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Abstract

As the number of cases of COVID-19 continues to grow, local health services are at risk of

being overwhelmed with patients requiring intensive care. We develop and implement an

algorithm to provide optimal re-routing strategies to either transfer patients requiring Inten-

sive Care Units (ICU) or ventilators, constrained by feasibility of transfer. We validate our

approach with realistic data from the United Kingdom and Spain. In the UK, we consider the

National Health Service at the level of trusts and define a 4-regular geometric graph which

indicates the four nearest neighbours of any given trust. In Spain we coarse-grain the health-

care system at the level of autonomous communities, and extract similar contact networks.

Through random search optimisation we identify the best load sharing strategy, where the

cost function to minimise is based on the total number of ICU units above capacity. Our

framework is general and flexible allowing for additional criteria, alternative cost functions,

and can be extended to other resources beyond ICU units or ventilators. Assuming a uni-

form ICU demand, we show that it is possible to enable access to ICU for up to 1000 addi-

tional cases in the UK in a single step of the algorithm. Under a more realistic and

heterogeneous demand, our method is able to balance about 600 beds per step in the Span-

ish system only using local sharing, and over 1300 using countrywide sharing, potentially

saving a large percentage of these lives that would otherwise not have access to ICU.

1 Background

The outbreak of COVID-19 [1], the disease caused by the novel coronavirus SARS-CoV-2,

detected in China in December 2019 [2], has become pandemic and continues putting national

health systems of different countries into significant levels of stress [3–6] (see [7] and refer-

ences therein for a detailed overview). Either during the first or successive epidemic waves, the

intensive care unit (ICU) demand of several hospitals might surpass their nominal capacity in

particular regions in several countries, as has already happened in Italy or Spain [8]. The
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shortage of sanitary resources is unlikely to be limited to ICU units or ventilators, and other

resources will face similar challenges, either during the first surge or in subsequent waves.

In the COVID-19 pandemic, demand for intensive care is not uniform across a country.

Epidemic outbreaks can take place in different parts of a country and this can lead to substan-

tial variations of demand both through space and time. Some hospitals may receive substantial

numbers of patients early in an outbreak, whilst others may be only mildly affected. This

demand heterogeneity opens the possibility of balancing the load of patient admissions such

that excessive demand is re-routed to the places which have spare capacity. The clinical need

for such a system was evidenced by a spontaneous initiative that took place in Madrid (Spain)

in early April 2020 [9], when the Spanish capital was suffering a significant surge of COVID-

19 cases. The intensive care lead of 76 hospitals in Madrid created an informal WhatsApp

group to share daily information on the ICU demand and availability, with the goal of transfer-

ring patients across hospitals in the hope that the network could provide adequate treatment

to all patients. Other tactical load balancing actions have been recently proposed in the US

[10, 11]. Of course, this is an example of a quick, crisis emergency action, but as soon as multi-

ple centres are overwhelmed, the demand pattern becomes very complex, and the number of

possible transfer combinations increases exponentially in a graph with N nodes, the number of

possible ways in which each of the nodes can transfer load to other nodes increases exponen-

tially with N. Without a principled and organic approach to patient transfer it is possible to

end up worsening the situation.

A natural question is thus, given the available resources of a national health system covering

a specific region, whether there exist a principled, adaptive and optimal way of balancing the

demand across hospitals by which a maximal number of patients can receive adequate treat-

ment even during a pronounced epidemic peak, thereby relieving the stress of the whole sys-

tem. Furthermore, the need to match intensive care supply to patient demand in different

parts of the world is indeed currently urgent in areas of the world experiencing serious out-

breaks. Here we address such questions by designing and implementing a simple and flexible

load sharing procedure which can help to alleviate the level of stress that healthcare systems

experience in a systematic way.

