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Abstract 

Chronic pain is a global problem affecting up to 20% of the world’s population and has a 

significant economic, social and personal cost to society. Sensory neurons of the Dorsal Root 

Ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the 

central nervous system (CNS) where activity is perceived as pain. DRG neurons express 

multiple voltage-gated sodium channels that underlie their excitability. Research over the last 

twenty years has provided valuable insights into the critical roles that two channels, NaV1.7 

and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful 

conditions while loss of function mutations cause complete insensitivity to pain. Only gain of 

function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead 

to painful conditions a few are reported to cause insensitivity to pain. The critical roles these 

channels play in pain along with their low expression in the CNS and heart muscle suggest 

they are valid targets for novel analgesic drugs.  
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Introduction: 

Pain is an important warning system to guard against tissue damage and disease. Pathological pain, 

however, has no warning value and has huge economic, social and personal costs to society. Chronic 

pain is a global problem affecting up to 20% of the world’s population [50,9]. Sensory neurons of the 

Dorsal Root Ganglia (DRG) detect painful stimuli and transmit sensory information to regions of the 

central nervous system (CNS) that perceive pain. DRG neurons are a heterogeneous population of 

neurons with distinct functional and histochemical properties [77,53]. The DRG contain neurons 

responding to a variety of non-noxious stimuli (such as proprioceptors and low-threshold 

mechanoreceptors) as well as those responding to noxious stimuli (nociceptors).  

Inflammation and nerve injury sensitise DRG neurons and result in decreased pain thresholds and/or 

intense pain. This can be in part due to increased voltage-gated sodium channels (VGSC) activity 

resulting in increased excitability of DRG neurons [8,103]. VGSCs consist of pore forming α-subunits 

and auxiliary β-subunits. There are ten cloned α-subunits and 4 β-subunits. The β-subunits modulate 

the localisation, expression and functional properties of α-subunits [12]. Each -subunit is composed 

of four homologous membrane-spanning domains (DI-DIV). Each domain consists of six 

transmembrane segments (S1-S6) [12]. Different α-subunits have distinct electrophysiological and 

pharmacological properties [12,103], and DRG neurons express multiple α-subunits that are essential 

to their ability to fire action potentials [103]. 

This review aims to clarify the roles of two VGSC channels expressed selectively, though not 

exclusively, in primary sensory neurons, in pain pathways, and in light of evidence from genetic 

mouse model and mutations in man. We discuss the usefulness of these channels as potential drug 

targets, and suggest that while our present understanding of function has grown more complex, 

targeting these channels either alone or in combination may still provide a strategy for analgesic 

development, potentially even for chronic use. 

VGSC as targets for analgesic drugs  

There are two reasons why VGSCs are attractive targets for analgesic drugs. Firstly, VGSC are 

required for the firing of action potentials in DRG neurons, therefore, blocking their activity will reduce 

pain signalling in painful conditions even if they were not the primary or only contributor to increased 

firing. For example, sensitisation of primary transducing channels, like the transient receptor potential 

(TRP) channels, is often involved in many forms of pathological pain [11,90,105]. This sensitisation 

will lead to greater generator potentials in sensory nerve terminals. However, since VGSC are 

required to initiate an action potential in nerve terminals and to allow conduction into the CNS, an 

effective VGSC blocker can still cancel out the effect of the sensitised TRP channels in nerve 

terminals.  

Secondly, a few of the VGSC  subunits expressed in DRG are either exclusive to, or enriched in 

DRG neurons that signal pain, with little expression in other DRG neurons, the CNS, skeletal and 

heart muscles. Blockers for these subunits would therefore be expected to produce analgesia without 

detrimental side effects. DRG neurons express many of the cloned  subunits [103], however, three 

subunits (Nav1.7, Nav1.8 and Nav1.9) meet the above criteria. Not surprisingly, many pharmaceutical 

companies are developing and testing subunit specific Nav1.7, NaV1.8 and NaV1.9 blockers as 

analgesics [128,38].  

