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Abstract—Remaining useful life (RUL) prediction of 

lithium-ion batteries plays an important role in intelligent 

battery management systems (BMSs). The current RUL 

prediction methods are mainly developed based on offline 

training, which are limited by sufficiency and reliability of 

available data. To address this problem, this paper presents 

a method for RUL prediction based on the capacity 

estimation and the Box-Cox transformation (BCT). Firstly, 

the effective aging features (AFs) are extracted from 

electrical and thermal characteristics of lithium-ion 

batteries and the variation in terms of the cyclic discharging 

voltage profiles. The random forest regression (RFR) is then 

employed to achieve dependable capacity estimation based 

on only one cell’s degradation data for model training. 

Secondly, the BCT is exploited to transform the estimated 

capacity data and to construct a linear model between the 

transformed capacities and cycles. Next, the ridge 

regression algorithm (RRA) is adopted to identify the 

parameters of the linear model. Finally, the identified linear 

model based on the BCT is employed to predict the battery 

RUL, and the prediction uncertainties are investigated and 

the probability density function (PDF) is calculated through 

the Monte Carlo (MC) simulation. The experimental results 

demonstrate that the proposed method can not only 

estimate capacity with errors of less than 2%, but also 

accurately predict the battery RUL with the maximum 

error of 127 cycles and the maximum spans of 95% 

confidence of 37 cycles in the whole cycle life. 

 

Index Terms—Lithium-ion battery, remaining useful life, 

random forest regression, Box-Cox transformation, ridge 

regression, Monte Carlo simulation. 
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NOMENCLATURE 

A. Acronyms 

EVs electric vehicles 

DOD depth of discharge  

EOL end of life 

RUL remaining useful life 

PF particle filter 

EIS electrochemical impedance spectroscopy 

ML machine learning 

RFR random forest regression 

NN neural network 

LSTM long short-term memory 

SVM support vector machine 

GPR Gaussian process regression 

RVM relevance vector machine 

EKF extended Kalman filter 

IC incremental capacity 

SWS sliding window size 

AR autoregression 

PSO particle swarm optimization 

AFs aging features 

BCT Box-Cox transformation 

Ah Ampere hour 

CC constant current 

CV constant voltage 

SOH state of health 

IR internal resistance 

DIC discharge incremental capacity 
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EW entropy weight 

GRA grey relational analysis 

MC Monte Carlo 

RF random forest 

CART classification and regression tree 

OOB out-of-bag 

MAE mean absolute error 

PDF probability density function 

ME maximum absolute error 

RMSE root-mean-square error 

STD standard derivation 

B. Symbols 

EOL
cycle  cycle number of the end of life 

now
cycle  current cycle number 

1
F  battery internal resistance 

2
F  average temperature of each cycle  

3
F  

peak absolute value of discharge incremental 

capacity curves 
  grey correlation grades 

i  cycle number 

i
X  aging features data set 

i
Y  capacity data set corresponding to the 

i
X  

t
S  original sample set 
q  number of features 
t  number of samples 

t
  

a family of independent and identically 

distributed random vectors 

T  number of prediction trees 

  
transformation parameter of Box-Cox 

transformation 

( )Q   
transformation values of Box-Cox 

transformation 
  coefficients of the linear model 

i
  independent random error 

2  variance of 
i

  

( , )J Q  Jacobian matrix corresponding to   and Q  

I  identity matrix 

k  ridge regression coefficient 
  correlation coefficient 

ŷ  fitting value of linear model 
y  observation value of capacity 

y
  mean value of y  

y
  standard deviation of y  

ŷ
  mean value of ŷ  

ŷ
  standard deviation of ŷ  

ˆ ( )
h

f Q  
probability density function of RUL 

prediction 

( )
p

K   Gaussian kernel function 

p
h  band width of ( )

p
K   

c
U  upper bounds of Monte Carlo simulation. 

c
L  lower bounds of Monte Carlo simulation 

i
Q  the i th result of RUL prediction 

2R  goodness-to-fit parameter 

I. INTRODUCTION 

O mitigate worldwide energy crisis, environmental 

pollution and global warming problems, electric vehicles 

(EVs) are being rapidly developed [1]. Lithium-ion batteries 

have been widely considered as suitable power sources of EVs 

due to their high energy density, long cycle life, lower self-

discharge rate, light weight and no memory effect [2]. 

However, complex operation conditions such as different load 

current rate, varying temperature and stochastic depth of 

discharge (DOD) generate significant influence on electrical 

performance of lithium-ion batteries [3]. Thus lithium-ion 

batteries applied in EVs can reach their end of life (EOL) [4] 

earlier than intended. Generally, lithium-ion batteries reach 

their EOL when the capacity drops to 80% of rated value in 

vehicular applications [5]. To monitor proper operation of 

batteries, it is necessary to develop advanced techniques to 

predict remaining useful life (RUL) of lithium-ion batteries so 

that end-users can know the operating status in advance and can 

replace the batteries timely. 

Prediction of RUL can be made by regression analysis based 

on historical operation data. Currently, RUL prognostics 

methodologies can be divided into mechanism analysis 

methods and data-driven methods [6]. Mechanism analysis 

methods are generally implemented to predict battery RUL 

based on a nonlinear aging model combined with an effective 

filter. Lyu et al. [7] exploits the particle filter (PF), together with 

the electrochemical model, to predict RUL of batteries. Selina 

et al. [8] investigates the modeling of battery degradation under 

different operation conditions and ambient temperatures and 

proposes a simple Bayes model for RUL prediction considering 

different ambient temperature and discharge current. Bhaskar et 

al. [9] develops a Bayesian learning framework for RUL 

prediction, where the aging mode is constructed based on the 

features extracted from the electrochemical impedance 

spectroscopy (EIS), and the PF is leveraged to update model 

parameters and predict the battery RUL. In [10], an exponential 

model for lithium-ion battery capacity is first constructed to 

assess capacity degradation. Then, a spherical cubature-based 

PF is introduced to solve the exponential model. After that, the 

model extrapolation to a specified failure threshold is 

performed to infer the RUL of lithium-ion batteries. Wang et al.  

[11] develops a conditional three-parameter capacity 

degradation model for RUL prediction. The parameters of 

established model are calculated by nonlinear least squares 

regression based on capacity degradation training data, and then 

the RUL is estimated via extrapolating the model. Yang et al. 

[12] establishes a coulombic efficiency model to capture the 

convex degradation trend of lithium-ion phosphate batteries, 

and the PF framework is constructed to update the model 

parameters. Then, the RUL is predicted by extrapolating the 

models with renewed parameters. Although mechanism 

T 
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analysis methods are clear to describe the degradation trend of 

batteries, they involve a number of parameters and complex 

calculation for accurate modeling of the RUL variation law. In 

consequence, it is not quite suitable for real-time prediction 

instead it is more appropriate for theoretical research on battery 

designation [6]. 

