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Abstract

This thesis consists of two parts.

In the first part we examine pole-skipping, a phenomenon observed in thermal

Green’s functions in quantum field theories with gravity duals. We begin by analysing

the near horizon behaviour of bosonic fields in asymptotically Anti-de Sitter spacetimes

before presenting the detailed analysis of fermionic fields in such backgrounds. We find

that at negative imaginary Matsubara frequencies and special values of the wavenum-

ber, there are multiple solutions to the bulk equations of motion that are ingoing at

the horizon and thus the boundary Green’s function is not uniquely defined. At these

points in Fourier space a line of poles and a line of zeros of the correlator intersect

and we derive the generic form of the Green’s function near such locations. We then

consider explicit examples where the correlator is known explicitly and also discuss the

special case of a fermion with half-integer mass in the BTZ background.

In the second part we study the microscopic degrees of freedom of a particular black

hole through the lens of the fuzzball proposal. In particular we construct a new class of

smooth horizonless microstate geometries of the supersymmetric D1-D5-P black hole

in type IIB supergravity. We first work in the AdS3 × S3 decoupling limit and use the

fermionic symmetries of the theory to generate new momentum carrying perturbations

in the bulk that have an explicit CFT dual description. We then use the supergravity

equations to calculate the backreaction of these perturbations and find the full non-

linear solutions both in the asymptotically AdS and asymptotically flat case. These new

geometries have a simpler structure than the previously known superstrata solutions.

We conclude with a discussion and an outlook for possible generalizations of the

results.
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Chapter 1

Introduction

This thesis is divided into two parts. In the first we discuss pole-skipping, a phenomenon

observed in holographic thermal correlation functions. In the second part we describe

the construction of a new family of microstates of a particular black hole solution in

supergravity.

Both topics are fundamentally connected to black holes and their properties. Hence

we use this chapter to introduce the basic concepts of black hole physics and estab-

lish the notation that is used throughout the thesis. We also discuss some problems

that arise in the (semi)-classical description of black holes and present string theory,

a framework where these issues are resolved. We then briefly review the AdS/CFT

duality, which plays an important role in both pole-skipping and the construction of

microstates, before outlining the structure of the rest of the thesis.

1.1 History and Motivation

Every course in physics inevitably begins with something along the lines of [3]:

“Physics is an experimental science. Physicists observe the phenomena of

nature and try to find patterns that relate these phenomena.”

What is implied in this statement is that first an observation is made which then

prompts a theoretical explanation of the experimental data. And historically this was

the natural direction in which progress in our understanding of the world around us was

(and still is) made. For example, at the end of the 19th century, the observed spectrum

of black-body radiation was in conflict with the then accepted theories of nature. The

resolution came in the form of Planck’s law which in turn was one of the first steps in

the development of the theory of quantum mechanics.

Black holes, which are the main focus of this thesis, certainly do not follow such a

pattern. Even before the French revolution, John Mitchell and Pierre-Simon Laplace
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CHAPTER 1. INTRODUCTION

were thinking about the values of the escape velocity around a very massive star [4,5].

If an object starts at a distance R from the centre of a star with mass M , then the

escape velocity is given by

vesc =

√
2GM

R2
, (1.1)

where G is the Newton’s gravitational constant. Notice that in the above expression

the mass of the object is not important. Mitchell and Laplace then wondered if there

exists a star that is so massive (or dense) that the escape velocity exceeds the speed

of light. In this case the star would appear to emit no radiation at all – it would be a

dark star.

The idea stayed quarantined until after Einstein proposed his general theory of

relativity, when Karl Schwarzschild worked out how space and time behave around a

spherically symmetric and non-rotating mass. The geometry, which we now call the

Schwarzschild solution and is discussed in more detail below, includes a region where

the gravitational potential is so high that not even light can escape. The boundary of

the region, called the event horizon, is one of the main objects of this thesis. The event

horizon of a Schwarzschild solution with mass M is located at a distance Rs, called the

Schwarzschild radius, and is given by

Rs =
2GM

c2
, (1.2)

where c is the speed of light. Remarkably, this value coincides with the value obtained

from (1.1), if we take vesc = c. General relativity allows for dark star-like solutions,

which in this context are better known as black holes. Yet the question whether such

objects exist in our universe was still open. After all, how can you observe something

you cannot see (or hear, touch, smell, or taste for that matter)?

Fast forward a hundred years and we have been able to gather a huge amount of

experimental evidence that point to black holes. For example, studies of the motion of

stars around galactic centres, such as our own Milky Way galaxy, hint that there is a

supermassive black hole around which nearby objects are orbiting [6]. More recently,

the observation of gravitational waves [7] is consistent with the merger of two black

holes into a more massive one. And, perhaps most convincingly, the Event Horizon

Telescope collaboration has reported the first direct observation of the accretion disk

surrounding a supermassive black hole [8].

Furthermore, our understanding of the nature of massive objects has increased dra-

matically. For example, theoretical results [9–11] have shown that in general relativity

the formation of singularities is a generic feature of well behaved systems.

Today, the existence of black holes is widely accepted. Yet despite the head start
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CHAPTER 1. INTRODUCTION

that theory had over experiment, a complete understanding of black holes and their

properties is still lacking. New and exciting properties are being discovered even over

two hundred years after their first conception. In this thesis some of these results are

presented.

1.2 Black Holes

We use Einstein’s general relativity as a framework to describe black holes. The central

idea of this theory is that the space and time are not rigid but are malleable. Most

importantly, spatial distances and the rate at which time flows are distorted by presence

of energy and matter. The equation describing the evolution of space and time is the

Einstein’s equation [12]

RMN −
1

2
RgMN + Λ gMN = 8πGTMN . (1.3)

The matter appears in the equation through the energy-momentum tensor TMN , while

the structure of spacetime is encoded in the metric gMN , the Ricci tensor RMN , and the

Ricci scalar R. Throughout the thesis the spacetime indices are denoted by upper-case

Latin letters, such as M,N . In (1.3) we have set the speed of light c to be equal to 1,

while leaving the Newton’s gravitational constant G explicit. Furthermore, we allow

for a term with a cosmological constant Λ.

Let us begin by setting Λ = 0. We look for vacuum solutions of (1.3) which have

TMN = 0 and describe spacetimes with no matter. The simplest vacuum solution with

vanishing cosmological constant is the flat Minkowski spacetime which is described by

the line element

ds2 = ηMN dx
M dxN = −dt2 + dx2 + dy2 + dz2 , (1.4)

where we have introduced the Minkowski metric ηMN = diag(−1, 1, 1, 1). At the mo-

ment we only consider four dimensional spacetimes, however most of the ideas are

readily generalised to higher dimensions.

Another more interesting vacuum solution is the aforementioned Schwarzschild so-

lution, given by the metric

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2
(
dθ2 + sin2 θdφ2

)
. (1.5)

where the spatial part is described by the coordinates (r, θ, φ) with 0 ≤ θ ≤ π and

0 ≤ φ < 2π. The coordinate time is given by t ∈ R. This metric personifies the essence

of general relativity. Not only does the presence of mass affect space, as is seen by the
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CHAPTER 1. INTRODUCTION

coefficient multiplying the term dr2, but it also alters the passage of time, as is seen by

the term multiplying dt2.

This metric describes the spacetime outside any spherically symmetric non-rotating

object with mass M , for example the exterior of a non-rotating star with radius

R∗ > 2GM , in which case the range of the radial coordinate in the metric (1.5) is

r > R∗.
1 We observe that as we approach the star by decreasing r, the value of the

factor (1− 2GM/r) decreases until it reaches its minimum at the star’s surface.2 From

(1.5) it then follows that closer to a star radial distances are longer and time passes

more slowly than further away.

By taking the limit r → ∞, we see that the Schwarzschild metric simplifies to the

flat metric given in (1.4). We say that (1.5) is asymptotically flat – at spatial infinity

it approaches the Minkowski solution ”fast enough”.3

In fact, according to Birkhoff’s theorem, (1.5) is the unique spherically symmetric

solution of the vacuum Einstein’s equation [11]. This is important because this metric

also describes the spacetime of a non-rotating black hole. However, in this case we need

to be more careful as the range of the radial coordinate now extends to r → 2GM ,

where some components of the metric and its inverse diverge. To further investigate

what happens at this point, we calculate the Kretschmann scalar, a curvature invariant

of the metric, which in the case of (1.5) is

K(r) ≡ RMNPQR
MNPQ =

48G2M2

r6
. (1.6)

Evaluating this invariant at the Schwarzschild radius yields K(r = Rs) ≈ (GM)−4.

Not only is this finite, but it can be made arbitrary small by increasing the mass. The

fact that the metric (1.5) diverges while the curvature remains finite is attributed to a

bad choice of coordinates, hence the point r = Rs is called a coordinate singularity. It

can eliminated by introducing a so called “tortoise” coordinate

dr∗ =
dr

1− 2GM
r

, r∗ = r + 2GM log
∣∣∣ r

2GM
− 1
∣∣∣ (1.7)

Notice that r∗ → ∞ as r → ∞, but on the other hand r∗ → −∞ as r → 2GM . Now

1Since the metric (1.5) is a vacuum solution, it cannot describe the interior of the star (r < R∗)
where the value of the energy-momentum tensor is non-vanishing due to the presence of matter. In
this region other solutions to (1.3) need to be considered, but we are not interested in those here. Note
that at the surface r = R∗ we need to impose appropriate boundary conditions (see for example [13]
for more details).

2Note that for stars R∗ > 2GM meaning that the factor (1− 2GM/r) is positive for all r > R∗ and
most importantly never vanishes.

3For a more precise definition, see for example [12].
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CHAPTER 1. INTRODUCTION

let us introduce a new coordinate

v = t+ r∗ , (1.8)

and rewrite Schwarzschild metric using the so-called the ingoing Eddington-Finkelstein

coordinates

ds2 = −
(

1− 2GM

r

)
dv2 + 2 dr dv + r2

(
dθ2 + sin2 θdφ2

)
. (1.9)

In this coordinate system the point r = Rs is completely regular as all components of

the metric and its inverse are non-divergent. We can now use this coordinate system

to investigate the region 0 < r < Rs. At the event horizon the causal structure of

spacetime changes. In the region r < Rs all future light cones are directed towards

r = 0. This means that no causal curve can cross from the region 0 < r < Rs to r > Rs

or, in other words, no information can escape this region of spacetime.

Our current understanding of black holes suggests that the matter inside them is so

dense that there is no force that can withstand the gravitational collapse and thus all

matter is concentrated in a very small region around r = 0. Using the new coordinates

we gain access to this point. There matter highly distorts the spacetime as can be seen

from (1.6) which diverges at the origin. Since this result is coordinate independent,

it suggests that as r → 0, the curvature of the spacetime diverges – this point is a

curvature singularity.

At such singularities general relativity breaks down. From a physical point of view

this may be expected as general relativity is a classical theory that works well over

large distances at which quantum effects are negligible. But at a singularity we expect

these effects to be important. So it should not be a surprise that a classical theory

cannot fully describe a black hole and a new, more complete theory, which reconciles

quantum and gravitational effects, should be used.

