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Abstract

The Yule–Simon distribution is usually employed in the analysis of frequency data.
As the Bayesian literature, so far, ignored this distribution, here we show the derivation
of two objective priors for the parameter of the Yule–Simon distribution. In particular,
we discuss the Jeffreys prior and a loss-based prior, which has recently appeared in the
literature. We illustrate the performance of the derived priors through a simulation
study and the analysis of real datasets.
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1 Introduction

In this work we aim to fill a gap in the Bayesian literature by proposing two objective
priors for the parameter of the Yule–Simon distribution. The distribution was firstly
discussed in Yule (1925) and then re-proposed in Simon (1955), and can be used
in scenarios where the center of interest is some sort of frequency in the data. For
example, Yule (1925) used it to model abundance of biological genera, while Simon
(1955) exploited the distribution properties to model the addition of new words to a
text. It goes without saying that other areas of applications can be considered where,
for instance, frequencies represent the elementary unit of observation. For example,
in this paper we show the employment of the Yule–Simon distribution in modelling
daily increments of social network stock options, surnames and ’superstar’ success in
the music industry.

Despite the wide range of applications, the literature on the Yule–Simon
distribution appears to be limited. And, more surprisingly, to the best of our knowledge
it seems that no attention has been given to the problem by the Bayesian community.
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Given the challenges that classical inference faces in estimating the parameter of
the distribution (Garcia Garcia, 2011), the possibility of tackling the problem from
a Bayesian perspective is, undoubtedly, appealing.

In addressing the estimation of the shape parameter of the Yule–Simon distribution
by means of the Bayesian framework, we opted for an objective approach. We propose
two priors: the first is the Jeffreys rule prior (Jeffreys, 1961), while the second is
obtained by applying the loss-based approach discussed in Villa and Walker (2015).
Although we formally introduce the Yule–Simon distribution and its derivation in the
next Section, it is important to give an anticipation of the general idea here, so to
fully appreciate the gain in adopting an objective approach. As nicely illustrated in
Chung and Cox (1994), the shape parameter of the distribution is linked via a one-to-
one transformation to the probability that the next observation will not take a value
previously observed. For example, if we have observed n words in a text, we wish
to make inference on the probability that the (n + 1) observation is a word not yet
encountered in the text, assuming this probability to be constant. It is then clear that
the Yule–Simon distribution models extremely large events. As such, the information
in the data about these events is limited and a “wrongly” elicited prior could end up
dominating the data. On the other hand, a prior with minimal information content
would allow the data “to speak”, resulting in a more robust inferential procedure. We
do not advocate that in every circumstance an objective approach is the only suitable.
In fact, if reliable prior information is available, an elicited prior would represent,
in general, the natural choice. Alas, in the presence of phenomena with extremely
rare events, the above information is often insufficient or incomplete, and an objective
choice would then represent the most sensible one.

The paper is organized as follows. In Section 2 we set the scene by introducing the
Yule–Simon distribution and the notation that will be used throughout the paper. The
proposed objective priors are derived and discussed in Section 3. Section 4 collects
the analysis of the frequentist performances of the posterior distributions yielded by
the proposed priors. Through a set of several simulation scenarios, we compare and
analyse the inferential capacity of the objective priors here discussed. In Section 5 we
illustrate the application of the priors to three real-data applications. Finally, Section
6 is reserved to concluding remarks and points of discussion.

2 Preliminaries

The most known functional form of the Yule–Simon distribution, possibly, is the
following:

f(k; ρ) = ρB(k, ρ+ 1), k = 1, 2, . . . and ρ > 0, (1)

where B(·, ·) is the beta function and ρ is the shape parameter. The distribution in (1)
was firstly proposed by Yule (1925) in the field of biology; in particular, to represent
the distribution of species among genera in some higher taxon of biotic organisms.
More recently, Simon (1955) noticed that the above distribution can be observed in

2



other phenomena, which appear to have no connection among each others. These
include, the distribution of word frequencies in texts, the distribution of authors by
number of scientific articles published, the distribution of cities by population and the
distribution of incomes by size. The derivation process followed by Yule (1925) was
based on word frequencies, and it consisted of two assumptions:

(i) The probability that the (n + 1)-th word is a word observed k times in the first
n words, is proportional to k; and

(ii) The probability that the (n + 1)-th word is new (i.e. not being observed in the
first n words) is constant and equal to α ∈ (0, 1).