The data-driven methods do not require accurate analysis of 

degradation mechanism. Such methods can capture effective 

feature information from battery operation data that can be 

measured by external sensors and then predict battery RUL 

based on machine learning (ML) algorithms [13]. Li et al. [14] 

extracts feature vectors from partial charging voltage curves 

and attains precise capacity estimation based on the extracted 

features and random forest regression (RFR). Li et al. [15] 

proposes a fusion method for battery RUL prediction by 

combining the Elman neural network (NN) and long short-term 

memory (LSTM) to predict high and low frequency sub-layers. 

Support vector machine (SVM) [16] and Gaussian process 

regression (GPR) [17] are two commonly employed methods in 

terms of RUL prediction. Patil et al. [18] presents a multistage 

SVM approach for RUL prediction of lithium-ion batteries. It 

inherits the classification and regression attributes of SVM, and 

the classification model provides general estimation and the 

regression model refines the RUL prediction in turn. Guo et al. 

[19] introduces a remaining capacity estimation method based 

on fourteen health features extracted from the charging data. 

These health features are determined using principal component 

analysis, and then relevance vector machine (RVM) is 

employed to attain capacity estimation. Zhou et al. [20] 

combines the extended Kalman filter (EKF) with GPR to 

estimate the available capacity online according to the daily 

partial charging data. Li et al. [21] extracts the health features 

from partial incremental capacity (IC) curves, and then the GPR 

is implemented to achieve the short-term SOH estimation and 

long-term RUL prediction. In addition, NN [22] and time series 

methods [23] are also employed to predict RUL of lithium-ion 

batteries. Ren et al. [24] investigates a fused deep learning 

approach, combining auto-encoder with deep NN, for battery’s 

RUL prediction. To address the selection principle of sliding 

window sizes (SWS), which is often defined empirically, Ma et 

al. [25] applies the false nearest neighbor method to calculate 

the SWS required for prediction and employs a hybrid NN to 

predict the battery RUL. Long et al. [26] establishes an 

autoregression (AR) model for RUL prediction of lithium-ion 

batteries and leverages the particle swarm optimization (PSO) 

algorithm to optimize the order of AR model. Compared with 

mechanism analysis methods, data-driven methods usually 

entail a large amount of offline training data to construct an 

accurate online RUL predictor [27].  

To accelerate the modeling process and reduce computation 

burden, limited offline data are usually utilized to construct and 

train the degradation model in practical applications, and 

typical works only exploit part of the battery’s capacity 

degradation data to build RUL prediction models, such as 

exponential models [28] and polynomial models [29]. 

However, the degradation rate of capacity varies significantly 

throughout the whole cycle life. Generally, the capacity 

degradation slope is relatively gentle in the early life phase and 

yet shows an exponential decline trend with faster dropping 

speed in the later life stage [30]. From this point of view, the 

model based on partial lifecycle data cannot accurately track the 

degradation trend in the whole lifespan and will lead to increase 

of RUL and EOL prediction error. To cope with this limitation, 

the whole lifecycle capacity data should be trained 

comprehensively, such as by ML algorithms, and then a 

prediction model can be constructed to effectively estimate the 

RUL of battery. This two-step prediction process can not only 

achieve the target of accurately predicting RUL, but also 

diagnose the health status of the battery in real time through the 

estimated capacity. Motivated by this, a RUL prediction 

method based on capacity estimation is developed. To precisely 

estimate the battery capacity for RUL prediction, three aging 

features (AFs) are extracted from electric and thermal 

characteristics curves and discharge IC curves of batteries. 

Owing to the qualified estimated performance and reliable 

identification ability of relevant variables and interactions, the 

RFR is exploited to estimate the capacity of battery under the 

whole lifespan [14]. However, the process of capacity 

degradation is nonlinear, and it leads to difficulty of capture the 

degradation trend in a mathematical manner. To cope with it, a 

linear model between the estimated capacities and cycle 

number is established by means of the Box-Cox transformation 

(BCT), which can contribute to the prediction accuracy 

improvement of RUL based on the estimated capacity [13]. 

Finally, the battery RUL can be predicted through extrapolating 

the linear model. The main contributions of this study can be 

attributed to the following three aspects: 1) Three AFs are 

extracted from electrical and thermal characteristics curves and 

discharge IC curves to improve the precision of capacity 

estimation. 2) The RFR is applied to achieve the precise 

capacity estimation of other cells by training only one cell’s 

data. 3) The BCT is employed to construct a linear model 

between the estimated capacity and cycles to ensure the RUL 

prediction accuracy. It enables prediction of the battery EOL in 

its early life stage based on the constructed linear model. 

The remainder of this study is arranged as follows. The 

battery life cycle test is introduced, and the experimental data is 

analyzed in Section II. Section III illustrates the detailed 

algorithms for RUL prediction. The capacity estimation process 

is elaborated, and the estimation results are discussed in Section 

IV, followed by the analysis and discussion with respect to the 

RUL prediction in Section V. Finally, Section VI concludes the 

study. 

II. BATTERY AGING TESTING AND DEGRADATION ANALYSIS 

In this paper, the RUL is studied to assess the battery 

operating performance and estimate the available remaining 

service time left before EOL. In this study, RUL is defined as 

the difference between the cycle number of EOL 
EOL

cycle  and 

the current cycle number 
now

cycle , as:  

 
EOL now

RUL cycle cycle= −  (1) 
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A. Battery Aging Experiment and Degradation Data Analysis 

In this study, the cyclic aging data of lithium-ion batteries are 

obtained from an open source [31], which was collected by 

cyclic life tests of a variety of commercial lithium iron 

phosphate/graphite batteries. The rated capacity of cells is 1.1 

Ampere hour (Ah), the rated voltage is 3.3 V and their 

specifications are tabulated in Table I. These cells were cycled 

in horizontal cylindrical fixtures on an Arbin battery test 

equipment after being placed in a thermal controlled chamber, 

whose temperature is set to 30 ℃. The detailed program of 

battery life cycle test is shown in Fig. 1. As can be found, the 

experiments adopt two-step fast-charging policy to charge the 

battery, and the upper and lower cut-off voltages are set to 3.6 

V and 2.0 V, respectively. The charging policy specifies a 

C1(Q1)-C2 mode, where C1 and C2 denote the first step and 

second step current, respectively; and Q1 is the SOC at which 

the current changes. The second current step ends at 80% SOC, 

after that the cell is charged with 1C constant current (CC)-

constant voltage (CV) mode, followed by the discharge test 

with 4C current, where C denotes the rated capacity value. 

During the experiment, the surface temperature and internal 

resistance of the battery are also measured. The temperature 

measurement is performed by attaching a Type-T thermocouple 

to the exposed surface, and the internal resistance measurement 

is conducted during charge at 80% SOC by imposing some 

pulses. Since large current excitation can lead to more obvious 

voltage variation and consequent more precise internal 

resistance estimation, the manufacturer’s recommended fast-

charging rate, i.e., 3.6C was chosen as the pulse current rate. In 

this study, 10 charge/discharge current (±3.6 C) pulses, each of 

which lasts 33 ms, are imposed to achieve the internal resistance 

measurement. Moreover, the charge/discharge current rate and 

the voltage cutoffs used in this work also follow the 

recommendation supplied by the manufacturer. 