The indication that a full theory of quantum gravity is needed can also be seen by

considering the thermodynamic properties of black holes. There exist a set of results,

commonly referred to as the laws of black hole mechanics, that closely resemble the

usual laws of thermodynamics [14, 15]. The first law of black hole mechanics is the

analogue of energy conservation. It states that a change of the mass of a black hole
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CHAPTER 1. INTRODUCTION

δM is related to the change in the horizon area δA by4

δM =
κ

8π
δA , (1.10)

with κ being the surface gravity of the black hole, which can be interpreted as the

tension of the string that an observer measures at infinity for a test mass suspended

at rest just above the horizon.5 This expression closely resembles the first law of ther-

modynamics where the change of internal energy is given by dU = TdS if we assume

that no work or charges were changed. This is further strengthened by both the zeroth

law of black hole mechanics, which states that the surface gravity is constant across

the event horizon, and by the second law stating that classically the area of the event

horizon of a black hole cannot decrease. Both of these laws are have their analogues in

thermodynamics, dealing with temperature and entropy respectively. This led Beken-

stein to propose that black holes have an associated entropy that is proportional to the

area of the event horizon [16].

The exact expression was derived by Hawking [17] who analysed the behaviour of

quantum fields in a spacetime created by collapsing matter that eventually forms a

black hole. He observed a constant flux of particles, which is now known as Hawking

radiation, originating from the region near the horizon, and furthermore he showed that

the spectrum of these particles is thermal6 with the temperature given by the Hawking

temperature

TH =
~κ
2π

, (1.11)

where we have set c = kB = 1 while ~ and G are kept explicit. Inserting this into

(1.10), one can read of the corresponding entropy of a black hole, called the Bekenstein-

4In the case of a charged and rotating black hole we also include the change in the angular momentum
δJ and electric charge δQ

δM =
κ

8π
δA+ Ω δJ + Φ δQ ,

where Ω is the angular velocity of the black hole as measured by an observer at infinity, and Φ is the
electrostatic potential. This form makes it more apparent that the first law of black hole mechanics
and first law of thermodynamics are analogous.

5On a more technical note, a theorem by Hawking showed that in a stationary, analytic, and
asymptotically flat spacetime describing a black hole, the event horizon is a Killing horizon, meaning
that in the neighbourhood of the horizon there exist a Killing vector field kM normal to the horizon.
The surface gravity can then be defined through the equation

kM∇MkN = κ kN ,

where∇M is the covariant derivative on the spacetime and the left hand side of the equation is evaluated
on the horizon. The surface gravity thus measures the failure of the integral curves of kM to be affinely
parametrised. For more details see [11,12]

6In fact, this is the same spectrum that Planck was analysing some 70 years prior.
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Hawking entropy (reinstating G)

SBH =
AH
4G~

. (1.12)

By retaining ~ we can observe the “quantumness” of these results, as classical expres-

sions are obtained by taking the formal limit ~ → 0, where the entropy diverges and

the temperature vanishes.

To give a sense of the magnitude these values take, we can evaluate them for the

Schwarzschild black hole. The entropy scales with the square while the temperature

scales with the inverse of the mass. Reinstating all the constants, we obtain

SBH ≈ 1077

(
M

M�

)2

× kB , TH ≈ 6× 10−8

(
M�
M

)
K . (1.13)

While the precise values vary between different types of black holes (e.g. rotating,

charged), we can gain some intuition about the magnitude of the values. The temper-

ature of a black hole is typically very close to the absolute zero, whereas the entropy

of a black hole is enormous.

The above results are not without their problems. They offer us a glimpse into the

quantum nature of space and time without the proper understanding of the full theory,

so it should not be surprising that we run into paradoxical results. Two problems that

arise if we try to understand the consequences of (1.11) and (1.12) are the entropy

puzzle and the information paradox. They are related to the apparent inconsistencies

of the encoding of information in a black hole, at least when we treat the problem

classically.

1.2.1 Entropy Puzzle

The only parameter in the Schwarzschild solution (1.5) is the mass. More compli-

cated metrics, such as the Kerr-Newman that describe the spacetimes of rotating and

(electrically and magnetically) charged black holes, depend also on the electric and

magnetic charges, and angular momentum. In all such cases, there exist uniqueness

theorems [18, 19] which state that a black hole geometry is uniquelly specified by only

a finite number of parameters.

On the other hand, the entropy of a black hole with a non-vanishing horizon area

is non-zero. This implies that there should exists a set of microstates whose ensemble

averages reproduce the macroscopical observables of a black hole. Recall that the

relation between the entropy and the number of microstates Ωµ in a microcanonical

ensemble is given by Boltzmann’s law (kB = 1)

S = log Ωµ . (1.14)
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Combining this with the Bekenstein-Hawking entropy suggests that a black hole should

have eSBH microstates. In the case of a Schwarzschild solution with a mass equal to

that of the Sun this amounts to roughly Ωµ ≈ 4× 1076.

The two results are at odds. If the spacetime is determined uniquely, then there is

no room for microstates. But the non-zero entropy suggests that some microscopical

description may exist. Our current understanding is that to resolve this puzzle one

needs a consistent theory of quantum gravity, after all, the uniqueness theorems are

classical results, whereas the Bekenstein-Hawking entropy is a quantum (or at least

semi-classical) expression.

1.2.2 Information Paradox

Quantum mechanics teaches us that in physical systems time evolution is unitary,

meaning that information is neither spontaneously destroyed nor spontaneously created.

Black holes seem to violate this principle, as can be seen from the following scenario

(see left panel of figure 1).

Start with matter in a pure state so that information about the initial configuration

is completely known and let this matter collapse into a black hole. According to the

uniqueness theorems, once the spacetime settles it is parametrised only by a few charges.

Furthermore, classically the black hole can only increase in size and the information

about the initial state is forever hidden behind the horizon, inaccessible to an outside

observer.

However, semi-classically black holes lose mass through Hawking’s radiation. As-

sume that the black hole evaporates completely so that the final system consists only

of Hawking radiation. The information paradox arises because the spectrum of the

emitted particles is thermal [11], which is described by a mixed state. Thus we have

described a process in which a pure state evolved into a mixed state. This is not allowed

in a unitary theory, as in such a process information is lost forever.7

A heuristic picture of Hawking radiation is the following (see right panel of figure 1)

[22]. By turning on quantum effects, we allow for quantum fluctuations of the fields

around the vacuum. This allows for particle–anti-particle pairs to jump in and out

of existence for a short period of time, according to the uncertainty principle. At

a generic point in space the two particles are pair-created and annihilated in quick

succession. However, if the pair-creation occurs near the horizon, one of the particles

can cross into the black hole region and is thus unable to recombine with its partner.

The outside particle is thus free escape the gravitational potential and is emitted as

7 There are other, equivalent ways to state the information paradox. For example, one can analyse
the entanglement between the radiation and the evaporating black hole. The entanglement entropy of
the radiation rises monotonically, while in a unitary theory one expects the entanglement entropy to
eventually start decreasing and follow the Page curve [20,21].
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Figure 1: (Left): The schematical depiction of a black hole collapse and subsequent
radiation. Some matter (black) collapses and at some point forms the horizon (red
dashed) and a singularity (zigzag black line). The black hole emits thermal Hawking
radiation (blue wavy curves) and decreases in size until it evaporates completely. In such
a process an initial pure state (matter) evolves into a mixed state (thermal radiation)
which violates unitarity. (Right): The pair-production of a particleX and its anti-particle
X̄. Away from the black hole (gray with dashed boundary representing the horizon), the
pair quickly annihilate. Near the horizon, the anti-particle crosses the horizon, thereby
lowering the mass and decreasing the horizon area, while the particle escapes to infinity.

Hawking radiation.

One important aspect of the above process is that Hawking particles get created

at the horizon and thus can carry information only about that region of spacetime.

As we discussed, the curvature at the horizon is small for black holes with high mass.

Therefore we expect that in such a region (effective) quantum field theory is a good

approximation to the full physical theory, or in other words, quantum gravitational

effects should not make significant contributions, so perhaps then it should not be

surprising that there is no information encoded in the Hawking radiation

The above argument is not completely sound proof. It was shown in [23] that for

a sufficiently old black hole under reasonable conditions the following three statements

cannot be simultaneously true

1. Hawking radiation is in a pure state, thus allowing for preservation of unitarity.

2. The radiation originates at the horizon where no new physics is necessary.

3. An observer passing through the horizon experiences nothing out of the ordinary.

This suggests that we either need to accept the loss of information, assume new non-

trivial physics already at the horizon scale, or let an observer burn in a firewall as they

cross the horizon.

It seems that the resolution of the paradox requires a full quantum theory of gravity.

Yet combining quantum field theory and general relativity famously runs into troubles

(see for example [12]). However, a unified framework where these two theories emerge

consistently in the low energy limit is string theory.
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Figure 2: A schematic depiction of the world-sheets of a closed string (left) and an
open string (right) whose left endpoint is fixed on a flat brane, while the right endpoint
is free to move. The extended nature of the fundamental objects resolves many problems
of conventional theories where the funamental objects are point-like. Different species of
fields (particles) arise as excitations on these strings.

1.3 String Theory and Supergravity

Here we only introduce concepts which are of relevance for the thesis. In doing so, we

mainly follow [22,24–26].

The main idea of string theory is that the fundamental objects are one-dimensional

strings that get resolved at the length scale ls called the string length.8 Particles of

different masses are manifested as vibrational excitations of the string. We typically

assume that the string length is much smaller than the experimentally accessible length

scales, hence the stringy nature of fundamental particles remains unresolved which is

why they effectively behave as point-like objects.

As strings propagate in spacetime, they trace out a two-dimensional world-sheet

and depending on its topology, we can distinguish two types of strings. Closed strings

are loops propagating in time and form a cylinder in spacetime, while the world-sheets

of open strings have the topology of a sheet, as they can be seen as finite open lines

evolving in time (see figure 2 for a schematic depiction).

Open strings have two endpoints at which we need to specify the boundary condi-

tions, which needs to be done in every spatial direction. If we impose the Neumann

boundary condition (N), the endpoint is allowed to move freely along the chosen di-

rection at the speed of light. If we impose the Dirichlet boundary conditions (D), the

endpoint is fixed at a certain position in the chosen direction. Such boundary condi-

8We use the string length ls as the free parameter of string theory. One could equivalently use the
Regge slope α′. We set the relation between them as ls =

√
α′. Note that in some of the literature

ls = 2π
√
α′ can be used.
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Figure 3: An example of a process where open and close strings interact – the emission
of a closed string from a brane. In this process the endpoints of an open string on the
brane combine to form a close string which gets emitted. Since close strings contain the
gravitational part of the spectrum, the strength of such an interaction determines the
extend to which the branes “gravitate”, meaning whether they backreact on the geometry
and cause a bending of surrounding spacetime.

tions describe dynamical hypersurfaces in spacetime, called Dp-branes [27], which are

(p + 1)-dimensional objects extended in the directions where N boundary conditions

are imposed and localised in the directions where D boundary conditions are imposed

(see right panel of figure 2).

