshold of 10−4 it is set to zero – this leads to

a sparser FV. The GMM-FV-FC1 layers are trained using Stochastic Gradient Descent (SGD)

with momentum m = 0.9 and learning rate lr = 0.005 for CAINS and 0.001 for PANSS.

The FC2 layer is trained also using SGD with m = 0.9 and lr = 0.01. Finally, in the case of

the CAINS scale, a scaling factor is learned for the training set and applied at testing, so as to

scale the output values in the range between the minimum (0) and the maximum (4) values.
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Leave-one-subject-out is used for validating and testing our architecture.

Performance measures. Three measures are used for reporting the performance of the

symptom severity estimation using as ground truth the psychiatrists’ assessments. Following

[135, 137], we use the Pearson’s Correlation Coefficient (PCC) and, in addition to it, we report

the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The former (i.e.

the MAE) is less sensitive to outliers, while the latter (i.e. the RMSE) emphasizes more on

larger differences.

Effect of the AUs detection architecture. In this experiment we evaluate how the two pro-

posed architectures for AUs detection (described in Chapter 3) perform on symptom severity

estimation. For the first method (in Section 3.1), we use the “Full” architecture consisting of 8

neural networks for analyzing facial expressions of the patients. This method uses two output

neurons to predict, respectively, the presence and absence of each expression/AU – during

testing the one with the highest probability is selected. Here, in order to get an expression

probability between 0-1, the presence-probability is divided by the sum of both the presence-

and absence-probabilities. 18 AUs are detected by the first method, while 11 by the second

method. For both methods, the mean over each AU is subtracted (normalization step), and

then the AUs probabilities are used as input to the GMM layer.

As the number of patients and AUs analysed by the two architectures vary, only the ones

that are common in both methods are used in the comparison. Based on that, 69 patients and

8 common AUs (shown in Table 3.9) are selected for symptom estimation. The number of

GMM components is set to 12 in this case, as fewer patients and AUs are analysed. Table

4.7 and 4.8 show the estimation results of the CAINS and PANSS symptoms, respectively,

using both architectures, the one working in controlled settings (i.e. the first method) and

the other working in the wild (i.e. the second method). From the comparison, we can see

that the method trained in the wild leads to better symptom estimation in all the estimated

symptoms. This illustrates the positive impact of training the AUs detection architecture using

data captured in the wild. In addition, the second method leads to more significant correlations
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Table 4.7: Comparison between the two proposed AUs detection methods on estimating
CAINS-EXP symptoms.

First method (Full) Second method
PCC MAE RMSE PCC MAE RMSE

EXP - Facial Expression 0.37 0.80 1.07 0.42 0.74 0.99
EXP - Vocal Expression 0.25 0.93 1.22 0.30 0.75 1.13

EXP - Expressive Gestures 0.04 1.07 1.37 0.34 0.99 1.19
EXP - Quantity of Speech 0.42 1.07 1.37 0.39 0.91 1.22

EXP - Total Score 0.29 3.06 3.80 0.42 2.90 3.61

Table 4.8: Comparison between the two proposed AUs detection methods on estimating
PANSS-NEG symptoms.

First method (Full) Second method
PCC MAE RMSE PCC MAE RMSE

NEG - Flat Affect 0.21 0.97 1.31 0.32 0.96 1.27
NEG - Poor Rapport 0.25 0.91 1.22 0.41 0.75 1.13

NEG - Lack of Spontaneity
and Flow of Conversation 0.13 1.28 1.60 0.24 1.28 1.54

NEG - Total Score 0.08 4.00 4.88 0.40 3.35 4.27

and can analyze more patients (91 patients vs 74 patients), compared to the first method.

Comparison to state of the art. In this section we compare the proposed SchiNet with

two other methods that have been proposed in the literature for symptom severity estimation,

namely, Tron et al. [135, 137]. We have re-implemented both methods, and for a fair compar-

ison, the pre- and post-processing steps (e.g. normalization, scaling) applied in the SchiNet,

are also applied to them. In [137], Tron et al. used the “Elbow criterion” for selecting the

best number of clusters – here, we tried different number of clusters in the range of 2-24, and

report the best results (obtained for 12 clusters). Furthermore, since the methods in [135, 137]

estimate specific symptoms of schizophrenia and not the total score, we discard from the com-

parison the total CAINS-EXP and PANSS-NEG scores. In this comparison we use the AUs

probabilities of the 91 patients, that are analyzed by the AUs detection architecture trained in

the wild. Table 4.9 and 4.10 summarize the results. SchiNet outperforms the other methods

in the 3 PANSS-NEG symptoms, and in 3 out of the 4 CAINS-EXP symptoms. The extracted

statistical features using the GMM and FV layers show better performance compared to the

76



4.3. Experiments and results

Table 4.9: Performance of the SchiNet as well as other state-of-the-art methods on the CAINS-
EXP symptoms.

Tron et al. [135] Tron et al. [137] SchiNet
PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE

EXP - Facial Expression 0.37 0.80 1.03 0.36 0.75 1.07 0.46 0.66 0.93
EXP - Vocal Expression 0.23 0.87 1.23 0.26 0.86 1.22 0.27 0.77 1.10

EXP - Expressive Gestures 0.36 0.85 1.19 0.38 0.91 1.22 0.36 0.90 1.15
EXP - Quantity of Speech 0.27 1.09 1.43 0.25 1.02 1.36 0.30 0.98 1.30

EXP - Total Score - - - - - - 0.45 2.67 3.34

Table 4.10: Performance of the SchiNet as well as other state-of-the-art methods on the
PANSS-NEG symptoms.

Tron et al. [135] Tron et al. [137] SchiNet
PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE

NEG - Flat Affect 0.37 0.90 1.28 0.11 0.99 1.36 0.42 0.84 1.18
NEG - Poor Rapport 0.20 0.98 1.31 0.15 1.01 1.26 0.27 0.85 1.20

NEG - Lack of Spontaneity
and Flow of Conversation 0.13 1.37 1.69 0.09 1.32 1.62 0.25 1.25 1.51

NEG - Total Score - - - - - - 0.29 3.30 4.17

hand-crafted features.

For estimating the total PANSS-NEG score, the proposed architecture uses the 3 out of 7

PANSS-NEG symptoms that are highly correlated with AUs, as input to the FC2 layer. In

Table 4.11, we report the estimation results in two additional settings. First, by estimating

directly the total score from the FV representation, that is by using a single fully-connected

layer (FC1) with a single output. Second by estimating the total score from all the PANSS-

NEG symptoms. In this latter setting, we first train the SchiNet on estimating the 7 PANSS-

NEG symptoms at FC1 layer, and then estimating the total score at FC2 layer. In both cases,

the results were worse. In the first case a possible reason is that NEG symptoms have more

significant correlations with AUs than the total NEG score, so estimating symptoms first, helps

a lot in estimating the total score. In the second case a possible reason is that 4 out of the 7

NEG symptoms are not correlated to AUs, making the training of the FC2 layer worse.
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Table 4.11: The severity estimation results of the total PANSS-NEG score, obtained by the
SchiNet in different settings.