TABLE I. THE SPECIFICATIONS OF TEST BATTERY. 

Type APR18650M1A 

Material LiFePO4/graphite 

Dimension (D×H) 18 mm×65 mm 

Nominal Capacity 1.1 Ah 

Nominal Voltage 3.3 V 

Allowed voltage range 2.0-3.6 V 

Charge/Discharge Temperature -30 ℃-60 ℃ 

Storage Temperature -50 ℃-60 ℃ 

In this paper, the cyclic experiment data of 7 batteries 

(labeled as Cells 1 to 7) are selected from the data repository to 

construct and evaluate the RUL prediction algorithm. The 

curves of degradation capacity are shown in Fig. 3 (a), which 

highlights that the degradation trajectories of seven cells remain 

almost the same, indicating that the degradation mechanism is 

nearly consistent for the same type of lithium-ion batteries. The 

cycle life experiments for all batteries are terminated when the 

batteries reached 80% of nominal capacity, i.e., 0.88 Ah. It can 

also be found that the degradation slope is relatively small 

before 90% state of health (SOH), which is defined as the ratio 

of current maximum available capacity over the nominal value, 

as shown in (2). To intuitively show the capacity decline speed, 

the degradation rate is calculated according to (3), and the 

relationship between the degradation rate and SOH is shown in 

Fig. 2. As can be found, the capacity degradation rate is smaller, 

i.e., less than 0.04%, before 90% SOH; whereas the capacity 

degradation rate shows a faster speed when SOH drops less than 

90%. Besides, the electric characteristics will gradually 

deteriorate during the aging process, the mechanical and 

thermal characteristics of batteries also vary with aging. For 

example, the thickness may increase due to gas generation; the 

heat transfer coefficient and entropic potential may also change 

during the degradation [30]. Next, the AFs will be extracted 

from electric characteristics and thermal characteristics 

variation of the battery. 

 100%cur

nom

Q
SOH

Q
=   (2) 

 1 100%i i

i

Q Q
Rate

Q

+
−

=   (3) 

Whether the

 cell capacity reaches 80% of 

the rated value

Start Test

End of Test

Shelve for 5 s

Yes

No

Shelve for 5 s

Shelve for 5 s

Charge the cells to 80% SOC with two-

step fast-charging policy 

Measure the IR by imposing  ±3.6 C 

current with 10 pulses

Continue to charge the cells with  CC-CV 

mode until the current decreases to 0.055A 

Discharge the cells with 4C current until 

the voltage drops to 2.0V

Shelve for 5 s

 
Fig. 1.  The flowchart of battery aging test procedure. 

 
Fig. 2.  Capacity degradation rate with different SOH. 
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B. Extraction of Aging Features 

From the perspective of electric characteristics, one main 

change during degradation is that the internal resistance (IR) 

will gradually increase, as shown in Fig. 3 (b). Therefore, the 

battery IR, denoted by F1, can be selected as one AF. 

Considering the battery’s thermal characteristics, the battery 

surface temperature at each moment is recorded by attaching a 

T-type thermocouple to the battery surface during experiment. 

On this basis, the variation of battery surface temperature at 

each cycle is utilized to characterize the battery thermal 

characteristics, instead of establishing a heat transfer model. 

The variation of average temperature with different cycle times 

is shown in Fig. 3 (c). It is obviously observed that the average 

temperature increases progressively with the cycle number. 

Intuitively, the average temperature of each cycle can be 

selected as another AF F2. Meanwhile, the discharge 

incremental capacity (DIC) curves at different cycles are shown 

in Fig. 3 (d). Distinct variation can easily reveal that the 

absolute value of peak decreases with the increment of cycle 

number and reduction of capacity. Thus, it can also be 

considered as one AF, called F3. 

To sum up, three AFs, including the IR F1, average 

temperature F2 and the absolute value of DIC peak F3, are 

extracted to estimate battery capacity based on the tested data 

set. These three AFs with respect to cycle number are shown in 

Fig. 3 (b), (c) and (e). In practice, it is often difficult to 

determine a proper weight due to the sparsity of the indexes. To 

determine the contribution weight and intuitively evaluate the 

dispersion degree of AFs, the entropy weight (EW) method is 

firstly introduced to analyze the correctness of AFs extraction. 

Smaller entropy value indicates higher dispersion of 

corresponding AF and more impact on capacity, and vice versa. 

The detailed calculation process of EW method can be referred 

to [32]. The sum of weights of three AFs is equivalent to 1, and 

the entropy weight of each AF is evaluated and compared, as 

shown in Fig. 3 (f). It can be observed that the EW value of F1 

is largest and greater than 0.7; the EW value of F3 is least and 

lower than 0.2, indicating that F1 contributes the most weight to 

the capacity prediction, whereas F3 raises the least weight. It 

can be also seen that the EW values distribution of three AFs 

for seven cells are consistent. The EW value of AFs indicates 

that they have different impact weights on the capacity. Next, 

the implied relationships between AFs and capacity are 

analyzed. 

C. Analysis of Aging Features Based on GRA 

To analyze the relationship between AFs and capacity, we 

take cell 1 as an example, and the variation relationships 

between AFs and capacity with respect to cycle life are shown 

in Fig. 4, where the color scale represents cycle life. As can be 

found, the extracted AFs highlight different variation trend with 

the decrease of capacity. Among them, F1 and F2 increase and 

F3 decreases with the capacity degradation. Additionally, three 

AFs show different increase/decrease rates with different cycle 

life phase. The different segments corresponding to the specific 

cycle region, such as early/middle/late phases, is determined 

based on the capacity degradation curves with respect to the 

cycle number. It can be seen from Fig. 4 that in the early and 

middle phases of cycle life (1 to 600 cycles), the capacity 

degrades with a slow speed, so that F1 remains almost 

unchanged, and in contrast, F2 increases obviously and F3 

gradually decreases with the increasing of cycle numbers. 

Comparatively, in the later phase of cycle life (600 to 1000 

cycles), the capacity degradation and the increase of F1 are 

rapid, and the increase rate of F2 becomes slower and more 

stabilized; however, F3 still decreases obviously. It can be 

concluded that the change of F1 is not obvious, while the 

variation of F2 is relative larger in the early cycle life. In the 

later cycle life stage, the changes of F1 and F2 are opposite to 

that of the early stage. Moreover, there exists obvious variation 

in F3 throughout the whole cycle life. In this study, the 

correlation between AFs and battery capacity is further 

evaluated by grey relational analysis (GRA). As a crucial 

method based on the grey system theory, the GRA evaluates the 

correlation among the elements according to the similarity and 

dissimilarity of their variation trend. The intension of 

employing GRA is to evaluate the relationship between 

different curves by studying the geometric proximity, and 

higher proximity implies stronger correlation. For battery 

capacity estimation, the AF curves extracted from new cells are 

defined as the reference for capacity estimation. The 

quantitative analysis based on the GRA is to obtain the 

correlations between reference and comparative sequences, as 

detailed in [33]. By the GRA, the correlation grades, namely 

, between the three AFs and capacity of each cell are acquired. 

