Title: Regarding: Nicotinic acetylcholine receptors α 7 and α 9 modifies tobacco smoke risk for multiple sclerosis

Authors: Benjamin M Jacobs^{1,2}, Ide Smets³, Gavin Giovannoni^{1,2,3}, Alastair Noyce^{1,2}, Vilija Jokubaitis⁴, Ruth Dobson^{1,2}

Affiliations:

- 1: Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University London
- 2: Department of Neurology, Royal London Hospital, BartsHealth NHS Trust
- 3: BartsMS, Blizard Institute, Queen Mary University London
- 4: Department of Neuroscience, Central Clinical School, Monash University, Australia

Corresponding Author:

Dr Ruth Dobson
Preventive Neurology Unit
Wolfson Institute of Preventive Medicine
Charterhouse Square
London EC1M 6BQ
Email: ruth.dobson@gmul.ac.uk

Key Words: multiple sclerosis, genetics, epidemiology

Funding & Disclosures: This work was funded via a grant from Barts Charity (grant ref MGU0365). BJ is supported by an NIHR Academic Clinical Fellowship. No authors have any relevant disclosures to declare.

Dear Editors,

We read with interest the study by Briggs¹; in which 75 variants from 332 SNPs appeared to modify the effect of smoking on MS susceptibility at an uncorrected p value threshold of 0.05. Haplotype-based analyses, stratified analyses, and replication in a case-only cohort of another ~1000 individuals with MS supported the hypothesis that variants in *CHRN7A* and *CHNR9A* modify the effect of smoking on MS susceptibility.

We previously performed analogous analyses using the UK Biobank, a longitudinal cohort study comprising over 500,000 individuals recruited between 2006 and 2010². MS cases were defined using ICD-10 coded diagnoses derived from hospital episode statistics (linked secondary healthcare records). Smoking status prior to age 20 was defined as a binary variable using self-reported smoking status and age of starting smoking. Individuals with high relatedness (one of each pair with Kinship coefficient >0.0844), high genotype missingness (>10%), non-European genetic ancestry, and those with missing data for either age at MS diagnosis or smoking initiation were excluded. MS cases diagnosed prior to age 20 were also excluded³. Code is available at <a href="https://github.com/benjacobs123456/CHRN variants_GE/blob/master/CHRN variants_GE/blob/master/CHRN

After these exclusions, 1187 MS cases and 372558 unmatched controls remained. All SNPs within 50kb of *CHRNA7/CHRNA9* (hg19 coordinates *CHRNA7* chr15:32,322,691-32,464,722, *CHRNA9* chr4:40,337,346-40,357,234) were extracted using genotype data imputed by UK Biobank. After application of standard SNP quality control³ we conducted GxE analysis using multivariable logistic regression in PLINK2 (version 2.0-20200328). Models included main and interaction effects, and controlled for age, sex, and the first ten genetic principal components as covariates.

254 SNPs and 158 SNPs passing QC in *CHRN7A* and *CHRN9A* respectively were identified. Ten SNPs (10/254) in *CHRN7A* and thirteen SNPs (13/158) in *CHRN9A* showed nominal evidence (p<0.05) of GxE interaction. LD clumping in PLINK (R² cutoff of 0.5) identified 63 independent signals in *CHRN7A* and 27 independent signals in *CHRN9A*. We therefore applied a Bonferroni-adjusted p value threshold of 0.0006 (0.05/63+27). No SNPs showed evidence of GxE interaction surpassing the significance threshold.

Of the 82 SNPs for which effect estimates are reported by Briggs¹, 27 passed QC in our dataset (21 in *CHRN7A*, 6 in *CHRN9A*). P values for all SNPs were of larger magnitude (i.e. less statistically significant) in our analyses, although they were highly correlated (r_{Pearson}=0.90). Similarly, beta coefficients for the SNP interaction term were between 4.13x and 9.25x smaller in UKB (median 5.16x), but again the effect estimates were highly correlated (r_{Pearson}=0.98).

Our results suggest that the observed interactions between SNPs in nicotinic receptor genes and smoking in determining MS susceptibility do not reach statistical significance in a large, independent, well-characterised UK-based cohort. Although GxE studies are notoriously underpowered, our results emphasise the need for independent replication and stringent correction for multiple comparisons to minimise the risk of type 1 errors. Further efforts are required to determine how genetic variants modulate the effect of smoking on MS risk.

References

- 1. Briggs, F. B. Nicotinic acetylcholine receptors α7 and α9 modifies tobacco smoke risk for multiple sclerosis. *Mult. Scler.* 1352458520958361 (2020).
- 2. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature* 562, 203–209 (2018).
- 3. Jacobs, B. M. *et al.* Gene-environment interactions in Multiple Sclerosis: a UK Biobank study. 2020.03.01.971739 (2020) doi:10.1101/2020.03.01.971739.