One of the motivations for using string theory is that it provides a framework where

quantum field theory and gravity are combined in a consistent way. For example, the

closed string spectrum contains a massless spin-2 field which can be identified with the

graviton. On the other hand, the spectrum of an open string ending on a stack of

N Dp-branes contains a massless vector field living on the world-volume of the brane

transforming under the gauge group U(N). This way the spectrum of string theory

naturally contains both gravitational and gauge fields.

The spectrum also contains other fields depending on the type of string theory. We

always find additional massless fields and we review the massless spectrum of Type IIB

superstring theory below. Furthermore, there exists an infinite tower of massive fields

for both the closed and open strings with the mass of all states scaling with m2 ∼ l−2
s .

String theory also has a well defined perturbation theory where open and closed

strings are able to interact. For example, an open (closed) string can separate into two

new open (closed) strings which is the process of particle decay. Similarly, a pair of

open strings can join up and form a closed string or vice versa (see figure 3).

The strength of these interactions is controlled by a dimensionless parameter gs,

called the string coupling constant. We will be mostly interested in the classical string

limit gs � 1 in which string perturbation theory is valid and stringy loop effects are
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suppressed.

A small value for gs is sometimes not enough to ensure a valid perturbation theory.

Consider a system where open strings end on a stack of N coincident Dp-branes. The

effective string coupling for open string scattering is then given by gsN which is also

the strength of interaction between open and closed strings. However, the interaction

between closed strings is still determined only by gs. It is this combination of factors

gs and N that allow us to interpolate between different descriptions of the same theory

and is one of the main ingredients of the AdS/CFT duality.

String theory has its own problems. For a well defined theory of the bosonic string

we need to work in 26 dimensions. This number is lowered to 10 if we introduce fermions

and make the theory supersymmetric. A string theory with world-sheet supersymmetry

is called superstring theory and from now on we assume we work with such a theory.9

1.3.1 Type IIB String theory

In particular, we work with Type IIB string theory in 10 dimensions with N = 2

supersymmetry. This means that there are two fermionic symmetry generators corre-

sponding to the left and right moving excitations on the string. Each generator is a

Majorana-Weyl spinor, containing 16 real degrees of freedom and we commonly refer to

the components of these Majorana-Weyl spinors as the 32 supercharges of the theory.

In Type IIB theory, the spinors have the same chirality, whereas in Type IIA string

theory, the supersymmetry generators have opposite chirality.10

The solutions of the equations of motion may not be invariant under all fermionic

symmetries and we say that such solutions break some supersymmetry. An object

which preserves only 32/n of all possible supercharges is called 1/n-BPS. For example,

an object that preserves 16 supercharges breaks half of the supersymmetry and is thus

called 1/2-BPS.

There is a variety of objects appearing in this theory allowing for a rich microscopic

structure. The massless spectrum of the closed string includes a graviton gMN , a

dilaton φ, and an anti-symmetric two-tensor BMN , which can be written in terms of a

differential form B, called the NS-NS two-form. The spectrum in type IIB also contains

RR gauge fields – the axion C0, the two-form C2, and a four-form C4.

Since the theory is supersymmetric, the massless spectrum also includes fermionic

excitations. There are two pairs of Majorana-Weyl spinors: two gravitinos ψIM with

positive chiralities and two dilatinos λI with negative chiralities, where I = 1, 2, and

9In what follows any string theory mentioned is assumed to be supersymmetric. We omit the “super”
in superstring theory, except where the clear distinction between the bosonic string and superstring is
needed.

10We discuss Majorana and Weyl conditions and the conventions on the form notation in more detail
in Appendix A
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Field Object

Metric gMN

Dilaton φ

NS-NS two-form B2

Axion C0

RR two-form C2

self-dual four-form C4

Gravitinos ψIM , I = 1, 2

Dilatinos λI , I = 1, 2

Table 1: The massless spectrum of closed strings in type IIB superstring theory or
equivalently the spectrum of type IIB supergravity [24, 25]. The number of bosonic and
fermionic degrees of freedom are equal. The gravitino and dilatino fields come in a
doublet of Majorana-Weyl spinors (we suppressed the spinor index). The two gravitinos
have equal chirality which is opposite to the chirality of both dilatinos. The massless
spectrum of open strings depends on the boundary conditions at the endpoints. In general
it is that of a supersymmetric gauge theory on the worldvolume of the brane on which
the string ends.

the spinor indices are suppressed. The massless spectrum of the closed string in type

IIB string theory is summarised in table 1.

Open strings end on Dp-branes on which left and right moving excitations of the

string are identified and thus at least half of the supersymmetries are broken. In type

IIB string theory only branes with p odd are allowed and are all 1/2-BPS objects,

breaking exactly half of the supersymmetry of the full theory. As discussed above, the

massless spectrum of open string excitations gives a vector field Aµ, with µ running

along the directions of the brane world-volume, which transforms under the gauge

group U(N), with N being the number of coincident branes. On the world-volumes of

the branes there are other fields which transform as a scalar under U(N) and fermion

fields that ensure supersymmetry, but the precise details of the open string spectrum

are not important for our purposes. We only use the general notion that on a brane,

the massless spectrum of open strings reproduces a gauge theory.

Branes are also coupled to the closed strings and their massless excitations. Firstly,

branes of different dimensions couple to appropriate RR form fields. In addition, all

Dp-branes couple to the graviton and the dilaton. The coupling is such that there is no

net force between two branes of the same type, as the repulsion due to the form fields

is exactly cancelled by the attraction due to the graviton and dilaton exchange. The

repulsion–attraction equality is the analogue of the cancellation between the electro-
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Object Coupled Field Type of coupling

F1-string B2 E

NS5-brane B2 M

D(-1)-brane C0 E

D1-brane C2 E

D3-brane C4 E and M

D5-brane C2 M

D7-brane C0 M

Table 2: The content of Type IIB superstring theory and the fields that these ob-
jects couple to [22, 24]. The F1-string is the fundamental string while the NS5-brane
is a solitonic (5+1)-dimensional object that we do not consider in the main text. The
D(-1)-brane is localised in space and time and should be seen as an instanton. It is also
not discussed in the main text. The couplings “E” and “M” refer to whether the field
couples to the brane electrically or magnetically, in analogy with the coupling of electric
and magnetic point charges in electromagnetism. The D3-brane is dyonic, as it couples
to C4 both electrically and magnetically.

magnetic repulsion and gravitational attraction of extremal Reissner–Nordström black

holes which leads to Majumdar-Papapetrou solutions [28,29]. Finally, the NS-NS two-

form B couples only to the fundamental string and the NS5-brane. The brane content

and the fields that the branes couple to are summarized in table 2.

1.3.2 Type IIB Supergravity

Massive excitations in string theory scale as m2 ∼ l−2
s . If the string length is negligible

compared to the length scale associated to our experiment, then the massive states are

inaccessible and we can work with the theory of massless excitations – supergravity. In

this section we introduce the basics of the low energy limit of Type IIB string theory,

called Type IIB supergravity and present extremal p-brane geometries, the gravitational

description of Dp-branes [26,30].

Supergravity describes the fields found in the massless spectrum of the closed string.

In type IIB the low energy theory also has 32 supercharges distributed in two Majorana-

Weyl spinors with equal chiralities. We focus on the bosonic sector of the theory, as we

are interested in classical solutions which have vanishing fermionic fields. The relevant

part of the action in the string frame is given by [24]

S
(0)
IIB =

1

2κ2
10

∫
d10x

√
−g
[
e−2φ

(
R+ 4∇Mφ∇Mφ−

1

2
|H|2

)
− 1

2
|F1|2 −

1

2
|F3|2

− 1

4
|F5|2

]
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 , (1.15)

22



CHAPTER 1. INTRODUCTION

where the ten dimensional gravitational coupling is related to the string length as

4πκ2
10 = (2πls)

8. In the above we have introduced form field-strengths defined as

H = dB , F1 = dC0 , F3 = dC2 −HC0 ,

F5 = dC4 −
1

2
C2 ∧H +

1

2
B ∧ dC2 (1.16)

and have used the notation

|Fp|2 =
1

p!
FM1...MpF

M1...Mp . (1.17)

Note that the last term in the action is the Chern-Simons term. In addition to the equa-

tions of motion derived from this action, we have to impose the self-duality condition

for the field F5

F5 = ∗F5 , (1.18)

where the ∗-operator is the hodge dual in ten dimensions.

The extremal p-brane solutions are higher dimensional generalisations of the ex-

tremal Reissner–Nordström black hole and correspond to objects that are extended in

p-spatial dimensions and localised in the remaining transverse directions. They are

called extremal because they preserve half of the supercharges and are thus 1/2-BPS

solutions and are the supergravity description of Dp-branes found in full string theory.

They are given by the ansatz [25,26,30]

ds2 = H
− 1

2
p ηµνdx

µ dxν +H
1
2
p δij dy

idyj , (1.19a)

e2φ = g2
sH

3−p
2

p , (1.19b)

Cp+1 = g−1
s

(
H−1
p − 1

)
dx0 ∧ dx1 ∧ . . . ∧ dxp , (1.19c)

B = 0 , (1.19d)

where xµ are the coordinates of the dimensions in which the brane is extended, with

µ = 0, 1, . . . p, and yi, with i = p + 1, . . . 9, are the coordinates in the transverse

directions in which the object is localised.

The equations of motion are satisfied if the function Hp is a harmonic function in

the transverse directions

�(9−p)Hp = 0 , (1.20)
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and thus takes the form

Hp(r) = 1 +

(
Lp
r

)7−p
, (1.21)

where r2 =
∑9

i=p+1 y
iyi, and we have set the constant of integration to ”1”, which

makes the metric (1.19a) asymptotically flat. Furthermore, as r → 0, the Harmonic

function Hp and thus some components of the metric diverge. By studying (1.19) as a

limit of non-extremal solutions, one finds that at this point a horizon with vanishing

area coincides with a curvature singularity.

The solution also has a characteristic length scale Lp given by

L7−p
p = (4π)

5−p
2 Γ

(
7− p

2

)
gsN l7−ps , (1.22)

where Γ(x) is the Euler Gamma function. This relation is obtained by equating the

charge carried by the supergravity solution to charge of N coincident Dp-branes in

string theory.

Particularly important is the 3-brane solution (p = 3). If we take the near horizon

or decoupling limit r � L3, where H3 ≈ (L3/r)
4, then to leading order the metric takes

the form

ds2 ≈ L2
3

r2
dr2 +

r2

L2
3

ηµνdx
µ dxν + L2

3dΩ2
5 , (1.23)

where µ = 0, 1, 2, 3, and we have introduced polar coordinates for the six dimensional

space transverse to the branes so that dΩ2
5 denotes the differential area element of a unit

5-sphere. This metric describes Anti-de Sitter spacetime in five dimensions multiplied

by a five-sphere, which we denote by AdS5 × S5, with the radius of the AdS space and

the radius of the sphere both being equal to L3. Another way of writing this metric is

by introducing a new coordinate z = L2
3/r so that

ds2 ≈ L2
3

z2

(
dz2 + ηµν dx

µdxν
)

+ L2
3dΩ2

5 . (1.24)

As an aside, the above metric actually describes the Poincaré patch of AdS5 space

which covers only a part of the entire spacetime. The whole of AdS can be described by

the use of global coordinates in which the metric takes form (see for example [25,31])11

ds2 = L2
3

(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

3

)
, (1.25)

11In this discussion we consider for concreteness only AdS5 while the generalisation to Anti-de Sitter
spacetimes of other dimensions is trivial. Additional care needs to be taken when dealing with AdS2,
however we will not discuss such a low-dimensional spacetime in this thesis.