The methodology is in principle tailored to address the COVID-19 pandemic situation, but

otherwise is general and thus applicable in different countries, at different resolution levels,

and for any resource constrained clinical service. The method uses graph-embedded load bal-

ancing technology coupled with a simple optimisation kernel, and we showcase its usability by

testing it on the UK National Health Service (NHS) and the Spanish health system as examples

with different spatial granularity. Note that graph-embedded load balancing [12, 13] has been

mainly explored in Computer Science (CS), usually taking a “vertex perspective” for graphical

computation with the aim of achieving a centralised solution to load allocation, subject to

locality and availability constraints [14]. Interestingly, this line usually relates to minimise

large-scale computational efforts, rather than actually sharing physical resources. A similar

approach overlaps with the so-called Social Choice Theory of allocating goods among a set of

agents under some constraints that overlaps economics, social sciences and computer science

[15–18]. More closely related to our approach is the concept of dynamic load balancing, theo-

retically explored in the CS literature recently [19, 20]. Similar approaches have also been

investigated in the Operations Research (OR) literature, and in particular the topic of location

theory is relevant here as well [21, 22]. All these provide a reasonably mature mathematical

framework which we subsequently rely on. Indeed, here we build on conceptually similar

approaches although we focus on a healthcare network where resources to be shared consist of

ICU beds or ventilators, within the context of the COVID-19 pandemic. After presenting the

algorithmic modelling, as a proof of concept we apply our framework to two realistic cases at
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different spatial resolutions: the United Kingdom’s full NHS trust network, and the Spanish

contact network between autonomous communities. We focus on the problem of ICU

demand, propose and implement a routine strategy to transfer resources across the network,

and demonstrate that it is capable of useful and relevant outcomes.

2 Materials and methods

2.1 Transfer networks

We first define the network over which load and resources can be shared. Demand and capac-

ity data –and thus, load sharing– can be coarse-grained at different resolutions: hospitals, post-

codes, trusts, and broader regions. In this paper, we consider two levels of resolution: NHS

trusts (UK) and autonomous communities (Spain).

2.1.1 NHS trust network. We coarse-grain data for the UK at the level of trusts, as the

main units of NHS organisation. We have N = 141 trusts across the UK, where each trust cor-

responds to a conglomerate of m hospitals. For each trust, we define a single central position

by finding the centroid of the polygon whose vertices are the hospitals belonging to that trust.

While spatial coordinates are given in terms of latitude and longitude, we make a small angle

approximation and interpret latitude and longitude as cartesian coordinates Since sin α� α
when α� 1, it is easy to see that an increase of a small angle α leads to a linear increase h�
Rα where R is a constant. In particular, under this approximation the centroid coordinates of

trust reduces to the arithmetic mean of the coordinates of each hospital in the trust
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In the event that the net capacity ci of each hospital is also available, then instead of computing

the centroid, one can compute the center of mass by appropriately weighting the contribution

of each hospital:
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where �cj ¼ cj=
Pm

k¼1
ck is the normalised capacity of hospital j we normalise it such that x and y

still have dimensions of length, and m is the number of hospitals in trust i. The distance

between two trusts corresponds to the Euclidean distance between the centroids or the centers

of mass if more precise coordinates need to be used, instead of these we can use Haversine for-

mula.
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In our case we do not have information on the actual ICU capacity of each specific hospital

within a given trust, so we choose to use centroids instead of centers of mass.

Once we have defined the location each of the 141 NHS trusts, we assign a vertex to this spa-

tial location and proceed to tessellate this set. We build a regular geometric graph with degree

k = 4, where each vertex i is connected to the four closest vertices according to the distance dij
defined above. The resulting graph is depicted in panel a of Fig 1. Each trust will only be

allowed to transfer patients or resources to the trusts in their topological neighborhood,

modelling the fact that transfers only take place between close trusts.

2.1.2 Spain’s autonomous community networks. Spain has a decentralised health sys-

tem, so we consider that load sharing between hospitals can only take place within each
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autonomous community (intra-community). Because of that, as a second example here we will

consider load sharing at the inter-community level. The network therefore has N = 17 nodes,

each of them characterising a certain autonomous community. We will consider two different

networks: a contact network and a fully connected network. In the contact network, two nodes

are connected if the respective autonomous communities share a border. This makes this net-

work more heterogeneous than the NHS trust network, where the maximal degree is k = 9 (for

the community of Castilla y Leon). We assume that load sharing can only be performed by

road, meaning that this network is disconnected; as two autonomous communities are not

part of mainland Spain (Balearic islands and Canary islands). So, we only consider the large

connected component, formed by N = 15 nodes with varying degree 2� k� 9. The resulting

graph is depicted in panel (b) of Fig 1 (note that Canary islands have not been drawn because

they are an off-scale disconnected node). Distance is not a constraint in this case.

