
McCarthy et al. 

 1 

Patients with gastrointestinal irritability after TGN1412-induced cytokine 1 

storm displayed selective expansion of gut-homing αβ and γδ T-cells 2 

 3 

Neil E McCarthy1,3, Andrew J Stagg1,4, Claire L Price1,5, Elizabeth R Mann1,6,  4 

Nichola L Gellatly1, Hafid O Al-Hassi1,7, Stella C Knight1,8 & Nicki 5 

Panoskaltsis1,2,9 6 

 7 

This work was undertaken at: 1Antigen Presentation Research Group, 8 

Imperial College London, Northwick Park & St. Mark’s campus, London, UK; 9 

2Department of Haematology, Imperial College London, Northwick Park & St. 10 

Mark’s campus, London, UK. 11 

 12 

Author Affiliations: 13 

 14 
3MRC Career Development Fellow, Centre for Immunobiology, The Blizard 15 

Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary 16 

University of London, London, UK. 17 

 18 
4Reader, Centre for Immunobiology, The Blizard Institute, Bart’s and the 19 

London School of Medicine and Dentistry, Queen Mary University of London, 20 

London, UK. 21 

 22 
5Scientific Director, Lucid Group Communications, Buckinghamshire, UK. 23 

 24 
6Wellcome Trust and Royal Society Sir Henry Dale Fellow, Lydia Becker 25 

Institute of Immunology and Inflammation, University of Manchester 26 

 27 
7Senior Lecturer in Cancer Research, Research Institute in Healthcare Science, 28 

Faculty of Science and Engineering, University of Wolverhampton, UK. 29 

 30 
8Professor of Immunopathology, Imperial College London, and Consultant in 31 

Immunopathology, London North West University Healthcare NHS Trust, 32 

Antigen Presentation Research Group, Northwick Park and St. Mark's Campus, 33 

London, UK.  34 

 35 
9Associate Professor, Department of Hematology and Medical Oncology, 36 

Winship Cancer Institute, Emory University School of Medicine; BioMedical 37 

Systems Engineering Laboratory, Wallace H. Coulter Department of 38 

Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA. 39 
 40 

 41 

 42 

 43 

 44 



McCarthy et al. 

 2 

 1 

 2 

Corresponding Authors:  3 

Nicki Panoskaltsis, MD PhD FRCP 4 

Department of Hematology and Medical Oncology 5 

Winship Cancer Institute 6 

Emory University School of Medicine 7 

Atlanta, GA 30322 8 

USA 9 

nicki.panoskaltsis@emory.edu 10 

 11 

Neil McCarthy, PhD 12 

Centre for Immunobiology, The Blizard Institute 13 

Barts and The London School of Medicine and Dentistry 14 

Queen Mary University of London 15 

4 Newark Street, London, E1 2AT 16 

UK 17 

n.e.mccarthy@qmul.ac.uk 18 

 19 

 20 

 21 

Abstract: 99 words    Manuscript: 3,260 words  22 

Figures: 3  23 

Supplementary Tables / Figures: 1 / 3  24 

References: 45 25 

 26 

Keywords:  27 

Cytokine storm 28 

Cytokine Release Syndrome 29 

TGN1412 30 

Vδ2+ γδT-cells 31 

Immunotherapy 32 

Immune-related adverse events (irAEs) 33 

 34 

 35 

  36 

mailto:nicki.panoskaltsis@emory.edu
mailto:n.e.mccarthy@qmul.ac.uk


McCarthy et al. 

 3 

Declarations  1 

 2 

Funding: The North West London Hospitals NHS Trust; Cancer Research UK; 3 

The Northwick Park Hospital Leukemia Research Trust Fund. 4 

 5 

Conflicts of Interest: None of the authors declare a financial conflict of 6 

interest. NP, SCK, CLP, HOA, ERM and NG declare no conflicts of interest. 7 

NEM is supported by a Career Development Award from The Medical Research 8 

Council (Grant Ref: MR/R008302/1) and is in receipt of a project grant from 9 

Bart’s and The London Charity (MGU0465). He has also received consultancy 10 

fees and funding for research from ImCheck Therapeutics SAS. AJS research 11 

is supported by grants from Gilead Sciences, AbbVie, The Medical College of 12 

St Bartholomew's Hospital Trust, Bowel & Cancer Research, and Bart's Charity. 13 

SCK, NEM and AJS have done contract work for Parexel pre-dating the work 14 

described in this report. At the time of this work and report, Parexel Clinical 15 