24



CHAPTER 1. INTRODUCTION

where dΩ2
3 denotes the differential area element of a unit 3-sphere and ρ ≥ 0. If one

uses these coordinates to parametrise the surface of a hyperboloid embedded in a six

dimensional space with signature (−,−,+,+,+,+), then 0 ≤ τ < 2π, however such

a spacetime contains closed timelike curves which we would like to avoid. Hence we

usually consider the universal cover AdS in which the τ direction is “unwrapped” so

that τ ∈ R and is understood to be the usual temporal direction.12 Note that we

encounter global AdS3 in equation (5.3.13) in section 5.3 albeit expressed in a different

set of coordinates.

The metric in the form of (1.25) slightly conceals the nature of the boundary of

global AdS. If we perform a coordinate transformation with tan θ = sinh ρ, where

0 ≤ θ < π/2, then the metric takes the form

ds2 =
L2

3

cos2 θ

(
−dτ2 + dθ2 + sin2 θ dΩ2

3

)
. (1.26)

The boundary of this metric is located at θ = π/2 where we find a double pole. To

extend the metric to this boundary we need to multiply (1.26) by a function which can-

cels out divergence. In doing so we define the metric at the boundary up to conformal

transformations13 [32]. Ignoring this conformal factor, we find that the metric of the

boundary of global AdS is given by

ds2 = −dτ2 + dΩ2
3 , (1.27)

which is just R× S3.

We can also extract the boundary metric for the Poincaré patch of AdS. The bound-

ary is in this case located at r → ∞ (or equivalently z = 0) and the metric, up to a

conformal factor, is simply the four dimensional Minkowski metric on flat space R4

ds2 = ηµν dx
µ dxν = −dt2 + d~x2 . (1.28)

The two boundaries are related by a conformal transformation. To see this we can

Wick rotate the flat metric to its Euclidean counterpart with tE = −it and obtain [31]

ds2 = dt2E + d~x2 = dr̃2 + r̃2dΩ2
3 = e2τE

(
dτ2
E + dΩ2

3

)
, (1.29)

where in the last equality we introduced τE = log r̃. The resulting metric equals to the

Euclidean version of (1.27) (we use τE = −iτ) up to an overall prefactor.

For a generic Dp-brane the length scale of the curvature of (1.19) is Lp, which

needs to be much larger than the string length in order for the geometry to be a

12Note that the Poincaré coordinates cover only a half of the hyperboloid, while the global coordinates
cover the entire surface. See for example [25] for more details.

13Transformations which leave the metric invariant up to an overall factor.
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valid description of Dp-branes. Through (1.22) this is equivalent to gsN � 1, which

is also the regime where open strings are strongly coupled to closed strings. There

the Dp-branes are gravitating which creates a curved geometry. Furthermore, classical

supergravity is valid only if all loop corrections in the closed string perturbation theory

are suppressed. Since this expansion is controlled by the string coupling, we work in

the regime gs � 1. All in all, (1.19) is a valid description of Dp-branes in the regime

1� gsN � N . (1.30)

which, from a string theory point of view, requires a large number N of coincident

branes and tuning the value of gs to be small, yet large enough to ensure strong

interactions between open and closed strings.

One has to remember that the metric (1.23) is a solution to the equations of motion

obtained from the supergravity action (1.15) which is the low-energy limit of string

theory. If one considers stringy corrections to the action, then the metric needs to be

amended. For type IIB string theory the first corrections come at order α′3 = l6s [33–35]

and include terms which involve are the contraction of four factors of the Weyl tensor

CABCD
14 [36, 37] and are schematically denoted as R4 terms.15 The metric (1.23) is

only a valid solution as long as these stringy corrections to the action are negligible,

otherwise a α′-corrected metric of AdS5 × S5, which was worked out in [39, 40], needs

to be used.

1.4 AdS/CFT Correspondence

Dp-branes have multiple roles in string theory. They serve as endpoints of open strings

and the world-volumes for the resulting effective gauge theories. They are also the

sources of closed strings.

For a stack of N branes, the effective coupling that determines the strength of

interaction between strings is gsN . As we have seen, in the regime (1.30) the branes

produce the geometry given by (1.19). On the other hand, in the limit

gsN � 1 (1.32)

open and closed strings decouple, and open strings become effectively free. Hence in

14The Weyl tensor CABCD in D dimensions is given by [36]:

CABCD ≡ RABCD −
2

3

(
gA[CRD]B − gB[CRD]A

)
+

1

6
RgA[CgD]B . (1.31)

15There are other correction terms at order l6s in the type IIB action, but it was argued in [38] that for
specific spacetimes, such as AdS5×S5, only the R4 correction terms are important while the correction
terms involving other fields, such as F5 gauge fields, do not contribute at this order.
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this regime, the branes can be seen infinite objects in flat space on which we have a

system of non-interacting open strings.

Discarding all massive stringy excitations, the resulting theory living on the world-

volume of the brane becomes a weakly-coupled (supersymmetric) U(N) gauge theory in

flat space. This is in stark contrast to the limit (1.30) where open strings are strongly

coupled, but the branes admit a supergravity description. One of the remarkable results

of the last 25 years is that the two descriptions are in fact related.

1.4.1 Study of D3-Branes

In [41] Maldacena studied a stack of N D3-branes in the limit where N is large. He

noticed that in taking the near horizon limit

l2s → 0 , with U =
r

l2s
fixed , (1.33)

the dynamics near the brane completely decouples from the dynamics of the asymptotic

spacetime. Let us consider only the massless spectrum of the theory. On one hand,

the low energy theory of open strings is N = 4 Super Yang-Mills (SYM) theory living

on the flat world-volume of the D3-branes, with the gauge group U(N). On the other

hand, the gravitational physics near the brane is described by type IIB supergravity on

the AdS5×S5. Maldacena proposed that these two theories are dynamically equivalent

– the two pictures describe the same physics.

What is more, he conjectured that the correspondence is not limited to the low

energy limit, and thus [41] N = 4 Super Yang-Mills theory with gauge group U(N) is

dual to type IIB superstring theory on AdS5 × S5 with additional fluxes on S5.16 The

duality states that each physical object on one side has a corresponding term in the

dual theory. Let us begin by analysing the relations between the free parameters of

the two theories. In the gauge theory we have the Yang-Mills coupling gYM and the

number of colours N , while on the gravity side we have the string coupling gs and

the ratio between the radius of curvature of AdS RAdS and the string length ls. It is

convenient to introduce the ’t Hooft coupling

λ ≡ g2
YMN (1.34)

which serves as an effective perturbative expansion parameter in the SYM theory. One

then identifies

λ

N
= 2πgs , 2λ =

R4
AdS

l4s
. (1.35)

16The correct gauge group should be SU(N), however we do not need the distinction here.
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By taking the limit gs → 0, we can neglect stringy loop contributions and work

with the classical string. This corresponds to taking N → ∞ while holding λ fixed.

Classical string theory is thus dual to large N gauge theory. Since our knowledge of

the quantum string is limited, we almost always assume that we work in this limit.

According to the second relation in (1.35), taking RAdS � ls, where supergravity

is a good approximation, corresponds to λ → ∞. In contrast, by setting λ < 1, in

which case the gauge theory is weakly coupled, we require ls ≈ RAdS. In this case the

curvature scale of spacetime is of the string length, meaning that stringy states become

important and supergravity is not a valid approximation any more.

These relations highlight the importance of the duality – a difficult theory (such as

a strongly coupled gauge theory or a string theory) has a known, and usually tractable

dual.

1.4.2 General Aspects of the Correspondence

A stack of D3-branes is only one of many configurations in string theory that, in

a certain limit, admits two equivalent descriptions in terms of dual theories. Some

examples were already discussed in [41] and by now it is understood that such dualities

occur more generically. So let us now focus on the general correspondence between a

classical gravitational theory and a strongly coupled gauge theory.

The duality emerging from the analysis of D3-branes is not the only instance where

a string theory in a curved spacetime is related to a field theory. Other examples

include [41]: M-theory on AdS7×S4 being dual to a supersymmetric field theory in six

dimensions, which arises from the study of a large number of coincident M5-branes;17

M-theory on AdS4×S7 being dual to a three dimensional field theory (a perhaps better

studied example might be the AdS4 × CP3/ABJM duality [42]); and string theory on

AdS3 × S3 × M , where M is either T 4 or K3, which is dual to a two-dimensional

superconformal field theory – we study this duality in more detail in chapter 4. These

examples all arise in the top-down approach, where we identify a suitable system in

string theory, take the appropriate decoupling limit, and study the dual descriptions.

While this approach usually allows us to identify the two theories that are involved in

the duality and test the conjecture, it can also limit the applicability.

To extend the range in which one can use holography, one can take all the lessons

learned from the explicit, top-down, examples and construct either a gravitational

theory or a field theory and assume that it admits a dual description. The principle of

this bottom-up approach is that the duality itself is more fundamental and should exist

even outside the systems derived from string theory. In [43] it was even argued that a

generic large N field theory with a gap in the spectrum of states should have a dual

17M-theory is an eleven dimensional theory which includes M2-branes and M5-branes as objects in
the theory and can be seen as type IIA string theory at strong coupling [31].
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gravity description. This approach, which we are going to take in chapter 2, allows us

to isolate the individual ingredients of the theory and infer results that should hold for

all holographic systems.

It is also important to identify the ingredients which are common to the top-down

examples and assume that they are found in the conjectured bottom-up models as

well [31]. For example, the duality should relate a gravitational theory on a negatively

curved bulk spacetime to a field theory in one dimension lower, which we can imagine

to reside at the boundary of the bulk. A large number of degrees of freedom is needed

at the boundary to ensure a gravitational (and not a stringy) description which is

usually achieved by choosing a large gauge symmetry group for the field theory (for

example SU(N) with N →∞). Furthermore, as we will discuss below, it is important

that the symmetries of both systems are identified (see table 3). For example in the

cases mentioned above, the gauge symmetry in the bulk arises from the isometry of a

compact manifold multiplying the AdS, (for example S5 in AdS5×S5) with the size of

the compact manifold being comparable to the size of the negatively curved spacetime.

Both approaches have their advantages and disadvantages. In what follows we

present some of the principles which are commonly assumed. Our presentation is a

combination of the following reviews [25, 26, 44–46], where a more detailed analysis is

presented and original sources are cited.

Symmetries

We first match the symmetries of the two theories which also allows us to identify the

fields on the gravity side with the operators of the CFT.