Additionally, we will also consider a fully connected network formed of N = 15 nodes on

the mainland, where all possible links are present. This models the ideal situation where the

transfer of patients/ventilators between any two autonomous communities is possible, e.g.

using the national train network, as already proposed [25]. The Balearic islands and the Canary

islands are, again, not part of this network.

2.2 Local load sharing model

The basic architecture of the local load sharing model is depicted in Fig 2. For each node, the

algorithm takes projected-ICU-demand data (aggregated at the NHS trust level or the

autonomous community level, depending on the example), matches with its baseline-
ICU-capacity (aggregated number of ICU beds or ventilators which are available to be

used at that specific time by the trust itself or others), and generates a local-stress value

for each node accordingly:

½local � stress� ¼ ½projected � ICU � demand� � ½baseline � ICU � capacity�:

Fig 1. (a) NHS trust network, where nodes are NHS trusts and the network is a 4-regular geometric graph tesselating

the set of nodes, i.e. any node is connected to its four closest nodes. (b) Spanish contact network, where nodes are

autonomous communities and two nodes are linked if the communities share a common border. In this network we

have discarded both archipelagos (Canary islands and Balearic islands) as transfer between these and mailand is not

realistic. We have not plotted Canary islands as it is off-scale. Background images have been generated using Natural

Earth [23] and GADM [24].

https://doi.org/10.1371/journal.pone.0241027.g001
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For those nodes where the local stress is positive (meaning that demand surpasses the available

capacity and thus there is a need to load-share), the algorithm explores which neighboring

nodes (extracted from the topological neighborhood of the node under analysis) could accept

a transfer. A transfer is possible if two conditions are met: (i) there is at least a node in the

neighborhood of the origin node whose local-stress is negative (i.e. the receptor node

has freely available space after its own demand is met), and (ii) the physical distance between

the origin and the receptor node is smaller than a certain upper bound dmax. This maximum

distance models at the same time several possible constraints, e.g. the fact that ICU patients

can only be outside an hospital for a limited amount of time or that effective transfers require

the distance between origin and receptor to be small.

Once the receptor is chosen, a ‘solidary’ load is shared to the receptor. As a rule of thumb,

we choose this load to be either 50% of the excess capacity of the receptor (that is, of |local-
stress|, i.e. capacity after having met internal demand), or the total excess demand of the

origin trust, whichever is smaller. The rationale for this definition is based on the fact that

receptor nodes would probably be willing to accept to release only a percentage of their capac-

ity while they keep another percentage in anticipation for future internal demand. The exact

number (50% in this paper) is flexible and different practical implementations can assume dif-

ferent percentages.

2.3 Sequential vs parallel update

In this work we have systematically considered two alternative algorithmic updates, mirroring

the fact that the local decision of a given node to transfer or not can be carried out either

sequentially or in parallel for the rest of the nodes.

Let us first discuss the parallel mode. In this case, the projected-ICU-demand of all N
nodes are updated in the new step independently from each other, and transfer between nodes

take place independently. Note that this update can be problematic in practice, as e.g. two

nodes might decide independently to transfer part of their excess load to a third node, what

might mean overwhelming the third node. On the other hand, as we will show below, configu-

rations which are globally more optimal are available using this mode.

In sequential update, the projected-ICU-demand of each node is sequentially

updated after each local load share is performed. In other words, we consider the update of all

Fig 2. Scheme of the local load sharing model. Red and orange denotes an overwhelmed unit with varying levels of

stress, green denotes a unit with capacity.

https://doi.org/10.1371/journal.pone.0241027.g002
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N nodes in order. That means, for instance, that in a given step of the algorithm all N nodes

are updated in order, such that the node p is updated taking into account the old status of

nodes p + 1, p + 2, . . ., n (that haven’t been updated yet) and the new status of nodes 1, 2, . . ., p
− 1. Sequential updates have the positive implication that no receptor will be overwhelmed

from the simultaneous load sharing of different nodes.