Input SchiNet
PCC MAE RMSE

FV representation 0.08 3.35 4.37
FC1 layer with 3 symptoms 0.29 3.30 4.17
FC1 layer with 7 symptoms 0.18 3.37 4.37

4.4 Conclusion

Our work in this chapter aims to develop an architecture that is capable of using quantified

patient behaviour for estimating the severity of different symptoms. To this end, interviews

of symptom assessment recorded at different places in the UK were used in our analysis, in

conditions that are similar to real clinical settings. Two different architectures are used for de-

tecting patients’ facial expressions. Then, the detected expressions are used as input to a neural

network, that extracts compact statistical features and estimates symptoms of schizophrenia.

We estimate expression-related negative symptoms in two different assessment interviews,

PANSS and CAINS.

Our experimental results show many findings. First, we show that the proposed method for

AUs detection in the wild performs better on symptom severity estimation than other method

that was trained using data captured in a controlled environment. This underlines the import-

ance of training with data collected in the wild. Second, significant correlations are found

between symptoms and the frequency of occurrence of automatically detected facial expres-

sions/AUs – this confirms that symptom levels of patients with schizophrenia are expressed in

the degree of their impairments in expression of emotion and social interaction. Third, several

symptoms in the PANSS and CAINS interviews can be estimated with a MAE less than 1

level. All of that leads to a conclusion that quantified patient behaviour with a well-trained

deep architecture can be used for estimating negative symptoms of schizophrenia – the latter

is a challenging task in clinical settings – and may be used as an objective method to establish

changes during treatment.
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Although our architecture shows promising results in symptom estimation, comparing the

correlations between the automatic estimations and professional assessment (reaching at most

to 0.46), to the correlations between assessments of different professionals that have annotated

the NESS dataset [106] (equals to 0.85), shows that automatic estimation of symptom sever-

ity needs further improvement to reach human level performance. In order to improve the

performance of symptom severity estimation, we suggest for future work improving the per-

formance of the AUs detection method, by moving from static to temporal analysis in the wild.

In addition, extending the behaviour analysis to include body gestures and vocal expressions

(besides facial expressions).
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Negative symptoms of schizophrenia include expressive deficits that are marked by a re-

duction in patients’ non-verbal behaviour. Analysing automatically non verbal behaviour, and

in particular facial expressions, and exploiting the results for classifying (patients vs non-

patients) or/and estimating symptom severity has shown promising results in Chapter 4, as

well as in other works in the literature [135, 137]. The proposed methods for symptom estim-

ation could be used for monitoring the changes in patient’s symptom level during treatment

interventions (i.e. the treatment outcome), by estimating the symptom level before and after

Parts of this chapter have been published in [19] and [20].
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treatment, and then comparing the estimated levels. However, they do not perform well be-

cause the change in these symptoms is typically small and falls within their margin of error

[112].

In this chapter we propose two Deep Learning architectures for addressing directly the

problem of treatment outcome estimation in schizophrenia – more specifically, the proposed

methods analyze jointly two videos of the same patient, one before and one after the treat-

ment, and gives as output the treatment outcome, that is a binary label that encodes whether

a symptom has improved or not. In both architectures, the patient’s facial expressions in both

videos are first detected, and then used as input to a deep neural network. To the best of our

knowledge, these are the first works to address directly the problem of treatment outcome

estimation in schizophrenia. The two architectures can be summarized as follows:

• Our first proposed architecture uses stacked Recurrent Neural Networks for learning

local and global differences in patient’s behaviour (facial expressions) before and after

treatment. Specifically, a Gated Recurrent Unit (GRU) is used for learning the local

differences in the patient’s behaviour over short concatenated clips/segments from both

videos. Then, another GRU uses the clip-level features for learning global (i.e. patient-

level) features, and outputs the treatment outcome. This architecture is called “Stacked-

RNNs”. Stacked-RNNs assumes that the patient’s videos are aligned and have equal

length (videos with different lengths are clipped).

• The second architecture, named Temporal Attentive Relation Network (TARN), learns

to align and compare representations (i.e. videos) of variable temporal length. The ar-

chitecture consists of two modules: the embedding module and the relation module. In

the embedding module, a GRU is used to extract short representations/embeddings over

the facial expressions detected in short clips/segments of videos. In the relation module,

a segment-by-segment attention mechanism is used first to align segment embeddings

from the pair of videos (recorded before and after treatment). Then, the aligned seg-

ments are compared. The effect of using different comparator functions is explored.
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Finally, the comparison outputs are aggregated using a deep neural network consist-

ing of two fully-connected layers and an average pooling layer – this network gives as

output the treatment outcome.

The two architectures have two main differences. First, Stacked-RNNs assumes that the pa-

tient’s interviews are aligned and have equal lengths – this requires clipping videos of different

lengths, and losing by that possibly useful information. On the other hand, TARN uses an at-

tention mechanism for aligning and comparing videos of different lengths, avoiding by that

any information loss. Second, TARN is trained in an end-to-end fashion, while Stacked-RNNs

is trained in two steps, and consequently TARN is easier to train and test.

In the two architectures, videos are compared segment-wise for two main reasons. First, de-

composing the video comparison problem into several subproblems (i.e. segment-to-segment

comparison) showed good performance in [20], as this can be considered a way for augment-

ing the data without including additional samples – which helps in improving the training pro-

cess and reducing overfitting. Second, encoding the video using segment-wise representations

benefit the video-to-video comparison [20], compared to using a single video-wise represent-

ation – as video-wise representations can not capture the fine-grained information that exists

in the video.

The architectures are trained in a patient-independent manner on a dataset of 88 patients

with 176 video interviews – two interviews for each patient, one before and one after complet-

ing a 10-week period of treatment. The videos were recorded in uncontrolled conditions and

in settings that are similar to real clinical ones. We estimate the treatment outcome of negat-

ive symptoms from two symptom assessment interviews; Clinical Assessment Interview for

Negative Symptoms (CAINS) [61], and Positive and Negative Syndrome Scale (PANSS) [75].

Experimental results show that the proposed architectures achieve promising results for treat-

ment outcome estimation over the different symptoms.

The rest of this chapter is organized as follows: we describe the first proposed architecture
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(Stacked-RNNs) for treatment outcome estimation in Section 5.1. In Section 5.2, we present

the second proposed architecture (TARN). In Section 5.3, we report the experimental results

for both architectures. Finally, in Section 5.4 we conclude the chapter.

5.1 Stacked RNNs for treatment outcome estimation

In this section we present the first proposed architecture for treatment outcome estimation.

Figure 5.1 shows an overview of the architecture. The architecture takes as input 2 video

interviews of a patient, one recorded before the treatment (video-1) and the other recorded after

(video-2), and outputs the treatment outcome, that is, either improved (i.e. symptom level went

down) or not improved (i.e. symptom level stayed the same or went up). That is, it directly

addresses the problem of treatment outcome estimation, posing it as a binary classification

problem. The architecture consists of 4 stages; preprocessing, automatic facial expression

analysis, feature selection, and sequence learning using Recurrent Neural Networks.

5.1.1 Preprocessing Steps

We first slice the videos into fixed length clips of 15 seconds each. The number of clips is kept

fixed in the videos of the same patient. To deal with a pair of videos with different lengths,

we divide the short video into N clips without overlap or spacing between the clips, and the

long video into N equally-spaced clips, as shown in Figure 5.1. The sliced clips are then

down-sampled by a factor of 3 to reduce the processing time. No difference in performance

is noticed with the down-sampling in our initial experiments. A pair of clips (one from each

video) is then passed to the next processing steps. Note that the number of clips N varies

across the different patients.