The three -subunits differ in their biophysical properties that determine their role in neuronal 

excitability [103]. The NaV1.9 channel activates over a negative range of membrane potentials close 

to the resting potential and generates a persistent current. Evidence suggests that it is powerfully 

regulated by g-protein pathways, in a unique way. Therefore, when it is activated, it contributes to 

setting the resting membrane potentials of neurons expressing it [22]. Nav1.7, generates a transient 

Na+ current, but has a relatively slower rate of inactivation near the resting potential (slow closed-state 

inactivation) allowing the channel to generate persistent currents and making it a so-called ‘threshold 

channel ‘[24,25]. Nav1.8 has a relatively depolarised activation voltage (~ -20mV) compared to Nav1.7 

and Nav1.9 [2,103], thus Nav1.8 activation comes after and perhaps subsequent to the activation of 

Nav1.9 and Nav1.7 channels. Nonetheless, Nav1.8’s depolarised inactivation and more rapid recovery 
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from inactivation allows it to contribute to repetitive firing, for example [103]. This review will focus on 

NaV1.9 and Nav1.7 subunits since their biophysical properties allow them both to influence pain 

thresholds through setting the membrane potential and action potential threshold in DRG neurons. 

Role of Nav1.7 in pain 

Nav1.7 was cloned from PC12 cells in 1997 [118]. At that time NaV1.8 and NaV1.3 channels were 

already under the spot-light and their role in pain was actively being investigated. NaV1.8 was cloned 

in 1996 and its strong expression in medium and small sensory neurons (the sizes of most 

nociceptors) made it the best and most obvious target for analgesic drug development [2]. The NaV1.8 

knockout mouse was reported three years later and although it showed a pain deficient its phenotype 

was compromised by a compensatory upregulation of Nav1.7 [3] with clear functional consequences 

[3,89]. However, knock-down of Nav1.8 by antisense oligo nucleotides in adult rats inhibited 

neuropathic pain [75,129]. The difference could be due to the timing of the deletion (embryonic versus 

adult) or the animal model used (mouse versus rat).  In contrast to Nav1.8, the expression pattern of 

Nav1.3 does not suggest it would be a useful drug target. Nav1.3 is expressed throughout the nervous 

system and its expression is highest during embryonic development and decreases postnatally [122].  

However, Nav1.3  is the only channel that is re-expressed in DRG following nerve injury and diabetes 

[121]. This made it a potentially viable target for analgesics. However, mice lacking Nav1.3 do not 

show any deficits in pain phenotype [91]. 

Nav1.7 became the focus of the pain field in 2004 with the publication of two papers [127,92]. The first 

paper identified a mutation in SCN9A (the gene coding for Nav1.7) as the cause for a rare inherited 

pain condition known as Primary Erthromelalgia (PEM). PEM symptoms starts at early age with 

episodes of pain in the extremities (usually in the feet) that are triggered by exposure to heat or 

walking [127]. The second paper reported the complete absence of inflammatory pain in a conditional 

mouse lacking Nav1.7 in most nociceptors [92]. The conditional ablation in nociceptors was achieved 

using a Cre driver mouse line where Cre is expressed by the Nav1.8 promotor [113]. The complete 

loss of all inflammatory pain and mechanical pressure after ablation of Nav1.7 in nociceptors [92] 

excited the pain field and stimulated drug discovery programmes at several pharmaceutical 

companies [38,128]. A conditional mouse was generated because global deletion of Nav1.7 in mouse 

proved to be lethal [92]. Global knockout pups were born alive but failed to feed and died within 24 

hours. Hand feeding and special husbandry arrangements allow Nav1.7 global KO to survive to 

adulthood [49]. Inducing Nav1.7 ablation in adult mice causes pain deficits without detrimental effects 

[107].  

Remarkably, the symptoms of PEM patients complemented the phenotype of the conditional Nav1.7 

null mice. While pain can be triggered by mechanical pressure on feet (walking and exercise) 

conditional null mutants showed a complete loss of pain to mechanical pressure. While PEM patients 

showed signs of inflammatory pain (heat, redness and occasionally swelling of feet), conditional null 

showed a complete loss of inflammatory pain. This helped support the hypothesis that blocking 

Nav1.7 in humans would significantly reduce pain signalling. However, the mouse study raised 

significant questions. Firstly, is the role of Nav1.7 in pain signalling in humans as critical as it is in 

mice, in other words, would the loss or block of Nav1.7 in humans lead to the all or none loss of pain 

seen in mice? Furthermore, if this is the case, then would the loss or block of Nav1.7 in humans result 

in lethality (as it did in mice)?  These questions were critical for the validity of Nav1.7 as a drug target. 