The spacetime symmetry of the CFT is the conformal group in D + 1 dimensions,

SO(D + 1, 2), which exactly matches the isometry group of AdS in D + 2 dimen-

sions. To see the precise identification, look for example at AdS part of the metric

(1.23), where at each fixed value of r, we get a Poincaré invariant (D+ 1)-dimensional

Minkowski spacetime. The additional dilatation symmetry of the CFT is manifested

by the isometry

xµ → λxµ , r → r

λ
, (1.36)

with the first part being the usual flat space dilatation, while the r transformation

ensures the preservation of the metric. Thus the dilatation symmetry is associated with

a change of the scale in the radial direction of AdS.18 By introducing an object with

an associated length scale r0 into the latter space, we break the dilatation symmetry

18Note that in this analysis we are using the Poincaré patch of AdS to describe the gravitational
part of the duality. However the duality is not limited only to a part of AdS, but holds for the entire
spacetime. So the correct statement is that string theory in global AdSD+2 is dual to a CFT defined
on R× SD [31].
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Symmetry on the Boundary Symmetry in the Bulk

Conformal Spacetime Symmetry Isometry of AdS

Global Symmetry (e.g. R-Symmetry) Gauge Symmetry (Symmetry of Sn)

Gauge Symmetry No analogue

Table 3: The matching of the bosonic symmetries between the gauge theory (left col-
umn) and the dual gravitational theory (right column) [26, 44]. In addition the super-
symmetries must match as well.

in the CFT, for example, an asymptotically AdS black hole, whose length scale is set

by the horizon, breaks the the dilatation symmetry of the dual CFT by introducing a

temperature whose value is given by the Hawking temperature of the black hole [47].

Next, a global symmetry of the quantum field theory gets translated into a gauge

theory in the gravity picture. The global symmetry is usually a flavour symmetry or an

R-symmetry under which the theory is invariant. On the gravity side this corresponds

to the symmetry of the Sn part, which can be dimensionally reduced generating a gauge

theory (this is the Kaluza-Klein procedure).

If the theories are supersymmetric, the fermionic symmetries must match as well.

A specific example of such an identification is discussed in chapter 4.

Finally, the gauge symmetry of the field theory has no analogue on the gravity side,

since it is not a physical symmetry, but rather redundancy in the description. As a

consequence, only gauge invariant operators, which represent physical observables, are

mapped onto fields found in gravity. A summary of symmetry identifications is found

in table 3.

Field-Operator Map and Correlation functions

There exist a precise prescription of how to map fields on the gravity side to the gauge

invariant operators of the dual CFT, and as is often the case the physics lies in the

boundary conditions. The precise prescription for computing Euclidean correlators was

first given in [32,48] and was generalised to correlators in Minkowski spacetime in [49]

(see also [50–59]).

We present the prescription through the analysis of a minimally coupled massive

scalar field. Assume that the metric is asymptotically AdSD+2 with radius RAdS, so

that the near boundary expansion r →∞ at leading order takes the form

ds2 = gMN dx
MdxN ≈

R2
AdS

r2
dr2 +

r2

R2
AdS

ηµν dx
µdxν , (1.37)

where µ = 0, 1, . . . D. The equation of motion for a scalar field φ(r, xµ) with mass m is
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given by the Klein-Gordon equation

∂M
(√
−ggMN∂Nφ(r, xµ)

)
−m2√−g φ(r, xµ) = 0 . (1.38)

This is a second order ordinary differential equation, so it has two independent degrees

of freedom that we need to fix to fully specify the solution. Near the boundary, there

are two independent terms

φ(r) =
R

2∆−
AdS

r∆−
φ(nn)(x

µ) (1 + . . .) +
R

2∆+

AdS

r∆+
φ(n)(x

µ) (1 + . . .) (1.39)

where . . . denotes subleading terms that are uniquely determined in terms of φ(nn)(x
µ)

and φ(n)(x
µ), and

∆± =
D + 1

2
±

√(
D + 1

2

)2

+m2R2
AdS , (1.40)

so that ∆+ = D + 1 − ∆− and ∆+ > ∆−. The solution corresponding to the free

parameter φ(n)(x
µ) is called normalisable, whereas the solution with the degree of

freedom φ(nn)(x
µ) is called non-normalisable, because if we evaluate the scalar field

action on these solutions, the resulting value is normalisable and non-normalisable

respectively.

The prescription [32,48] states that the non-normalisable solution is identified with

the source J(xµ)

φ(nn)(x
µ) = J(xµ) , (1.41)

while the normalisable solution is identified with the expectation value (or one-point

function) 〈O(xµ)〉 of the dual boundary operator O(xµ), whose conformal dimension is

given by

∆O = ∆+ =
D + 1

2
+

√(
D + 1

2

)2

+m2R2
AdS . (1.42)

Since the identification between operators and gravitational fields is done at r →∞, we

often refer to the CFT as the boundary theory with the asymptotically AdS spacetime

considered the bulk.

Equation (1.42) expresses the conformal dimension of a boundary operator O in

terms of the mass of its dual field φ in the bulk.19 This relation changes for operators

19For certain ranges of the mass m, φ(n) and φ(nn) are both normalisable in which case either can be
identified with the operator dual to the gravity field. Taking the former is called regular quantisation,
while taking the latter is called alternate quantisation, in which case the conformal dimension of the
dual CFT operator is given by ∆O = ∆−. Special care needs to be taken if ∆+ = ∆−, but we do not
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Bulk Fields Conformal Dimension of Dual Operator

scalar fields ∆± = 1
2

(
D + 1±

√
(D + 1)2 + 4m2R2

AdS

)
spinor fields ∆ = 1

2 (D + 1 + 2|m|RAdS)

vector fields ∆± = 1
2

(
D + 1±

√
(D − 1)2 + 4m2R2

AdS

)
p-form fields ∆ = 1

2

(
D + 1±

√
(D + 1− 2p)2 + 4m2R2

AdS

)
spin-3

2 fields ∆ = 1
2 (D + 1 + 2|m|RAdS)

massless spin-2 fields ∆ = D + 1

Table 4: The relation between the mass of a field in AdS and the conformal dimension of
its dual boundary operator [26]. Where the conformal dimension is denoted by ∆±, one
encounters two possible quantisations that cover the spectrum of boundary operators.

with non-zero spin, and the results are summarised in table 4. Combining the results

of table 3 and table 4 allows us to identify duals of important bulk excitations. For

example, metric excitations are identified with the energy-momentum tensor of the dual

theory, while the excitations of the gauge field in the bulk are related to the globally

conserved current in the CFT. These two identifications are universal in all holographic

theories.

To uniquely determine the solution to the bulk equations of motion, we need to

specify a boundary condition in the interior. In the case of Euclidean AdS space (after

Wick rotating the time coordinate) it is sufficient to demand that the fields are regular

in the interior. The correspondence then states that the exponent of the gravitational

action evaluated on the regular solution with the boundary identification (1.41) is

equivalent to the CFT path integral with a source. For a scalar field this gives

e−Sgrav [φ]

∣∣∣∣∣
φ(nn)=J

=
〈
e−

∫
dD+1x J(xµ)O(xµ)

〉
CFT

, (1.43)

or in other words, the on-shell gravitational action acts as a generating functional for

the correlators of the dual CFT. The calculation of correlation functions in Lorentzian

time contains additional subtleties which are discussed in chapter 2.

With this we conclude our brief review of the AdS/CFT duality. We have glossed

over many important details, such as the renormalisation procedure which makes the

equation (1.43) well defined, nonetheless we have introduced the relevant concepts that

consider such details here.
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are used throughout the thesis.

1.5 Structure of the Document

The structure of the remainder of the document is as follows.

In chapter 2 we begin by stating the prescription for calculating the retarded Green’s

function in holographic theories. We then review pole-skipping, a phenomenon in which

a pole and a zero of holographic correlation functions coincide, by studying bulk scalar

fields in section 2.2 and excitations of the bulk metric in section 2.3. In the latter case

we also discuss a potential relation to chaotic properties of such theories.

In chapter 3 we show that pole skipping is generically observed for fermionic fields

as well. We start by analysing the equations of motion in asymptotically AdS3 spaces

for which some of the Green’s functions are explicitly known. Higher dimensional

spacetimes are considered in section 3.4, while in section 3.5 we show that near the

pole-skipping points the correlator is infinitely multivalued. In section 3.6 explicit

examples are considered before we end with some concluding remarks.

In chapter 4 we introduce the D1-D5-P system by studying its gravitational descrip-

tion and the corresponding brane picture in section 4.2 and section 4.3 respectively. We

then review the AdS3/CFT2 duality and give a brief overview of the D1-D5 CFT at the

orbifold point where the field theory is described by a collection of free fields. We then

present the fuzzball proposal in section 4.6, which says that one should treat classical

black holes as a course-grained average over many horizonless microstates. Finally, we

introduce the microstate geometries programme whose aim is it to construct smooth

and horizonless solutions within supergravity that have the same charges as a given

black hole.

In chapter 5 we present the construction of a new family of superstrata – microstates

of the D1-D5-P black hole for which the dual CFT description is explicitly known. The

procedure relies on the construction of Killing spinors of global AdS3×S3 presented in

section 5.4. These are then used as generators of a new perturbation around AdS3×S3

whose non-linear completion, calculated in section 5.6, is the new superstratum family.

We conclude in chapter 6 with an outlook on future research directions.

The appendices contain some technical details that are omitted from the main text.

In Appendix A we collect the conventions used throughout the document. Appendix B

and Appendix D contain some explicit calculations for the results presented in chapter 3

and chapter 5 respectively. The exact Green’s function for fermion fields in the BTZ

black hole background is calculated in Appendix C.
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Chapter 2

Review of Pole Skipping

In this chapter we define different two-point functions appearing in thermal quantum

field theories and present the prescription for calculating the retarded Green’s func-

tions in theories with gravity duals, by studying scalar fields in asymptotically AdS

spacetimes.

We then turn to pole-skipping, a phenomenon where at certain (imaginary) values

of the frequency and momentum, the value of the retarded Green’s function of a holo-

graphic theory is infinitely multivalued. We introduce the basic principles through the

analysis of scalar fields in the bulk, before reviewing the results for the energy-density

correlator and comment on the connection to chaos.

Parts of this chapter have been reviewed in [2].

2.1 Introduction and Motivation

2.1.1 Retarded Green’s Functions

In this and the following chapter we are interested in retarded Green’s functions in

theories at finite temperature. Our main motivation is to understand the behaviour of

strongly coupled holographic quantum field theories which, through the AdS/CFT cor-

respondence, have an equivalent description in terms of classical gravitational theories

on curved backgrounds.

We consider field theories in a state at a finite temperature T = β−1. In such

theories the expectation values of an operator O is defined to be

〈O〉 ≡ tr (ρO) , (2.1)

with the trace operator going over the Hilbert space of the field theory, and ρ is the
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density matrix given by

ρ ≡ exp (−βH)

tr [exp (−βH)]
, (2.2)

where for the canonical ensemble H = H is just the Hamiltonian, while for the grand-

canonical ensembleH = H−µiQi, with Qi being the operators measuring the conserved

charges and µi the associated chemical potentials.