To more precisely evaluate the correlation grade, the value 

interval of   corresponding to the specific relational grade is 

further divided, as shown in Table II. As can be seen, [0 0.2) 

represents very weak or no correlation, and [0.8 1.0] means 

extremely strong correlation. The value of   for three AFs are 

shown in Table III, highlighting that F1 and F3 have moderate 

correlation with capacity, but F2 shows strong correlation with 

capacity. Particularly, the   for F2 is greater than 0.75 for most 

of the cells, which means the selection of AFs is effective for 

capacity estimation. 

TABLE II. THE DIVISION OF VALUE INTERVAL FOR RELATIONAL GRADE  

Value Interval Relational Grade 

[0 0.2) Very weak or no correlation 

[0.2 0.4) Weak correlation 

[0.4 0.6) Moderate correlation 

[0.6 0.8) Strong correlation 

[0.8 1.0] Extremely strong correlation 

TABLE III. GRA BETWEEN AGING FEATURES AND CAPACITY. 

Battery Number 
Aging Features 

F1 F2 F3 

Cell 1 0.5883 0.7646 0.5769 

Cell 2 0.5902 0.7819 0.6022 

Cell 3 0.5690 0.7818 0.5793 

Cell 4 0.5760 0.7707 0.5873 

Cell 5 0.5836 0.7593 0.5976 

Cell 6 0.5753 0.7463 0.5873 

Cell 7 0.5625 0.7778 0.5982 
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Fig. 3.  The evolution trend with cycle number of capacity and AFs. 

 
Fig. 4.  The evolution relationship between capacity and AFs with cycle numbers of cell 1.

D. The Framework and Flowchart for RUL Prediction 

In this study, the capacity is firstly estimated and then utilized 

to predict the battery RUL. The prediction framework is 

illustrated in Fig. 5. As can be seen, the whole prediction 

process contains the capacity estimation module and the RUL 

prediction module. In the capacity estimation module, the AF 

data set  1 2 3
, ,

i i i i
X F F F=  is firstly extracted from the aging 

experimental data set. Then, the whole cycle life data of cell 1 

is used as the training set to build the RFR model, the 
i

X  data 

set and corresponding capacity 
i

Y  are considered as the RFR 

model’s input and output, respectively; and i  denotes the cycle 

number. The optimal model parameters are searched via testing 

and cross validation. The well-tuned model is applied to attain 

the precise estimation of capacity. In the RUL prediction 

module, the BCT is introduced to transform the estimated 

capacity data to construct a linear model between the 

transformed capacities and cycles. The RRA is then employed 

to identify the linear model parameters. The constructed linear 

model using BCT is extrapolated to predict the battery RUL, 

and the RUL prediction uncertainties are generated using the 

MC simulation. 
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Sample set:(Xall, Yall) 

Training 

set:(X,Y) 

Testing set: 

(X*, Y*) 

Prediction results and error 

analysis

Aging indicators extraction 

and analysis

Battery  data acquisition

Capacity estimation

Feature set X*

Real capacity Y*

Start

Random Forest regression 

model

Ridge regression model 

fitting

Box-Cox transformation

The variance of coefficient 

for Model 

Monte Carlo simulation

The probability density 

function

RUL prediction within the 

full cycle life

Estimated capacity

RUL

End

[ 1 , 2 , 3 ]i i i iX F F F=

Module 1:

Capacity

Estimation 

Module 

Module 2:

RUL Prediction Module 

 
Fig. 5.  The framework of capacity estimation and RUL prediction. 

III. ALGORITHMS 

This section introduces the related algorithms, including the 

RFR, BCT, RRA and MC simulation, for capacity estimation 

and RUL prediction of lithium-ion batteries. 

A. Random Forest Regression 

Random forest (RF) [34] is a ML algorithm based on 

decision trees, which generates hundreds and even thousands of 

decision trees in the classification or regression process. A 

decision tree, also called classification and regression tree 

(CART), is a nonparametric model that consists of decision 

nodes and leaf nodes. Based on the bagging algorithm [35], RF 

combines multiple weak classifiers to make the whole model 

possess with higher accuracy and generalization ability. 

Bagging algorithm (also called bootstrap aggregation) can 

improve the prediction performance of regression methods via 

reducing the variance. On this account, the Bagging algorithm 

is employed, together with the RFR, to improve the prediction 

performance of RUL by combining all the generated decision 

trees. During the algorithm training, multiple subsets are 

collected by randomly sampling with replacement from the 

original sample data set to train the classifiers. Here, one 

assumes the original sample set 
t

S  as: 

  1 1 2 2
( , ), ( , ), , ( , ) ,  ,  t

t t t
S X Y X Y X Y X R Y R=    (4) 

where X represents the input vector containing q features, i.e., 

 1 2
, , ,

q
X x x x= , Y  is the output scalar and t  denotes the 

number of samples. In each random sampling process, every 

observation may not be selected with the probability of 
1

(1 )
t

− , 

thus the unselected probability of each observation in t  times 

is 
1

(1 )t

t
− . When t →  , we can attain: 

 
1 1

lim(1 ) 0.368t

t t e→
− =   (5) 

In consequence, about 36.8% of original sample data will not 

be selected in the bagging process. The samples that are not 

selected are included as part of another subset called out-of-bag 

(OOB) samples. Accordingly, when a regression tree is 

constructed, two thirds of the training samples are exploited to 

construct the regression function, and the remaining one third 

data are used to constitute the OOB sample. Since the OOB 

samples are not leveraged to train and fit the model, they can be 

used to evaluate the performance of the regression tree. By this 

manner, RFR can give an unbiased estimation for the 

generalization error without the help of external data subsets, 

compared with other regression methods, such as SVM and 

GPR. Moreover, the built-in validation attribute of RFR can 

largely reduce the possibility of overfitting and improve the 

generalization capability.  

RFR is an algorithm composed of a set of regression decision 

subtrees  ( , ), 1,2, ,
t

h X t T = , where 
t

  is a family of 

independent and identically distributed random vectors, and T  

indicates the number of decision trees. The flowchart of 

constructing the RFR model is shown in Fig. 6. Note that the 

randomly collected sample process of RFR is called ‘bootstrap’. 

A prominent advantage of RFR is that it only needs to tune two 

parameters, i.e., number of trees 
tree

n  and number of random 

features 
fea

n  for each split in the forest to build [14]. 

Consequently, only limited effort is imperative for fine-tuning 

parameters to achieve anticipated performance. It can be seen 

from Fig. 6 that the first step of building an RFR model is to 

draw 
tree

n  bootstrap samples from the original data set 
t

S . 

