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Non-Markovian dynamics pervades human activity and social networks and it induces memory
effects and burstiness in a wide range of processes including inter-event time distributions, dura-
tion of interactions in temporal networks and human mobility. Here we propose a non-Markovian
Majority-Vote model (NMMV) that introduces non-Markovian effects in the standard (Markovian)
Majority-Vote model (SMV). The SMV model is one of the simplest two-state stochastic models for
studying opinion dynamics, and displays a continuous order-disorder phase transition at a critical
noise. In the NMMV model we assume that the probability that an agent changes state is not only
dependent on the majority state of his neighbors but it also depends on his age, i.e. how long the
agent has been in his current state. The NMMV model has two regimes: the aging regime implies
that the probability that an agent changes state is decreasing with his age, while in the antiaging
regime the probability that an agent changes state is increasing with his age. Interestingly, we find
that the critical noise at which we observe the order-disorder phase transition is a non-monotonic
function of the rate β of the aging (antiaging) process. In particular the critical noise in the aging
regime displays a maximum as a function of β while in the antiaging regime displays a minimum.
This implies that the aging/antiaging dynamics can retard/anticipate the transition and that there
is an optimal rate β for maximally perturbing the value of the critical noise. The analytical results
obtained in the framework of the heterogeneous mean-field approach are validated by extensive
numerical simulations on a large variety of network topologies.

I. INTRODUCTION

Many natural, social and technological phenomena
can be well described by stochastic binary-state mod-
els formed by a large number of interacting agents. De-
pending on the application, various types of dynami-
cal rules determining the stochastic switch of the states
of the agents can be considered. This framework in-
cludes very well known processes, such as the Ising model,
the voter model and the susceptible-infected-susceptible
model, that have been used to model magnetic materi-
als [1], opinion formation [2, 3], and epidemic spreading
[4, 5], among others [6, 7]. Strikingly, extensions or mod-
ifications for the models can lead in a variety of cases to
dynamical behaviors drastically different from the origi-
nal ones. For example, the presence of non-trivial struc-
ture in the interacting patterns such as heavy-tailed de-
gree distribution [4, 8], mesoscopic structures [9, 10], mul-
tilayer structures [11–13], can induce significant change
in the dynamics. Moreover, relevant effect can be ob-
tained also changing the dynamical rules by introducing
of more than two states [14, 15], time delay [16], non-
homogeneous interevent intervals [17–20], a fraction of
zealot [21, 22] or latency period [23].

The Majority-Vote (MV) model is a simple non-
equilibrium Ising-like system with up-down symmetry
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that presents an order-disorder phase transition at a crit-
ical value of noise [24]. The MV model is also one of the
paradigmatic models for studying opinion dynamics, and
it has been extensively studied in regular lattices [25–
29], random graphs [30, 31], and in complex networks
including small-world networks [32–34], scale-free net-
works [35–38], modular networks [39], complete graphs
[40], and spatial networks [41]. Some extensions were
also proposed, such as multi-state MV models [42–48],
inertial effect [49–51], frustration due to anticonformists
[52], and cooperation in multilayer structures [53, 54].

Most of stochastic binary-state models are based on a
memoryless Markovian assumption, which implies that
the switching rates from one state to the other depend
only on the present state of the system. One of impor-
tant properties of Markovian processes is that the inter-
event time intervals follow an exponential distribution
and the number of events in a given time interval follows
a Poissonian distribution. The Markovian assumption
facilitates theoretical analysis of models. However, there
is growing evidence that human activity follows a non-
Markovian dynamics driven by memory effects. Non-
Markovian bursty dynamics characterized by heavy tail
inter-event time distributions is ubiquitous in human ac-
tivities [55–61],and strongly affects the duration of in-
teractions in temporal networks [62–64]. Memory effects
have also shown to be essential to model human mobil-
ity and random walks over complex networks [65–67].
Therefore, the Markovian assumption provides only an
approximate picture of the real world.

In recent years, there is an increasing interest in un-
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derstanding the role of non-Markovian effects in stochas-
tic binary-state models, from the theoretical [68–73] and
from the numerical [74, 75] perspective as well.

One important development of non-Markovian effects
in stochastic binary-state models have been introduced
by assuming that the switching probability between
states depends on the age of the agent, i.e., how long
an agent has been in its current state [76, 77]. The in-
duced effects of this non-Markovian dynamics are also
called aging effects when the switching probability de-
creases with the agent’s age and antiaging effects when
the switching probability increases with the agent’s age.
These non-Markovian effects usually induce a slow-down
of the relaxation dynamics toward the stationary state.
In particular in social systems they can be related to be-
havioral inertia accounting for a tendency for a belief or
an opinion to endure once formed.