Incidentally, the algorithmic difference between the sequential and the parallel update

mode is similar to the difference between Jacobi and Gauss-Seidel numerical schemes when

solving systems of linear equations. In practice, the code we have implemented asks the user to

choose which processing mode is used (sequential or parallel).

2.4 Random search optimisation

The basic local load sharing model is run for all nodes (NHS trusts or autonomous communi-

ties), and as a result a possible load sharing configuration is extracted, consisting of the speci-

fied origin and destination of all the packets of ICU patients shared:

Trust i shared x loads to trust j
To assess the global impact of such load sharing configuration, we define the global stress of

the whole system

global � stress ¼
X

j

Y½local � stressðjÞ�; ð4Þ

where the sum runs over all trusts j, and Θ(x) is a rectified linear unit (ReLu), defined by Θ(x)

= x if x> 0 and zero otherwise. So essentially global-stress counts the total demand of

ICU units in excess of capacity, in all those trusts which are projected to be overwhelmed.

Now, in the event there is a node with positive local stress (i.e. with an excess of demand

and a need to transfer load) and more than one candidate receptor, how to choose the ade-

quate node where the load is shared to? A natural choice would be to follow a majority heuris-
tic, i.e. transfer the share to the receptor with largest availability, i.e. with lowest local stress.

However this choice does not always yield solutions which are globally optimal. This situation

is illustrated in Fig 3, where the majority heuristic would suggest that node ‘2’ should transfer

its excess load to node ‘3’ as its local stress is lower than the one at node ‘1’. However doing

this precludes node ‘4’, also in need of load-sharing, to transfer loads to node ‘3’. In this case

the optimal solution (in the sense of minimising global-stress) would be that node ‘2’

load-shares to node ‘1’, thus enabling node ‘4’ to load-share to node ‘3’.

The example above is just a cartoon in an extremely simple graph. In more practical appli-

cations where transfer networks are more complex, the number of possible configurations is

much larger and thus the issue is even more acute. To address this issue, here we implement a

so-called random search optimisation approach, which consists in two steps. First, if more

than one receptor is available for transfer in the topological neighborhood of a given node,

then the algorithm selects the receptor at random. Second, once the algorithm chooses the

configuration for all N nodes, it is then re-run 105 times, such that in each realisation a

Fig 3. Cartoon of a simple chain graph where some nodes require to load share and a trivial majority heuristic

rule provides a suboptimal solution.

https://doi.org/10.1371/journal.pone.0241027.g003
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different configuration is stochastically chosen. In this way the algorithm stochastically sam-

ples the search space. The quasi-optimal run with the lowest global-stress is finally

retained. While this approach is computationally scalable (and can be implemented to be run

in real-time in practical cases), the solution is guaranteed to be at least a local optimum, but

one cannot discard that other configurations not sampled might have lower global-
stress since search is not exhaustive.

2.5 Input variables

Now we briefly discuss the main input data required to run the local load sharing model:

• projected-ICU-demand: This is an input data to the algorithm. In practice this

demand is either informed by some surveillance protocol or otherwise modelled, as it could

be estimated following a complex multi-step flow [12], which can be summarised as follows:

1. The projected number of new infections next week: This quantity can be informed in

the first place from an epidemiological model [8, 26] which provides predicted numbers

of contagion at different spatial resolutions. Alternatively, or in the absence of such a

model, it could be estimated from various sources of data [27] including prescription

data [28] or through direct questionnaires Data can be retrieved and processed from

apps and other surveillance systems such as centralised webpages where citizens submit

their symptoms. These questionnaires, coupled with a classification algorithm, can esti-

mate the number of latent infected people in a certain region or postcode. A post-pro-

cessing of these numbers is then carried out, taking into account (i) age demographics

and (ii) associated infection-to-ICU rates.

2. The projected number of patients already in the hospital which progress to ICU by next

week: this number is estimated from real data of hospital admissions and average admis-

sion-to ICU likelihood.

3. The projected number of patients already in ICU this week which will still require ICU

next week: this number takes into account both the fatality ratio and the estimated dis-

charge time.

As a proof of concept, in this work we assume different types of artificial ICU demands

(uniform and heterogeneous distributions) in the UK case, whereas in the spanish case

we consider realistic demand as of 30th March 2020, i.e. during the first epidemic wave.