Secondly, an unpruned regression tree will be grown using the 

bootstrap sample i

t
S


. In this process, 

fea
n  samples of the 

predictors will be randomly selected, and the best split will be 

chosen from those 
fea

n  variables at each node, rather than from 

all predictors. Finally, new data will be predicted by 

aggregating the predictions of 
tree

n  trees. The basic steps of 

applying RFR for prediction are also concisely summarized in 

Table IV. For the randomly collected sample process, a 

bootstrap sample is obtained by randomly selecting t  

observations with replacement from original sample set 
tS . 

The bagging algorithm selects bootstrap samples 
1 2( , , , )T

t t t
S S S  

 and applies the previous tree decision 

algorithm to construct a collection of T  prediction trees

 1( , ), , ( , )T

t t
h X S h X S

 
. The ensemble produces T  outputs 

corresponding to each tree, as: 1

1
( , )

t
Y h X S = , 2

2
( , )

t
Y h X S =

,…, ( , )n

n t
Y h X S


= . The prediction output of RFR is attained by 

performing the aggregation for the average of outputs of all 

trees, as: 
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1 1

1 1ˆ ( , )i

T T

i t
i i

Y Y h X S
T T



= =

= =   (6) 

where 
i

Y  is the output of the i th tree, and 1,2, ,i T= .  

Sample Set:

Bootstrap Samples,

Output 2:Output 1: Output n:

...

...

...

Tree 1 Tree 2 Tree n

Regression Result:

random sampling

Bootstrap Samples, Bootstrap Samples,

 1 1 2 2( , ),( , ), ,( , )t t tS X Y X Y X Y=

1

tS


1

1 ( , )tY h X S


= 2

2 ( , )tY h X S


= ( , )n

n tY h X S


=

1

1ˆ ( , )i

T

t

i

Y h X S
T



=

= 

n

tS


2

tS


 
Fig. 6.  The illustration of random forest regression model. 

TABLE IV. THE STEPS OF RFR FOR PREDICTION. 

Step 1. Draw bootstrap samples set 1 2( , , , )T

t t t
S S S    based on the 

Bagging thought; 

Step 2. Construct the regression decision subtree by randomly sampling 

feature to split the node of each tree; 

Step 3. Repeat steps 1) and 2) to grow T  regression trees, each tree grows 

randomly without pruning, and finally generate a ‘forest’; 

Step 4. The aggregation is performed by averaging the outputs of T  trees, 

and the estimation output can be obtained by (6). 

B. Box-Cox Transformation 

The main target of BCT is to conduct monotonic 

transformation of data, thereby achieving normality in highly 

skewed imputed values [36]. Due to the nonlinear capacity 

degradation trend and the linear RUL decline rate with cycle 

number, accurate RUL prediction based on only the original 

capacity degradation data is rather difficult to attain. Therefore, 

this study exploits the BCT, which needed only one parameter 

to be identified, to transform nonlinear capacity degradation 

into linear degradation to improve the RUL prediction 

performance. The BCT, as originally introduced in [37], applies 

the following equation when 0Q  , as: 

 

1
,   0

( )

log ,         0

Q

Q

Q








−


= 


=

 (7) 

where ( )Q   represents the transformed values and   is the 

transformation parameter that needs to be identified. Through 

applying the BCT, a linear model corresponding to the 

observations can be constructed, i.e., 2( ) ( , , )Q N X   , as: 

 
0 1 1 2 2

2

( )

(0, ), 1,2, ,

m n i

i

Q x x x

N i n

     

 

= + + + + +


= =

 (8) 

where X  is a design matrix with 
1 2

( , , , )T

n
X x x x= , 

0 1 2
( , , , , )T

m
    =  are the coefficients of the linear model, 

and 
i

  denotes the independent random error that is normally 

distributed with zero mean and variance of 2 . Generally,   

is identified by the maximum likelihood method [38]. Since the 

transformation responses 2( ) ( , )Q N X   , for the fixed  , 

the log-likelihood function of   and 2  is expressed as: 

2

2

1
exp [ ( ) ] [ ( ) ]

2
( , ) ( , )

( 2 )

T

n

Q X Q X

L J Q

   


  


 
− − − 

 
=  (9) 

where ( , )J Q  is the Jacobian matrix of the transformation 

process, as: 

 
1

1 1

( )
( , )

n n
i

i
i i

i

dQ
J Q Q

dQ


 −

= =

= =   (10) 

In (9), when   is fixed, J  is a constant factor that is 

independent of   and 
2 . Taking the partial derivatives of 

2( , )L    with respect to   and 
2 , and setting each of the 

resulting equations to zeros, we can get: 

 1ˆ( ) ( ) ( )T TX X X Q  −=  (11) 

 2
ˆ ˆ[ ( ) ] [ ( ) ]

ˆ ( )
TQ X Q X

n

   
 

− −
=  (12) 

By Substituting ˆ( )   and 2ˆ ( )   into (9), the corresponding 

maximum likelihood value of   can be calculated, as:  

( )2 2 2

max
ˆ ˆ ˆ( ) ( ), ( ) (2 ) ( , ) [ ( )]

n

L L e J Q        = =     (13) 

Take the logarithm transformation of both sides, we can get: 

 ( ) 2 2

max
ˆlog ( ) log (2 ) ( , ) [ ( )]

n

L e J Q    
 

=   
 

 (14) 

By submitting (10) into (14) and omitting the constant term 

irrelevant to  , equation (14) can be changed into: 

( ) 2

max
1

ˆ( ) log ( ) log[ ( )] ( 1) log( )
2

n

i
i

n
L L Q    

=

= = + −   (15) 

Since log( )x  is a monotone increasing function, when the 

unary function of   reaches the maximum value 
max

( )L  , 

( )max
log ( )L   also gets the maximum value. Therefore, 

maximizing (13) is equivalent to maximizing (15). After   is 

determined, equation (7) is exploited to transform the battery 

capacity variation. 
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C. Ridge Regression Algorithm 

In the anterior step, a linear model between the transformed 

capacities and cycles is constructed through the BCT. Next, the 

model parameters need to be identified precisely. RRA 

sacrifices unbiasedness to gain high numerical stability, and 

thus obtains higher calculation accuracy. As an effective 

parameter estimation method, RRA is commonly used to 

address the collinearity problem frequently arising in multiple 

linear regression problems [39]. Note that the L2 regularization 

is added to the loss function of RRA to avoid overfitting. In 

view of the robust linear regression capability, the RRA is 

employed to estimate the parameters of linear model between 

the transformed capacities and cycles. The parameters of the 

regression equation are solved as follows. A standard model for 

the linear regression is considered, as: 

 ŷ X  = +  (16) 

The corresponding loss function can be expressed as: 
2 2

2 2
ˆ( ) ( ) ( )T TD y y k X y X y k     = − + = − − +  (17) 

Taking the partial derivative of ( )D   with respect to  , as:  

 
( )

2 2T T TD
X X X y X y k


 




= − − +


 (18) 

and setting 
( )

0
D 




=


, the model parameter of (16) can be 

yielded: 

 1( )T TX X kI X y −= +  (19) 

where I  is the identity matrix and k  is the ridge regression 

coefficient. The correlation coefficient   and mean absolute 

error (MAE) are employed to quantitatively evaluate the 

effectiveness of linear relationship fitting, as: 

 
ˆ

1
ˆ

ˆ1
ˆ( , )

1

N
i y i y

i
y y

y y
y y

N

 


 =

  − −
=     −   

  (20) 

 
1

1
ˆ

N

i i
i

MAE y y
N =

= −  (21) 

where y  represents the observation value, ŷ  is the fitting 

value of linear model, 
y

  and 
y

  are the mean and standard 

deviation of y  respectively, 
ŷ

  and 
ŷ

  are the mean and 

standard deviation of ŷ  respectively. 