The fundamental objects of interest are retarded Green’s functions. For a bosonic

operator OB(t, ~x) these can be written as (we follow the conventions of [55])

GR(B)(t, ~x) ≡ iθ(t) 〈[OB(t, ~x),OB(0)]〉 (2.3)

where θ(t) is the step function and the brackets denote the expectation value of the

commutator. Similarly, the advanced Green’s function can be defined as

GA(B)(t, ~x) ≡ −iθ(−t) 〈[OB(t, ~x),OB(0)]〉 . (2.4)

One can also define other two-point functions, such as the Feynman propagator or the

(symmetrized) Wightman function [49, 60], however these can be determined once the

retarded Green’s function is known (see for example (2.7) of [49] for a relation between

the Feynman propagator and the retarded Green’s function in momentum space).

In Euclidean signature (τE ≡ it) we usually deal with only a single correlator defined

by

GE(B) ≡ 〈TEOB(τE , ~x)OB(0)〉 , (2.5)

where TE denotes Euclidean time ordering.

If the operator OF (t, ~x) is a complex fermion field, then the commutator has to

be replaced with an anti-commutator and the analogous Green’s functions are defined

as [55]

GR(F )(t, ~x) ≡ iθ(t)
〈{
O(t, ~x),O†(0)

}〉
, (2.6a)

GA(F )(t, ~x) ≡ −iθ(−t)
〈{
O(t, ~x),O†(0)

}〉
, (2.6b)

GE(F )(τE , ~x) ≡
〈
TEO(τE , ~x)O†(0)

〉
, (2.6c)

where the O† denotes the hermitian conjugate.

By performing a Fourier transformation one can obtain correlators in momentum
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space, which in the Euclidean and Lorentzian signature are given by [49]

GE
(
ωE ,~k

)
=

∫
dx4

E G
E(τE , ~x) e−iωEτE−i

~k·~x , (2.7a)

GR,A
(
ω,~k

)
=

∫
dx4GR,A(t, ~x) eiωt−i

~k·~x , (2.7b)

where the Green’s functions can involve either bosonic or fermionic operators.

2.1.2 Prescription for Holographic Retarded Green’s Functions

Our aim is to calculate retarded Green’s functions in holographic theories at finite

temperature. The prescription (1.43) is formulated in Euclidean space and thus can

be used to obtain Euclidean correlation functions. Lorentzian time correlators can in

principle be obtained from their Euclidean counterparts by an appropriate analytic

continuation, however as discussed in for example [49] or [51], this procedure is only

possible if the Euclidean correlator is known exactly for all Matsubara frequencies. In

practice the Euclidean correlator is often obtained only in some approximation or only

at some, but not all, Matsubara frequencies. Thus in most cases we prefer a direct

method to a Green’s function in Lorentzian signature, which was formulated in [49]

(see also [50–59]).

Assume that the bulk gravitational theory is described by the Einstein-Hilbert ac-

tion with a negative cosmological constant term. We allow for additional matter content

that can also contribute to the curvature of spacetime, thus the total action is given by

S =

∫
dD+2x

√
−g (R− 2Λ) + Smatter , (2.8)

where Λ = −D(D + 1)/2R2
AdS is the cosmological constant, RAdS is the AdS radius,

which we henceforth set to RAdS = 1, and Smatter denotes the matter contribution to

the action.

As initially proposed in [47], the gravity dual of a thermal state is a black hole in

AdS whose Hawking temperature matches the temperature of the boundary theory.

In our case we assume that there exist a generic planar black hole solution which is

asymptotically AdS and whose metric is given by

ds2 = −r2f(r)dt2 +
dr2

r2f(r)
+ h(r)d~x2 , (2.9)

with r denoting the radial direction and the boundary is located at r → ∞. Fur-

thermore, t denotes time, and xi with i = 1 . . . D are the coordinates of the D spatial

dimensions, thus making (t, ~x) ∈ R1,D the spacetime on which we find the boundary

theory.
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The precise form of the two functions f(r) and h(r) is determined by the additional

matter, yet their near-boundary behaviour is constrained to be

lim
r→∞

f(r)→ 1 , lim
r→∞

h(r)→ r2 , (2.10)

by demanding that the spacetime is asymptotically anti-de Sitter. We also assume that

the geometry has a non-degenerate horizon at r = r0, i.e. f(r0) = 0 with f ′(r0) 6= 0,

so that the corresponding Hawking temperature is given by

4πT = r2
0 f
′(r0) . (2.11)

The simplest solutions of the this type are planar AdS-Schwarzschild black holes with

f(r) = 1−
(r0

r

)D+1
, h(r) = r2 , (2.12)

which in the case of D = 1 becomes the BTZ black hole [61,62], and occur when there

is no additional matter in the system.

The horizon plays a central role in our analysis. Thus it is convenient to switch to

the ingoing Eddington-Finkelstein coordinates, which we now define more generally as

v = t+ r∗ ,
dr∗
dr

=
1

r2f(r)
, (2.13)

with the metric taking the form

ds2 = −r2f(r)dv2 + 2dv dr + h(r)d~x2 . (2.14)

In these coordinates the horizon is a regular surface where the components of the metric

do not diverge.

Let us now review the prescription of Son and Starinets using a bulk scalar field ϕ

and its dual boundary operator O. Assume that the action of the bulk scalar is given

by

Sϕ = −1

2

∫
dD+2x

√
−g
(
gMN∂Mϕ∂Nϕ+m2ϕ2

)
, (2.15)

resulting in equation of motion

∂M (
√
−ggMN∂Nϕ)−m2√−gϕ = 0 . (2.16)

Assume that the backround metric is given by (2.14). Since the metric components

depend only on the variable r, we can consider the plane-wave ansatz ϕ = φ(r)e−iωv+i~k·~x
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which reduces the differential equation to

d

dr

[
h
D
2
(
r2f∂rφ− iωφ

)]
− iωh

D
2 ∂rφ− h

D
2
−1
(
k2 +m2h

)
φ = 0. (2.17)

Next we expand this equation around the horizon. In the ingoing Eddington-

Finkelstein coordinates the horizon is a regular point, so we assume that the series

expansions of f(r) and h(r) around this point have finite radii of convergence, and look

for the solutions that are regular at the horizon and can thus be written as

φ(r) =
∞∑
j=0

φj(r − r0)j , (2.18)

Near the horizon, there exist two power law solutions φ = (r − r0)α with

α1 = 0, α2 =
iω

2πT
. (2.19)

For generic values of ω, only the solution with exponent α1 is regular and is therefore

taken to be the ingoing solution, while the solution with exponent α2 corresponds to

the outgoing solution.20

The prescription [49] states that in order to calculate the retarded Green’s function

only the ingoing solution (which we call φR) needs to be retained while the outgo-

ing solution is set to 0. The chosen solution is then evolved in the radial direction

outwards to the boundary of AdS where it can be expanded into a normalisable and

non-normalisable part

φR = φ(nn)(ω, k)r∆O−D−1 + φ(n)(ω, k)r−∆O + . . . , (2.20)

where ∆O is given in (1.42). The non-normalisable solution is again identified with the

source field, while the normalisable solution is identified with the expectation value of

the dual operator. The retarded Green’s function of the dual operator is then given by

GR(ω, k) ∝ φ(n)(ω, k)

φ(nn)(ω, k)
, (2.21)

up to possible contact terms. The constant prefactor can be obtained from a more

careful analysis of the action near the boundary, but plays no role in this thesis.

The above is reminiscent of linear response theory where upon the introduction of

an external source J(x) of a field ψ(x), the relation to linear order in the interaction is

20The exponent α1 has to be zero, because the horizon is not a special point in the ingoing
Eddington-Finkelstein coordinates. In the coordinate system of (2.9), the two exponents take the
values α± = ± iω

4πT
. The solution with α− is ingoing, while α+ is related to the outgoing solution.
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given in Fourier space by (see for example [63])

δ 〈ψ(ω, k)〉 = −GR(ω, k) J(ω, k) , (2.22)

with the additional minus sign being due to our choice of conventions, and δ 〈ψ(ω, k)〉
denotes a small change in the expectation value of the field evaluated in the equilib-

rium ensemble. In holographic theories, we associate the one-point function with the

normalised bulk solution and the source with the non-normalisable bulk solution, thus

we see that (2.21) and (2.22) are analogous. This is why retarded Green’s functions are

one of the basic quantities of interest in quantum field theories, as they measure how

the system in equilibrium responds to small perturbations.

2.1.3 Motivation for Pole-Skipping

In principle the prescription for calculating the retarded Green’s function is straightfor-

ward. However, evolving the ingoing solution from the horizon to the boundary turns

out to be computationally challenging. While it can be done explicitly in the sim-

plest cases (e.g. the BTZ black hole [49,55,64–66]), typically one has to use numerical

methods to obtain full solutions.

Generically, the retarded Green’s function depends in a complicated way on the

details of the state in the quantum field theory which by the holographic dictionary

means an equally complicated dependence on the full bulk profile of the dual field.

Thus obtaining a complete solution of the bulk equations of motion is paramount to

uncover all the details of the Green’s functions.

Simplifications occur in the low-frequency and low-wavenumber limit, where the

form of the correlator is dictated by near-horizon physics in the bulk and its qualitative

features are independent of the rest of the geometry. For example, the value of the

ratio between the shear viscosity and entropy density is determined only by the horizon

geometry and is independent of the value of the bulk field couplings [67].

Recently it has been observed that certain properties of the correlators away from

the ω = 0, k = 0 point in Fourier space can already be seen in the near horizon

behavior of the solutions [68–75]. At certain finite imaginary values of the frequency

and momentum there is no unique ingoing solution at the horizon. As a consequence,

near these points in Fourier space the holographic retarded Green’s function ceases

to be uniquely defined and takes on a form that explicitly depends on a parameter

determining the direction in which we approach the special point. Such behaviour was

dubbed “pole-skipping” as it occurs where a line of poles intersects a line of zeros of

the Green’s function of the dual boundary operator.
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2.2 Pole Skipping for Scalar Fields

Let us start by analysing pole-skipping for a minimally coupled scalar field with the

action (2.15). We closely follow [72] where these calculations were initially performed.

See that paper and the references therein for more details.

Working in the ingoing Eddington-Finkelstein coordinates, we saw that the equation

of motion (2.17) has two power law solutions at the horizon with the exponents given by

(2.19). For generic values of ω, the solution with the exponent α2 cannot be expanded

in a regular series around the horizon, hence the solution with α1 is the unique ingoing

solution.

However, at the special values of frequency ωn = −2iπTn with n = 1, 2, . . . , the

second exponent becomes α2 = n, and näıvely both solutions seem to be regular at

the horizon. But in fact, the solution with the exponent α1 becomes logarithmically

divergent as the full near-horizon expansion now takes the form

φ(r) = φ0 [1 +A1(r − r0) + . . .+ (r − r0)n log(r − r0) (B0 +B1(r − r0) + . . .)]