A very important class of models describing opinion
dynamics is the voter model and its variations. In the
standard voter model, each agent updates his state by
copying the state of one of his neighbors. The model
exhibits ordering dynamics toward either of consensus
states in finite-size systems [3]. The effects of introduc-
ing a non-Markovian dynamics within the voter model
and its variations have been considered in several works.
In Ref. [76], Stark et al. reported a counter-intuitive
phenomenon induced by aging in the voter model. They
showed that the transition probability between two op-
posite states decreases with age, but the time to reach
a macroscopically ordered state can be accelerated. In
Ref. [78], Peralta et al. studied systematically the aging
version of the voter model at the mean-field level, and
they showed that the model reaches consensus or gets
trapped in a frozen state depending on the specific form
describing the transition probability and the nodes’ age.
They also considered the antiaging case when the transi-
tion probability is an increasing function of age. For the
latter case, the model always reaches a steady state with
coexistence of two states. In the noisy voter model, ad-
ditional stochastic effects are introduced in the opinion
dynamics. In particular given an agent of a noisy voter
model and his randomly selected neighbor, the agent does
not adopt the neighbor opinion deterministically. An im-
portant consequence of this is that a stationary state can
be achieved without consensus [79]. In Refs. [80, 81],
it has been shown that the aging effects in the noisy
voter model can alter the character of the phase transi-
tion. In the absence of aging, the model show a finite-size
discontinuous transition between ordered and disordered
phases. When the aging is introduced, the transition
becomes a well defined second order transition observed
in the thermodynamic limit. Moreover, recently Peralta
et al. in Ref. [82] proved that the non-Markovian noisy
voter model can be approximately reduced to a non-linear
noisy voter model which is Markovian.

In the present work, we reveal the role of non-
Markovian dynamics in the Majority-Vote (MV) model
providing results that enrich the scenario depicted by the

works above summarized. In the MV model each agent
tends to agree with the majority state of his neighbors,
and disagreement only occurs with probability f . Here
f can be interpreted as the internal noise due to imper-
fect information exchange or uncertainty on the states of
neighbors. As f increases, the MV model shows a con-
tinuous order-disorder transition belonging to the univer-
sality class of the equilibrium Ising model [24]. In partic-
ular, for f = 0 the MV model is equivalent to the zero-
temperature Ising model with Glauber dynamics [83].

It is interesting to discuss the difference between the
MV model and the voter model and its variations. The
main difference of the MV model with respect to the
voter model is that at each time in the MV model each
agent changes opinion depending on the majority of its
neighbors while in the voter model each agent changes
opinion depending on the state of a single randomly se-
lected neighbor. Moreover in the standard voter model
the system reaches consensus while this is not the case in
the MV model. The noisy voter model is closer to MV
model as in both models we can reach a stationary state
with a majority opinion but without consensus. However
due to the different dynamical rules the nature of the
phase transition observed in the two models is different
as demonstrated by the different universality class of the
ordering dynamics of the voter model [84, 85].

Here we propose the non-Markovian Majority-Vote
(NMMV) model by incorporating non-Markovian dy-
namics in the Majority-Vote model. In the NMMV
model, the transition probability between states not only
depends on the majority state of the agent’s neigh-
bors and noise inetensity f , but also depends on the
agent’s age. Specifically, the NMMV model includes two
regimes: the aging regime in which the probability of a
state switch decreases with the agent’s age and an anti-
aging regime in which the probability of a state switch
increases with the agent’s age. We indicate with β the
rate of change of the transition probability with age. The
NMMV model also displays a continuous phase transition
as a function of f : for f < fNMMV

c the NMMV model
is in the ordered phase, i.e., the network displays a clear
majority state, for f ≥ fNMMV

c the NMMV is in the dis-
ordered phase where no global majority state exist. We
show that the non-Markovian dynamics strongly affects
the value of the critical noise fNMMV

c . In particular, in
the aging regime the non-Markovian dynamics retards
the transition with respect to the standard Majority-
Vote model (SMV) and the critical noise fNMMV

c in
the NMMV model is larger or equal to the critical noise
fSMV
c in the SMV model, i.e., fNMMV

c ≥ fSMV
c . In the

antiaging regime, instead, the relation between the crit-
ical noise in the NMMV model and in the SMV model
are reversed, i.e., fNMMV

c ≤ fSMV
c . Interestingly, by

solving the model in the framework of an heterogeneous
mean-field approach, we can derive analytically the non-
monotonic dependence of the critical noise fNMMV

c on
the rate β. In the aging regime, the critical noise dis-
plays a maximum at a non-zero but finite value of β.
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In the antiaging regime, a minimum of the critical noise
as a function of β is found. This means that the non-
Markovian dynamics can be used to retard or anticipate
the transition.

The theoretical mean-field predictions are in good
agreement with extensive simulations of the model.

The paper is structured as follows: in Sec. II we define
the NMMV model; in Sec. III we present the analytic
solution of the model obtained in the framework of the
heterogeneous mean-field approach; in Sec. IV we char-
acterize the critical properties of the model including the
analytical expression of the critical noise, and its depen-
dence on the rate β; in Sec. V we compare the analytic
predictions to the simulation results; finally in Sec. VI
we provide the conclusions.

II. MAJORITY-VOTE MODEL WITH
NON-MARKOVIAN SWITCHING OF STATES

In this section we introduce the non-Markovian
Majority-Vote model which differs from the stan-
dard Majority-Vote model [24] by introducing a non-
Markovian mechanism for the switching of states. There-
fore in the NMMV model the agents have a probability
of switching states that depends on their age, i.e. for how
long they have been in their current state.