For each frame in the paired clips, we detect the patient’s body using [88]. We then ex-

tend the bounding-box of the detected body by a factor of 1.2 to ensure that the whole head

is included, and then within the body region we apply the preprocessing steps of the used

architecture for facial expression analysis (including face detection and scaling).
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5.1. Stacked RNNs for treatment outcome estimation

In some videos, the camera is positioned in such a way that makes the patient’s face hard to

be detected. In those cases, even if the face is detected in some frames, it is hard to be further

analysed in terms of facial expressions. Therefore, we consider only the videos in which we

can successfully detect faces in more than 90% of the frames – this leads to 74 patients out of

88 included in our analysis. Note that video-1 and video-2 of each patient should meet this

condition in order for the patient to be included.

5.1.2 Automatic facial expression analysis

In the second stage of our proposed architecture, we use automatic facial expression analysis

for extracting low-level features from the paired clips. Specifically, we use the AUs detection

architecture trained in the wild (explained in Section 3.2) for analyzing the patients’ facial

expressions. For each frame in the clips, we get an 11-dimensional feature vector, 10 dimen-

sions corresponding to the probabilities of the presence of 10 AUs and one corresponding

to the probability of the presence of a smile [68]. Note that in this chapter we only use the

AUs detection architecture trained in the wild as it has shown better performance on symp-

tom severity estimation compared to the other architecture trained in controlled settings, in

Chapter 4.

Finally, in order to reduce the effect of camera viewpoints, illuminations levels, or/and

occlusions by wearable items (e.g. sunglasses), for each video, the mean over each AU is

calculated and subtracted from the AUs probabilities in the whole video (normalisation step).

The normalised probabilities from video-1 and video-2 are concatenated at each time step and

used as input to the next stage.

5.1.3 Feature selection

As the dimensionality of the features (AUs) is doubled by concatenation, and as a relatively

small number of patients are available for training – feature selection is a crucial processing

step in our architecture. Sequential forward feature selection is used for selecting the most rel-

evant AUs to the estimated symptoms. The criterion for selecting features is the classification
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5.1. Stacked RNNs for treatment outcome estimation

performance on the validation set. The selected AUs from video-1 and video-2 are concaten-

ated and used as input to the Recurrent Neural Networks (RNNs). Note that the same AUs are

selected in both videos.

5.1.4 Sequence learning using stacked RNNs

RNNs is a class of Deep Neural Networks that is used for learning sequential information. Two

popular models of RNNs are Long Short-Term Memory (LSTM) [60] and Gated Recurrent

Unit (GRU) [26]. These models can learn long temporal dependencies without having the

vanishing and the exploding gradient problem, through using gates with learnable parameters

to control the information flow between time steps. In our architecture, we adopt a GRU to

learn the temporal dynamics of the patients’ facial expressions, as it has fewer parameters and

generalises better on small datasets, in comparison to LSTM.

Our architecture consists of two stacked GRUs (GRU-1, GRU-2), shown in Figure 5.1, and

takes as input pairs of sequences of facial expressions and outputs a soft decision, correspond-

ing to whether the facial expressions in the second sequence (video-2) indicate an improve-

ment in the symptoms in comparison to the first (video-1). That is, it treats the treatment

outcome estimation as a binary classification problem using RNNs.

The first network (GRU-1) is used as a local (clip-level) feature extractor in our architecture.

More specifically, GRU-1 is trained using the selected AUs probabilities in the pairs of clips

for clip-level treatment outcome estimation. During training, GRU-1 is supervised by the

patient treatment outcome (improved or not-improved). GRU-1 consists of a GRU layer with

16 hidden units, and a fully-connected layer with a single sigmoid unit for classification.

The second network (GRU-2) is used as a global feature extractor. In particular, GRU-2

uses clip-level features/estimations for learning global (i.e. patient-level) features, and outputs

a soft binary label corresponding to the treatment outcome. GRU-2 consists of a GRU layer

with 2 hidden units, and a sigmoid classification layer.
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5.2. TARN: Temporal attentive relation network for treatment outcome estimation

5.2 TARN: Temporal attentive relation network for treatment

outcome estimation

In this section we introduce a novel deep architecture, named Temporal Attentive Relation

Network (TARN) for the problem of treatment outcome estimation. Figure 5.2 shows an

overview of the network. TARN takes as input two video interviews recorded for a patient

before and after treatment (video-1, video-2), and gives as output a binary score representing

if the patient got improved by the given treatment or not. TARN learns to align and compare

representations (i.e. two videos) of variable temporal length. TARN consists of two modules:

the embedding module and the relation module. These modules are explained in detail in the

following subsections.

5.2.1 Embedding module

The patients’ videos are sliced into fixed length segments of 15 seconds each, with no overlap

or spacing between the segments, as shown in Figure 5.2. In this case, videos of the same

patient might have different number of segments. The rest of the preprocessing steps remains

the same as the ones explained in Section 5.1.1. The video segments are then fed to the AUs

detection architecture trained in the wild. For each frame, we get 11-dimensional feature

vector representing the probabilities of 11 AUs. The AUs detection architecture acts as a

low-level feature extractor in the embedding module.

Then, a uni-directional GRU of size 4 uses the low-level features for learning high-level

ones. Specifically, the GRU summarizes the AUs probabilities in the short video segments,

and gives as output at the last time step of each segment, a short representation/embedding.

5.2.2 Relation module

In order to compare video-1 and video-2, we first align their segments by using a segment-by-

segment attention layer. The attention layer maps the video-2 embeddings to have the same

number of segment-embeddings as video-1. Second, each segment in video-1 is compared to
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5.2. TARN: Temporal attentive relation network for treatment outcome estimation

the corresponding aligned segment in video-2. Third, the comparison outputs are aggregated

by a deep neural network – this network learns a deep metric for video comparison, and gives

at its output a relation score representing the treatment outcome.

Segment-by-segment attention. Several recent works in text sequence matching and tex-

tual entailment used an attention mechanism, named word-by-word attention, to align the

words of two given sentences [12, 104, 109, 144]. Similarly, as shown in the correspond-

ing block of Figure 5.2, we adopt the word-by-word attention in our architecture to align the

video-1 and video-2 segment-embeddings (i.e. segment-by-segment attention). Let us con-

sider a video S ∈ RN×d recorded before treatment, and a video Q ∈ RM×d recorded after

treatment, where each row in S and Q represents a segment-embedding vector of dimension

d, and where N and M denote the number of segments in videos S and Q respectively. The

segment-by-segment attention is calculated as follows:

A = softmax((SW + b⊗ eN )QT ), (5.1)

H = ATS, (5.2)

where W ∈ Rd×d and b ∈ Rd are parameters to be learned, and the operator “⊗eN” repeats

the bias vector b, N times to form a matrix of dimension N × d. A ∈ RN×M is the attention

weight matrix andH ∈ RM×d is the aligned version ofS. Each row vector inH is a weighted

sum of the S segment-embeddings, and represents the parts of S that are most similar to the

corresponding row vector (segment-embedding) of Q. The row vectors of Q and H are used

as inputs to a comparison layer.