These questions were answered in 2006 when it was reported that a loss of function mutation in 

SCN9A causes complete insensitivity to pain (CIP) [19]. In CIP patients, perception of non-noxious 

touch and warmth is not affected whereas perception of noxious heat, pressure and injury pain is 

completely lost. CIP patients confirmed that Nav1.7 plays as critical a role in pain signalling in humans 

as it does in mice. Importantly, loss of Nav1.7 did not lead to lethality nor any significant disability (CIP 

patients are anosmic due to the expression of Nav1.7 in olfactory epithelia [135]). A second heritable 

painful condition was mapped to a gain of function mutation in SCN9A in the same year (2006). 

Perixsomal extreme Pain disorder (PEPD, initially known as familial rectal pain) was found to be 

caused by a gain of faction mutation in the Nav1.7 channel [45]. The four papers between 2004 and 

2006 provided very strong evidence that Nav1.7 is a critical player in pain signalling, catapulting it to 
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the top of the list of analgesic drug targets. Since then, human geneticists have identified scores of 

mutations causing PEM, PEPD, CIP and Small Fibre Neuropathy (SFN).  

Primary Erythromelalgia (PEM) 

Primary erythromalgia is an autosomal dominant condition caused by a mutation in the SCN9A gene. 

The condition was first mapped to SCN9A in 2004 by Yang et al [127]. The proband suffered from 

bilateral episodes of burning pain in their hands and feet that started during their childhood and 

continued throughout their life. During the attacks the feet and hands became warm and red. The pain 

episodes were triggered by exercise or exposure to heat. The proband had the nonsense mutation 

L858H which is located in the second domain, figure 1. Characterisation of the channel’s biophysical 

properties showed that the mutation shifted the activation voltage about 12 mV in the hyperpolarising 

direction resulting in a reduced threshold for channel opening and thus increased excitability [23]. 

Since the first report, several mutations have been reported that cause PEM, listed in Table 1 in 

chronological order.  Symptoms appears early in life although late onset cases have been reported 

[17,21]. All PEM mutations cause similar changes to the biophysical properties of Nav1.7, involving a 

shift of the activation voltage to hyperpolarised potentials [30], and where the magnitude of the shift 

seems to affect the severity of the symptoms [55]. Furthermore, PEM mutations tend to cluster in 

domains I and II of the channel protein, figure 1.  

Treatment for PEM patients includes avoidance of the conditions that trigger pain (i.e. heat and 

physical pressure on feet). Patients typically resort to foot lifting, cooling feet by fans or immersing 

them in water or iced water to reduce or relief pain. Although immersion in cold water is effective for 

mild cases, it can result in ulceration and maceration of foot skin leading to infection [116,19]. 

Recently, it has been reported that behavioural therapy reduced dependence on water immersion in 

PEM patients [67]. There is no consensus on pharmacotherapy. Among effective drugs are non-

selective sodium blockers (lignocaine, mexiletine and carbamazepine)[116,82] which have been 

shown to inhibit Nav1.7[133,120] . 

Paroxysmal extreme pain disorder (PEPD) 

Paroxysmal extreme pain disorder (PEPD, formerly known as Familial Rectal Pain Syndrome) is 

caused by gain of function mutations in SCN9A that alter the biophysical properties of the Nav1.7 

channel [45]. There are several similarities between PEPD and PEM. Both are autosomal dominant 

conditions with symptoms starting early in childhood (PEPD is observed in infants [16]). PEPD is 

characterised by episodes of severe burning pain in the rectal, ocular, and mandibular areas 

accompanied by flushing of the skin. Pain in PEPD patients is triggered by otherwise innocuous 

mechanical stimulation (defecating, chewing and yawning) and warmth of the affected areas. 

However, functional characterisation of mutant Nav1.7 channels showed that they have normal 

activation voltages (unlike PEM mutations). In contrast, PEPD mutations cause a depolarising shift in 

inactivation voltages with incomplete channel inactivation, leading to a persistent current and 

increased excitability [7,119,45]. 