We consider a population of N agents defined on a
static network topology. Each agent i with i = 1, · · · , N
is located on a node i of the network. Each agent
is assigned two dynamical variables: a binary variable
σi = ±1 (his state) describing the agent’s opinion/vote
and a variable ai (his age) indicating for how long the
agent has not changed his state. Initially the states {σi}
are randomly assigned to the agents and the variables
{ai} are initialized by setting ai = 0 for every agent i
of the network. At each time step, an agent i is cho-
sen at random and his state is switched with probability
wi which implements the non-Markovian Majority Vote
process. Thus with probability wi, the agent i switches
state and the age of agent i is reset to zero, i.e.,

σi → −σi,
ai → 0. (1)

Otherwise, nothing happens except for the age increased
by one, i.e.,

ai → ai + 1. (2)

In both cases the time is updated according to

t→ t+∆t, (3)

with ∆t = 1/N . The richness of the model resides on the
definition of the switching probability wi given by

wi = νiw
SMV
i , (4)

where 0 ≤ νi ≤ 1, called the activation probability, is a
function of the age ai of agent i and where wSMV

i is the

switching probability in the SMV model, i.e., it is inde-
pendent of the age variable. The contribution wSMV

i to
the switching probability wi of the agent i depends on the
majority state of i′s neighborhood and on a parameter f
called the noise intensity. If the state σi of the agent is
opposite to the majority state of his neighbors, wSMV

i

contributes to the switching probability to the majority
state by a term 1 − f . If the state σi of the agent is
the same as the majority state of his neighbors, wSMV

i

contributes to the switching probability to the majority
state by a term f . If there is no clear majority of the
agent i’s neighbors, i.e., half of the neighbors have state
σj = +1 and half of the neighbors have state σj = −1,
then wSMV

i = 1/2. Therefore, wSMV
i can be expressed

as

wSMV
i =

1

2

1− (1− 2f)σiS

∑
j∈Ni

σj

 , (5)

where Ni denotes the set of neighbors of agent i, and
S(x), defined as S(x) = sgn(x) if x ̸= 0 and S(0) = 0,
indicates the majority state of his neighborhood.

The NMMV model reduces to the SMV model in the
case in which we consider a trivial choice of νi, i.e. νi = 1
for all agent i. In this case, as f increases, the model
undergoes a continuous order-disorder phase transition
at a critical value of noise intensity f = fSMV

c [37].
However, in a number of real scenarios for social and

human dynamics it has been shown that non-Markovian
effects are relevant [55]. Indeed a large number of hu-
man activity including written correspondence, emails
[56], mobile phone communication [62] is not memory-
less, on the contrary it is characterized by important
non-Markovian effects typically leading to intermittent
and bursty dynamics.

Different models for explaining the emergence of bursty
dynamics have been proposed (see for a review Ref.[55]).
Interestingly, a model [62–64] explaining the occurrence
of bursty human dynamics of social interactions assumes
that a number of feedback mechanisms affect human be-
havior, which introduce memory effects in the rate at
which an agent to change his state. In particular in
this framework it is assumed that each agent does not
change his state at a constant rate in time, rather the
rate at which he changes his state depends on the time
elapsed since he adopted his current state. This frame-
work, originally proposed to model the duration of social
interactions is a very general framework that can be also
applied to opinion dynamics. In opinion dynamics this
framework will give rise to a simple yet very general phe-
nomenological model to describe the inertia of the agents
in retaining their own opinion. By following these consid-
erations, here we capture the effect of the non-Markovian
opinion dynamics in the MV model by assuming that
the probability νi at which an agent i changes opinion
depends on how long the agent has retained its current
opinion, i.e.

νi = ν(ai), (6)
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where ai indicates the age of agent i. In the following
we will consider several different functional forms for the
function ν(a) including exponential, linear, rational, and
power-law dependence with the the age a. To start with
a concrete example let us now consider the exponential
form for ν(a), given by

ν(a) = (ν0 − ν∞) e−βa + ν∞, (7)

where ν0 = ν(0) and ν∞ = lima→∞ ν(a).
The probability ν(a) capture the non-Markovian na-

ture of the dynamics and is parametrized by the param-
eter β > 0. Note that β characterizes the rate of ex-
ponential change of ν as a function of a. Obviously, in
the limits of β → 0 and β → ∞, all the agents have the
same fixed value of activity, ν ≡ ν0 and ν ≡ ν∞, and the
dynamics is thus equivalent to the SMV model with the
time scaled by a factor ν−1

0 and ν−1
∞ , respectively.

We distinguish two different regimes of the dynamics:

(i) Aging regime. For ν0 > ν∞, ν(a) decays exponen-
tially with a, implying that the longer an agent is
in a given state, the more difficult is for him to
change state.

(ii) Antiaging regime. For ν0 < ν∞, ν(a) increases ex-
ponentially with a. Such an case can be interpreted
as “rejuvenating” dynamics where agents become
more prone to change state as they are longer on a
given state.

Without loss of generality, set equal to one the maxi-
mum between ν0 and ν∞, i.e. we put max {ν0, ν∞} = 1.
Moreover, to avoid trivial frozen states of the dynamics,
the minimum between ν0 and ν∞ is set to be larger than
zero, i.e., min {ν0, ν∞} > 0.