Deep metric learning. The relation module performs deep metric learning by using a

comparison layer and a non-linear classifier on the top of it. The comparison layer calculates

a distance/similarity measure between each of the M segments (row vectors) of Q ∈ RM×d

and H ∈ RM×d. This measure, as described in [144], can be based on one of the following

operations: multiplication (Mult), subtraction (Subt), neural network (NN), subtraction and

multiplication followed by a neural network (SubMultNN), or Euclidean distance and cosine
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5.3. Experiments and results

similarity (EucCos). In addition to the previous measures, we also explore the effect of using

the simple concatenation (Conc) process, that is used in the Stacked-RNNs architecture. Since

the measure is estimated at each of theM pairs of segments, the output of this layer has alsoM

dimensions. This layer acts as an intermediate stage that produces low-level representations

of the comparisons between the video-1 and video-2 segments.

Unlike other works that used a linear classifier or a fixed metric to compare different data

samples [77, 117], we follow [124] and use a neural network for deep metric learning. That

is, the outputs of the comparison layer are passed to the neural network for learning a global

deep metric over the entire videos. We use two Fully-Connected (FC) layers and an average

pooling layer for aggregating the comparison outputs. The pooling layer gives as output the

final relation score, corresponding to whether the facial expressions in video-2 indicate an

improvement in the symptoms in comparison to video-1. The two FC layers are of size four

and one.

The TARN architecture (excluding the AUs detection architecture) is trained in an end-to-

end fashion. The binary cross-entropy is used as the cost function, and is calculated as follows:

L(t, q) = − 1

B

B∑
b=1

(tb log qb + (1− tb) log(1− qb)), (5.3)

where B denotes the batch size, t the target treatment outcome, and q the predicted treatment

outcome.

5.3 Experiments and results

5.3.1 The data of schizophrenia

In this work we use recordings and symptom annotations from the “NESS” trial [106], that was

collected for evaluating body psychotherapy as a treatment for negative symptoms of schizo-

phrenia. We choose the NESS trial for our analysis as it was recorded in realistic conditions

and in settings that are similar to the ones found in clinics and hospitals. In total 275 parti-
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5.3. Experiments and results

cipants were included in the NESS trial. All participants were diagnosed with schizophrenia,

and had a total negative symptoms score ≥ 18 on the PANSS scale. The participants were as-

sessed 3 times during the NESS trial; before starting the treatment (baseline), after completing

a 10-week treatment (end of treatment), and 6 months after the end of the treatment (6 months

follow-up). Several scales were used for measuring the outcome of the treatment such as

PANSS [75] including negative, positive and general psychopathology symptoms, and CAINS

[61] including experience-related and expression symptoms. Researchers/psychologists con-

ducted the assessment interviews in a structured way that is similar to real life clinical settings.

The participants were video-recorded during the PANSS and CAINS assessment. The

NESS trial contains recordings for 110 patients at baseline, 93 patients at end of treatment,

and 69 patients at 6 months follow-up – as not all of the patients accepted to be recorded at

all sessions. In order to build a dataset for the problem of treatment outcome estimation, we

select the patients who have been recorded at two out of the three sessions – this leads to a

dataset of 88 patients, where each patient has two videos (commonly one at baseline and the

other at the end of the treatment). Out of the 88, we considered only 74 patients for whom

we can successfully detect faces in more than 90% of the frames of their videos. Most of the

videos were recorded at a frame rate of 25 f/s and a resolution of 1920×1080. The average

length of all the videos in our dataset is 42 minutes. More information about the NESS trial

can be found in [106].

Each of the 74 patients has two symptom severity scores, one is given before treatment,

while the other after treatment. The patient is considered improved by the given treatment

if the symptom score after the treatment is less than the score before the treatment (i.e. the

symptom level went down), and not improved if the symptom score after the treatment is

more than or equal to the score before the treatment (i.e. the symptom level stayed the same

or went up). Subsequently, the treatment outcome in our analysis is given a binary label,

either “1” to represent symptom improvement or “0” to represent no symptom improvement.

The distribution of the treatment outcome labels for the expression-related symptoms in the
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5.3. Experiments and results

Table 5.1: The distribution of the treatment outcome labels for the CAINS-EXP symptoms.

CAINS Symptoms

Labels
Not improved Improved

EXP - Facial Expression 46 28
EXP - Vocal Expression 46 28

EXP - Expressive Gestures 50 24
EXP - Quantity of Speech 48 26

Table 5.2: The distribution of the treatment outcome labels for the expression-related PANSS-
NEG symptoms.

PANSS Symptoms

Labels
Not improved Improved

NEG - Flat Affect 45 29
NEG - Poor Rapport 47 27

NEG - Lack of Spontaneity
and Flow of Conversation 47 27

PANSS and CAINS scales, is shown in Table 5.1 and 5.2, respectively.

5.3.2 Training settings

We use 74 pairs of video interviews (one for each of the 74 patients) for training and testing

our architectures using a Leave-One-Subject-Out (LOSO) protocol. More specifically, for

each fold in LOSO, 67 patients are used for training, 6 patients for validation, and 1 patient

for testing. We augment the dataset with extra samples by considering each pair of videos in

the training, validation and testing sets as two data samples. Specifically, we change the order

of each pair of video-1 and video-2, and the ground truth label accordingly to get an extra data

sample.

We train the proposed architectures for estimating the change in negative symptoms, es-

pecially symptoms annotated based on patients’ non-verbal behaviour during symptom as-

sessment interviews. In particular, 4 expression symptoms (i.e. the Expression scale) in the

CAINS interview [61], and 3 symptoms (flat affect, poor rapport, lack of spontaneity and flow

of conversation) in the PANSS interview [75], are estimated. Note that a separate network is

trained for each symptom.
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5.3. Experiments and results

The Stacked-RNNs architecture is trained in two steps. First, pairs of sliced clips parti-

tioned from all patients’ videos are used for training GRU-1. The output of GRU-1, that is

the clip-level estimations, are then used to train GRU-2. We use the binary cross-entropy

classification cost for both networks. We train the GRUs using stochastic gradient descent

with adaptive learning rate (RMSprop [129]), with a decay coefficient set to 0.7, and gradient

clipping to 100. The initial learning rate is set to 0.005 for GRU-1, and 0.01 for GRU-2. The

batch size is set to 256 sequences for GRU-1 and the training set size (i.e. 67×2=134 batches)

for GRU-2.

The TARN architecture is trained in an end-to-end fashion. Adam optimizer [76] with an

initial learning rate set to 0.01 and gradient clipping to 1 is used in the training. The batch

size is set to half the training set size (i.e. 67 video pairs). Dropout [120] with a probability

of 0.2 is used for regularization. Finally, we use the Theano/Lasagne framework [127, 39] for

implementing the Stacked-RNNs architecture, while the PyTorch library for implementing the

TARN architecture (as Theano recently become outdated).

5.3.3 Results

Performance Measures. We choose the accuracy and F1-score of both classes to evaluate

the performance of the proposed architectures. Accuracy is a widely-used measure in classi-

fication problems. However, it could not reflect well the performance over the minority class

when the data is highly imbalanced. In our case, the ratio of the negative to positive examples

over the different symptoms is roughly 2:1. Hence, we report both the accuracy and F1-score.

We use F1P to refer to the F1-score of the positive class, and F1N to the F1-score of the

negative class.