+ φn(r − r0)n [1 + C1(r − r0) + . . .] , (2.23)

where φ0 and φn are the free parameters associated with the two solutions near the

horizon, and the coefficients Ai, Bi, and Ci are completely determined in terms of the

scalar field mass and the background metric evaluated at the horizon. Since the ingoing

solution is regular in the ingoing Eddington-Finkelstein coordinates, we are prescribed

to set φ0 = 0 which eliminates the divergent parts. Thus even at such special values

of the frequency, there exists a unique ingoing solution at the horizon, albeit with a

different leading near-horizon behaviour.

However, for certain values of the momentum k, all Bi coefficients vanish, rendering

all solutions regular at the horizon. Therefore, for finely tuned values of ω and k,

there are two independent ingoing solutions. Thus when using the prescription of [49],

selecting the ingoing solution does not sufficiently constrain the solution to yield a

uniquely defined retarded Green’s function.

To see this explicitly, insert the field expansion (2.18) into the equations of motion

(2.17), expand them around the horizon as

S =

∞∑
j=0

Sj(r − r0)j , (2.24)

and solve the resulting system of algebraic equations Sj = 0 order by order for each j.

The first relation imposes a constraint between φ0 and φ1

S0 = (4πT − 2iω)h(r0)φ1 −
(
k2 +m2h(r0) +

iωDh′(r0)

2

)
φ0 = 0, (2.25)
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which, for generic values of k and ω, can be used to determine φ1 in terms of φ0. The

next equation, S1 = 0, relates φ2, φ1 and φ0, which combined with (2.25), determines φ2

as a function of only φ0. This procedure is then repeated indefinitely until all coefficients

are uniquely determined in terms of only φ0, which serves as the undetermined overall

normalisation, or equivalently, the free parameter of the ingoing solution.

If we evaluate (2.25) at ω = ω1 = −2iπT , which is the first bosonic Matsubara

frequency,21 the equation becomes

(
k2 +m2h(r0) + πDTh′(r0)

)
φ0 = 0, (2.26)

which for generic values of k imposes φ0 = 0 while leaving φ1 unconstrained. Higher

order equations Sj = 0 are then used to express all other coefficients φn uniquely in

terms of φ1, which in this case serves as the free parameter of the solution. This result is

consistent with the analysis of the divergences in (2.23), as when ω = ω1 the exponents

(2.19) take the values α1 = 0 and α2 = 1, with the solution associated with the former

being divergent due to the logarithmic terms.

Finally, the equation (2.25) becomes trivially satisfied, leaving φ0 and φ1 uncon-

strained, if the frequency and the wavenumber are tuned to be equal to

ω1 = −2iπT, k2
1 = −m2h(r0)− πDTh′(r0) . (2.27)

Higher order constraints Sj = 0 allow us to express φj , with j = 2, 3, . . ., as a linear

combination of φ0 and φ1, in which case we obtain an explicit ingoing solution with two

independent free parameters. Due to the lack of a unique ingoing solution, the retarded

Green’s function of the operator dual to the scalar field is infinitely multivalued at this

point in Fourier space.

Furthermore, it was shown in [72] that there are infinitely many additional pole-

skipping points located at higher Matsubara frequencies ω = ωn = −2πiTn. To locate

these, we arrange the system of equations Sj = 0 for j = 0, 1, 2, . . . in matrix form

M(ω, k2) · φ ≡


M11 2πT − iω 0 0 . . .

M21 M22 4πT − iω 0 . . .

M31 M32 M33 6πT − iω . . .

. . . . . . . . . . . . . . .



φ0

φ1

φ2

...

 = 0 , (2.28)

where the coefficients are generically of the form Mij(ω, k
2) = iω aij + k2bij + cij , with

aij , bij , and cij determined by the background metric at the horizon and the mass of

21Euclidean Green’s functions are defined at Matsubara frequencies which are real numbers. With
an abuse of language, we refer to the purely imaginary frequencies ωn = −2πin (n ∈ Z+) as Matsubara
frequencies as well.
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the scalar field. Due to the almost-lower triangular form of the matrix M(ω, k2), the

system is easily solved iteratively with all φn expressed in terms of only one parameter,

which is usually taken to be φ0, as we have discussed above.

Such a solution exists only if the frequency is not equal to one of the bosonic Mat-

subara frequencies, in which case exactly one of the elements above the main diagonal

of M vanishes. If we assume that ω = ωn, we obtain a closed set of equations for the

coefficients φ̃ = (φ0, . . . , φn−1), which is of the form

M(n)(ωn, k
2) · φ̃ = 0 , (2.29)

where M(n)(ωn, k
2) is the submatrix of M(ω, k2) consisting of the first n rows and

first n columns. For generic values of k, the matrix M(n)(ωn, k
2) is invertible, setting

φ̃ = 0. Inserting this into (2.28) allows us to solve the remaining system of equations

iteratively with φn as the free parameter.

If the value of k is such that the matrix M(n)(ωn, k
2) is not invertible, then the

regular solution of (2.28) has two free parameters, for example φ0 and φn. This occurs

at the following locations in Fourier space

ωn = −2πiTn, k2 = k2
n, detM(n)(ωn, k

2
n) = 0 , (2.30)

which at each order n, due to the determinant being a polynomial function of k2 with

degree n, gives in general 2n pole-skipping points. Similar to before, at these locations

imposing the ingoing boundary condition at the horizon does not yield a unique value

for the retarded Green’s function.

Near such points in momentum space the correlator takes on the pole-skipping

form [70, 72], given by

GR(ωn + δω, kn + δk) ∝
δω −

(
δω
δk

)
z
δk

δω −
(
δω
δk

)
p
δk

, (2.31)

where (δω/δk)p is the direction at which we obtain a normalizable solution, correspond-

ing to the poles in the boundary Green’s function, while (δω/δk)z denotes the direction

of the non-normalisable solution associated with the slope of the line of zeros of the

correlator. This form shows that generically pole-skipping points are intersections of

lines of zeros and lines of poles of the retarded Green’s function. This is the motiva-

tion behind the name “pole-skipping”, because at such points the expected divergence

coming from the vanishing denominator of (2.31), is cancelled out by a coinciding zero

of the numerator of the correlator [68–71].

There also exist anomalous points [72] which are locations that appear as possible

pole-skipping points from the near-horizon analysis, but the Green’s function near them
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does not take the pole-skipping form (2.31). For the scalar field a location is called

anomalous if, in addition to (2.30), it satisfies [72]

∂k detM(n)(ωn, k
2
n) = 0 , (2.32)

which means that anomalous points correspond to locations of coinciding pole-skipping

points. We discuss the appearance and meaning of such locations in much more detail

in the next chapter when we study pole-skipping for fermionic fields.

2.2.1 Example: BTZ Black Hole

As an illustration of the above concepts, we can analyse the example of a massive

minimally coupled scalar field (with action (2.15)) propagating in the non-rotating

BTZ black hole background with the metric [61,62]

ds2 = −(r2 − r2
0)dt2 +

dr2

(r2 − r2
0)

+ r2dx2 , (2.33)

with 0 ≤ x < 2π and r0 denoting the location of the horizon which is related to the

mass and the temperature of the black hole as

2πT = r0 , 8MGN = r2
0 , (2.34)

where GN is the Newton’s constant.

In this case the retarded correlation function of the dual boundary operator is known

explicitly [49] and can be (up to some constant prefactors) written as [72]

GR(ω, k) ∝
Γ
(

∆
2 + i(k−ω)

4πT

)
Γ
(

∆
2 −

i(k+ω)
4πT

)
Γ
(

1− ∆
2 + i(k−ω)

4πT

)
Γ
(

1− ∆
2 −

i(k+ω)
4πT

) , (2.35)

where we have used the conformal dimension of the dual operator ∆, which is related

to the mass m of the bulk field through m2 = ∆(∆− 2). In the standard quantisation

method the larger root is taken and in the alternative quantisation the smaller root of

the equation is chosen. Importantly, we need to note that (2.35) is valid only if ∆ takes

on a non-integer value. In the special case of integer conformal dimensions additional

care needs to be taken and we discuss such occasions later.

With the exact expression for the retarded Green’s function known, we can explicitly

check the pole-skipping structure of the correlator. This analysis was first performed

in [73] and [72] with our analysis closely following the latter presentation. Following

the systematic procedure described above, the near-horizon analysis of the bulk scalar

equations of motion on (2.33) (using the ingoing Eddington-Finkelstein coordinates)
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shows that the determinant of the (sub)matrix M(n)(ωn, k
2) (evaluated at the n-th

bosonic Matsubara frequency ωn = −2πinT ) is given by [72]

detM(n)(ωn, k
2) = Cn

n∏
q1=1

(k2 − k2
n,q1) , k2

n,q1 = −r2
0(n− 2q1 + ∆)2 , (2.36)

with Cn denoting some constant numbers and q1 ∈ {1, . . . , n}. This means that the

bulk prediction for locations of pole-skipping points is given by

ω = ωn = −2πinT , kn,q1 = ±2πiT (n− 2q1 + ∆) , (2.37)

with n = 1, 2, . . . and q1 ∈ {1, . . . , n}.
Let us now compare these results with the analysis of the exact correlator (2.35).

The Green’s function has a pole whenever an argument of a gamma function in the

numerator equals a non-positive integer and a zero whenever an argument of a gamma

function in the denominator is a non-positive integer. One thus finds that there are

two families of poles, given by

ωpq2(k) = ±k − 2πiT (∆ + 2q2) , (2.38)

and similarly two sets of lines of zeros parametrised by

ωzq2(k) = ±k − 2πiT (2−∆ + 2q2) , (2.39)

where in both cases q2 = 0, 1, 2, . . .. As the name suggests, we expect pole-skipping

whenever a pole and a zero of the correlator coincide which in this case occurs at the

intersections between the lines given by equations (2.38) and (2.39). These locations

are

ω = ωn = −2πiTn , kn,q2 = ±2πiT (n− 2q2 + ∆) , (2.40)

with n = 1, 2, . . . and q2 ∈ {1, 2, . . . n}. Comparing these locations with the near-horizon

prediction (2.37), we observe that the two locations match perfectly (see figure 4 for a

graphical representation of these results).