III. HETEROGENEOUS MEAN-FIELD
SOLUTION OF THE MODEL

In order to capture the phase diagram of the NMMV
model on a random network with given degree distribu-
tion P (k), we solve the model using the heterogeneous
mean-field approach [8]. Therefore we assume that the
probability that an agent i is in a given state depends
exclusively on his degree k and his age a and we denote
by x±k,a the probability that an agent of degree k has age
a and is in the state ±1. It follows that the probability
x±k of an agent of degree k in the state ±1, is given by

x±k =
∑∞

a=0
x±k,a. (8)

In order to solve the dynamical equations of the
NMMV model in the heterogeneous mean-field approxi-
mation we also need to evaluate the switching probability
w±

k,a of an agent of degree k and age a. Let us define x̃±
the probability that by following a link we reach a node

in state ±1, given by

x̃± =
∑
k

kP (k)

⟨k⟩
x±k =

∑
k

kP (k)

⟨k⟩

∞∑
a=0

x±k,a. (9)

For a node of degree k, the probability that the major-
ity state among his neighborhoods is ±1 is given by the
binomial distribution,

ψk

(
x̃±

)
=

k∑
n=⌈k/2⌉

(
1− 1

2
δn,k/2

)
Cn

k

(
x̃±

)n(
1− x̃±

)k−n
,

(10)

where ⌈·⌉ is the ceiling function, δr,s is the Kronecker
symbol, and Cn

k = k!/[n! (k − n)!] are the binomial co-
efficients. According to Eq.(4), we can write down the
switching probability w±

k,a of an agent of state ±1 with
degree k and age a as

w±
k,a = ν (a+ 1)Ψk

(
x̃±

)
, (11)

where ν(a + 1) is given by Eq.(7), and Ψk (x̃
±) is the

flipping probability of an agent of state ±1 without the
aging effect [37], i.e.,

Ψk

(
x̃±

)
= (1− f)

[
1− ψk

(
x̃±

)]
+ fψk

(
x̃±

)
. (12)

The dynamical equations that determine the time evo-
lution of the probabilities x±k,a are a function of the
switching probabilities w±

k,a. These equations can be de-
duced by observing that at each time step one of the
following four possible events occurs.

(i) An agent in state +1 having degree k and age a is
chosen and his state is flipped. The rate at which
x+k,a decreases and x−k,0 increases due to this process
is x+k,aw

+
k,a.

(ii) An agent in state +1 having degree k and age a
is chosen but his state is not flipped. The rate at
which x+k,a decreases and x+k,a+1 increases due to
this process is x+k,a(1− w+

k,a).

(iii) An agent in state −1 having degree k and age a is
chosen and the state is flipped. The rate at which
x−k,a decreases and x+k,0 increases due to this process
is x−k,aw

−
k,a.

(iv) An agent in state −1 having degree k and age a
is chosen but the state is not flipped. The rate at
which x−k,a decreases and x−k,a+1 increases due to
this process is x−k,a(1− w−

k,a).
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Accordingly, the rate equations for x±k,a read

dx+k,0
dt

=

∞∑
a=0

x−k,aw
−
k,a − x+k,0, (13)

dx+k,a
dt

= x+k,a−1

(
1− w+

k,a−1

)
− x+k,a, a ≥ 1, (14)

dx−k,0
dt

=

∞∑
a=0

x+k,aw
+
k,a − x−k,0, (15)

dx−k,a
dt

= x−k,a−1

(
1− w−

k,a−1

)
− x−k,a, a ≥ 1. (16)

In stationary state, by setting the time derivative of
x±k,a equal to zero, we obtain that the probabilities x±k,a
obey

x+k,0 =

∞∑
a=0

x−k,aw
−
k,a, (17)

x+k,a = x+k,a−1

(
1− w+

k,a−1

)
, a ≥ 1, (18)

x−k,0 =

∞∑
a=0

x+k,aw
+
k,a, (19)

x−k,a = x−k,a−1

(
1− w−

k,a−1

)
, a ≥ 1. (20)

Using Eq.(18) and Eq.(19), and summing x+k,a over the
values of a greater or equal to one we get

x+k,0 = x−k,0. (21)

This condition is a necessary condition for stationarity.
In fact, at stationarity the probability that a node is in a
given state does not change with time, or equivalently the
expected number of agents in state +1 that change their
state (and reset their age to a = 0) should be equal to
the number of agent in state −1 that change their state
(and reset their age to a = 0) [80].

In terms of Eq.(18) and Eq.(20), x±k,a for a ≥ 1 can be
computed in a recursive way, and then are expressed by
x±k,0,

x±k,a = x±k,0Fk,a (x̃
±) , a ≥ 1, (22)

where for convenience we have introduced the function
Fk,a, given by

Fk,a

(
x̃±

)
=

a−1∏
j=0

[
1− w±

k,j

(
x̃±

)]
. (23)

Substituting Eq.(22) into the definition x±k =∑∞
a=0 x

±
k,a, we have

x±k = x±k,0Fk

(
x̃±

)
, (24)

with

Fk

(
x̃±

)
= 1+

∞∑
a=0

Fk,a

(
x̃±

)
. (25)
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FIG. 1: The absolute value of m, |m|, is plotted as a function
of the noise f for several values of β. Panel (a) shows |m|
versus f for ν0 > ν∞, i.e. for a dynamics in the aging regime;
panel (b) shows |m| versus f for ν0 < ν∞, i.e. for a dynamics
in the antiaging regime. The simulations (symbols) performed
on a regular random network (RR) with N = 104 nodes and
with degree of the nodes given by ⟨k⟩ = 20 are compared with
theoretical predictions (solid lines). All results are obtained
for max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05.