Yule (1925) shows that, under the condition of stationarity, the process defined by the
above two assumptions yields (1) by setting ρ = 1/(1 − α), obtaining:

f(k;α) =
1

1− α
B

(

k,
1

1− α
+ 1

)

. (2)

An important consequence of the above assumption (ii) is that the shape parameter ρ
of the distribution takes values in (1,+∞). In other words, should we use the model
as in Yule (1925), which includes the possibility that 0 < ρ ≤ 1, we would loose the
interpretation of the generating process described by the two assumptions above. In
fact, for ρ < 1, the probability of observing a new word would be negative; while for
ρ = 1 the probability would be zero, rendering the process trivial (i.e. all the observed
words will be equal to the first one observed). Furthermore, the expectation of the
Yule–Simon distribution is defined only for values of the shape parameter larger than
one, and this property is something one would expect in most applications. For all the
above reasons, in this work we focus on the parametrization of the Yule-Simon given
in (2), that is we will discuss prior distributions for α.

In addition to the parametrization of the Yule–Simon distribution as in (2), we will
also consider the possibility of having the parameter α discrete. This is a common
finding in literature, especially when implementations of the model are considered.
See, for example, Simon (1955) and Garcia Garcia (2011). The discretization of α will
be discussed in detail in Section 3.

3 Objective Priors for the Yule-Simon

distribution

This section is devoted to the derivation of two objective priors for the Yule-Simon
distribution: the Jeffreys prior and loss-based prior. The former assumes that
parameter space of α is continuous and it is based on the well-known invariance
property proposed by Jeffreys (1961); the latter assumes the parameter space discrete
and is based on Villa and Walker (2015).
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The Jeffreys Prior

The Jeffreys prior is defined in the following way (Jeffreys, 1961):

π(α) ∝
√

I(α)

where I(α) = Eα

[

−∂2 log(f(k;α))
∂α2

]

is the Fisher Information. In the next Theorem

(which proof is in the Appendix) an explicit expression of the Jeffreys prior for the
Yule-Simon distribution is provided.

Theorem 3.1. Let f(k;α) be the Yule-Simon distribution defined in equation (2),
with 0 < α < 1. The Jeffreys prior for α is

π(α) ∝ q(α) (3)

where

q(α) =
1

1− α

√

1− 1

(2− α)2
3F2

(

1,
1

1− α
+ 1, 1;

1

1− α
+ 2,

1

1− α
+ 2; 1

)

.

with 3F2 being the hypergeometric distribution function.

The Jeffreys prior stated in Theorem 3.1 is a proper prior. In fact, let

π(α) =
q(α)

K
,

where

K =

∫

1

0

1

1− α

√

1− 1

(2− α)2
3F2

(

1,
1

1− α
+ 1, 1;

1

1− α
+ 2,

1

1− α
+ 2; 1

)

dα

is the normalizing constant of π(α). It is not difficult to prove that

K <∞.

Indeed,

K ≤
∫ 1

0

√

3− α

1− α

1

2− α
dα =

1

3
π − ln(2−

√
3) <∞.

The result above follows from the following inequality

3F2

(

1,
1

1− α
+ 1, 1;

1

1− α
+ 2,

1

1− α
+ 2; 1

)

≥ 1.

The properness of the prior in (3) ensures the properness of the yielded posterior
distribution for α, as such suitable for inference.