We test how the load sharing algorithm performs under different demands.

• baseline-ICU-capacity: This list is extracted from public available databases [29,

30]. In the case of autonomous communities these quantities already have into account

some enhancement provided by surge capacity [30], whereas in the case of NHS trusts we

only use baseline data, so we expect such capacity to be significantly increased in practice.

3 Results

3.1 Single-share in the UK NHS trust network

In this first section we assume that each trust can only submit a unique load to a unique recep-

tor trust, to be selected randomly from the trust’s topological neighborhood.

3.1.1 Stress test with fixed, uniform-load ICU demand. As an initial illustration, we first

analyse a stress test case where projected-ICU-demand is artificially set to a uniform

value of 20 ICU beds per trust (i.e. all trusts receive a demand of 20 beds) whereas we set all
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baseline-ICU-capacity to its real value, and dmax =1. The histogram of base-
line-ICU-capacity is reported in panel (a) of Fig 4, whereas the histogram of local-
stress, before and after the load sharing procedure is performed, is depicted in panel (b) of

the same figure (we are only showing the parallel mode here). The procedure is capable of

reducing the global stress of the system from an initial value of global-stress = 611 ICU

beds in excess in overwhelmed trusts, to a final value of global-stress = 101 after the

optimal load sharing is performed, i.e. a transfer and subsequent treatment of 510 ICU

patients.

3.1.2 Pipeline of uniform-load stress tests. In a second step, we explore how the system

behaves when initial demand per trust varies. To do that, we consider a suite of stress tests and

assume for each test that all trusts receive the same load –leading to a uniform demand per

trust–, and we compute the local-stress before and after the load sharing procedure is

applied. Accordingly, the global-stress of the whole system and the net reduction in the

number of ICU beds in deficit (in collapsed trusts) is also computed.

Results are shown for both the sequential and parallel mode in panels (c) and (d) of Fig 4.

Panel (c) plots the global-stress before and after the load sharing procedure is applied,

as a function of the initial demand uniformly applied to all trusts. The net reduction (number

of ICU patients or ventilators transferred) is then plotted in panel (d). As expected, the

Fig 4. (a) Histogram of the baseline-ICU-capacity (number of beds) per trust for the NHS trust network. (b)

Illustration of the histogram of local-stress (expected demand of number of beds above capacity) per trust,

before and after applying the load sharing procedure. In the synthetic example, all trusts have a uniform

projected-ICU-demand = 20, whereas the baseline-ICU-capacity is informed by data and shown in the

left panel. Before the load sharing procedure, global-stress = 611, and after the procedure, the new global-
stress = 101, i.e. a reduction of a total of 510 ICU patients (83%). (c and d) Response of the UK healthcare system in

terms of global-stress (c) and net reduction in number of ICU beds (d) after the load sharing procedure is

applied, as a function of the initial demand per trust (uniform demand across trusts). Different lines correspond to

different modes: absence of load sharing (red); single-share, parallel mode (green); single-share, sequential mode

(blue); multiple-share, sequential mode (black). Results are similar across modes. We can see three regimes: an initial

regime where the load sharing procedure easily removes all signs of overwhelming, a second regime where although

the procedure cannot remove all signs of overwhelming, the net reduction is maximised, and a third regime where the

load sharing procedure is less and less efficient due to the fact that the whole system is overwhelmed.

https://doi.org/10.1371/journal.pone.0241027.g004
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global-stress curves increase when the demand per trust is increased. At the beginning

(for a uniform demand between 0 and 20 ICU beds per trust), the load sharing procedure

works very well and completely removes any sign of overwhelming of the system (i.e. keeping

the global-stress close to zero). When the demand per trust increases further we enter a

second regime (between 20 and 40 ICU beds per trust) where the system shows signs of over-

whelming but the load sharing procedure still removes a large portion of it (between 40 and

80%). If the demand per trust increases above 40 ICU beds, the whole system becomes over-

whelmed, and the load sharing procedure becomes less and less capable of clearing demand,

and the resulting net reduction decreases. Results are systematically better for the parallel

mode than the sequential mode, but as previously mentioned, this comes at the expense of

overwhelming some receptor trusts. Sequential mode still provides very good results and pre-

cludes receiving trusts from being overwhelmed.