Trials Unit had a short-term contract with the Antigen Presentation Research 16 

Group (APRG) to use a Class II cabinet within the laboratory. The APRG has 17 

also been contracted to perform immunological studies by a pharmaceutical 18 

company, the tissue specimens for which were supplied on behalf of that 19 

company via Parexel which is located adjacent to the APRG department.  There 20 

is no conflict of interest involved.  21 

 22 

Ethics Approval: Ethics approval had been obtained for the TGN1412 trial (by 23 

the investigators – none of the authors of this report were involved in the clinical 24 

trial). At the time of the trial-related serious adverse event, clinical and immune 25 

monitoring ensued as a matter of standard clinical care; no studies were done 26 

outside what was required for clinical care of the patients. Discussions between 27 

the Ethics Committee, MHRA and Expert Scientific Group set-up by the Minister 28 

of Health (UK) at the time in order to investigate the trial outcome unanimously 29 

concluded that the monitoring (as outlined in this report) should continue for 30 

standard of care, and that specific ethics approval was not required due to the 31 

extraordinary circumstances. 32 

 33 

Consent to Participate: Patients consented to clinical follow-up and immune 34 

monitoring. None of the authors of this work were involved with the conduct of 35 

the clinical trial or any of the pre-clinical testing of TGN1412. The patient cohort 36 

had consented to the TGN1412 first-in-man clinical trial that resulted in the 37 

cytokine storm serious adverse event. At the time of the start of sample 38 

collection for the current report, the patients had been removed from the trial 39 

and were being treated based on clinical need, rather than trial protocol. 40 

 41 

Consent for Publication: Patients have provided written informed consent to 42 

the publication of the clinical follow-up and immune monitoring data. 43 

 44 

Availability of Data and Material: As this is a clinical cohort follow-up, and not 45 

data provided on a clinical trial, the data are unavailable due to personal privacy 46 

protections. 47 

 48 

Code Availability: Not applicable. 49 

 50 



McCarthy et al. 

 4 

Authors’ Contributions: NEM and AJS were involved in the planning and 1 

execution of all experiments, interpretation of data, and in preparation of the 2 

manuscript. CLP, ERM, NLG and HOA contributed to a number of experiments. 3 

NP had overall responsibility for the patients and clinical follow-up, and SCK 4 

and NP supervised the project, interpreted data, and prepared the manuscript.  5 

 6 

 7 

ACKNOWLEDGEMENTS 8 

Financial support for some of the work was provided by The North West London 9 

Hospitals NHS Trust incorporating Northwick Park Hospital, Cancer Research 10 

UK, and The Northwick Park Hospital Leukaemia Research Trust Fund. We are 11 

also grateful to Sarah Clarson of Beckman Coulter for providing the TCR-V 12 

repertoire kit used in these studies. Above all, we thank the six patients who 13 

have given consent for presentation of their personal data. 14 

 15 

 16 

17 



McCarthy et al. 

 5 

ABSTRACT 1 

Following infusion of the anti-CD28 superagonist monoclonal antibody 2 

TGN1412, three of six previously healthy, young male recipients developed 3 

gastrointestinal irritability associated with increased expression of  4 

‘gut-homing’ integrin β7 on peripheral blood αβT-cells. This subset of patients 5 

with intestinal symptoms also displayed a striking and persistent expansion of 6 

putative Vδ2+ γδT-cells in the circulation which declined over a two-year period 7 

following drug infusion, concordant with subsiding gut symptoms. These data 8 

demonstrate that TGN1412-induced gastrointestinal symptoms were 9 

associated with dysregulation of the ‘gut-homing’ pool of blood αβ and γδT-10 

cells, induced directly by the antibody and/or arising from the subsequent 11 

cytokine storm.  12 

 13 

SIGNIFICANCE 14 

Following TGN1412-induced cytokine storm, 3 of 6 patients developed 15 

gastrointestinal irritability associated with expansion of gut-homing αβ and γδT-16 

cells. These findings may elucidate the pathology of immune-related adverse 17 

events affecting the gut. 18 

 19 

 20 

 21 

 22 

 23 
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Introduction 1 

In higher primates, the blood T-cell pool contains diverse T-cells and 2 

semi-invariant ‘unconventional’ T-cells that recognize either microbial peptides 3 

or metabolites, respectively (1). In both cases, antigen activation can stimulate 4 

these cells to upregulate the gut-homing integrin α4β7 and traffic to the intestine 5 

(2-4). Gut microbes, and the metabolic activities these perform, vary between 6 

host species. Consequently, the compounds generated and their conditioning 7 

effects on peripheral blood T-cell responses are likely to differ between mice 8 

and humans (5, 6). The influence of these microbial products may also diverge 9 

between individual recipients of agonist/antagonist immunotherapies; gut 10 

bacteria from patients with melanoma who respond to immune checkpoint 11 

blockade are enriched for anabolic functions proposed to stimulate host 12 

immunity (7). However, the extent to which peripheral blood T-cell responses 13 

contribute to these modulatory effects in vivo remains unclear.  14 

Some of the most common antigen-specific lymphocytes in human blood 15 

are gut-tropic T-cells specialized to detect various bacterial metabolites (1, 8). 16 