4



The Loss-based Prior

Villa and Walker (2015) introduced a method for specifying and objective prior for
discrete parameters. The idea is to assign a worth to each parameter value by
objectively measuring what is lost if the value is removed, and it is the true one.
The loss is evaluated by applying the well known result in Berk (1966) stating that, if
a model is misspecified, the posterior distribution asymptotically accumulates on the
model which is the nearest to the true one, in terms of the Kullback–Leibler divergence.

Given that the parameter α ∈ (0, 1) of the Yule–Simon is in principle continuous,
the above method can not be applied. However, the boundedness of the interval allows
for an easy discretization, directly we can consider the set

DM =

{

α =
i

M
: i = 1, . . . ,M − 1

}

.

Therefore, the worth of the parameter value α is represented by the Kullback–
Leibler divergence DKL(f(k|α)‖f(k|α′)), where α′ 6= α is the parameter value that
minimizes the divergence. To link the worth of a parameter value to the prior mass,
Villa and Walker (2015) use the self-information loss function. This particular type
of loss function measures the loss in information contained in a probability statement
(Merhav and Feder, 1998). As we now have, for each value of α, the loss in information
measured in two different ways, we simply equate them obtaining the loss-based prior
of Villa and Walker (2015):

π(α) ∝ exp

{

min
α′ 6=α

DKL(f(k|α)‖f(k|α′))

}

− 1 α,α′ ∈ DM , (4)

where

DKL(f(k|α)‖f(k|α′)) = log

(

1− α′

1− α

)

+ Eα

{

log

[

B

(

k;
1

1− α
+ 1

)]}

− Eα

{

log

[

B

(

k;
1

1− α′
+ 1

)]}

.

As the discretized parameter space is finite, no matter what value of M one chooses,
the prior (4) is proper, hence, the yielded posterior will be proper as well.

An important aspect is that the value α′ minimizing the Kullback–Leibler
divergence can not be analytically determined, and the prior has to be computationally
derived. However, even for large values of M , the computational cost is trifling
compared to the whole Monte Carlo procedure necessary to simulate from the posterior
distribution.

To have a feeling of the prior distributions derived above, we have plotted them in
Figure 1. The behaviour of the priors is similar, in the sense that they tend to increase
as α increases and, for increasing values of M , the two distributions seem to converge.
However, we note that the Jeffreys prior is flatter than the loss-based priors for large
values of the parameter, i.e. for α approximately greater than 0.8.
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Figure 1: Prior distribution for α obtained by applying Jeffreys rule (dashed line), the loss-
based method with M = 10 (continuous line), with M = 20 (dotted line) and with M = 100
(dash-dotted line).

4 Simulation Study

The objective priors defined in Section 3 are automatically derived by taking into
consideration properties intrinsic to the Yule–Simon distribution. In other words,
they do not depend on experts knowledge or previous observations. It is therefore
necessary, in order to validate them, to assess the goodness of the priors by making
inference on simulated data. This section is dedicated in performing a simulation study
on the parameter α using observations obtained from fully known distributions.

We have considered different sample sizes, n = 30, n = 100 and n = 500, to analyse
the behaviour of the prior distributions under different level of information coming from
the data. Here we show the results for n = 100 only, as the sole differences in using
n = 30 and n = 500 sample sizes are limited to the precision of the inferential results:
relatively low for n = 30 and relatively high for n = 500, as one would expect. Besides
that, the differences in the performance of the two priors noted for n = 100 remain for
the other sample sizes. As the loss-based prior depends on the discretization of the
parameter space, for illustration purposes, we have considered M = 10 and M = 20,
that is α ∈ {0.1, 0.2, . . . , 0.9} and α ∈ {0.05, 0.10, . . . , 0.95}, respectively.

Both the Jeffreys prior and the loss-based prior yield posterior distributions for α
which are not analytically tractable, hence, it is necessary to use Monte Carlo methods.
We have generated 100 samples from a Yule–Simon distribution with the parameter α
set to every value in the parameter space, 9 for M = 10 and 19 for M = 20. For each
sample we have simulated from the posterior distribution of α, under both priors, by
running 10, 000 iterations, with a burn-in period of 2, 000 iterations.