3.2 Multiple-share in the UK NHS trust network

In this second section we relax the single-share assumption and allow each trust to share multi-

ple loads to multiple receiving trusts, selected from the trust’s topological neighborhood at ran-

dom. For this analysis we drop the parallel mode and only consider the sequential processing

mode, where real values of local-stress are updated in a sequential way as load sharing

is performed.

In the uniform-load stress test, enabling a multiple-share option in the sequential mode

provides an improvement in the net reduction of cases when compared to the single-share

case. However, the improvement is not large (see panel (d) of Fig 4), and puts the multiple-

share sequential mode on a similar footing to the single-share parallel mode, while guarantee-

ing that no receptor trust is overwhelmed. This result is easy to interpret: there is not much

gain in being able to share loads to several receptor nodes at once (as opposed to only one),

because on average this possibility will only be useful in a handful of cases. In other words, this

result is a byproduct of imposing a uniform-load.

A different result is expected if the initial demand on each node is not uniform. Suppose,

for instance, that we have a few trusts that are extremely overwhelmed, and could in principle

share loads with several receptors (more than one available receptor in its topological neigh-

borhood), but suppose that those receptors are small trusts with only a small number of avail-

able ICU beds. In that case, a single-share approach is clearly deficient, but a multiple-share

approach could indeed provide a notable improvement. We illustrate this case in what follows.

3.2.1 Heterogeneous-load stress test. Instead of loading a uniform demand in each trust,

we now test the scenario where demand is heterogeneous, and we only overwhelm ‘large’

trusts. To model such demand, we assume that if the trust originally has a baseline-ICU-
capacity larger than a certain pre-defined threshold τ, then we set an initial value for pro-
jected-ICU-demand for this trust equivalent to 120% its baseline-ICU-capacity
(i.e. we set put that node in a situation with positive stress, 20% above capacity). Similarly, for

those trusts whose baseline-ICU-capacity is smaller than the threshold τ, we set an

initial projected-ICU-demand equivalent to 80% of their corresponding baseline-
ICU-capacity (i.e. 20% below capacity).

We then apply the load sharing procedure sequentially and compare the net reduction of

the global level of stress (number of ICU patients that can be efficiently transferred) for the sin-

gle-share and the multiple-share options. In Fig 5 we plot these results as a function of the

threshold τ. First, note that for very small or very large values of τ both methods are similar.

This is expected because in those limiting cases, either all nodes are overwhelmed (τ very

small) or virtually no nodes are overwhelmed (τ very large). Thus in both cases there is no gain
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in performing a multiple-share over a single-share, as the net reduction of stress is small (either

because we cannot transfer any load as all nodes are overwhelmed, or because no nodes are

overwhelmed and there is no loads to share). Second, for the large range of intermediate values

of τ where load is heterogeneous, we indeed find that the multiple-share option is much more

efficient than the single-share one for a large range of values of τ, as expected.

3.3 Multiple-share in the Spanish autonomous communities contact

networks

We now consider the second case: the Spanish healthcare system at the level of Spanish auton-

omous communities. Recall that there are 17 autonomous communities in Spain, and health-

care is decentralised so that each autonomous community runs its own system in a semi-

independent way. To explore load sharing effects at the inter-community level, instead of

adapting the 4-regular network to this context we have constructed two transfer networks: (i) a

local contact network of 15 nodes (all autonomous communities in mainland Spain), where

two nodes are linked if they share a border, and (ii) a fully connected network of all 15 autono-

mous communities in mainland Spain. The former allows for faster transfers, whereas the lat-

ter requires using national rail resources [23].