D. Monte Carlo Simulation 

The transformed capacities are not strictly linear with the 

cycles, there still exist deviations between the established linear 

model and the actual value. The uncertainties caused by the 

model error will be exaggerated with the prediction algorithm, 

and it will eventually lead to the prediction error of the RUL. 

Therefore, it is of crucial significance to describe the 

uncertainties of RUL prediction results as much as possible. 

The MC simulation can propagate the input uncertainties into 

prediction uncertainties [40]. Usually, MC simulation is 

combined with different prediction methods to calculate the 

probability density function (PDF) of prediction. Therefore, this 

study employs the MC simulation to calculate the PDF for RUL 

prediction. The procedures of calculating PDF for RUL 

prediction is described as: 

1) Determine the main source of uncertainties of RUL 

prediction method. In this study, the uncertainties are 

generated in the process of parameters identification of 

linear regression; 

2) Determine the distribution regularities of uncertainties 

based on the mean and variance of linear model parameters 

during the fitting; 

3) Randomly generate several samples according to 

distribution regularities of uncertainties, and then perform 

simulation prediction in terms of each generated sample 

using the linear regression model.  

4) Based on the simulation prediction results solved by step 3, 

the PDF of RUL prediction can be calculated as: 

1

1ˆ ( )
N

i i i

h p p p
i

p p p

Q Q Q Q Q Q
f Q K K K

N h h h

− +

=

      − − −
= + +           

       
 (22) 

where ˆ ( )
h

f Q  is the PDF of RUL prediction, ( )
p

K   denotes the 

Gaussian kernel function, and 
p

h  is the band width. 
i

Q−  and 

i
Q+  can be calculated by 

 
2

2

i c i

i c i

Q L Q

Q U Q

−

+

 = −


 = −

 (23) 

where 
c

U  and 
c

L  are the upper and lower bounds of the MC 

simulation, respectively, and 
i

Q  represents the i th result of 

RUL prediction. In the next step, a series of capacity estimation 

are conducted, and the detailed discussions are performed. 

IV. RESULTS AND DISCUSSION OF CAPACITY ESTIMATION 

To obtain the capacity degradation data in the whole lifespan 

of lithium-ion batteries, the RFR is firstly employed to estimate 

the battery capacity using only one cell data for model training, 

and then the built model will be validated in other cells. 

A. Capacity Estimation Based on RFR 

In this study, we employed the experimental data of cell 1 as 

the training data and other cells’ data for test. Figs. 7 and 8 show 

the estimation results and corresponding errors respectively. As 

can be seen from Fig. 7, the estimated results of cells 2 to 7 all 

track the degradation trajectory of real capacity variation. In the 

stage where the capacity degrades exponentially, the estimated 

capacity also approximates the actual value. As can be 

obviously seen from Figs. 8 (a) to (g), the maximum estimation 

error of all batteries is less than 2%. By comparing with the 

results listed in [41], of which the estimation error by 

conventional SOH and RUL prediction methods is more than 

2% in most cases, we can conclude that the proposed RFR can 

estimate the capacity with higher accuracy. Next, the estimation 

performance of RFR is further evaluated by different criteria. 

B. Error Analysis of Capacity Estimation 

To quantitatively evaluate the estimation performance of 

RFR model, the maximum absolute error (ME), root-mean-
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square error (RMSE) and goodness-of-fit are considered as the 

criteria. Among them, ME and RMSE comprehensively 

represent the average estimation performance, and smaller 

value implies better estimation precision. A goodness-to-fit 

parameter 2R , varying within [0, 1], is a measure of how the 

predicted value derived by the model tracks the referred value. 

The higher value (closer to 1) of 2R  indicates more similar 

prediction result, compared with the real value. These three 

criterions are defined as follows: 

 2

1

2 2 2

1 1

ˆmax | |

1
ˆ( )

ˆ1 ( ) / ( )

i i

n

i i
i

n n

i i i i
i i

ME y y

RMSE y y
n

R y y y y

=

= =


= −




= −


 = − − −




 

 (24) 

where n  represents the total sample number; y  and ŷ  are the 

real value and estimated value of target variable, respectively; 

and y  represents the average value of response variables.  

The detailed results for cells 2 to 7 are show in Table V, from 

which we can find that the maximum and minimum value of 

ME are 1.92% and 0.89%, respectively, and the RMSE of all 

cells is less than 1%. It can therefore be indicated that the RFR 

model can estimate the battery capacity with high accuracy. 

Since we employ only the data of cell 1 for model training, the 

estimation results indicate that the RFR model shows strong 

robustness and can effectively capture the degradation 

mechanism for the same type battery. The 2R  for cells 2 to 4 

are greater than 0.98, close to 1, indicating that the estimated 

values are similar to real values. In addition, the 2R  of cells 5 

to 7 is 0.9692, 0.9323 and 0.9542, respectively, which is smaller 

than that of cells 2 to 4. It can be noted that the ME and RMSE 

of cell 6 are larger than the other cells’ estimation error and its 
2R  is the least. It can be found from Fig. 3 (a) that the number 

of cycle life for cell 6 is shortest, which will increase the global 

estimation error of the model to a certain extent. As mentioned 

before, ME denotes the maximum difference between the 

estimated values and the observed values, and RMSE is utilized 

to evaluate the average difference between the estimated values 

and the observed values. 
2R  measures how closely the 

estimated values match the observed values. 
2R  equaling 1 

indicates that the model can explain all the variability of the 

objective category. From the perspective of maximum error, 

average error and the similarity between the estimated values 

and observed values, the RFR algorithm leads to accurate 

estimation of battery capacity in the whole lifespan. To sum up, 

the built RFR model that relies only on the training data of one 

cell can well track the capacity degradation trend with the 

acceptable error for other cells with the same type. The overall 

estimation error is less than 2%, and all the results are within a 

reasonable range. By this manner, the reliability and robustness 

of the proposed algorithm is proved. 