To evaluate the priors we have considered two frequentist measures. The first
is the frequentist coverage of the 95% credible interval. That is, for each posterior,
we compute the interval between the 0.025 and 0.975 quantiles and see if the true
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value of α is included in it. Over repeated samples, one would expect a proportion of
about 95% of the posterior intervals to contain the true parameter value. The second
frequentist measure gives an idea of the precision of the inferential process, and it
is represented by the square root of the mean squared error (MSE) from the mean,
relative to the parameter value:

√

MSE(α)/α. We have considered the MSE from the
median as well but, due to the approximate symmetry of the posterior, the results are
very similar to the MSE from the mean. Figure 2 details the results for the simulations
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Figure 2: Frequentist properties of the Jeffreys prior (dashed line) and the loss-based prior
(continuous line) for n = 100. The loss-prior is considered on the discretized parameter
space with M = 10. The left plot shows the posterior frequentist coverage of the 95%
credible interval, and the right plot represents the square root of the MSE from the mean
of the posterior, relative to α.

with n = 100 and a parameter space for α discretized with increments of 0.1, that is
α ∈ {0.1, 0.2, . . . , 0.9}. If we compare the coverage, we note that the loss-based prior
tends to over-cover the credible interval, while the Jeffreys prior, although shows a
better coverage for values of α < 0.5, deteriorates in performance as the parameter
tends to the upper bound of its space. Looking at the MSE, both priors appear
to have very similar performance, and the (relative) error tends to decrease and α
increases. In Figure 3 we have compared the frequentist performance of the Jeffreys
prior with the loss-based prior defined over a more densely discretized parameter space,
i.e. α = {0.05, 0.10, . . . , 0.95}. We note a smoother behaviour of the priors compared
to Figure 2, which is obviously due to the denser characterization considered. The
coverage still reveals a tendency of the loss-based prior to over-cover, although less
pronounced than the previous case. Jeffreys prior does not present any significant
difference from the previous case, as one would expect. For what it concerns the MSE,
the differences between the two priors are negligible, and the only aspect we note, as
mentioned above, is a smoother decrease of the error as the parameter increases.

We look more into the details of the objective approach by analysing two i.i.d.
samples. In particular, we consider a random sample of size n = 100 from a Yule–
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Figure 3: Frequentist properties of the Jeffreys prior (dashed line) and the loss-based prior
(continuous line) for n = 100. The loss-prior is considered on the discretized parameter
space with M = 20. The left plot shows the posterior frequentist coverage of the 95%
credible interval, and the right plot represents the square root of the MSE from the mean
of the posterior, relative to α.

Simon distribution with α = 0.40 and a sample, of the same size, from a Yule–Simon
with α = 0.68.

In both cases, we have sampled from the posterior distribution via Monte Carlo
methods with 10, 000 iterations and a burn-in period of 2, 000 iterations. Figure 4
shows the posterior samples and posterior histograms derived by applying the Jeffreys
prior and the loss-based prior with two different discretizations, that is M = 10 and
M = 20. The summary statistics of the three posteriors are reported in Table 1,
where we have the mean, the median, and the 95% credible interval. By comparing

Prior Mean Median 95% C.I.
Jeffreys 0.40 0.41 (0.23,0.53)

Loss-based (M = 10) 0.40 0.4 (0.2,0.5)
Loss-based (M = 20) 0.40 0.41 (0.22,0.56)

Table 1: Summary statistics of the posterior distributions for the parameter α of the
simulated data from a Yule-Simon distribution with α = 0.40.

the mean of the posterior distributions, we see that they are all centered around the
true parameter value. The credible interval yielded by the loss-based priors with the
most dense discretization (M = 20) is larger than the other two intervals. However,
the difference is very small and we can conclude that the three prior distributions result
in posteriors which carry the same uncertainty. In other words, the three objective
priors perform in the same way.