Table 2 lists reported SCN9A mutations that are found in PEPD patients. PEPD mutations tend to 

cluster in domain III and IV of the channel protein, figure 2. Despite the severity of the pain, PEPD 

patients responded well to the anti-epileptic drug carbamazepine [117].  

Heritable Small Fibre Neuropathy (SFN) 

Small fibre Neuropathy is caused by damage to thinly myelinated and unmyelinated nerve fibres. SFN 

is often characterised by late onset, bilateral burning pain to hands and feet. SFN is also associated 

with disturbances to autonomic functions like sweating, dryness in eyes or mouth, disturbance to 

bowel and bladder functions [117]. Autonomic symptoms are not reported in both PEM and PEPD. 

Diagnosis is usually confirmed by a decrease in intra-epidermal fibre density (IDFD) in skin biopsies. 

Several conditions can cause SFN, these include diabetes and autoimmune disease [112,52]. About 

50% of SFN cases are idiopathic, with no obvious aetiology [112]. The dominant pattern of inheritance 

of SFN in some cases of idiopathic SFN suggested mutations in a single gene [112,52]. Mutations in 
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the three peripheral VGSCs, Nav1.7 [10], Nav1.8 [44] and Nav1.9 [64] channels have been found in 

heritable SFN cases.  

Characterisation of Nav1.7 channels in SFN patients, listed in table 3, showed that they would cause 

hyperexcitability [62,43], however, it is not clear how this leads to a small fibre neuropathy and why it 

is of late onset. Nav1.7 channel mutations linked to SFN are not localised to a particular region within 

the channel but many are clustered in the first intracellular loop between domains I and II, figure 3. 

Recently a clinical trial has found lacosamide to be efficacious in reducing pain and wellbeing of SFN 

patients with SCN9A mutations [27], however, the effect was linked to subset of SCN9A mutations 

[74]. 

 

Role of Nav1.7 in epilepsies 

Although the expression of Nav1.7 in the human brain is poorly characterised, there is emerging 

evidence that Nav1.7 plays some role in modulating excitability in the brain. It is known that CIP 

patients suffer from the loss of the sense of smell due to expression of Nav1.7 in olfactory epithelia 

[135] and a patient with the PEM mutation N1245S displayed high olfactory sensitivity [54]. However, 

CIP patients are not reported to suffer from brain related symptoms. Nonetheless, several papers 

have recently reported mutations in SCN9A in patients with various types of epilepsies, table 4. These 

mutations are mostly localised to the DI-DII part of the channel, figure 4. The above suggests that 

while a loss of Nav1.7 function has no detrimental effect on the brain, altered or increased Nav1.7 

function does. Therefore, further research is needed to provide insights onto the type of cells that 

express Nav1.7 (types of neurons? any in glia?) in brain. Furthermore, knock-in models will help to 

explore how the mutations cause epilepsy rather than act as modifiers to changes in other genes (e.g. 

SCN1A, SCN2A and SCN3A). Finally, it is intriguing that a few mutations (e.g. Q10R) cause PEM in 

some patients, and epilepsy in others. This may suggest that variations in the functional expression of 

other genes or epigenetic changes influence the biological consequences of mutations in Nav1.7.      

Complete insensitivity to pain (CIP) 

Complete insensitivity to pain is characterised by loss of all pain sensations throughout patient’s life.   

SCN9A loss of function mutations cause an autosomal recessive CIP [19,34]. Several mutations have 

been identified, most are non-sense mutations causing truncated proteins, table 5. Most of the 

mutations are located within domains I and II, figure 5. There is recent evidence that the CIP 

phenotype involves changes to endogenous opioids [87,97], however, this was not observed in a rat 

null model [14].  