In order to find x+k we note that by using Eq.(21), we
can express the ratio x+k /x

−
k as

x+k
x−k

=
x+k,0

x−k,0

Fk (x̃
+)

Fk (x̃−)
=
Fk (x̃

+)

Fk (x̃−)
. (26)

Substituting x̃− with 1− x̃+ in Eq.(26), we then obtain

x+k =
Fk (x̃

+)

Fk (x̃+) + Fk (1− x̃+)
. (27)

Finally by using Eq.(27) in the left-hand side of Eq.(9),
we find the self-consistent equation of x̃+,

x̃+ =
∑
k

kP (k)

⟨k⟩
Fk (x̃

+)

Fk (x̃+) + Fk (1− x̃+)
. (28)

This equation can be solved numerically by finding x̃+ by
iterating Eq.(28) starting from an initial value of x̃+ ̸=
1/2. Once x̃+ is found, we can calculate x+k by using
Eq.(27). This allow us to find the average magnetization
per node by

m =
∑

k
P (k)

(
x+k − x−k

)
=

∑
k
P (k)

(
2x+k − 1

)
. (29)

This theoretical treatment of the model provides pre-
dictions that can be compared to simulation results re-
vealing the critical properties of the NMMV model. In
particular, the main features of the steady state config-
urations can be described by plotting m as a function of
f for different values of β.

In Fig.1(a), we report such results for ν0 > ν∞, when
the non-Markovian dynamics is in the aging regime.
Here we have used regular random networks (RR) whose
degree distribution follows a delta function, P (k) =
δ (k − ⟨k⟩) with ⟨k⟩ = 20 and network size N = 104.
Direct simulation results are compared to theoretical pre-
dictions finding excellent agreement (see Fig.1). The or-
der parameter |m| shows a continuous second-order phase
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transition as noise intensity f varies, similar to the SMV
model. The transition point, i.e., the critical value of
noise intensity fNMMV

c , depends on the value of β. In
the aging regime, as β increases, fNMMV

c displays a max-
imum at β = βaging

m . In the antiaging regime (ν0 < ν∞),
fNMMV
c shows again a non-monotonous behavior but in-

stead of displaying a maximum as a function of β (like in
presence of the aging dynamics) it displays a minimum
at β = βantiaging

m (see Fig.1(b)).

IV. THE PHASE DIAGRAM

A. The critical noise

In this paragraph we will use the heterogeneous mean-
field approach to derive the expression for the critical
noise fNMMV

c in the NMMV model. First of all, we no-
tice that x̃+ = 1/2, is always a solution of Eq.(28). This
state corresponds to the disordered phase where the state
of each agent is totally random. Such a trivial solution
loses its stability when the noise intensity is less than a
critical value, i.e., f < fNMMV

c . According to linear sta-
bility analysis, the critical noise fNMMV

c can be found
by imposing that the derivative of the right-hand side of
Eq.(28) with respect to x̃+ calculated for x̃+ = 1/2 is
equal to one, i.e., fNMMV

c satisfies

∑
k

kP (k)

⟨k⟩
F ′
k

(
1
2

)
2Fk

(
1
2

) = 1. (30)

At x̃+ = 1/2, ψk and also Ψk are independent of k. In
particular we have Ψk

(
1
2

)
= 1

2 for all value of k. There-
fore using Eq.(25), this implies that also Fk

(
1
2

)
is inde-

pendent of k and is given by

F

(
1

2

)
= 1 +

∞∑
a=1

Fa

(
1

2

)
, (31)

with

Fa

(
1

2

)
=

a∏
j=1

(
1− 1

2
ν (j)

)
, (32)

(note that here we have omitted the subscript k in the
expression of Fk(

1
2 ) and Fk,a(

1
2 ) as they do not depend

on k.) After some simple algebra, we can express F ′
k

(
1
2

)
as

F ′
k

(
1

2

)
= −Ψ′

k

(
1

2

) ∞∑
a=1

Fa

(
1

2

) a∑
j=1

ν(j)

1− 1
2ν(j)

, (33)

with

Ψ′
k

(
1

2

)
= (2f − 1)ψ′

k

(
1

2

)
, (34)

and

ψ′
k

(
1

2

)
= 21−kkC

⌈(k−1)/2⌉
k−1 . (35)

Substituting Eqs.(31-35) into Eq.(30), we obtain the crit-
ical noise fNMMV

c in the NMMV model,

fNMMV
c =

1

2
−G (β; ν0, ν∞)

⟨k⟩∑
k k

2P (k) 21−kC
⌈(k−1)/2⌉
k−1

,

(36)

where

G (β; ν0, ν∞) =
F
(
1
2

)
∞∑
a=1

Fa

(
1
2

) ∞∑
j=1

ν(j)