Similar considerations can be made for the case where we have sampled n = 100
observations from a Yule–Simon distribution with α = 0.68. By inspecting Figure 5
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Figure 4: Posterior samples (left) and histograms (right) of the analysis of an i.i.d. sample
of size n = 100 from a Yule–Simon distribution with α = 0.40. From top to bottom, we
have Jeffreys prior, loss-based prior with M = 10 and loss-based prior with M = 20.

and Table 2, we note a very similar behaviour of the three priors, in the sense that
the posterior distributions are still centered around the true value of α and that the
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Figure 5: Posterior samples (left) and histograms (right) of the analysis of an i.i.d. sample
of size n = 100 from a Yule–Simon distribution with α = 0.68. From top to bottom, we
have Jeffreys prior, loss-based prior with M = 10 and loss-based prior with M = 20.

credible intervals do not present important differences. Note that the choice of a true
parameter value which would have not been included in any of the two discretized
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Prior Mean Median 95% C. I.
Jeffreys 0.68 0.68 (0.57,0.77)

Loss-based (M = 10) 0.68 0.7 (0.6,0.8)
Loss-based (M = 20) 0.68 0.68 (0.55,0.79)

Table 2: Summary statistics of the posterior distributions for the parameter α of the
simulated data from a Yule-Simon distribution with α = 0.68.

sample spaces, upon which the loss-prior is based, allows to show that the inferential
process appears to be not affected by the discretization, hence motivating it.

To conclude, the simulation study shows no tangible differences in the performance
of the prior distributions, in the spirit of objective Bayesian analysis.

5 Real Data Application

To illustrate the proposed priors, both the Jeffreys and the loss-based prior for the
Yule-Simon distribution, we analyze three datasets. The first dataset concerns daily
increments of four popular social networks stock indexes in the US market, the second
contains the frequencies of surnames observed in the 1990 US Census, and the last
dataset consists of ’number one’ hits in the US music industry.

5.1 Social network stock indexes

We analyze different data in the social media marketing, in particular we focus on
Facebook, Twitter, Linkedin and Google. These four major companies are the most
powerful social networks in the world and are listed in the Wall Street exchange market
(http://finance.yahoo.com). We analyze the daily increments for the stocks and, in
particular, we consider the adjusted closing price from the 1st of October 2014 to
the 11th of March 2016, for a total of n = 365 observations. The daily increments
are obtained by applying zt = |rt/rt−1 − 1| · 100, for t = 2, . . . , 365, where rt is the
adjusted closing price for the index at day t, and we built our frequency on it. These
are shown in Figure 6, while Figure 7 shows the histogram of the frequencies of the
discretized data. The discretization has been done by counting the number of times
a daily return took a value truncated at the second decimal digit. For example, if
two observed daily returns are 1.2494 and 1.2573, they were both considered as two
occurrences of the same value. By inspecting the histograms in Figure 7 is seems
that the (transformed) Yule–Simon distribution might be a suitable statistical model
to represent the data. We apply the Bayesian framework and obtain the posterior
distribution for the parameter of interest as

π(α|k) ∝ L(k|α)π(α),

where k = (k1, . . . , kn) represents the set of observations, i.e. the frequencies of the
discretized daily returns, L(k|α) the likelihood function and π(α) the prior distribution
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Figure 6: Daily increments for Facebook, Google, Linkedin and Twitter from the 1st of
October 2014 to the 11th of March 2016.

which, in turn, has the form of the Jeffreys prior in (3) or the loss-based prior (4).
We have obtained the posterior distributions for the parameter α of the transformed
Yule-Simon distribution by Monte Carlo methods. We run 25,000 iterations with a
burn-in period of 5, 000 iterations. We have reported the chain and the histogram
of the posterior distributions in Figure 8 and in Figure 9, with the corresponding
summary statistics in Table 3. Note that, with the purpose of limiting the amount of
space used, we have included the plots of the Facebook and Google daily returns only.