In both cases we use a sequential multiple-share mode. The ICU-baseline-capacity
for each node is extracted from public data and considers both baseline and surge capacity on

30 March 2020 [28], and the projected-ICU-demand is initially set in terms of the ICU

occupation number on 30 March 2020 [28]. The average is 63% of the national health system

capacity, i.e. all autonomous communities are below capacity showing 63% load. We then

increase the demand in each autonomous community, and explore how the load sharing pro-

cedure alleviates overwhelming. In the top panels of Fig 6 we illustrate a scenario, where the

Spanish health system is globally overwhelmed (about 200% of the initial demand recorded on

the 30th March 2020, or 130% above surge capacity). After load sharing using the contact net-

work, some autonomous communities substantially alleviate such excess and for some others

such excess is completely removed. In the ideal scenario where a fully connected network can

be used, the load sharing is greatly enhanced. In the bottom panels of Fig 6 we plot the global

stress and net reduction (total number of ICU beds or ventilators which are effectively

Fig 5. Global stress (panel a) and Net reduction (panel b) offered by the sequential load sharing procedure vs the

threshold τ (see the text), for a single-share and a multiple-share option, in the UK system undergoing a synthetic

heterogeneous-load stress test. The multiple-share option clearly outperforms the single-share one in this case.

https://doi.org/10.1371/journal.pone.0241027.g005
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transferred) as a function of the national health system saturation (in %), for either using the

local contact network or the fully connected network. Both cases enable substantial transfers

(about 600 for the local contact network and up to 1300 if transfer is done countrywide, for a

single step of the algorithm). Both cases are indeed able to delay global overwhelming, and in

the case of the fully connected network the algorithm can maintain the local stress of every

autonomous community below capacity even when the true global saturation is around 100%.

For the local contact network, we can distinguish a first phase of steep increase, where only

a few communities are overwhelmed and the algorithm is maximally efficient, until the satura-

tion reaches about 120% of the capacity. Then in a second phase, the procedure is still able to

transfer many beds or ventilators –even if some autonomous communities will still be over-

whelmed–), peaking at a maximum of about 600 beds or ventilators when the system is globally

at 170% capacity. As the system gets more and more overwhelmed globally, the load sharing

algorithm loses efficiency and the amount of loads that can be shared starts to decrease.

4 Discussion

The COVID-19 pandemic is putting the national health systems of several countries under sig-

nificant pressure. In this scenario, it is important to devise strategies that distribute capacity of

hospitals, not only in terms of the number of ICU beds or ventilators, but also overall capacity

(critical care, acute capacity, etc). Here, we have detailed such methodology and have imple-

mented and validated it at two different resolutions: at the level of NHS trusts in the UK and at

Fig 6. (Top panels) Color-coded local stress of each autonomous community in Spain, before (left panel) and after

load sharing (middle and right panels). Background images have been generated using Natural Earth [23] and GADM

[24]. Canary islands is absent because it is an isolated node and is off-scale. The initial demand is 200% above the real

demand as of 30th March 2020, i.e. an approximate demand 130% above surge capacity. In the middle panel a local

contact network is used, whereas in the right panel a fully connected network is used. The local contact network is able

to transfer and alleviate about 467 ICU beds or ventilators, whereas the fully connected network can transfer 933 units.

(Bottom panels) Global stress (left panel) and Net reduction (total number of ICU beds or ventilators efficiently

transferred, right panel) offered by the sequential, multiple-share load sharing procedure performed on the Spanish

health system, coarse-grained at the level of autonomous communities, as a function of the global saturation

percentage of the system (note that capacity has already been enhanced thanks to surge capacity). Orange dots

correspond to the contact network, whereas purple squares correspond to the fully connected network.

https://doi.org/10.1371/journal.pone.0241027.g006
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the level of autonomous communities in Spain. All data and code are available https://github.

com/lucaslacasa/loadsharing, and will be continually updated. We presented a proof of con-

cept and implementation and showed that this procedure works well and can de-collapse the

national health systems in the UK and Spain for a range of scenarios. The random search opti-

misation layer permits exploration of non-intuitive load sharing configurations which go

beyond the simple heuristic of sharing load with the neighbor with highest capacity (this latter

being a strategy which might be locally optimal but also might be leading to a global response

far away from the global optimum). We have studied several options, and compared the results

of single-share (where a trust can only share load with a single receptor) or multiple-share

(where the trust can share parts of the load with different receptors of its neighborhood).

While the search space increases exponentially with the number of nodes, random search opti-

misation is scalable and can be run in real-time for system sizes comparable to realistic health-

care systems, thereby allowing for operational implementations of the method.