Role of Nav1.9 in pain 

Nav1.9 –(gene name SCN11A), is a tetrodotoxin-resistant (TTX-r), so called persistent Na+ current, 

with clear evidence for functional expression in nociceptive primary sensory neurons in the dorsal root 

ganglia (DRG) and trigeminal (e.g. [22,6]), and the AH cells of the myenteric plexus in the gut 

[102,18]. The human clone (first named as SCN12A, 73% identical with rat SCN11A, [68]; had initial 

reported expression in the placenta, spleen, small intestine, spinal cord and brain (potentially neurons 

and glia)). In primary sensory neurons it has been associated with nerve endings in tooth-pulp and 

cornea using immunohistochemical methods, and evidence suggests it is found distributed along IB4+ 

axons in the sciatic nerve (e.g. [47,28,95]), furthermore, the channels have been located to gut 

afferents [60,61] and also to the bladder [101] using electrophysiological methods in gene knock-out 

mice 

The functional properties of the channel currents were first identified in Nav1.8 knockout mouse 

sensory neurons, because under these circumstances the channel generates the only tetrodotoxin-

resistant (TTX-r) Na+ current [22,84]. The channel produces a Na+ current in sensory neuron cell 

bodies that has ultra-slow activation and inactivation kinetics. It gives rise to a persistent, non-

inactivating current operating over the negative portion of its activation membrane potential range, 

allowing it to act as a ‘threshold channel’, and to contribute to setting the membrane potential. Its 

unusual kinetic properties, and negative activation range produce ‘plateau potentials’ that amplify 
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applied or transduced sub-threshold depolarizations and massively prolong them in duration (figure 

6). It is worth noting that Nav1.9 has activation kinetics that are too slow to directly contribute to 

impulse firing. 

 

Intracellular dialysis of the non-hydrolysable GTP analogue, GTP--S, up-regulated the Nav1.9 current 

with no changes in current kinetics, recorded in voltage-clamp. It was also found that at a membrane 

potential of near -60 mV, functional upregulation of the current can cause sensory neurons to fire 

rhythmically and spontaneously, at low frequency, (figure 6) [6]. The current could be upregulated 

following the activation of ATP receptors, deduced to be P2Y, operating through a probable Gq/11 

pathway and PKC [6,5], such a pathway has later been confirmed to be a contributor to modifying the 

firing properties of gut afferents. 

There are several mouse knockouts of SCN11A reported in the literature and these have been 

associated with an elimination of the GTP--S upregulated current in primary sensory neurons [94] 

and a complementary reduction in forms of inflammatory pain following exposure to PGE2 [4] and 

including the formalin and CFA tests [99] – consistent with a role of Nav1.9 in inflammatory pain in 

both the skin and gut.  A likely role for Nav1.9 in the control of normal gut motility, attributable to 

altered plexus function, seems consistent with the effects of mutation in human carriers and gain of 

function is associated with constipation (e.g. [69]). With these facts in mind, it may be possible to 

understand the defects in pain signalling found in humans with rare, heritable mutations in SCN11A.  

Painful and painless Nav1.9 Channelopathies  

About 20 mutations have been reported for SCN11A, table 6. All follow a dominant inheritance 

pattern. Most mutations have been confirmed to lead to a gain of function. No loss of function 

mutations have been reported to date which could be because such mutations cause mild or no effect 

on pain signalling in humans (given the phenotype of knockout mice it is very unlikely that human loss 

of function mutation causes lethality). It is also possible that the loss or reduction of inflammatory pain 

may mean such individuals are unlikely to have a reason to visit the doctor! 

The persistent nature of Nav1.9 currents, and the negative activation voltage-dependence makes the 

channel functionally unique. It is proposed to act as a threshold channel in peripheral nociceptors, so 

gain of function mutations associated with facilitated activation would be expected to give rise to 

painful neuropathy, because the threshold for action potential generation is reduced. Indeed, SCN11A 

mutations result in two painful conditions, familial episodic pain [131,79,93,63] and painful small fibre 

neuropathy [64,57,48]. In familial episodic pain, painful episodes centre on regions on the arms and 

legs, in addition, there are age-related decreases of pain, suggesting real age-related changes in 

gene expression. Painful episodes (lasting 10s of minutes) are associated with rainy days, cold 

temperature and commonly also fatigue; some are associated with gut motility symptoms. Further, 

drugs acting as NSAIDs or anti-pyretics, such as ibuprofen, appear to be able to ameliorate these 

symptoms. Patients with SCN11A related small fibre neuropathy experience pain, tingling and 

numbness in their arms and legs. Patients may experience diarrhoea which is consistent with 

expression of Nav1.9 in the gut [131].  