1− 1
2ν(j)

. (37)

Using Stirling’s approximation for large k, C⌈(k−1)/2⌉
k−1 ≈

2k−1
/√

kπ/2, Eq.(36) can be simplified to

fNMMV
c =

1

2
−G (β; ν0, ν∞)

√
π

2

⟨k⟩〈
k3/2

〉 , (38)

where ⟨. . .⟩ denotes the average over the degree distribu-
tion P (k). The critical noise fNMMV

c dependence on the
non-Markovian dynamics is fully captured by the func-
tion G (β; ν0, ν∞), which can be considered as a function
of β for any given value of the parameters ν0 and ν∞.
We distinguish two main regimes:

(i) For ν0 > ν∞, G (β; ν0, ν∞) captures the depen-
dence of fNMMV

c on β in the aging regime;

(ii) For ν0 < ν∞, G (β; ν0, ν∞) captures the depen-
dence of fNMMV

c on β in the antiaging regime.

When the aging effects are not taken into account, ν(a) ≡
ν, G (β; ν0, ν∞) = 1

2 , and Eq.(38) thus reduces to the
expression of the critical noise in the SMV model [37],

fSMV
c =

1

2
− 1

2

√
π

2

⟨k⟩〈
k3/2

〉 . (39)

B. The function G (β; ν0, ν∞)

As noted before, the function G (β; ν0, ν∞) captures
all the dependence of the critical noise fNMMV

c on the
non-Markovian dynamics. In particular, from Eq.(38)
and Eq.(39) we deduce that the function G (β; ν0, ν∞)
characterizes the relation between the critical noise in
NMMV model and in the SMV model. In fact, we have

2G (β; ν0, ν∞) =
1/2− fNMMV

c

1/2− fSMV
c

, (40)

The numerical solution of Eq.(37) reveals that the func-
tion G (β; ν0, ν∞) displays a non-monotonous behavior as
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a function of β when ν0 and ν∞ are fixed to a constant
value. In particular, the function G (β; ν0, ν∞) displays
a minimum as a function of β in the aging regime and
a maximum in the antiaging regime (see Fig.2). In the
limit β → 0 or β → ∞, we obtain G (β; ν0, ν∞) → 1/2
indicating the marginal role of the non-Markovian dy-
namics, i.e., using Eq.(40) fNMMV

c → fSMV
c . Since the

critical noise fNMMV
c depends on β only through the

function G (β; ν0, ν∞) in the aging regime, the minimum
of G (β; ν0, ν∞) is achieved for β = βaging

m , correspond-
ing to the maximum of fNMMV

c ; conversely in the anti-
aging regime the maximum of G (β; ν0, ν∞) is achieved
for β = βantiaging

m corresponding to the minimum of
fNMMV
c . Let us indicate with ∆Gm the maximal de-

viation of the function G from its asymptotic value 1/2
achieved in the limit β → 0 and β → ∞, i.e.,

∆Gm =

∣∣∣∣12 −G (βm; ν0, ν∞)

∣∣∣∣ . (41)

Specifically let us indicate with ∆Gaging
m the values ob-

tained in the aging regime and with ∆Gantiaging
m the val-

ues obtained in the antiaging regime.
Therefore, the values of ∆Gaging

m and ∆Gantiaging
m

characterize the maximal difference between fNMMV
c

and fSMV
c for the aging regime and antiaging regime,

respectively. We note that since G is independent of the
topology of the underlying network, βaging

m (βantiaging
m )

at which fNMMV
c is maximized (minimized), is not af-

fected by the network topology.
While the definition of G given by Eq.(37) is valid for

arbitrary functions ν(a), the investigation performed in
this paragraph is obtained starting from the expression
for ν(a) given by Eq.(7). However, here we conjecture
that these results do not qualitatively change for other
choices of the function ν(a) as long as the derivative of
function is monotonic. This is strictly speaking the case
in which we can properly use the terms aging and antiag-
ing for dynamical evolution as an inflection point in ν(a)
(corresponding to a maximum or minimum in the deriva-
tive dν/da) will introduce a characteristic scale a = a⋆

on the dynamics.
In order to check this conjecture we have considered

several functions ν(a) with a monotonic first derivative.
In particular, we have considered the linear function

ν (a) =

{
β (ν∞ − ν0) a+ ν0, a < 1/β,
ν∞, a ≥ 1/β,

(42)

the rational function

ν (a) =
ν∞a+ ν0/β

a+ 1/β
, (43)

and the expression

ν (a) = (ν0 − ν∞) (1 + a)
−β

+ ν∞. (44)

including a power-law dependence on the age a. Interest-
ingly, the functional dependences given by Eq.(43) and

1E-5 1E-4 1E-3 0.01 0.1 1 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

aging
m

antiaging
m

Gaging
m

 

 

G
(

; 
, 

 min{ ging
 min{ ging
 min{ ging
 min{ ntiaging
 min{ ntiaging
 min{ ntiaging

Gantiaging
m

FIG. 2: The function G (β; ν0, ν∞) defined in Eq.(37) is plot-
ted as a function of β in the aging regime (for ν0 > ν∞) and in
the antiaging regime (for ν0 < ν∞). All curves are obtained
for max {ν0, ν∞} = 1.