TARN ablation studies. In our first experiment, we investigate the impact of the various

functions that can be used as a distance/similarity measure in the TARN comparison layer,

on the treatment outcome estimation performance. Specifically, we compare the five different

distance measures (Mult, Subt, NN, SubMultNN, EucCos) mentioned in [144], in addition
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5.3. Experiments and results

Table 5.3: Performance of the TARN architecture when using different similarity/distance
measures in the comparison layer.

Symptom Facial Vocal Expressive Quantity of Average over
Expression Expression Gestures Speech all symptoms

F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc
Conc 0.37 0.75 0.64 0.40 0.67 0.57 0.43 0.73 0.63 0.43 0.73 0.63 0.41 0.72 0.62
NN 0.46 0.71 0.62 0.29 0.75 0.63 0.36 0.75 0.64 0.47 0.62 0.56 0.40 0.71 0.61

Subt 0.42 0.73 0.63 0.33 0.64 0.53 0.37 0.70 0.59 0.42 0.78 0.68 0.39 0.71 0.61
Mult 0.39 0.76 0.66 0.29 0.73 0.61 0.42 0.76 0.66 0.41 0.78 0.68 0.38 0.76 0.65

SubMultNN 0.41 0.74 0.64 0.26 0.74 0.62 0.34 0.77 0.66 0.37 0.80 0.70 0.35 0.76 0.66
EucCos 0.48 0.73 0.64 0.50 0.71 0.63 0.24 0.81 0.70 0.44 0.78 0.68 0.42 0.76 0.66

to the concatenation (Conc) process used in the Stacked-RNNs architecture. As an illustrat-

ive case we show the TARN performance on the CAINS expression symptoms. Table 5.3

shows the results obtained by the TARN model over the different measures. The performance

varies over the different measures. On average over the 4 CAINS-EXP symptoms, the Euc-

Cos measure leads to the best performance. Another measure that shows good performance

is Mult. Although, EucCos and Mult are fixed measures with no learnable parameters, the

following layers in the relation module are trainable and non-linear.

In the next experiment, we investigate the benefits of using segment-by-segment attention,

and the entire videos (i.e. without clipping to make the videos have equal length) in our

TARN architecture. To do so, we first compare the TARN model to another model that has

no attention layer. The attention layer transforms the representations of one video to have the

same number of representations as the other video. Subsequently, when the attention layer is

not used, we use the video segmentation method applied in the Stacked-RNNs architecture,

in order to pass a pair of videos with equal number of embeddings to the comparison layer.

Second, we show how the TARN architecture with the attention layer performs when we use

as input clipped videos with equal number of segments, instead of the entire videos. Third, we

show how the TARN architecture performs when both the attention mechanism and the entire

videos are used. In the three experiments, we use the EucCos measure in the comparison layer.

Table 5.4 shows the results obtained by the TARN architecture on treatment outcome es-

timation of the CAINS symptoms, using the different settings. By comparing the first and
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Table 5.4: Performance of the TARN architecture at different settings.

Symptom Facial Vocal Expressive Quantity of Average over
Expression Expression Gestures Speech all symptoms

F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc
TARN (No attention,

Clipped videos) 0.30 0.72 0.60 0.36 0.72 0.61 0.25 0.80 0.68 0.34 0.79 0.68 0.31 0.76 0.64
TARN (Attention,
Clipped videos) 0.40 0.70 0.60 0.41 0.76 0.66 0.26 0.81 0.70 0.34 0.79 0.68 0.35 0.77 0.66

TARN (Attention,
Entire videos) 0.48 0.73 0.64 0.50 0.71 0.63 0.24 0.81 0.70 0.44 0.78 0.68 0.42 0.76 0.66

second rows in Table 5.4, we can see that on average over the 4 CAINS-EXP symptoms,

using attention improves the performance of the TARN architecture. Note that no difference

in performance is observed for the quantity of speech symptom. A possible reason for that is

that assessment interviews include asking the patients different questions throughout the inter-

views, and subsequently the amount of patients’ speech is something that can be learned from

the different video segments without alignment. Finally, by comparing the second and third

rows, we can see that on average over the 4 CAINS-EXP symptoms, using the entire videos

leads to a big improvement in the F1P score, at almost the same accuracy and F1N scores.

Using the entire videos avoids losing any information from the videos, in addition it leads to

more comparisons, which helps in improving the training process and reducing overfitting.

Symptom Severity Estimation (SSE). In order to test how SSE methods perform on treat-

ment outcome estimation, these methods are applied for estimating the symptom severity be-

fore and after treatment independently, and then the results are compared so as to reach a

conclusion on the treatment outcome. We report on three methods that have been used for

SSE in schizophrenia, namely [135], [137], and SchiNet (proposed in Chapter 4). For a fair

comparison, we have re-implemented [135], [137], and re-trained all methods using the 74

patients. We used the probabilities of the 11 detected AUs in the training and the LOSO pro-

tocol for training/testing. For each fold, we used 73 patients (146 videos) for training, and 1

patient (2 videos) for testing. For [137] and SchiNet, we tried different number of clusters or

Gaussian components, and report the results of the best performing ones (12 clusters for [137]

and 32 Gaussian components for SchiNet).
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5.3. Experiments and results

Table 5.5: Performance of the proposed architectures as well as other SSE methods on TOE
for the CAINS expression symptoms.

Symptom Facial Vocal Expressive Quantity of Average over
Expression Expression Gestures Speech all symptoms

F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc
Chance level 0.36 0.59 0.50 0.38 0.58 0.50 0.34 0.60 0.50 0.38 0.58 0.50 0.37 0.59 0.50

Tron et al. [135] 0.18 0.75 0.62 0.27 0.72 0.59 0.29 0.73 0.61 0.21 0.73 0.60 0.24 0.74 0.61
Tron et al. [137] 0.14 0.80 0.67 0.31 0.77 0.66 0.22 0.79 0.67 0.07 0.76 0.62 0.19 0.78 0.66

SchiNet 0.20 0.75 0.62 0.24 0.76 0.63 0.35 0.76 0.65 0.27 0.76 0.64 0.27 0.76 0.64
Stacked-RNNs 0.42 0.76 0.66 0.43 0.74 0.64 0.37 0.80 0.70 0.33 0.79 0.68 0.39 0.77 0.67

TARN-Mult 0.39 0.76 0.66 0.29 0.73 0.61 0.42 0.76 0.66 0.41 0.78 0.68 0.38 0.76 0.65
TARN-EucCos 0.48 0.73 0.64 0.50 0.71 0.63 0.24 0.81 0.70 0.44 0.78 0.68 0.42 0.76 0.66

Table 5.6: Performance of the proposed architectures as well as other SSE methods on TOE
for the PANSS negative symptoms.