However, the frequencies and phenotypes adopted by these cells can differ 17 

between individuals and age groups (9, 10), and their impact on 18 

immunotherapeutic outcomes in treated patients is not well understood. It is 19 

now well-recognized that checkpoint inhibitors can be associated with immune-20 

related adverse events (irAEs) affecting the gut, most notably symptoms of 21 

diarrhea and colitis following blockade of cytotoxic T-lymphocyte antigen-4 22 

(CTLA-4) or programmed cell death 1 (PD-1) in patients with melanoma (7, 11). 23 

However, it is still unclear to what extent gastrointestinal irAEs are caused by 24 
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disruption of local mucosal immunoregulation, versus systemic drug effects on 1 

gut-homing lymphocytes (12).  2 

In March 2006, six healthy volunteers suffered from cytokine release 3 

syndrome (CRS) during a phase 1 first-in-man clinical trial of the monoclonal 4 

antibody TGN1412 (13). In pre-clinical studies, this anti-CD28 super-agonist 5 

induced preferential lymphocytosis of regulatory T-cells in the absence of 6 

systemic inflammation (14, 15); the immunological basis for antibody-induced 7 

CRS and resultant lymphopenia in the human trial has remained unclear.  8 

In addition to acute symptoms of CRS from which all six patients recovered 9 

(13), three patients suffered from prolonged gastrointestinal irritability of 10 

unknown etiology, suggesting unexpected TGN1412 antibody and/or CRS 11 

effects on gastrointestinal immunity. We therefore undertook a detailed 12 

investigation of peripheral blood distribution and expression levels of integrin 13 

β7 aiming to understand the immunological basis for these symptoms. These 14 

analyses revealed that blood αβT-cells from patients who suffered from gut 15 

irritability displayed significantly enhanced levels of β7 expression that were not 16 

observed in either asymptomatic patients or healthy controls. In addition, 17 

TGN1412-induced gut symptoms were associated with a striking expansion of 18 

circulating γδT-cells (putative phosphoantigen metabolite-responsive Vγ9Vδ2+ 19 

lineage) that was still evident two years after drug infusion. Together, these 20 

data suggest that in three of six recipients, the TGN1412 antibody or 21 

subsequent cytokine storm caused sustained dysregulation of the gut-homing 22 

T-cell pool, which gradually normalized over the two-year period following 23 

antibody infusion, concordant with subsiding gastrointestinal symptoms. 24 

25 
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METHODS 1 

Clinical trial 2 

Details of the first 30 days of clinical follow-up of the serious adverse event 3 

(SAE) have been reported previously. The patients presented herein 4 

correspond with those previously identified as follows (13): 1-B, 2-A, 3-F, 4-E, 5 

5-C, and 6-D. The TGN1412 antibody was produced by TeGenero AG 6 

(Wϋrzberg, Germany), manufactured by Boehringer Ingelheim (Germany), and 7 

the clinical trial was conducted by contract research organization PAREXEL 8 

International (Waltham, MA, USA) on leased premises at Northwick Park 9 

Hospital, London, UK. The authors of this report were not involved in either pre-10 

clinical or clinical testing of TGN1412.  11 

 12 

Patients and data sources 13 

Patients were clinically followed, off trial, and assessed as a cohort following 14 

the SAE (13). Based on clinical need and requirements for SAE follow-up, the 15 

lead clinician (NP) requested immunological monitoring, including analysis of 16 

peripheral blood T-cell subsets alongside intracellular and serum cytokine 17 

levels. Monitoring commenced 10 days after infusion of TGN1412 and the 18 

patients were evaluated at 21 time-points over the subsequent two years. All 19 

patient blood samples were anonymized and the scientists performing the 20 

immunological tests were not aware of patient symptoms, signs, or clinical 21 

laboratory data. Patients were assessed by the lead clinician at the same 22 

intervals wherein blood was procured for monitoring. Control blood samples 23 

from healthy male volunteers (n=24) were obtained in parallel with the patient 24 

samples after written informed consent. The six volunteers who received 25 
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TGN1412 were male and had a median age of 29.5 years (range 19-34) at the 1 

time of recruitment into the first-in-man trial. Healthy control volunteers were 2 

male and had a median age of 30 years (range 19-42). All patients were well 3 

during the two-week period preceding the clinical trial and were without 4 

significant medical history. Patients B and C were lost to immunological follow-5 

up after 15 and 22 months, respectively. Following development of 6 

gastrointestinal symptoms in three of the six patients, additional assessment of 7 