For all the four assets we notice that the results for α are very similar, as can
be inferred by the minimal (or absence of) difference between the means and the
medians. The credible intervals, as well, are very similar, with a slight larger size for
the case where the loss-based prior with (M = 20) is applied. One way of interpreting
the results is as follows. The parameter α can be seen as the probability that the
next observation is different from the ones observed so far, and therefore we note
that Twitter has the highest chance to take a daily increment not yet observed, while
Google has the smallest.
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Figure 7: Histograms of the discretized daily returns for Facebook, Google, Linkedin and
Twitter.

5.2 Census Data - Surname analysis

The second example we examine concerns with the frequency of surnames in the
US (http://www.census.gov/en.html). From the population censuses (Maruka et al.,
2010), we focus on the US Census completed in 1990 and consider the first 500
most common surnames. Refer to Table 4 for a list of the first 10 most frequent
surnames. Briefly, the process followed by Maruka et al. (2010) to obtain the data
converts the surname with Senior (SR), Junior (JR) or a number in the last name field
(f.e. Moore Sr or Moore Jr or Moore III are converted to Moore) and, in addition, the
authors examined each name entry for the possibility of an inversion (e.g. a first name
appearing in the last name fields or vice-versa). However, as there is the possibility
of having many surnames that also inverted can sound absolutely right, the authors
considered also the surname of the spouse, obtaining additional information to invert
the name field of the entire family.

The analysis has been performed by running both the Markov Chain Monte Carlo
for 25,000 iterations, with a burn-in of 5,000 iterations.
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Figure 8: Posterior samples (left) and posterior histograms (right) for the Facebook daily
returns obtained by applying the Jeffreys prior (top), the loss-based prior with M = 10
(middle) and the loss-based prior with M = 20 (bottom).

The posterior samples and the posterior histograms are shown in Figure 10, with
the corresponding summary statistics of the posterior distributions reported in Table
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Figure 9: Posterior samples (left) and posterior histograms (right) for the Google daily
returns obtained by applying the Jeffreys prior (top), the loss-based prior with M = 10
(middle) and the loss-based prior with M = 20 (bottom).

5. We again notice similarities to the simulation study and the analysis of daily
increments, in the sense that means and medians are very similar for each prior, and
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Company Prior Mean Median 95% C.I.
Facebook Jeffreys 0.53 0.53 (0.43, 0.61)
Facebook Loss-based (M = 10) 0.53 0.5 (0.4, 0.6)
Facebook Loss-based (M = 20) 0.52 0.55 (0.40, 0.60)
Google Jeffreys 0.47 0.47 (0.37, 0.55)
Google Loss-based (M = 10) 0.47 0.5 (0.4, 0.6)
Google Loss-based (M = 20) 0.47 0.46 (0.35, 0.55)
Linkedin Jeffreys 0.56 0.57 (0.47, 0.64)
Linkedin Loss-based (M = 10) 0.57 0.6 (0.5, 0.6)
Linkedin Loss-based (M = 20) 0.56 0.55 (0.45, 0.65)
Twitter Jeffreys 0.68 0.68 (0.62, 0.73)
Twitter Loss-based (M = 10) 0.69 0.7 (0.6, 0.7)
Twitter Loss-based (M = 20) 0.68 0.70 (0.60, 0.75)

Table 3: Summary statistics of the posterior distribution for the parameter α of the social
network stock index data.

# Surname Frequency # Surname Frequency
1 Smith 2502021 6 Davis 1193807
2 Johnson 2014550 7 Miller 1054530
3 Williams 1738482 8 Wilson 843126
4 Jones 1544488 9 Moore 775975
5 Brown 1544488 10 Taylor 773488

Table 4: Ten most common Surname in United States from the Census 1990 analysis.

the 95% credible interval obtained by applying the loss-based prior with M = 20 is
slightly larger than the one obtained by using either the Jeffreys prior or the loss-based
prior with M = 10.