Symptom Flat Poor Lack of Average over
Affect Rapport Spontaneity all symptoms

F1P F1N Acc F1P F1N Acc F1P F1N Acc F1P F1N Acc
Chance level 0.39 0.58 0.50 0.33 0.60 0.50 0.36 0.59 0.50 0.36 0.59 0.50

Tron et al. [135] 0.35 0.73 0.62 0.25 0.76 0.64 0.33 0.75 0.64 0.31 0.75 0.63
Tron et al. [137] 0.28 0.74 0.62 0.12 0.83 0.71 0.22 0.75 0.62 0.21 0.77 0.65

SchiNet 0.31 0.76 0.64 0.20 0.79 0.67 0.21 0.73 0.60 0.24 0.76 0.64
Stacked-RNNs 0.40 0.76 0.66 0.30 0.79 0.68 0.46 0.80 0.71 0.39 0.78 0.68

TARN-Mult 0.50 0.74 0.66 0.36 0.68 0.57 0.48 0.75 0.66 0.45 0.72 0.68
TARN-EucCos 0.45 0.73 0.64 0.28 0.78 0.66 0.36 0.80 0.69 0.36 0.77 0.66

Table 5.5 and 5.6 summarise the performance of the SSE methods on treatment outcome

estimation for the CAINS and PANSS symptoms, respectively. Furthermore, we report the

chance-level performance in Table 5.5 and 5.6. The SSE methods show relatively low per-

formance when applied for estimating the treatment outcome. The reason for that is that often

the change in negative symptoms during treatment is small [112], and falls within the error

margin of the SSE methods.

Treatment Outcome Estimation (TOE). The performance of the two proposed architec-

tures (Stacked-RNNs and TARN) on TOE for the CAINS and PANSS symptoms are shown

in Table 5.5 and 5.6, respectively. For the TARN architecture, we report the performance

when using both the EucCos and Mult measures in the comparison layer, as they are the best-

performing ones in Table 5.3. Table 5.5 and 5.6 show that on average the Stacked-RNNs and

TARN architectures outperform the SSE methods and the chance-level performance (better
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5.4. Conclusion

F1P score at almost the same F1N and accuracy scores). Hence, building a network that

analyses jointly a pair of patient’s videos for TOE can extract more distinctive and related

features to the treatment outcome than other networks that are trained specifically for SSE.

Table 5.5 and 5.6 also show that the TARN architecture has better performance than Stacked-

RNNs in 3 out of 4 CAINS-EXP symptoms (facial expression, vocal expression, and quantity

of speech) and 1 PANSS-NEG symptom (flat affect). The two architectures have competit-

ive performance in the remaining 3 symptoms (expressive gestures, poor rapport, and lack of

spontaneity). The confusion matrices comparing the classification results of an SSE method

(SchiNet) and the two proposed TOE methods (Stacked-RNNs and TARN) on TOE for the

CAINS and PANSS symptoms, are shown in Figure 5.3 and 5.4, respectively. Note that in

Figure 5.3 we use the TARN-EucCos model in the comparison, while in Figure 5.4 we use

TARN-Mult, as the best performing measure in the TARN comparison layer varies from the

CAINS to the PANSS scale.

In addition to the relatively good performance achieved by the TARN architecture in TOE,

it has other pros compared to the Stacked-RNNs architecture. First, TARN uses an attention

mechanism for aligning and comparing videos of variable temporal length. Second, TARN

is easier to train and test as it is trained in an end-to-end fashion, while Stacked-RNNs is

trained in two steps. Third, TARN does not have the exhaustive and highly computational

feature selection method used in Stacked-RNNs. All of that inspired us to extend/modify

the TARN architecture in [20] for addressing the problem of action recognition when a few

training examples are available (i.e. few-shot learning), or when only a class description is

given (i.e. zero-shot learning). TARN achieves the state-of-the-art results in few-shot action

recognition, and very competitive performance in zero-shot action recognition.

5.4 Conclusion

In this chapter we propose two architectures for addressing directly the problem of treatment

outcome estimation in schizophrenia. Both architectures exploit Deep Neural Networks for
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5.4. Conclusion

SchiNet Stacked-RNNs TARN (EucCos)

Figure 5.3: The confusion matrices comparing the classification results of the SchiNet,
Stacked-RNNs, and TARN methods on TOE for the CAINS-EXP symptoms.

learning differences in patients’ behaviour, and in particular facial expressions. The first ar-

chitecture (Stacked-RNNs) concatenates expressions/AUs extracted from a pair of videos re-

corded before and after treatment, and then pass the concatenated AUs to a deep network

consisting of two stacked RNNs for learning local and global features over the pair of videos.

The second architecture (TARN) includes an embedding module for encoding AUs probabilit-

ies over short segments of videos, and a relation module that uses an attention mechanism for
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5.4. Conclusion

SchiNet Stacked-RNNs TARN (Mult)

Figure 5.4: The confusion matrices comparing the classification results of the SchiNet,
Stacked-RNNs, and TARN methods on TOE for the PANSS-NEG symptoms.

performing temporal alignment, and a deep network for learning a deep metric on the aligned

representations at video segment level. The two architectures vary in two main aspects. First,

Stacked-RNNs assumes that videos are aligned and equal in length, losing by that useful in-

formation, while TARN uses and aligns videos of different length. Second, Stacked-RNNs is

trained in two steps, while TARN is trained end-to-end.

Symptom assessment interviews recorded in settings similar to real clinical ones are used in

our analysis. Different negative symptoms from the PANSS and CAINS scales are estimated.

The proposed architectures show better performance in Treatment Outcome Estimation (TOE),

in comparison to other methods proposed for Symptom Severity Estimation (SSE). However,

the SSE and TOE methods are complementary. More specifically, the SSE methods can be
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5.4. Conclusion

used during patients’ first sessions for diagnosis, while the TOE methods can be used during

treatment/follow-up sessions for monitoring the change in symptoms levels. Experimental

results also show that using attention and the entire videos in the analysis improve the TOE

performance.
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CHAPTER 6

Conclusion and discussion

This thesis focused on the problem of developing fully-automatic behaviour-based methodo-

logies for diagnosis and treatment of schizophrenia, in settings that are similar to real clinical

ones. This problem was divided into 3 subproblems. First, quantifying patients’ non-verbal

behaviour (facial expressions) during clinical interviews. Second, exploiting patients’ ex-

pressions in diagnosing schizophrenia (i.e. estimating symptom severity). Third, comparing

patients’ expressions before and after treatment for determining the treatment outcome. Each

of these subproblems was solved in one of the three main chapters in the thesis.

Literature review show that the methods that are typically used for analysing facial expres-

sions of patients with schizophrenia work either on frontal views or in a specific environment

– these methods are hard to perform well in real scenarios. In the first main chapter, two deep

architectures were developed for analyzing facial expressions, these architectures were either

trained using different datasets or in the wild, in order to be robust to the different recording

conditions, found in real scenarios. The two architectures were trained to detect the activa-

tion of facial Action Units (AUs), the absence of which is expected to be informative in the

diagnosis and treatment of schizophrenia.

Fusing different deep features (appearance, geometric, temporal) has not been explored yet

in AUs detection, so in our first architecture we fused different deep models (CNNs, MLPs,
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B-RNNs) together to exploit various kinds of information/features. The deep models were

trained using 4 different datasets in order to increase the size of the training set, and include

different recording conditions. Unlike other works in the literature that address the problem

of AUs detection as a binary classification problem, where a different network is trained for

each AU, and ignoring in this way informative correlations between AUs. In our first archi-

tecture, a multilabel classifier was employed in each of the deep models. We have two main

contributions in the implemented multilabel classifier. First, a novel method was proposed for

addressing the data imbalance problem in multilabel classification. That is, the cost term as-

sociated with each AU positive example was adjusted with the ratio of the negative to positive

examples in the current batch. This method does not add any extra computational cost to the

architecture. Second, the problem of threshold selection at the output neurons at test time was

addressed by using two neurons for each class, one for positive activation while other for neg-

ative activation. During training, those output neurons were supervised with complementary

information, and during testing, the maximum of the two neurons was chosen to represent the

activation.