β7 integrin expression on peripheral blood T-cells was introduced for all patients 8 

at four separate time-points over the two-year follow-up. All clinical information 9 

was withheld from the scientists who performed these analyses (NEM, AJS, 10 

CLP, ERM, NLG, HOA, SCK) until laboratory investigations were complete. All 11 

six patients consented to immunological monitoring and have given written 12 

informed consent to the publication of data presented in this report. 13 

 14 

Immune monitoring 15 

Specific leukocyte subset monitoring began on Day+10 following TGN1412 16 

infusion and was repeated every three or four days for the first two weeks, then 17 

weekly for four weeks, then every four weeks for three months, then every six 18 

weeks for the remainder of eight months (time-points 1-17). In year two of 19 

monitoring, patients were evaluated every three months (time-points 18-21). In 20 

the first six months, whole blood was assessed for T-cell subsets, numbers, 21 

phenotypes and intracellular cytokine expression. After six months, the tests 22 

were rationalized to those that were most informative. Additional correlates of 23 

immune function included assessment of T-cell receptor Vβ repertoire (kit kindly 24 

donated by Beckman Coulter), and T-cell homing markers for the 25 
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gastrointestinal tract and skin based on expression of β7 integrin and 1 

cutaneous leukocyte antigen (CLA), respectively. The bulk of these data are 2 

presented elsewhere – this report focuses on the gut-homing subsets. These 3 

studies were conducted in a laboratory that operates under Good Laboratory 4 

Practice (GLP) principles, undertakes exploratory research and were 5 

performed using established laboratory protocols that were Minimal Information 6 

About T-cell Assays (MIATA) compliant (Supplementary MIATA information). 7 

The assays and reagents employed were previously validated and tested for 8 

assay performance during the course of standard general investigative 9 

research. 10 

 11 

Flow Cytometry 12 

Peripheral whole blood was obtained by venipuncture into sodium-heparin 13 

Vacutainer™ tubes (Becton-Dickinson) and then directly labeled with 14 

monoclonal antibody (mAb; Supplementary Table 1) for 15min at room 15 

temperature. After mAb labeling, Optilyse C reagent (Immunotech, Marseilles) 16 

was used to lyse erythrocytes for 15min before washing the cells twice in cold 17 

FACS buffer (2% FCS, 0.02% sodium azide, and 1mM EDTA in PBS) for 5min 18 

at 300G. Cell pellets were fixed in 0.4mL paraformaldehyde (1%) and stored at 19 

4oC in the dark until acquired on a FACSCalibur flow cytometer using CellQuest 20 

software (Becton-Dickinson). All analyses were performed using WinList 21 

software (Verity Software House, Maine, USA). Absolute cell counts were 22 

determined using Flow-Count™ Fluorospheres (Beckman Coulter) added to 23 

the cells immediately prior to acquisition. 24 

 Viable cells were gated according to their characteristic light-scatter 25 

properties, and individual leukocyte subsets identified based on expression of 26 
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subset-specific surface antigens. Major CD3+ T-cell subsets were identified 1 

based on differential expression of CD8 (CD8+ T-cells were CD3+/CD8+ and 2 

putative CD4+ T-cells were CD3+/CD8-), since CD8 is less susceptible than CD4 3 

to down-regulation during T-cell stimulation used in the intracellular cytokine 4 

determination protocol. In each subset, naïve and memory populations were 5 

enumerated by further double staining; naïve cells were CD45RA+/CD45RO- 6 

and memory cells were CD45RA-/CD45RO+. Expression of CD69 in CD4+ and 7 

CD8+ T-cell subsets was used to identify activated T-cells. 8 

 9 

Intracellular cytokine staining 10 

Peripheral whole blood cells were cultured in complete medium (Dutch-11 

modified RPMI-1640 medium, 10% FCS, 20mM L-glutamine, 100u/mL 12 

penicillin, 100μg/mL streptomycin) with or without monensin (3μM), PMA 13 

(10ng/mL), and ionomycin (2μM) for 4h at 37oC, 5%CO2. Cells were then 14 

surface-labeled with anti-CD3 and anti-CD8 mAb for 15min at room 15 

temperature. Optilyse C reagent (Immunotech, Marseilles) was used for lysis 16 

of erythrocytes (0.5mL per 100μL aliquot of blood) and the samples were 17 

incubated for 15min at room temperature. The remaining cells were twice 18 

washed in cold FACS buffer for 5min at 300G, re-suspended in 100μL 19 

Leucoperm A (Serotec, Oxford), and then incubated for 15min at room 20 

temperature. The partially fixed cells were next washed twice in FACS buffer 21 

and re-suspended in 100μL Leucoperm B (Serotec, Oxford). For intracellular 22 

staining, the cells were labeled with 5μL anti-cytokine mAb for 30min on ice 23 

then washed twice in FACS buffer and fixed in 0.4mL paraformaldehyde (1%) 24 
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prior to storage in the dark at 4oC (acquisition by flow-cytometry was performed 1 