Eq.(44) reproduce non-Markovian dynamics observed in
inter-event times and duration of social contact (see
for a review Ref. [55]). We have studied the function
G (β; ν0, ν∞) for all these kernels, and we have found that
qualitatively the results are unchanged with respect to
the results obtained for the exponential kernel.

In Fig. 3 we show the dependence of βaging
m , βantiaging

m

and of ∆Gaging
m and ∆Gantiaging

m as a function of
min {ν0, ν∞} for the four types of kernel with a fixed
value of max {ν0, ν∞} = 1. We observe that while
∆Gaging

m , ∆Gantiaging
m and βantiaging

m show the same
monotonic trend for all the kernels, βaging

m displays a dif-
ferent trend depending on the considered kernels. Indeed
while for the linear and exponential kernels both βaging

m ,
increase with min {ν0, ν∞}, for the rational and power-
law kernels it decreases with min {ν0, ν∞}.

V. COMPARISON WITH NUMERICAL
RESULTS

In this section we compare the results obtained ana-
lytically using the heterogeneous mean-field approxima-
tion with extensive numerical results on different network
topologies.

We have considered three different random networks
generated using the configuration model [86]:

(a) regular random networks (RR) with degree distri-
bution P (k) = δ (k − ⟨k⟩);

(b) Erdös-Rényi networks (ER) with degree distribu-
tion P (k) = e−⟨k⟩⟨k⟩k

/
k!;

(c) scale-free networks (SF) with degree distribution
P (k) ∼ k−γ .
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FIG. 3: In the left panels, the values of βaging
m and βantiaging

m

are plotted versus min {ν0, ν∞}. In the right panels, the val-
ues of ∆Gaging

m and ∆Gantiaging
m are plotted as a function

of min {ν0, ν∞}. From the top to bottom, we consider four
functional forms for ν(a) are considered: exponential (Eq.7),
linear (Eq.42), rational (Eq.43), and power-law (Eq.44) ker-
nels. All curves are obtained for max {ν0, ν∞} = 1.

In order to numerically determine the critical noise
fNMMV
c , we calculated the Binder’s fourth-order cumu-

lant U [87], defined as

U = 1− 1

3

[
m4

]
[
m2

]2 , (45)

where m =
∑N

i σi/N is the average magnetization per
node, · denotes the time averages taken in the station-
ary regime, and [·] indicates the averages over different
network configurations. The critical noise fNMMV

c is ob-
tained by detecting the point f = fNMMV

c where the
curves U = U(f) obtained for different network sizes N ,
intercept each other. In Fig.4, we show fNMMV

c as a
function of β for the aging and antiaging regime for the
three considered network models and for the four types
of considered kernels without characteristic scale, find-
ing very good agreement with the mean-field theoretical
predictions despite these latter neglect the correlations
present in the NMMV.

As predicted by the mean-field theory, for all the con-
sidered choices of ν(a) without inflection point, the criti-
cal noise fNMMV

c shows a non-monotonic dependence on
β in both regimes. In the aging regime, there exists an
optimal value of β in which fNMMV

c is maximized, in the
antiaging regime instead fNMMV

c displays a minimum as
a function of β. The optimal β for the two regimes are

independent of the network degree distribution as pre-
dicted by the heterogeneous mean-field solution.

However, this scenario can change if the function ν(a)
describes a dynamics with a characteristic scale. This
is not typically the scenario considered in physical works
investigating the slow down of the dynamics due to aging,
but it is actually a very valuable choice in the present
context of social opinion dynamics. To investigate this
case here we focus on the class of logistic functions ν(a)
given by

ν(a) =
ν0 − ν∞

1 + eβ(a−a⋆)
+ ν∞, (46)

with both a⋆ and β being non-negative. This logistic
function is a monotonic function of a and for large val-
ues of β approaches a step function at a = a⋆. Most
notably this choice of functional for, for ν(a) introduces
a characteristic scale a = a⋆ for age at which the change
of opinion occurs.

We have simulated the NMMV model with this logis-
tic kernel and compared the theory with the analytical
mean-field prediction finding satisfactory agreement be-
tween the two (see Fig. 5).

Interestingly in this case we observe that only for
a⋆ = 0 (where there is no effective typical scale in the sys-
tem) we recover the same qualitative behavior of fNMMV

observed in the previous kernels (see Fig. 4). We there-
fore make the important observation that the introduc-
tion of a typical scale a = a⋆ can significantly alter the
phenomenology of the process.