In the context of COVID-19, adopting a load sharing strategy is likely to be beneficial when

the whole system is not completely overwhelmed, the projected ICU demand can be accurately

estimated, and facilities exist to transfer either patients between ICU departments or ventila-

tors. This is likely early on in the exponential growth phase (of each wave), or in situations

where demand is declining either due to interventions or towards the end of the pandemic.

When the system is already fully overwhelmed or soon-to-be, this strategy is likely to be ineffi-

cient. Furthermore, we also expect this approach to be useful as the epidemic reaches a declin-

ing phase, helping to reduce demand and allowing hospitals to return back to normal in a fast

an optimised way. Note that we chose to validate the method in two countries (UK and Spain)

as we could focus at two different spatial granularities. However, the method is directly appli-

cable to other countries as well, as long as any sort of transfer system can be put in place. From

a clinical point of view, an important point to consider is whether the load sharing can be acti-

vated at the ICU stage –potentially leading to transferring highly unstable patients who require

ambulance with ICU equipment as well as trained personnel– or if, in anticipation to this,

transfer needs to be planned at the point of hospitalisation (admission). In the latter scenario,

planning needs to further take into account not only baseline ICU capacity, but overall capac-

ity, also factoring in the estimated lag between admission to hospital and the need for ventila-

tors, which for COVID-19 is currently estimated at about 2 to 3 days. The adequate strategy

will also depend on the operational capacity of the system and the country where it is applied

to. For illustration, this work explicitly considers the transfer of ICU patients, however exactly

the same approach can be followed if the load to be shared is not patients but ventilators (the

units to be moved are not ICU patients but ventilators, so transfer simply happens in the oppo-

site direction, from receptor to origin). Assuming the receptor has both room and personnel

to handle additional ventilators, this alternative would indeed (i) eliminate the burden on

transferring highly unstable patients and the associated resources required to make such trans-

fers, and (ii) the risk of transferring infection along with patients. Of course, risk (ii) is

removed if one only transfers non-COVID ICU patients. In reality, a combination of these

mechanisms (transferring ICU patients and ventilators) for sharing load is possible.

This work is subject to several limitations which we hope will be addressed in future work.

First of all, the baseline ICU demand only takes into account surge capacity in the Spanish

case: more realistic analysis of the UK case shall include surge capacity, that is expected to sig-

nificantly increase the real ICU capacity of each trust.

Second, in the sequential case (where receptors cannot be overwhelmed), overwhelmed

nodes can at most share all the excess load, but not more (this latter case would be beneficial if

e.g. two-step sharing is needed), therefore multiple-step load sharing strategies have not been

explored.
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Third, the optimisation process implemented here is based on a stochastic search. This

method was chosen for simplicity and computational efficiency, but there is no mathematical

guarantee that the suggested configuration is indeed the global optimum. More sophisticated

methods such as hill climbing, genetic algorithms or simulated annealing could be used to

refine this layer, if at all needed. Other extensions of interest include questions related to

dynamic load balancing where the demand varies dynamically.

Fourth, and on relation to having distance between nodes as a limiting factor, note that

while we have implemented such restriction (dmax) in the code, for simplicity in this work we

have set dmax =1. The justification is that in two out of three realistic cases considered in this

work, distance is already implicitly considered in the topology of the transfer network. For

instance, in the UK case (NHS trust network), transfers are already restricted to happen only

within the closest four trusts of a given origin. Similarly, in the first Spanish case we are consid-

ering a contact network of adjacent autonomous communities, i.e. transfers are only allowed

to happen between communities that share a border. The last example (fully connected net-

work of Spanish autonomous communities) is presented to assess how much more stress

could be reduced if we make use of e.g. national train system to transfer between distant com-

munities. A finer model would in this case benefit from adding a weight to every link in the

network detailing the distance between any pair of autonomous communities and penalise the

transfer accordingly. In such a case, we could then consider a finite dmax, or even different val-

ues of dmax for different regions. All these are interesting extensions which would be relevant

for a practical application of the model we present.

Finally, we have assumed that the cost of transfer is zero, i.e. the number of ambulances or

the human resources are not a constraint, and that there are enough vehicles to transfer ICU

patients or ventilators effectively and enough qualified personnel to handle them. All these

limitations can be addressed by suitably extending the specifications of the algorithm, leading

to multi-criteria optimisation problems.
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