within 24 hours). 2 

 3 

Statistics 4 

Statistical analyses were conducted using SigmaStat™3.5 or SigmaPlot™11.0 5 

software (Systat Software UK Ltd, London). The TCR-V repertoire data were 6 

compared using Kruskal-Wallis One-Way Analysis of Variance on Ranks. One-7 

Way Analysis of Variance with All-Pairwise Multiple Comparison Procedures 8 

(Holm-Sidak method) was used to compare β7 integrin expression over time 9 

between patient subsets and 10 healthy controls. Differences in expression of 10 

γδ-TCR between patients and controls were evaluated by Student’s t-test. 11 

 12 

13 
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RESULTS 1 

Three of six patients (A, B and E) who received TGN1412 suffered from 2 

gastrointestinal symptoms (Common Terminology Criteria for Adverse Events 3 

grade 1-2 irAE), manifesting as loose and frequent bowel motions or diarrhea 4 

(primarily after consuming spicy foods; hereafter described as ’gut irritability’), 5 

not present prior to drug exposure. These symptoms started within one month 6 

of TGN1412 infusion and subsequently decreased in intensity over the two-year 7 

follow-up period. Symptoms persisted in patients B and E at two years. Patient 8 

B displayed the most pronounced gut symptoms and in the first year of follow-9 

up underwent a full gastrointestinal work-up including duodenal biopsies (which 10 

were normal), and removal of a colonic polyp which exhibited non-specific 11 

inflammation.  12 

 13 

Gut irritability in TGN1412 recipients was associated with increased β7 14 

expression by circulating αβT-cells  15 

Integrin α4β7 binding to MAdCAM-1 facilitates leukocyte recruitment into 16 

intestinal tissues (16). Accordingly, T-cell expression of α4β7 is significantly 17 

modulated during active gut inflammation, and inhibition of the α4β7:MAdCAM-18 

1 axis has been an effective therapeutic strategy in patients with inflammatory 19 

bowel disease (IBD) (17, 18). Development of gut symptoms in three of the six 20 

TGN1412 recipients prompted us to assess T-cell expression of 7 integrin at 21 

four separate time-points over the two-year follow-up period. CD45RA+ 22 

(predominately naïve) T-cells in the blood of both patients and healthy controls 23 

uniformly expressed an intermediate level of 7, whereas CD45RA- (antigen-24 

experienced effector/memory) T-cells included both 7+ and 7- subsets, 25 
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representing putative gut-homing and non-intestinal populations, respectively 1 

(Fig. 1a). In healthy volunteers, memory T-cells were evenly distributed 2 

between β7+ and β7- subsets (median ratio 0.98, interquartile range 0.80-1.19; 3 

Fig. 1b). Patients C, D, and F, who did not exhibit gastrointestinal symptoms, 4 

were indistinguishable from control subjects at all time points analyzed. In 5 

contrast, patients with gut irritability (A, B, and E) displayed increased β7+ 6 

memory T-cells at 8.6 months (p<0.001) and 10.2 months (p=0.003) post-7 

TGN1412 infusion (Fig. 1b). At 8.6 months, both CD45RA+ and CD45RA- T-8 

cells from patients A, B, and E also exhibited higher levels of β7 integrin 9 

expression per cell (mean fluorescence) compared with T-cells from healthy 10 

controls, although this had normalized by one year post-infusion 11 

(Supplementary Fig. 1a and b). Sustained changes in both CD8+ and CD8- 12 

(presumed CD4+) memory T-cells contributed to the elevated 7 expression 13 

detected in patients with gut irritability (Supplementary Fig. 1c and d). Fewer 14 

than 8% of 7+ memory T-cells from either patients or controls expressed 15 

CD103/E integrin, the alternative binding partner for 7 (Fig. 1c), consistent 16 

with reports that 7 primarily forms complexes with the 4 subunit on blood T-17 

cells (16), and confirming that the data presented here reflected changes in the 18 

patients’ α4β7+ compartment. Together, these findings indicated that gut 19 

irritability in three of six patients infused with TGN1412 was associated with a 20 

sustained increase in gut-homing potential among both naïve and memory αβT-21 

cells. 22 

  23 



McCarthy et al. 

 15 

TGN1412-induced gut irritability correlated with peripheral blood 1 

expansion of putative Vδ2+ γδT-cells 2 

In addition to the features outlined above, the blood of patients who developed 3 

gut irritability after TGN1412 infusion contained a distinct subset of CD3hi T-4 

cells that was not present in the circulation of either asymptomatic patients or 5 

healthy controls (Fig. 2a). These cells displayed a CD4-CD8- ‘double negative’ 6 

phenotype characteristic of unconventional lymphocytes (data not shown) and 7 

expressed uniformly high levels of CD45RO (Fig. 2b) and 7 integrin (Fig. 2e), 8 

but lacked CD103 (Fig. 2f) and did not express any of the common V-TCR 9 

repertoire variants assayed at 8.6 and 12.1 months following TGN1412 infusion 10 

(Supplementary Fig. 2). These features strongly implicated an expansion of 11 

‘unconventional’ Vγ9Vδ2+T-cells (hereafter Vδ2+T-cells) which express high 12 

levels of α4β7 in human blood (3, 19) and are rapidly recruited to mucosal 13 

tissues in higher primates in vivo (20, 21). Further support for this lineage 14 

identity was later provided by the absence of αβ-TCR (Fig. 2g) and lack of 15 

markers for natural killer cells (CD56) or invariant natural killer T-cells (antibody 16 