Finally, we investigated the NMMV model also on
two-dimensional and three-dimensional regular lattices,
which are network topologies for which the heteroge-
neous mean-field approximation is not valid. For these
lattices we have exclusively considered the exponential
kernel given by Eq. (7). The results are shown in
Fig.6. For two-dimensional lattices, the critical noise
shows a maximum fNMMV

c ≈ 0.3 at βaging
m ≈ 0.2 in

the aging regime and a minimum fNMMV
c ≈ 0.008 at

βantiaging
m ≈ 0.01 in the antiaging regime. For three-

dimensional lattices, the critical noise shows a maximum
fNMMV
c ≈ 0.36 at βaging

m ≈ 0.2 in the regime regime and
a minimum fNMMV

c ≈ 0.05 at βantiaging
m ≈ 0.01 in the

antiaging regime. In the limits of β → 0 and β → ∞,
the critical noise tend respectively to 0.075 and 0.18 in
two-dimensional and three-dimensional lattices, consis-
tent with the results valid for the SMV model [88]. This
result shows evidently that also in situations in which
we are far from the conditions necessary for the appli-
cation of the heterogeneous approximation we observe a
non-monotonic dependence of the critical noise fNMMV

c

of the NMMV model on β revealing that the observed
phenomenology is universal, i.e., it is independent of the
network topology.
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FIG. 4: The critical noise fNMMV
c is plotted as a function of β in the aging and antiaging regimes for three different networks

(from left to right: the regular-random networks (RR) with degree of each node ⟨k⟩ = 20, the Erdös-Rényi (ER) random
networks with average degree ⟨k⟩ = 20, and scale-free networks with degree distribution exponent γ = 3 and minimal degree
kmin = 10) and four types of ν(a) (from top to bottom: exponential (Eq.7), linear (Eq.42), rational (Eq.43), and power-law
(Eq.44) kernels). Symbols and lines show the simulation and theoretical results, respectively. All curves are obtained by setting
max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05. We have also performed simulations with some other values of min {ν0, ν∞}, and
found that the non-monotonic behavior of fNMMV

c is qualitatively the same.

VI. CONCLUSION

In this work we have introduced the non-Markovian
Majority-Vote (NMMV) model that differs from the stan-
dard Majority-Vote (SMV) model as it includes memory
effects. In fact in the NMMV model the probability that
an agent switches state (activation probability) is not
only dependent on the majority state of its neighbours
as for the SMV model, but it is also age-dependent, i.e.
depends on how long a agent has been in the same state
(his age a) captured by the function ν(a).

We distinguish two regime of the NMMV model: the
aging regime in which the activation probability is a de-
creasing function of the agent’s age, and the antiaging
regime in which the activation probability is an increas-
ing function of the agent’s age. We call β the rate deter-
mining the change of the activation probability with the
age of the agent. The NMMV model displays a phase

transition as a function of the noise f determining the
probability that an agent switches to the minority state
of its neighbors. For f < fNMMV

c the NMMV model
is in an ordered phase and displays an overall majority
state, for f ≥ fNMMV

c the model is in a disordered phase
in which half of the agents are in one state and the other
half of the agents are in the other state.

By analytically solving the model using the heteroge-
neous mean-field approach and by performing extensive
numerical simulations, we reveal how the non-Markovian
dynamics affects the critical noise fNMMV

c .

These results indicate that in the aging regime the non-
Markovian dynamics retards the transition, and in the
antiaging dynamics it anticipates the transition. Inter-
estingly the most significant effect of the non-Markovian
dynamics is achieved at a finite and non-zero value of
the rate β, indicating that the aging/antiaging dynamics
needs to have a characteristic time-scale that is neither



10

10-3 10-2 10-1 100 101 102

0.32
0.34
0.36
0.38
0.40
0.42
0.44

10-3 10-2 10-1 100 101 102
0.0

0.1

0.2

0.3

0.4

10-3 10-2 10-1 100 101 102
0.1

0.2

0.3

0.4

0.5

10-3 10-2 10-1 100 101 1020.32
0.34
0.36
0.38
0.40
0.42
0.44

 

 

fN
M

M
V

c

aging
antiaging

(b) 

 

fN
M

M
V

c

(d) 

 

 

fN
M

M
V

c

(c) 

 

 

fN
M

M
V

c
(a) 

FIG. 5: The critical noise fNMMV
c is plotted as a function of

β in the aging and antiaging regime for four different values of
a⋆ when ν(a) takes the logistic form given by Eq.(46). From
(a)-(d), a⋆ = 0, 1, 5, and 10, respectively. We have used the
regular random networks with degree of each node given by
k = 20. Symbols and lines show the simulation and theoret-
ical results, respectively. All results are obtained by setting
max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05.
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FIG. 6: The critical noise fNMMV
c is plotted as a function of

β in the aging and antiaging regime for a 2d square lattices
(panel a) and in 3d cubic lattices (panel b) where we have take
the exponential kernel ν(a) given by Eq. (7). All results are
obtained setting max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05.

too fast or too slow.

Interestingly, as long as the non-Markovian kernel ν(a)
does not have a characteristic scale, the critical noise
fNMMV
c in the NMMV model exhibits a non-monotonic

dependence on the rate β at which the activation proba-
bility changes with age. In particular we found two oppo-
site behaviors in the aging and in the antiaging regimes.
In the aging regime, the critical noise fNMMV

c displays
a maximum as a function of β in the antiaging regime
instead fNMMV

c displays a minimum as a function of β.

Finally, this work highlights the importance of non-
Markovian dynamics in determining the phase diagram
of the NMMV model and we hope that it will stimulate
interest in further investigations of the effect of mem-
ory and non-Markovian dynamics in critical phenomena
defined on networks.
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