TABLE V. THE CAPACITY PREDICTION ERRORS OF CELLS 2 TO 7 

Battery Number 
Error Criterion 

ME (%) RMSE (%) R2 

Cell 2 1.36 0.57 0.9844 

Cell 3 1.33 0.44 0.9836 

Cell 4 0.89 0.30 0.9941 

Cell 5 1.43 0.82 0.9692 

Cell 6 1.92 0.92 0.9323 
Cell 7 1.56 0.84 0.9542 

 
Fig. 7.  The capacity estimation results with data of cell 1 for training. (a)-(f) capacity estimation results for cells 2 to 7. 
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Fig. 8.  The corresponding capacity estimation errors of cells 2 to 7. 

V. RESULTS AND DISCUSSION OF RUL PREDICTION 

To evaluate its effectiveness and performance, the developed 

method is applied for predicting the battery RUL based on the 

estimated capacity data. First, the results of BCT and RRA 

fitting are analyzed. Then, the developed method is performed 

for RUL prediction. 

A. Results of BCT and RRA Fitting 

It can be extrapolated from (1) that the battery RUL has a 

linear relationship with the cycle number, whereas the capacity 

degradation is nonlinear, as shown in Fig. 3 (a). To employ the 

developed method to predict the battery RUL, the estimated 

capacity data is firstly transformed. The BCT is applied to 

construct a linear relationship between the transformed 

capacities and cycles. Therefore, there is only one independent 

variable that represents the cycle number and thus 1m =  in (8)

. Now, equation (8) can be rewritten as 

 
0 1

2

( )

(0, ), 1,2,...,

i i i

i

C k

N i n

   

 

= + +


= =
 (25) 

where C   represents the transformed capacity using BCT; k  

denotes the cycle number; 
0

   and 
1

   are the coefficients of 

linear model, and 
i

  is the random error. The values of   in 

(7) for Cells 2-7 are calculated according to (9) - (15), which 

are listed in Table VI. For the linearized capacity values, the 

RRA is utilized to identify the linear model parameters.  

TABLE VI.   REFERENCE VALUES OF BCT FOR DIFFERENT CELLS 

Cell No. Cell 2 Cell 3 Cell 4 

  25.9614 24.6964 27.3004 

Cell No. Cell 5 Cell 6 Cell 7 

  25.7438 26.8264 35.2493 

The parameters of linear model expressed in (25) are identified 

though (16) to (19), and the identification results are shown in 

Table VII. Theoretically, there is a similar linear relationship of 

the transformed capacity with the cycle for the same type of 

battery, due to the similar degradation mechanism. It can be 

seen from Table VII that the linear model parameter 
0

  of all 

batteries is 0.2751, 0.2696, 0.2828, 0.2803, 0.2792 and 0.2783, 

and 
1

  is -2.692×10-4, -3.065×10-4, -3.155×10-4, -3.057×10-4, -

3.368×10-4 and -2.956×10-4. It can be found that the parameters 

of linear models for all the cells remain close and comply with 

the hypothesis that the same type battery exhibits similar linear 

relationships between the transformed capacities and cycles. 

The calculation results also indicate that the linear model 

established between the transformed capacities and the cycles 

using BCT is reliable. To evaluate the effectiveness of RRA, 

the evaluation criterions   and MAE are obtained via (20) and 

(21) and the corresponding results are show in Fig. 9. As can be 

seen, the correlation coefficient   of all the linear models is 

0.9877, 0.9975, 0.9900, 0.9852, 0.9949 and 0.9757, and all the 

MAE is less than 0.015, manifesting that a strong linear 

relationship exists between the transformed capacities and 

cycles. Moreover, the fitted values are quite close to the 

transformed capacities, manifesting the feasibility of the linear 

fitting of RRA. The fitted effectiveness of RRA also indicates 

that there exists a strong linear relationship between the 

transformed capacities and cycle number. Next, the constructed 

linear model is extrapolated to predict the battery RUL. 
TABLE VII. THE LINEAR MODEL PARAMETERS AND RIDGE 

REGRESSION COEFFICIENTS OF DIFFERENT CELLS. 

Cell No. Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 

0
  0.2751 0.2696 0.2828 0.2803 0.2792 0.2783 

1
 (×10-4) -2.692 -3.065 -3.155 -3.057 -3.368 -2.956 

k  -0.089 -0.088 -0.090 -0.091 -0.089 -0.080 
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Fig 9.  Illustration of the linear regression model between transformed capacities and fitted values for cells 2 to 7. 

B. RUL Prediction within Whole Cycle Life 

In this study, the battery RUL is predicted by extrapolating 

the constructed linear model. To evaluate the predicted 

performance of developed method within the entire lifespan, the 

whole estimated capacity of cells 2 to 4 is utilized to realize the 

RUL prediction. Fig. 10 shows the RUL prediction results and 

errors for cells 2 to 4. It can be seen form Fig. 10 (a), (c) and (e) 

that there exists a linear relationship between the real RUL and 

cycle number. The prediction results show similar trend with 

real RUL curve but with mild partial oscillation, indicating the 

prediction error is relatively large. The RUL predicted values 

are obtained by extrapolating the linear model between the 

transformed capacities and cycles, and the prediction 

performance of the developed method is mainly dependent on 

the constructed linear model. The RUL prediction results of 

cells 2 to 4, as shown in Fig. 10 (a), (c) and (e), verifying the 

feasibility of the constructed linear model based on BCT. Fig. 

10 (b), (d) and (f) show the prediction error at each cycle. 

Except individual cycles where the prediction error is great than 

100 cycles, the prediction errors of cells 2 and 4 are mostly less 

than 100. Additionally, the prediction error of cell 3 is smaller, 

and the prediction error is less than 50 cycles overall. As can be 

seen from Fig. 9, the correlation coefficient   of cell 3 reaches 

0.9975, which is the highest value among those of cells 2 to 7. 

Moreover, the RUL prediction error of cell 3 is smaller than that 

of other cells. Thus, the RUL prediction results justify the 

previous hypothesis that the RUL prediction accuracy is mainly 

dependent on the linear relationship between the transformed 

capacities and cycles. To sum up, the prediction error is within 

a reasonable range, validating that the proposed method can 

accurately predict the battery RUL within the whole cycle life 

based on the estimated capacity.  

The linear model is extrapolated to make multiple-step ahead 

predictions, and when the predicted is lower than the threshold, 

an EOL is reported. The predicted EOL and true EOL are shown 

in Table VIII. The prediction error of EOL for cells 2 to 4 are 

respectively 26, 36 and 9 cycles, highlighting that the developed 

method can accurately predict the EOL of battery. There is one 

EOL prediction for each MC simulation, and the simulation is 

repeated 1000 times in this study. The prediction PDF and 95% 

confidence interval are obtained based on the MC simulation. It 

can be seen from Fig. 10 (a), (c) and (e) that the PDF 

distribution of cells 2 to 4 is relatively concentrated, and the 

95% confidence interval are [1100, 1137], [956, 972] and [961, 

997], respectively. We can find that the interval spans are 37, 

16 and 36 cycles, showing that the proposed prediction method 

has high credibility. To sum up, the prediction results justify 

that the proposed method can predict the battery RUL and EOL 

with preferable accuracy and high reliability. 