6B11; data not shown), but high expression levels of γδ-TCR (22) (Fig. 2h) as 17 

well as NKG2D, and CD161 (23, 24) (data not shown).  18 

Analysis at 15 months post-infusion confirmed that typical low numbers 19 

of γδT-cells were present in peripheral blood from unaffected patients C, D, and 20 

F, as well as in six healthy controls analyzed in tandem, but these cells were 21 

not CD3hi (data not shown). In contrast, total γδT-cells (including both CD3+ and 22 

CD3hi subsets) remained significantly increased in patients with gut irritability 23 

(A, B, E; 7.92-8.59%) compared with healthy controls (2.5-6.5%; p=0.002) even 24 

at this late time point (more than one year post-infusion). In the blood of patients 25 
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A, B, and E, the γδT-cell pool reached peak numbers (16% of total T-1 

lymphocytes) approximately 1.5 months post-TGN1412 exposure, followed by 2 

a gradual decline coincident with improvement in gastrointestinal symptoms 3 

(Fig. 2i and j). Up to 25% of these γδT-cells displayed an activated/CD69+ 4 

phenotype, and expression of this marker decreased steadily over the following 5 

seven months (Fig. 2k). No other clinical or laboratory features correlated with 6 

γδT-cell expansion as observed in the three symptomatic patients. Importantly, 7 

expansion of gut-homing lymphocytes in the patients with gut irritability was not 8 

restricted to γδT-cells alone, because higher numbers of β7+T-cells were still 9 

detected in these individuals (Fig. 1) when the γδT-cell (CD3hi) population was 10 

excluded from this analysis (Supplementary Fig. 3). 11 

The IFNγ-producing subset of blood Vδ2+T-cells declines naturally with 12 

age and is lost more rapidly in men after the age of 30 (25), with both ethnic 13 

and environmental variables further impacting on the dynamics of this 14 

compartment (26). To determine whether the expanded γδT-cells detected in 15 

TGN1412 recipients remained functionally competent, and also to understand 16 

how these cells might be contributing to gastrointestinal irritability, we next 17 

assessed cytokine expression using a standard intracellular staining approach. 18 

The γδT-cell population produced low-levels of IL-10 in vitro in the absence of 19 

exogenous stimulation (Fig. 3), but did not appear to spontaneously produce 20 

either IFNγ or IL-4. However, γδT-cell reactivation with phorbol myristate 21 

acetate and ionomycin resulted in substantial production of IFNγ across a wide 22 

range of time points analyzed, starting from one month post-infusion, when 23 

symptoms of gut-irritability were first identified. Together, these data suggest 24 

that development of intestinal symptoms in patients infused with TGN1412 was 25 
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associated with sustained expansion of circulating Vδ2+T-cells with IFNγ-1 

producing capacity, as well as increased gut-homing potential within the blood 2 

αT-cell pool. 3 

4 
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DISCUSSION 1 

This report provides unique evidence that TGN1412 antibody, or the 2 

subsequent CRS, dysregulated intestinal immunity in three of six drug 3 

recipients, outside of an identified infectious etiology; gut irritability was 4 

associated with sustained enhancement of mucosal trafficking in both 5 

conventional and unconventional T-cell subsets.  6 

While the immunological response to TGN1412 infusion was surprisingly 7 

uniform in many respects (13), the long-term impact of the drug on mucosal 8 

immunity varied markedly between patients. Typical populations of β7+αβT-9 

cells (16) were present as expected in all trial patients, but enhanced β7 10 

expression levels and the surprising expansion of γδT-cells were unique to 11 

patients with symptoms of gut irritability. This variability of response may reflect 12 

patient-specific differences in homeostatic T-cell reconstitution after TGN1412-13 

induced lymphopenia (13) and/or differential γδT-cell responses to high levels 14 

of cytokines such as TNFα (27) following infusion of TGN1412. The peripheral 15 

blood location, kinetics, magnitude, and duration of these γδT-cell expansions, 16 

together with uniform expression of CD45RO (28) and high surface levels of 17 

β7, strongly implicate the Vγ9Vδ2+T-cell lineage which responds to non-peptide 18 