Surprisingly, a few SCN11A gain of function mutations cause a complete insensitivity to pain 

[80,98,70]. Several possible explanations for how enhanced channel function leads to reduced 

neuronal excitability have been suggested [29], although arguments concerning modifications of 

channel gating kinetics as the primary cause seem incomplete and are based on voltage-clamp 

recordings whose  interpretation may not be straightforward. It is thought that increased 

activation/inactivation gating overlap (or window current) depolarise the Nav1.9 expressing neurons. 

This prolonged depolarisation causes rapidly gating Na+ channels (e.g. Nav1.7 and Nav1.8) to enter 

the inactivated state [65]. Since these channels underpin action potential generation and propagation, 

the depolarizing block of Nav1.7 and Nav1.8 in nerve endings leads to an overall decrease in 

excitability. It was noted that the mutations that lead to CIP are those that produced the largest shift in 

the activation threshold of the channel; whereas those that lead to familial episodic pain and painful 

small fibre neuropathy cause smaller shifts, table 6 [29]. Also of note, SCN11A CIP mutations are all 
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localised to transmembrane segment 6, figure 7. However, several issues are difficult to reconcile with 

the above explanation for the painless phenotype. Firstly, Nav1.9 is expressed in the IB4+ subset of 

neurons and not in all DRG neurons (at least in rodents). Therefore, a depolarising block in this 

subset of neurons alone is not expected to cause a complete loss of pain. Second, NaV1.8 which is 

expressed in most nociceptors (i.e. in same neurons as Nav1.9) is a channel known to operate at 

more depolarised membrane potentials and can maintain excitability, even in the face of a 

depolarised membrane potential [111,134,56,104]. 

Concluding remarks 

In the past 20 years mouse models and human genetics have confirmed that Nav1.7 and Nav1.9 play 

critical roles in pain signalling. The link between genotype and phenotype for mutations in both 

channels is poorly understood. Symptoms manifest in extremities (mainly in the feet/legs) in most 

human conditions. In Nav1.7 channel mutations, there is a link between mutations that cause 

enhancement of activation to PEM; and mutations that cause incomplete inactivation to PEPD. The 

physiological or microanatomical basis for these associations in terms of nerve ending function are 

only partly understood. In Nav1.9 channel mutations, a clear understanding of why most gain of 

function mutations cause painful conditions while those affecting segment 6 cause insensitivity to pain 

is also lacking, although insensitivity to pain is hypothesised to be caused by reduced excitability due 

to a depolarising block [121, 122]. 

Nonetheless, available evidence confirms a critical role for both channels in pain earning them a 

position in the list of potential drug targets. Ablation of Nav1.8 and Nav1.9 in mice does not lead to 

leathaility or any observable detrimental effects. Ablation of Nav1.7 in human [19] and in adult mice 

[107] does not lead to leathality. Reassuringly, there are no reported respiratopry or behvioural 

abnormalites as a reuslt of the absence of all three channels in mouse and human. Yet important 

challenges for VGSC blockers in chronic pain remain, developing subunit sepecific blockers being the 

first. This is important conidering that VGSC blcokers would need to be admisntraered regularly to 

treat chronic pain and perhaps at hgiher doses when pain is sever. Therefore VGSC blcokers would 

need to be safe for long term admisntration. The developement of specific and effective small 

molecule inhibitors of Nav1.7 is still elusive, despite efforts by several pharmaceutical companies 

[38,128,71]. The second challenge is the extent of Nav1.7 inhibition required for analgesia in vivo. 

Given that CIP carriers have normal pain phenotype, an Nav1.7 blocker may need to reduce channel 

activity to a level well below 50% to produce analgesia.  

The contribution of the endogenous opioid system to the phenotype of the SCN9A CIP mutation 

riases the question whether the CIP phenotype is a direct consequence of the loss of Nav1.7 [87,97]. 