TABLE VIII. THE EOL PREDICTION RESULTS AND ERRORS OF CELLS 2 TO 4 

Battery 
Number 

Evaluation Indicator 

Real 
EOL 

Estimated 
EOL 

Error 
95% confidence 
interval 

Cell 2 1144 1118 26 [1100,1137] 

Cell 3 1000 964 36 [956,972] 

Cell 4 988 979 9 [961,997] 

C. RUL Prediction at Different Cycle Life 

To analyze the robustness and stability of proposed 

algorithm, the developed method is applied for predicting the 

battery RUL at different starting position based on the estimated 

capacity data of cells 5 to 7. Note that the larger the cycle 

number corresponding to the prediction starting position, the 

less capacity data used to model for the RUL prediction will be, 

and therefore the higher uncertainty of RUL prediction will 

emerge. Fig. 11 shows the RUL prediction results and errors of 
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cells 5 to 7. The starting positions of prediction are 30%, 60% 

and 80% of the whole cycle life, corresponding to 259, 504 and 

702 cycles, respectively; and the capacity data employed to 

construct the linear model for cells 5 to 7 are respectively 70%, 

40% and 20% of the whole data. As can be seen from Fig. 11 

(a) and (d), the prediction results of cells 5 and 6 can better track 

the actual RUL trajectories, whereas the predicted RUL of cell 

7 deviates from the real RUL curve. The prediction results can 

also reflect the viability of linear relationship between the 

transformed capacities and the cycles, and the RUL prediction 

accuracy relies on this relationship. It can be seen from Fig. 9 

that the fitted correlation coefficient   of linear model for cells 

5 to 7 is 0.9852, 0.9949 and 0.9757, respectively. The   of cell 

7 is the smallest and that of cell 6 is the largest, indicating that 

the linear relationship of transformed capacities via cycle 

number for cell 6 is the strongest and that to cell 7 is the 

weakest. The RUL prediction results are consistent with the 

results of linear model fitting. As can be seen form Fig. 11 (b), 

(e) and (h) that the prediction error is mostly less than 50 for 

cell 6, except few individual points with a slight oscillation. The 

prediction error for cell 7 is the largest with the maximum error 

of 151 cycles; however, as the cycle number increases, the 

prediction error gradually decreases, and finally the prediction 

error of EOL is only 16.  

The blue and green dot-dashed lines in Fig. 11 (b), (e) and 

(h) are the upper and lower bounds of the 95% confidence 

interval of the prediction error calculated based on the MC 

simulation. In each case, the 95% confidence boundary is 

furnished based on all RUL prediction errors at the specified 

cycles. As can be seen that the RUL prediction errors are within 

[-50, 150], and the 95% confidence bounds are within 40 cycles. 

This error margin of RUL predictions indicates a high 

prediction stability of the developed method. Fig. 11 (c), (f) and 

(i) show the standard deviation (STD) of the RUL prediction at 

the specified cycles. The STD is obtained by the MC 

simulation. Since the STDs are all within 5 cycles, which shows 

that the RUL prediction of all cells is precise. The STD is a 

monotonically decreasing function, suggesting a more precise 

RUL prediction as the cycle number increases.  

To further evaluate the prediction performance of the 

developed method, the prediction MAE is calculated by (21) for 

cells 5 to 7, as shown in Table IX. The prediction MAE of cells 

5 to 7 are respectively 44.48, 29.73 and 56.17 cycles. The 

prediction MAE of cell 7 is the largest, which is in line with the 

above results in which the linear relationship of transformed 

capacities with cycle number for cell 7 is relatively weak. Based 

on the above discussion, we can conclude that the developed 

method can predict the battery EOL from different starting 

cycle position with high accuracy, and the maximum error and 

MAE of RUL prediction are 151 and 56.17 cycles. To sum up, 

the prediction results validate that the proposed method can 

predict the battery RUL with high accuracy, stability and strong 

robustness. 

TABLE IX. THE EOL PREDICTION RESULTS AND ERRORS OF CELLS 5 TO 7. 

Battery 

Number 

Evaluation Indicator 

Real 

EOL 

Starting 

cycle 

Estimated 

EOL 
MAE 

Mean 

STD 

Cell 5 1027 259 1002 44.48 3.98 

Cell 6 922 504 906 29.73 1.88 
Cell 7 939 702 923 56.17 3.95 

 
Fig. 10.  The RUL prediction results and errors in the lifespan. (a)-(b) The results and errors of RUL prediction for cell 2; (c)-(d) The results and errors of RUL 

prediction for cell 3; (e)-(f) The results and errors of RUL prediction for Cell 4. 
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Fig 11.  The RUL prediction results and errors at different start position. (a)-(c) the results and errors of RUL prediction for cell 5; (d)-(f) the results and errors of 

RUL prediction for cell 6; (g)-(i) the results and errors of RUL prediction for cell 7. 

VI. CONCLUSION 

In this paper, a RUL prediction method based on capacity 

estimation and BCT is proposed for lithium-ion batteries. In the 

developed method, the internal resistance, the average 

temperature of each specified cycle and the absolute value of 

discharge incremental capacity peak are considered as the aging 

features. The RFR with the aging features as model input and 

the corresponding capacity as output is then employed to 

estimate the battery capacity. The BCT is exploited to transform 

the estimated capacity data and to construct a linear model of 

transformed capacities via cycles. In addition, the RRA is 

employed to identify the linear model parameters. The battery 

RUL is predicted based on the extrapolation of the linear model, 

and the prediction uncertainties are generated using the MC 

simulation. To evaluate the prediction performance of the 

proposed method, the aging experimental data involving 7 cells 

are employed to test and validate the algorithm. The capacity 

estimation results validate that when only one battery data is 

used for training, the capacity estimation error of other cells is 

less than 2%. In the whole cycle life, the experimental results 

show that the RUL prediction maximum error is 127 cycles, and 

the prediction error of EOL can reach a maximum value of 36 

cycles. The maximum spans of 95% confidence interval is 37 

cycles, indicating that the proposed prediction method shows 

high accuracy and credibility. Moreover, the developed method 

can also be performed for RUL prediction at different starting 

cycle position. The prediction results show that the RUL 

prediction errors are restricted with [-50, 150], and 95% 

confidence boundary is kept within 40 cycles. The experimental 

results illustrate that the proposed method can predict the 

battery RUL with preferable accuracy and certain robustness. It 

can also be indicated that the proposed method shows certain 

potential for real applications. 

The RUL prediction is conducted based on single cell in this 

research. In our next step research, the RUL prediction of 

battery packs will be conducted, and more precise RUL 

estimation will be investigated with the consideration of 

different operating temperatures and real-time operation data.  
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