‘phosphoantigens’ (pAg) derived from microbes and stressed/transformed host 19 

cells (29, 30). Indeed, Vγ9Vδ2+ T-cells are already known to undergo rapid 20 

polyclonal expansion in the first few weeks of human life, likely driven by pAg-21 

producing bacteria within the gut microbiome, after which the repertoire 22 

displays progressive selection of shared or ‘public’ pAg-reactive clones (defined 23 

by characteristic Vγ9JP and Vδ2 chains) (31). With advancing age, the Vδ2+T-24 

cell compartment becomes increasingly oligoclonal, but different individuals 25 
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may still display diverse or ‘private’ Vγ9Vδ2+ clonal expansions with distinct 1 

effector phenotypes (32), potentially including variable expression of gut 2 

homing markers. It is therefore possible that the TGN1412 recipients with gut 3 

symptoms (A, B, and E) featured Vδ2+ clonotypes that were absent from the 4 

blood of those without (C, D and F), hence these cells may have exhibited 5 

different thresholds for pAg activation and intestinal recruitment in the context 6 

of cytokine storm. Indeed, rapid expansion of Vγ9JP+ γδ T-cells has also been 7 

observed during immune reconstitution of patients receiving allogeneic 8 

hematopoietic stem cell transplantation (alloHSCT), but the clonotypes 9 

generated after treatment are substantially different from the hosts’ pre-10 

transplantation repertoires (33). Patient γδ T-cell repertoire and microbiome 11 

composition of pAg-producing bacteria may therefore prove to be important 12 

determinants of clinical outcome in future studies of novel immunotherapies. 13 

Indeed, while Vδ2+T-cells constitute only a minor fraction of total circulating 14 

lymphocytes in healthy individuals, their number and activation state in 15 

peripheral blood and body tissues have previously been correlated with 16 

therapeutic/clinical outcomes (34-36). Work from our own laboratory has also 17 

demonstrated that activated blood Vδ2+T-cells rapidly up-regulate β7 and can 18 

populate human gut lamina propria where they induce substantial mucosal 19 

production of IFNγ (3). In patients with Crohn’s disease, gut-homing potential 20 

and pro-inflammatory properties of Vδ2+T-cells are enhanced (36), suggesting 21 

that they play a key role in human gut immunity and inflammation. 22 

The Vδ2+ lineage is absent in rodents and does not recognize antigen in 23 

the context of MHC (37). Instead, Vδ2+T-cells respond to butyrophilin (BTN) 24 

proteins, considered as part of the B7 family of costimulatory receptors (37), 25 
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with critical roles recently identified for both BTN3A1 and BTN2A1 (38). Vδ2+T-1 

cells lack alloreactivity while displaying potent anti-tumor and anti-microbial 2 

functions, such that reconstitution of this lineage after chemotherapy-induced 3 

lymphopenia may reduce infection rates in patients receiving hematopoietic 4 

stem cell transplantation, without increased incidence of graft versus host-5 

disease (33, 39). Expansion of blood Vδ2+T-cells has also been observed in 6 

CRS, most notably in healthcare workers exposed to SARS-CoV-1 in the 2003 7 

outbreak; these individuals displayed strikingly similar features including 8 

relatively stable αβT-cell numbers and TCR-Vβ repertoire, whereas marked 9 

expansions of Vδ2+T-cells with IFNγ-producing capacity were still evident three 10 

months after disease onset (40). These findings resemble data from nonhuman 11 

primate models in which phosphoantigen injection stimulates blood Vδ2+T-cell 12 

expansion in vivo (41), leading to accumulation of an IFNγ-producing subset 13 

both in lungs and intestinal mucosa (20), accompanied by robust Th1 immune 14 

protection against a range of different pathogens.  15 

Vδ2+T-cells undergo expansion in response to a variety of microbial 16 

infections and can dominate the blood lymphocyte pool for extended periods 17 

(10). It is also now widely recognized that Vδ2+T-cells display tissue-tropic 18 

phenotypes consistent with trafficking to barrier sites where phosphoantigen-19 

producing microbes and tumors frequently originate (29, 30). In particular, 20 

Vδ2+T-cells are associated with effective host immunity to phosphoantigen-21 

producing mycobacteria and robust responses to bacillus Calmette-Guérin 22 

(BCG) vaccination (42, 43), which induces population expansion and 23 

upregulation of CD69 and IFNγ expression in vitro. Notably, these responses 24 

are enhanced in BCG-responders compared with non-sensitized controls (44, 25 
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45), and the pool of Vδ2+T-cells generated lacks lymph node homing receptors 1 

while displaying homogenous expression of CD28 (45). Therefore, TGN1412 2 

may have directly stimulated Vδ2+T-cells in the trial patients, and prior microbial 3 

exposures such as BCG may have influenced subsequent responses to 4 

mucosal pathogens and/or cytokine storm (as also postulated in the context of 5 

COVID-19 (46)). Indeed, while previous studies have primarily linked Vδ2+T-6 

cell expansion with host protection against bacterial pathogens, these 7 

lymphocytes can also lyse stressed host cells infected with viruses including 8 

influenza (47) and SARS-CoV-1 (40). Together, these data suggest that 9 

monitoring of gut-homing αβ and γδT-cell populations is likely to shed important 10 