Several papers provided compleing evidence that the loss of Nav1.7 reduces the excitability of DRG 

neurons per se. Deletion of Nav1.7 cuases an increase in action potential threshold in small-diameter 

DRG neurons [107]. Deletion of Nav1.7 causes a major decrease in DRG neurons responsiveness to 

the VGSC opener veratridine [89]. Mechanically-evoked spiking of C-fibers in the skin-nerve 

preparation were reduced  reduced in Nav1.7 KO mice[49]. No changes in the epxression of other 

VGSC channels were reported in the Nav1.7 KO mouse to contribute to the observed reduced 

excitability of DRG [107]. Furthermore, pain decificts in a rat model of Nav1.7 deletion were not 

reversed by opioid the receptor antagonist naloxone [14]. Therefore, while an increase in spinal cord 

opioid synthesis would reduce signal transmission at the first synpase in CIP paitients, the loss of 

Nav1.7 has a profund effect of the excitabilty of DRG neurons (i.e. signal initiations).  

lack of reported Nav1.9 loss of function mutations may indicate that its loss does not lead to a major 

phenotype in humans, raising doubts as to whether a blocker would lead to a major analegisc effect. 

Finally, considering that nociceptors express at least two of the peripheral VGSC subunits (Nav1.7, 

Nav1.8 and Nav1.9), an effective analegesic strategy may ultimately result from a combination of 

blockers against these subunits to have additive and synergistic effects on nociceptors. The 

effectiveness of various drug combinations to reduce neuronal excitability can only be measured on 

DRG neurons because they express the target VGSCs at biologically relevent levels. Equally 

important for the evlauation of any drugs combination is its effect on non-nociceptors as well as 

nociceptors. We recently decribed a relevant assay [88] and provided proof-of-concept data that 
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showed a combination of Nav1.7 and Nav1.8 blockers produced a reduction in excitability in nociceptor 

close to that measured in Nav1.7 KO [89]. Changing the consitituents and doses in VGSC blocker 

combinations may enable clinciaions to manage chronic pain in patients over long time periods. 
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Mutation Notes on effect Ref 

L858H  [127] 

I848T  [127,33] 

L858F  [33] 

N395K  [33] 

F216S  [33] 

P610T  [33] 

R1150W  [33] 

F1449V  [31] 

S241T  [86] 

A863P  [59] 

I136V Late onset + Reduced  intradermal fiber density [78] 

A1632E causes PEM and PEPD like symptoms [40] 

Q10R Late onset [55] 

V400M carbamazepine-responsive [46] 

L823R shifts fast-inactivation to more negative potentials, 
unusual in PEM 

[76] 

S211P  [39] 

I234T Sitting as well as heat trigger pain, One of the largest 
shift in activation voltage. 

[1] 

G616R  [17] 

Del-L955 Large hyperpolarised shift in activation voltage with a 
large shift in inactivation voltage in same direction 

leading to mild symptoms 

[15] 

I228M  [41] 

Q875E Severe pain [110] 

Q10K  [72] 

V1316A  [124,42] 

A1746G   [21] 

W1538R Described as W1550R in [26] [21] 

A1632T  [35] 

L245 V Incomplete fast inactivation but no shift in activation 
voltage 

[37] 

A1632G  [126] 

G856R PEM with impaired limb development [115] 

F826Y  [123] 

P187L  [132] 

N1245S  [54] 

Table 1: SCN9A mutations that cause PEM in order of their publication. 

 

 

 



18 
 

 

Figure 1: Topological representation of SCN9A mutations that cause PEM. A VGSC -subunit 

consists of four homologous domains (DI-DIV). Each domain consists of six transmembrane 

segments. Three intracellular loops (L1-L2) connect the four domains. Note that most mutations are 

localised to domains I and II. Structures are not drawn to scale. 

 

 

Mutation Notes on effect Ref 

R996C  [45] 

V1298D  [45] 

V1298F  [45] 

V1299F  [45] 

I1461T  [45] 

F1462V  [45] 

T1464I  [45] 

M1627K  [45] 

A1632E Channel displays properties of PEM and PEPD [40] 

G1607R  [16] 

I228M Produces PEM like symptoms as well [41] 

R185H  [85] 

L1612P  [114] 

V1740L Patients suffer from headache [66] 

Table 2: SCN9A mutations that cause PEPD in order of their publication. 
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Figure 2: Topological representation of mutations that cause PEPD in the -subunit of NaV1.7. Note 

that most mutations are localised in L3 and domain III and IV. Structures are not drawn to scale. 

 

Mutation Notes on effect Ref 

   

I720K 
D623N 
M932L 
V991L 
R185H 
I228M 
M1532I 
I739V 

Mutations have various impact on channel properties 
but all lead to hyperexcitability. 