Experimental results show first that the different deep models (CNNs, MLPs, B-RNNs) per-

form significantly different in detecting AUs and the combined architecture is better than any

single network. Second, adding each of the data-balancing and threshold-selection contribu-

tions improve the performance of our architecture. Finally, the proposed architecture achieved

the state-of-the-art results on the BP4D dataset, and outperformed other works in the literature

by a large margin.

The first architecture was trained using video data that were captured in controlled settings

(available in the literature by that time). Later with the release of the EmotioNet dataset

– a dataset that consists of facial images collected in the wild and annotated for different

AUs – another architecture was developed and trained using the EmotioNet dataset as well as

other datasets in the wild for the detection of AUs at more various recording settings (camera

viewpoints and illumination levels). The reason a new architecture was developed is that
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the datasets in the wild consist only of images, so no RNNs could be used in the second

architecture. In addition, the facial images in these datasets have a wide range of head poses, so

registering the face or extracting meaningful geometric features was quite challenging. Based

on that, only CNNs were used in the second architecture, that is, deep pretrained CNNs (VGG-

16) were refined for AUs detection. As the the number of annotated examples in the datasets

vary immensely, a separate CNN was refined for each AU. Experiments showed promising

detection results at different head poses and illumination levels.

At the end of this chapter, a qualitative and quantitative comparison was presented between

the two AUs detection architectures, where strengths and weaknesses of each architecture

were explained. The comparison is two-fold. First, the performance of the two architectures

on AUs detection was compared in two settings, first on data captured in controlled settings

and then in the wild. Second, the effect of each architecture on the performance of symptom

severity estimation in schizophrenia was showed. For the first comparison, the first architec-

ture showed better performance in detecting subtle AUs when tested in controlled settings, due

to the various kinds of features used in it. On the other hand, the second architecture showed

better performance in detecting AUs at different head poses and illumination levels (in the

wild), as it was trained using images captured in the wild. For the second comparison, the

second architecture showed better performance on estimating symptom severity. The reason

for that is that the patients’ interviews have a wide range of different recording conditions,

and subsequently the second architecture leads to better analysis. At the end, we encourage

the research community to address the limitations in the existing AU-annotated datasets, by

collecting temporal datasets in the wild. In addition, we suggest for future work detecting

the subjects’ neutral face more accurately, and using it for normalizing the facial images used

as input to the deep architecture – this can help the architecture learn more distinctive fea-

tures away from the subjects’ appearance differences – and subsequently improving the AUs

detection performance.

In the second main chapter of the thesis, we addressed two limitations in the works that
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used automatic behaviour analysis for studying and diagnosing schizophrenia. The first lim-

itation is the use of structured interviews in the analysis. These interviews are different from

the ones conducted in clinics and hospitals. Moving the analysis from controlled to real set-

tings is quite challenging due to two main reasons. First, interviews recorded in realistic

conditions have different recording conditions, and this can severely affect the performance

of the facial expression analysis architectures. Second, interviews recorded in real scenarios

can have different lengths, and classifiers like MLPs or SVMs work with features of fixed

dimensionality. Hence, a fixed-length representation is required to be extracted from each of

these varying-length videos. In this work, videos of professional-patient interviews, that were

recorded in realistic conditions (i.e. varying illumination levels and camera viewpoints), were

used in our analysis. In these interviews symptoms were assessed in a standardised way as

they should/may be assessed in clinics and hospitals. Using these videos helped in moving

from controlled contexts used in the literature to similar-to-real clinical settings. Furthermore,

previous works used datasets consisting of a relatively small number of patients in diagnosing

schizophrenia. In this work three times the highest number of patients used in other studies

were analyzed.

The second limitation in the literature is the relatively low performance in estimating the

severity of schizophrenia. One of the possible reasons behind that is the hand-crafted features

used in the analysis – these features are difficult to generalize over different videos/patients,

and subsequently can have implications on the performance of the regression models. The

hand-crafted features have shown inferior performance in comparison to learned ones and in

particular those learned by Deep Neural Networks. However, training deep networks with

a large number of parameters (like CNNs) requires a large amount of data, and the number

of patients available for the analysis in this kind of problems is relatively limited, due to the

difficulty and the ethical issues in the collection of data depicting patients’ behaviour. In addi-

tion, training deep temporal models like RNNs over long video sequences tend to suffer from

the vanishing or exploding gradients problem. Subsequently, developing deep architectures

that can learn distinctive features over limited number of patients and long sequences is quite
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challenging.

In the second main chapter, a deep architecture, named SchiNet, was proposed for estim-

ating symptom severity in schizophrenia. SchiNet uses quantified patients’ facial expressions

in symptom estimation. Given a video interview of a patient, the developed architectures in

the first main chapter were first used for detecting patients’ AUs (low-level features). Then,

the AUs probabilities were used as input to a novel neural network (SchiNet) consisting of

custom Gaussian Mixture Model and Fisher Vector layers for extracting a compact statist-

ical feature vector over the whole video interview (high-level features), and a regression layer

for symptom estimation. SchiNet has relatively limited number of trainable parameters, and

can extract a fixed-length representation over long varying-length videos. Expression-related

negative symptoms in two different assessment interviews, PANSS and CAINS, were estim-

ated.

Our experimental results show many findings. First, significant correlations were found

between the occurrence frequency of AUs and the severity of different symptoms in schizo-

phrenia, resembling many of the correlations found across the literature. In addition, the found

correlations confirm that symptom levels of patients with schizophrenia are expressed in the

degree of their impairments in expression of emotion and social interaction. Second, our deep

architecture (SchiNet) outperformed other state-of-the-art methods (that used hand-crafted

features in their analysis) in 6 out of the 7 estimated symptoms. Third, several symptoms in

the PANSS and CAINS interviews can be estimated with a mean absolute error less than one

level. Finally, comparing the correlations between the automatic estimations and professional

assessment (reaching at most to 0.46), to the correlations between assessments of different pro-

fessionals that have annotated the NESS dataset [106] (equals to 0.85), shows that automatic

estimation of symptom severity needs further improvement to reach human level performance.

In order to improve the performance of symptom estimation, we suggest for future work ex-

tending the behaviour analysis to include body gestures and vocal expressions (besides facial

expressions).
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Many works in the literature have focused on classifying or estimating the severity of dif-

ferent mental illnesses, however, to the best of our knowledge, no works have addressed the

problem of treatment outcome estimation in mental illnesses. In the last main chapter of the

thesis, two deep architectures were proposed for addressing directly the problem of treatment

outcome estimation in schizophrenia – more specifically, the proposed methods are aimed at

determining whether specific symptoms have improved or not by analysing jointly two video

interviews of the same patient, one before and one after the treatment. Both architectures first

extract patient’s facial expressions in the pair of videos, and then use it as input to a deep neural

network. The first architecture (Stacked-RNNs) uses two stacked GRUs for learning local and

global differences in patient’s expressions/AUs over both videos. One GRU is used for learn-

ing behaviour differences over short video segments, while the other uses the segment-level

features for learning global ones. The second architecture (TARN) includes two modules: the

embedding module and the relation module. The embedding module includes a GRU for en-

coding the AUs probabilities in short segments of videos, while the relation module consists of

an attention mechanism for aligning video segments, and a deep neural network for learning a

deep metric for video comparison. The use of relation networks for estimating the treatment

outcome is inspired by their success in data-limited problems (i.e. few-shot and zero-shot

learning) [123]. The proposed Stacked-RNNs and TARN architectures have two main differ-

ences. First, Stacked-RNNs assumes videos are aligned and have equal length – this requires

the clipping of long videos, and losing by that useful information. On the other hand, TARN

assumes videos are not aligned and uses an attention mechanism for aligning videos of differ-

ent lengths, avoiding by that any information loss. Second, Stacked-RNNs is trained in two

steps, while TARN is trained in an end-to-end fashion.