new light on the initiation, propagation, monitoring, and resolution of mucosal 11 

symptoms in human subjects with irAEs or suffering CRS as a result of 12 

immunotherapy or severe infections such as COVID-19. 13 

14 
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FIGURE LEGENDS 1 

 2 

Fig. 1 Blood T-cell expression of β7 integrin and CD103 following 3 

TGN1412-induced cytokine storm. CD3+ T-cells were identified in whole 4 

blood and β7 expression on memory (CD45RA-) and naïve (CD45RA+) subsets 5 

was assessed. (a) Representative data for a healthy control and two patients 6 

are shown, one in whom β7+ cells were prominent in the memory T-cell 7 

population (patient B) and one in whom β7+ memory T-cells appeared normal 8 

(patient C). Staining with isotype-matched control antibodies was contained 9 

within the boxed region in the lower left of the plots. (b) Summary data for 10 

memory T-cells showing the ratio of β7+:β7- cells assessed at four separate 11 

time-points over a period of seven months. In patients with gut irritability (A, B, 12 

and E), the ratio of β7+:β7- cells was significantly higher at 8.6 and 10.2 months 13 

than was observed in healthy controls. (c) Proportion of β7+ memory T-cells 14 

expressing CD103 in the patients, assessed over four separate time-points. 15 

Patient B, the most symptomatic, displayed the highest ratio of β7+:β7- memory 16 

T-cells and lowest percentage of CD103+ cells, suggesting a selective 17 

expansion of α4β7+ ‘gut-homing’ memory T-cells. Data for Patient D were not 18 

available at time points 10.2 and 12.1 months, nor for patient A at 12.1 months. 19 

Fig. 2 Prolonged expansion of circulating γδT-cells (putative Vδ2+) in 20 

patients with gut irritability after TGN1412-induced cytokine storm. 21 

Peripheral blood CD3+ T-cells (a – R1) included a CD3hi subset (black 22 

histogram; identified by γδTCR-specific mAb used in 2h) which exhibited a 23 

CD4-CD8- ‘double negative’ phenotype characteristic of unconventional 24 

lymphocytes (data not shown). This discrete population uniformly expressed 25 
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CD45RO and was clearly identifiable in the blood of patients A, B, and E (b – 1 

R2; representative example from patient A), but not in patient C, D, or F (c – 2 

R2; representative example from patient C), or in 24 healthy controls analysed 3 

in parallel (d – R2; representative example). Example analyses in (b), (c) and 4 

(d) are taken from 10 days post-TGN1412 infusion. CD3hiT-cells in the patients 5 

with gut symptoms uniformly expressed 7 but not CD103/E (e and f) 6 

indicating that these cells displayed the 47 heterodimer which mediates 7 

homing to the intestine (representative example from patient B). Staining with 8 

a specific mAb confirmed that the CD3hi cells were -TCR- (g – R3) but 9 

strongly expressed γδ-TCR (h; black histogram - unfilled trace indicates isotype 10 

control) and mapped to the CD3hi population observed previously (a – R1; black 11 

histogram). While total T-cell numbers in the patients were comparable at early 12 

time points (i) the CD3hi γδT-cells subset was present only in patients A, B, and 13 

E, and persisted for up to two years post-TGN1412 infusion, decreasing slowly 14 

over time (j). In patient E, symptoms of gut irritability and diarrhea worsened at 15 

month 21, accompanied by an increase in CD3hi γδT-cells up to month 24, at 16 

which time symptoms had started to improve and he had more formed stool 17 

(although still not normal). Peak population size of CD3hi γδT-cells (16% of the 18 

total T-lymphocyte pool) was reached approximately 1.5 months post-19 

TGN1412 exposure. Between 5-25% of this population displayed an activated 20 

(CD69+) phenotype that decreased steadily over seven months (k). The median 21 

values and inter-quartile ranges of data obtained from healthy subjects (n = 24) 22 

are provided for reference (horizontal dashed lines). 23 

Fig. 3 The expanded γδT-cell population spontaneously produced IL-10 24 

and expressed IFNγ upon reactivation. To assess the functional potential of 25 
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CD3hiβ7+γδT-cells, whole blood cells were cultured with or without monensin 1 

and exogenous stimuli (PMA and ionomycin) for four hours prior to surface 2 

labelling and intracellular staining with anti-cytokine monoclonal antibodies for 3 

analysis by flow-cytometry. CD3hiCD45RO+γδT-cells spontaneously produced 4 

low levels of IL-10 in the absence of exogenous stimulation. By 1.5 months 5 

post-TGN1412 infusion, a substantial proportion of CD3hiγδT-cells produced 6 

IFNγ upon reactivation with PMA and ionomycin. Dotted lines represent median 7 

and interquartile range of values obtained from conventional CD4+ αβT-cells in 8 

all patients (no CD3hi cells were identifiable in healthy volunteers to serve as 9 

matched controls).  10 
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