[43] 

G856D 
Shifts activation voltage to more negative potentials. 

Shifts fast inactivation to more positive potentials. 
Causes hyperexcitability. 

[62] 

K40E 
N336T 
V518F 
E519K 
T531N 
A678E 
F710V 
W719C 
I720K 
P756T 
M757W 
Y990C 

M1230T 
R1279Q 
R1620L 
Y1657S 
V1754F 
D1971V 

Functional properties uncharacterised [36] 

Table 3: Mutations that cause SCN9A linked SFN in order of their publication. 
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Figure 3: Topological representation of SCN9A mutations that cause heritable SFN. Most mutations 

associated with SFN are found clustered around L1. Structures are not drawn to scale. 

 

Mutation Notes on effect Ref 

   

N641Y 
 

knockin mice exhibit significantly reduced thresholds 
to electrically induced seizures. 

[109] 

Q10R From patient with febrile seizures plus [13] 

G327E  [125] 

G327E 
From Twin patients with idiopathic focal epilepsy with 

Rolandic spikes 
[81] 

I775M From patient with febrile seizures [32] 

R429C From patient with febrile seizures plus [32] 

A442T 
From patient with genetic epilepsy with febrile seizures 

plus 
[32] 

Y1958C 
From patient with genetic epilepsy with febrile seizures 

plus 
[130] 

Table 4: Mutations that cause epilepsies in order of their publication. 
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Figure 4: Topological representation of SCN9A mutations that are linked to epilepsies.  

 

 

 

 

 

Mutation Ref 

S459X [19] 

I767X [19] 

W897X [19] 

R277X [51] 

Y328X [51] 

E693X 
Splice junction mutation intron 

23-24 

[51] 

R830X [51] 

F1200L fs [51] 

R1488X [51] 

K1659X 
I1235L fs 

[51] 

W1689X [51] 

R523X [73] 

R896Q [20] 

K370Q 
G375A fs 

[108] 

E919X [96] 

M1190X [106] 

G1822 fs [100] 

R896G 
Q369X 

[83] 

Table 5: SCN9A mutations that cause complete insensitivity to pain (CIP) in order of their publication.  
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Figure 5: Topological representation of SCN9A mutations that cause CIP. Mutations associated with 

CIP are widely distributed throughout the -subunit 

 

 

 

 

 

Figure 6. A) Upregulation of Nav1.9 in an Nav1.8 knock-out neuron, following the introduction of 500 

M GTP--S into the cell interior for 12 minutes. B) upregulation of Nav1.9 using intracellular GTP--S 

gives rise to changes in the firing properties of Nav1.8 knock-out neuron, with reductions in current 

and voltage -threshold, recorded from a holding potential of – 90 mV. The upregulated current gives 

rise to plateau potentials (arrow). Reproduced from [6], with permission. 
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Mutation Notes on effect Ref 

L811P 
CIP 

Activation voltage shifted by -26 mV 
[80] 

R225C 
A808G 

Episodic pain 
Increase current density 

No effect on activation and inactivation 
voltages 

[131] 

I381T 
K419N 
A582T 
A681D 
A842P 
L1158P 
F1689L 

Painful neuropathy 
I381T: Activation voltage shifted by -6.7 mV 
L1158P: Activation voltage shifted by -6.9 

mV 

[64] 

G699R 
Painful neuropathy 

Activation voltage shifted by -10.1 mV 
[57] 

V1184A 
Episodic pain 

Activation voltage shifted by -17 mV 
[79] 

R222S 
R222H 

Episodic pain [93] 

R222H 
Episodic pain 

Activation voltage shifted by -6.4 mV 
[58] 

L1302F CIP [98] 

N1169S 
I1293V 

PEM like pain [132] 

L396P 
CIP 

Deactivation voltage shifted by -22.8 mV 
[70] 

L1302F CIP [65] 

N820Y Painful neuropathy [48] 

N816K Episodic pain [63] 

Table 6: SCN11A mutations that cause painful and painless human conditions. Mutations causing 

painless condition are associated with big shifts in either their activation or inactivation voltages.  

 

 

Figure 7: Topological representation of SCN11A mutations. Notice that all CIP causing mutations 

(red) are located in the transmembrane segment 6. 