The estimated value of α, on the basis of the 500 most common surnames in the
US (and if we consider the mean) is, roughly, 1/2. In other words, there are about
50% chances that the next observed surname is not in the list of the 500. Obviously,
a larger sample size would yield a smaller posterior mean, as the number of surnames
is finite and the more we observe, the harder is to find a “new” one.

5.3 ‘Superstardom’ analysis

The last example consists in modelling the number of ‘number one’ hits a music
artist had in the period 1955–2003 on the Billboard Hot 100 chart. The data,
which is displayed in Table 6, has been used by Chung and Cox (1994) and
Spierdijk and Voorneveld (2009) to show an apparent absence of correlation between
talent and success in the music industry.
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Figure 10: Posterior sample (left) and posterior histogram (right) for the surname data set
obtained by applying the Jeffreys prior (top), the loss-based prior with M = 10 (middle)
and the loss-based prior with M = 20 (bottom).

We have run the Monte Carlo simulation for 25,000 iterations, with a burn in period
of 5,000, for each of the considered priors. The posterior samples and histograms are
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Prior Mean Median 95% C. I.
Jeffreys 0.53 0.54 (0.47, 0.58)

Loss-based (M = 10) 0.52 0.5 (0.5, 0.6)
Loss-based (M = 20) 0.53 0.55 (0.45, 0.60)

Table 5: Summary statistics of the posterior distributions for the parameter α of the Census
surname analysis.

Hits Observations Hits Observations
1 119 9 4
2 57 10 2
3 30 11 1
4 13 12 2
5 10 13 1
6 4 14 1
7 1 15 1
8 1 16 1

Table 6: Number of ‘number one’ hits per artist from 1955 to 2003.

shown in Figure 11, with the correspondinf statistic summaries in Table 7.

Prior Mean Median 95% C.I.
Jeffreys 0.08 0.07 (0.004, 0.24)

Loss-based (M = 10) 0.13 0.1 (0.1, 0.3)
Loss-based (M = 20) 0.11 0.10 (0.05, 0.25)
Loss-based (M = 100) 0.10 0.08 (0.01, 0.29)

Table 7: Summary statistics of the posterior distribution for the parameter α of the analysis
of the music ‘number one’ hits.

This example of the music hits allows for some interesting points of dicussion. First,
we note that the posterior distributions of for α are skewed; therefore, the posterior
median represents a better centrality index than the posterior mean. Second, it is
clear that the “true” value of α may be close to zero. As such, in order to explore
better the parameter space when the loss-based prior is used, a denser discretization
is more appropriate. We have then considered M = 100, resulting the posterior
summary statistics in Table 7. We note now that the posterior median is similar to
the one obtained using the Jeffreys prior. It is therefore recomendable that, when
the inference on α indicates values near the parameter space boudaries, the level of
discretization to be considered should be relatively dense.
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Figure 11: Posterior sample (left) and posterior histogram (right) for the music ‘number
one’ hits data set obtained by applying the Jeffreys prior (top), the loss-based prior with
M = 10 (middle) and the loss-based prior with M = 20 (bottom).
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6 Discussions

It is surprising how, from time to time, the Bayesian literature presents gaps even
for problems which appear to be straightforward. The Yule–Simon distribution has
undoubtedly many possibilities of application, as the discussed examples and the
refereed papers show, and therefore demanded for a satisfactory discussion within
the Bayesian framework.

Given the importance that objective Bayesian analysis can have in applications, and
not only (Berger, 2006), we have presented two priors which are suitable in scenarios
with minimal prior information. The first prior is the Jeffreys prior which, as it is well
known, has the appealing property of being invariant under monotone differentiable
transformations of the parameter of interest. The second prior is derived considering
the loss in information one would incur if the ‘wrong’ model was selected. Although
the latter requires a discretization of the parameter space, we have shown through
simulation studies that the performance of the yielded posterior are very similar, both
between the Jeffreys and the loss-based prior, and between different structures of the
discretized parameter space. This is not surprising as both priors, i.e. the Jeffreys
and the loss-based, have a similar behaviour, in the sense that they increase as the
parameter α increases.