In the analysis, symptom assessment interviews that were recorded in uncontrolled condi-

tions and in settings that are similar to real clinical ones, were used. Different negative symp-

toms from the PANSS and CAINS interviews were estimated. Experimental results showed

many findings. First, aligning patient’s videos and using the entire videos (with no clipping)

improved the performance of Treatment Outcome Estimation (TOE). Second, using the Euc-
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Cos measure (which includes Euclidean distance and cosine similarity) in the TARN compar-

ison layer leaded to better performance on TOE, in comparison to other measures like subtrac-

tion, concatenation, and neural network. Third, TARN achieved better TOE performance than

Stacked-RNNs in many symptoms. Finally, Stacked-RNNs and TARN achieved better per-

formance in TOE than other methods proposed for Symptom Severity Estimation (SSE) like

SchiNet. The reason for that is that the change in negative symptoms is typically small [112],

and falls within the error margin of the SSE methods. However, the SSE and TOE methods are

complementary. Specifically, the SSE methods can be used during patients’ baseline sessions

for diagnosing symptoms, while the TOE methods can be used during treatment and follow-up

sessions for estimating the change in symptoms levels.

Although the proposed methods for TOE show promising results, TOE still needs further

improvement to reach the performance level required for medical applications. A key point

for improving the performance is increasing the training set size by including more patients.

In our future work, we plan to extend behaviour analysis to include body gestures and vocal

expressions, in addition to improving the AUs detection by moving from the static to the

temporal analysis in the wild. Furthermore, we will use the quantified behaviour in estimating

not only if symptoms have improved or not, but also the exact change in symptom levels.
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APPENDIX A

Symptom assessment interviews

in schizophrenia

Contents

A.1 Positive and negative syndrome scale . . . . . . . . . . . . . . . . . . . 108

A.2 Clinical assessment interview for negative symptoms . . . . . . . . . . . 110

A.1 Positive and negative syndrome scale

Positive and Negative Syndrome Scale (PANSS) consists of a total of 30 symptoms divided

into 3 scales: negative, positive, and general psychopathology [75]. Out of the 30 symptoms,

7 are grouped to form the negative scale, 7 form the positive scale, and the remaining 16

symptoms form the general psychopathology scale. Each symptom in the PANSS is rated

between 1 (absent) and 7 (extreme), according to the criteria provided in [75]. The total score

of each scale is the summation of the ratings of the scale symptoms. Hence, the total score

of the positive and negative scale ranges between 7-49, and between 16-112 for the general

psychopathology scale.

Negative symptoms indicate a lack of normal mental functions like motivation, concentra-

tion, or/and expression. The lack in expression is marked by a reduction in patients’ behaviour.
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A.1. Positive and negative syndrome scale

The negative symptoms include:

1. Blunted/Flat affect.

2. Emotional withdrawal.

3. Poor rapport.

4. Passive/Apathetic social withdrawal.

5. Difficulty in abstract thinking.

6. Lack of spontaneity and flow of conversation.

7. Stereotyped thinking.

Positive symptoms refer to thoughts or behaviour that are usually not seen in healthy people.

The positive symptoms include:

1. Delusions.

2. Conceptual disorganization.

3. Hallucinations.

4. Excitement.

5. Grandiosity.

6. Suspiciousness/Persecution.

7. Hostility.

The general psychopathology scale includes the following symptoms:

1. Somatic concern.

2. Anxiety.

3. Guilt feelings.

4. Tension.

5. Mannerisms and posturing.

6. Depression.
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A.2. Clinical assessment interview for negative symptoms

7. Motor retardation.

8. Uncooperativeness.

9. Unusual thought content.

10. Disorientation.

11. Poor attention.

12. Lack of judgment and insight.

13. Disturbance of volition.

14. Poor impulse control.

15. Preoccupation.

16. Active social avoidance.

A.2 Clinical assessment interview for negative symptoms

Clinical Assessment Interview for Negative Symptoms (CAINS) measures severity of negat-

ive symptoms in patients with schizophrenia [61]. Unlike the PANSS interview that reports a

single score for negative symptoms, CAINS consists of 2 negative scales that are rated sep-

arately: motivation and pleasure and expression. The motivation and pleasure scale has 9

symptoms, and the expression scale has 4 symptoms. Each symptom in CAINS has a value

between 0 and 4 (0=no impairment and 4=severe impairment).

The motivation and pleasure scale measures impairment in motivation for social relation-

ships, school/work activities and recreation, and includes the following symptoms:

1. Motivation for close family/spouse/partner relationships.

2. Motivation for close friendships/romantic relationships.

3. Frequency of pleasurable social activities – past week.

4. Frequency of expected pleasure from social activities – next week.

5. Motivation for work and school activities.

6. Frequency of expected pleasure from work and school activities – next week.

7. Motivation for recreational activities.
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A.2. Clinical assessment interview for negative symptoms

8. Frequency of pleasurable recreational activities – past week.

9. Frequency of expected pleasure from recreational activities – next week.

The expression scale measures impairment in expression of emotion and speech. The rating

of the expression symptoms depends on observed emotional behaviour throughout the whole

interview. The expression symptoms include:

1. Facial expression.

2. Vocal expression.

3. Expressive gestures.

4. Quantity of speech.
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[39] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana,

M. Thoma, E. Battenberg, J. Kelly, et al. Lasagne: first release. Zenodo: Geneva,

Switzerland, 3, 2015. 74, 93

[40] S. Dimic, C. Wildgrube, R. McCabe, I. Hassan, T. R. Barnes, and S. Priebe. Non-verbal

behaviour of patients with schizophrenia in medical consultations–a comparison with

depressed patients and association with symptom levels. Psychopathology, 43(4):216–

222, 2010. 2, 29, 72, 73

[41] Z. Du, W. Li, D. Huang, and Y. Wang. Bipolar disorder recognition via multi-scale dis-

criminative audio temporal representation. In Proceedings of the 2018 on Audio/Visual

Emotion Challenge and Workshop, pages 23–30. ACM, 2018. 22
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D. Pinto-Avedaño, and V. Reyez-Meza. Fusing affective dimensions and audio-visual

features from segmented video for depression recognition: Inaoe-buap’s participation

at avec’14 challenge. In Proceedings of the 4th International Workshop on Audio/Visual

Emotion Challenge, pages 49–55, 2014. 28

[106] S. Priebe, M. Savill, T. Wykes, R. Bentall, U. Reininghaus, C. Lauber, S. Bremner,
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