We have limited our analysis to the case where the shape parameter of the Yule–
Simon distribution, ρ, is strictly larger than one. Doing so, we allow for a more
convenient parametrization of the distribution where the new parameter α = (ρ−1)/ρ
has the interpretation of being the probability that the next observation takes a value
not observed before.

Besides through a simulation study, we have compared the objective priors by
applying them on three data sets: the first related to financial data, the second to
surnames in the US and the third one on the number of hits in the music industry.
All comparisons allowed to show that the two proposed objective priors lead to similar
results, in terms of posterior distributions. For obvious reasons, we have not considered
if the choice of the Yule–Simon is the best model to represent the data, but limited
our analysis to make inference for the unknown parameter α.

Acknowledgements

Fabrizio Leisen was supported by the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreement no: 630677.

References

Berger, J. (2006). The case for objective bayesian analysis. Bayesian Analysis 1,

385–402.

Berk, R. (1966). Limiting behaviour of posterior distributions when the model is
incorrect. Ann. of Math. Statist. 37, 51–58.

20



Chung, K. and Cox, R. (1994). A stochastic model of superstardom: an application
of the yule distribution. Review of Economics and Statistics 76, 771–775.

Garcia Garcia, J. M. (2011). A fixed-point algorithm to estimate the yule-simon
distribution parameter. Applied Mathematics and Computation 217, 8560–8566.

Gradshteyn, I. and Ryzhik, I. (2007). Table of Integrals, Series and Products. Academic
Press.

Jeffreys, H. (1961). Theory of Probability. London: Oxford University Press.

Maruka, Y. E., Shnerb, N. M., and Kessler, D. A. (2010). Universal features of surname
distribution in a subsample of a growing population. Journal of Theoretical Biology
262, 245–256.

Merhav, N. and Feder, M. (1998). Universal prediction. IEEE Trans. Inf. Theory 44,

2124–2147.

Simon, H. A. (1955). On a class of skew distribution functions. Biometrika 42, 425–
440.

Spierdijk, L. and Voorneveld, M. (2009). Superstars without talent? the yule
distribution controversy. The Review of Economics and Statistics 91, 648–652.

Villa, C. and Walker, S. (2015). An Objective approach to prior mass function for
discrete parameter spaces. Journal of the American Statistical Association 110,

1072–1082.

Yule, G. U. (1925). A Mathematical theory of evolution, based on the conclusion of
Dr. J.C. Willis. Philosophical Transactions of the Royal Society of London, Series
B 213, 21–87.

21



A Appendix

Proof of Theorem 3.1. First of all, we note that

∂2 log(f(k;α))

∂α2
=
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2
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ψ(0)
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where ψ(i) is the polygamma function:

ψ(i)(x) =
∂i+1

∂xi+1
log(Γ(x)) = (−1)i+1i!
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It’s easy to see that
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Therefore, we have that the Fisher information is:
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(A.1)

In order to compute the Jeffreys prior, we need compute the two expected value of
equation A.1 separately.

Eα
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(A.2)

The second summation with respect to k in equation A.2 can be rewritten as:

∞
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∞
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Finally, we have that :
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where the summation
∑∞

j=1(
1

1−α
)B(j, 1

1−α
+1) = 1, since we are summing over all the

possible values of the probability function of the Yule-Simon distribution.
As we have done with the first expected value of A.1, now we compute the second

expected value of equation A.1:
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where the last equality follows from (A.3).Finally we obtain the following form:
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The equation A.6 can be written in a more simple way as a function of an
Hypergeometric function.
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Looking at the summation we have:
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But the denominator can be written as a ratio of Pochhammer representations:
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Hence the equation A.8 is written as:
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where 2F1(α, β, γ, x) is the hypergeometric function. So we have that equation A.7
can be rewritten as:
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where the last equality follows from 7.512.5 of Gradshteyn and Ryzhik (2007).
Summing up,
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and this concludes the proof.
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