Should the conformal dimension of the dual field be an integer then the correlator
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Figure 4: Plots of the locations of pole-skipping points for the scalar Green’s function
in the BTZ black hole background with ∆ = 3/2. The left plot shows only the locations
of the pole-skipping points as predicted from the near horizon analysis. The gray points
correspond to the the momentum values with a positive sign in and the hollow points
correspond to the momenta with a negative sign as written (2.37). The right plot has
superimposed the lines of zeros (red, dashed) from (2.39) and lines of poles (blue) from
(2.38). The near-horizon analysis predicts the location of the intersections of lines of
zeros and lines of poles.

takes on a slightly different form, given by [72,73]22

GR(ω, k) ∝
Γ
(

∆
2 + i(k−ω)

4πT

)
Γ
(

∆
2 −

i(k+ω)
4πT

)
Γ
(

1− ∆
2 + i(k−ω)

4πT

)
Γ
(

1− ∆
2 −

i(k+ω)
4πT

)×
[
ψ

(
∆

2
+
i(k − ω)

4πT

)
+ ψ

(
∆

2
− i(k + ω)

4πT

)]
, (2.41)

with ψ(z) ≡ Γ′(z)/Γ(z) denoting the digamma function. This change of the correlator

has a signature in the near-horizon analysis in the form of anomalous pole-skipping

locations. Here we will merely state the results, while the detailed analysis can be

found in Appendix C of [72]. Let us limit ourselves to the case where ∆ > 1 (and still

an integer).23 At frequencies ωn = −2πinT with n < ∆ the pole-skipping points are

located at the standard positions (2.37) whereas for n ≥ ∆ the pole-skipping points

can be found at [72]

ωn = −2πinT , kn,q = ±2πiT (n− 2q + ∆) , (2.42)

where n = 1, 2, . . ., but now q ∈ {1, . . .min(n,∆− 1)}.
Let us now analyse the exact form of the correlator (2.41). Since ∆ is now an

integer, the ratio of gamma functions can be pairwise replaced by a product of a finite

22See Appendix D of [72] for the explicit derivation of this form for the correlator.
23The case for ∆ = 1 is special as there are no non-anomalous pole-skipping points [72,73], so we do

not consider it here.
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number of simple factors, for example

Γ
(

∆
2 + i(k−ω)

4πT

)
Γ
(

1− ∆
2 + i(k−ω)

4πT

) =

(
1− ∆

2
+
i(k − ω)

4πT

)(
2− ∆

2
+
i(k − ω)

4πT

)
· · ·
(

∆

2
− 1 +

i(k − ω)

4πT

)
,

(2.43)

where the right hand side contains ∆ − 1 factors. An analogous expression can be

obtained for the other pair of gamma functions.

We see that these products contain the lines of zeros of the correlator, which are

located at

ωzq1 = ±k − 2πiT (2−∆ + 2q1) , (2.44)

with q1 ∈ {0, 1, . . . ,∆ − 2}. The poles of the correlator are contained within the

digamma functions – the Green’s function diverges whenever an argument of either

function is a non-positive integer. This yields two infinite families of lines of poles with

dispersion relations

ωpq2 = ±k − 2πiT (∆ + 2q2) , (2.45)

with q2 ∈ {0, 1, 2, . . .}. Comparing the lines of zeros (2.44) with the lines of poles (2.45)

we find intersections at

ω = ωn = −2πinT , kn,q2 = ±2πiT (n− 2q2 + ∆) , (2.46)

with n = 1, 2, . . . and q ∈ {1, . . .min(n,∆−1)}. Again these locations coincide precisely

with the predictions from the near-horizon analysis (2.42) (see figure 5 for an example

of pole-skipping points at integer ∆).

2.3 Pole Skipping for Spin-2 Fields

Let us briefly review pole-skipping in the energy density correlator where this phe-

nomenon was initially observed [68–71]. We closely follow [70], assume that the back-

ground metric is given by (2.14), and let the metric perturbations take the plane wave

form δgMNe
−iωv+i~k·~x, with a similar ansatz for any matter fields.

The equations of motion for such perturbations are the linearised Einstein’s equa-

tions which we separate into two parts; let Evv = 0 denote the vv component while

X = 0 schematically represents all other equations. Expand the perturbations in a
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Figure 5: Plots of the locations of pole-skipping points for the scalar Green’s function
in the BTZ black hole background with ∆ = 2. The left plot shows only the locations of
the pole-skipping points as predicted from the near horizon analysis, taking anomalous
pole-skipping points into account. The gray points correspond to the the momentum
values with a positive sign in and the hollow points correspond to the momenta with
a negative sign as written (2.42). The right plot has superimposed the lines of zeros
(red, dashed) from (2.44) and lines of poles (blue) from (2.45). The near-horizon analysis
predicts the location of the intersections of lines of zeros and lines of poles.

series around the horizon as

δgMN =
∞∑
k=0

δg
(k)
MN (r − r0)k , (2.47)

with δg
(k)
MN being constant expansion coefficients. Evaluating the equations of motion

at the horizon, X = 0 introduce non-trivial relations between different perturbation

components, while Evv = 0 reads [70]24

(
−iDωh

′(r0)

2
+ k2

)
δg(0)
vv − i (2πT + iω)

[
ω, δg

(0)

xixi
+ 2k δg(0)

vx

]
= 0 . (2.48)

If ω = +2πiT while k is generic, this equation implies that δg
(0)
vv vanishes. If in addition

k2 = −DπTh′(r0), then (2.48) is trivially satisfied and does not impose any constraints.

In this case the ingoing condition at the horizon again does not restrict the solution

enough to uniquely determine the Green’s function.

Thus for the energy density correlator, unlike for the scalar field, the first pole-

skipping point is located in the upper complex plane for the frequency at

ω = +iλL , k = ik0 , (2.49)

24In (2.48) we omitted a term on the right hand side coming from the variation of the matter fields.
However, in [70] it was shown that this term vanishes identically at the horizon for a class of theories
called the Einstein-Maxwell-Dilaton-Axion gravity (see Appendix A of that paper).
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with

λL = 2πT , k2
0 =

λ2
L

v2
B

= πDTh′(r0) , (2.50)

where vB denotes the butterfly velocity and λL the Lyapunov exponent of holographic

theories [76]. So it seems that this pole-skipping point contains information about

the chaotic properties of the theory, which is further substantiated by inserting (2.49)

into the plane wave ansatz. Assuming isotropic spreading in the spatial directions with

momentum k0, the resulting profile eλL(t−|x|/vB) shows the exponential growth typically

observed in the out-of-time ordered correlation functions (OTOCs) of chaotic systems

[76–80]. But is this relation a generic feature of pole-skipping or only a peculiarity?

The point (2.49) seems to be robustly related to chaos. For example, in [70] they

studied a specific axion model with a parameter that controls the momentum dissipation

in the boundary theory [81, 82]. The pole-skipping point (2.49) remained a reliable

prediction of chaos, despite the physics being fundamentally distinct for different values

of the parameter which was confirmed both analytically and numerically. Similar results

hold for a pure gravity system on AdS5 [68]. Furthermore, [71] showed that this pole-

skipping location correctly predicts the chaotic properties of a system with large N and

t’Hooft coupling corrections.

A possible explanation was provided in [69], where they proposed that pole-skipping

is a generic feature of holographic systems due to the dual role of an effective “chaotic”

mode which is responsible for both the chaotic properties and energy transport. In

addition, a shift symmetry prevents the 2-point function to exhibit generic chaotic

behaviour, while also predicting the exponential growth of the OTOC.25 This provides

an explicit mechanism to explain the observation that microscopic chaotic behaviour

and the hydrodynamics of holographic systems seem to be intimately connected.26

On the contrary, the relation to chaos is not clear for other pole-skipping points. For

example, it was shown in [72] that the energy density correlator, in addition to (2.49),

contains an infinite tower of pole-skipping points at negative imaginary values of the

frequency. Also, the momentum values at these locations depend on the background

geometry in a complicated manner and seem to have no clear connection to the butterfly

velocity. Furthermore, other components of the energy-momentum tensor have pole-

skipping points only at negative imaginary values of the frequency with the momentum

values showing no direct relation to chaos.

Similarly, no scalar pole-skipping point is located on the upper complex plane of

the frequency while the momentum also explicitly depends on the mass of the field, as

25A similar effective approach was taken in [83] where they studied two-dimensional CFTs at large
central charge and also found pole-skipping

26See [84–89] for some concrete results, where for example the butterfly velocity appears in hydro-
dynamic quantities such as diffusion constants.
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can be seen even from the simplest expression (2.27), thus showing no clear connection

to the butterfly velocity in general. But notice that at m = 0, the momentum location

is the same as for the energy density correlator (2.50).

To summarize, the relation between chaos and pole-skipping seems to be somewhat

clear only in the case of the special pole-skipping point in the energy density correlator

while being obscured in the case of other correlators. Resolving this relation, together

with the physical interpretation of these results, is the central problem of pole-skipping.

49



Chapter 3

Pole Skipping for Fermion fields

In this chapter we generalise the results of [72] by studying the retarded Green’s func-

tions of fermionic fields. We present a systematic procedure to extract the pole-skipping

points which are now located at fermionic Matsubara frequencies, and show that near

these locations the correlator takes on the pole-skipping form. Explicit examples are

considered and complete agreement is found where the Green’s function is known.

The plan of the chapter is as follows. We begin by defining a minimally coupled

fermion field on an anti-de Sitter background and review the prescription to calculate

the retarded Green’s function for fermion fields in holography [55]. Then in section 3.3

we look at pole-skipping in 3-dimensional spacetimes while the generalization to higher

dimensions is given in section 3.4. In section 3.5 we examine the form of the Green’s

function near a pole-skipping point in momentum space and discuss the appearance of

anomalous locations. In section 3.6 we consider some explicit examples, such as the

BTZ black hole, and compare the results with the known Green’s function. We also

examine the special case of boundary operators with half-integer conformal dimensions.

We conclude with a discussion where we also comment on pole-skipping for spin-3/2

fields.

Details of some of the calculations omitted in the main text are collected in Ap-

pendix B, and we examine the exact Green’s function for the BTZ black hole in Ap-

pendix C. There we uncover the equivalence of the retarded and advanced Green’s

function at Matsubara frequencies and further consider the special case of a spinor

with half-integer conformal dimension.

The original work presented in this chapter is published in [2]. The analysis of

pole-skipping for spin-3/2 fields will be presented in future work [90].
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3.1 Motivation

As with scalar fields, the exact Green’s functions for fermion fields are hard to obtain.

An example where an explicit expression is known is the minimally coupled fermion

field with mass m propagating in a BTZ black hole background [55]27

GR(ω, k) = −i
Γ
(

1
2 −m

)
Γ
(
m
2 + 1

4 + i(k−ω)
4πT

)
Γ
(
m
2 + 3

4 −
i(k+ω)

4πT

)
Γ
(

1
2 +m

)
Γ
(
−m

2 + 3
4 + i(k−ω)

4πT

)
Γ
(
−m

2 + 1
4 −

i(k+ω)
4πT

) , (3.1)

It was observed in [72] (see also section 3.6) that this correlator contains two lines of

zeros and two lines of poles which intersect at

ωn = −iπT (2n+ 1), kn,q1 = 2πiT (m+ n− 2q1),

kn,q2 = −2πiT (m+ n+ 1− 2q2), (3.2)

for any n ∈ {0, 1, . . .} and with q1 ∈ {0, . . . , n}, q2 ∈ {1, . . . , n}. This example shows

explicitly that pole-skipping exists even for fermions. In this chapter we provide the

gravitational origin of this result and show that such behaviour is not limited to the BTZ

black hole, but appears generically in holographic theories. As in the above example,

pole-skipping for fermions occurs at fermionic Matsubara frequencies28

ω = ωFn := −2πiT

(
n+

1

2

)
, n = 0, 1, 2, . . . , (3.3)

which nicely complements the fact that scalar and energy-momentum pole-skipping

occur at bosonic Matsubara frequencies ω = ωBn = −2πiT ñ, with ñ = 1, 2, 3, . . ..

3.2 Minimally Coupled Fermion in the Bulk

Assume that the action of the fermion field with mass m is given by [91,92]

Sf =

∫
dD+2x

√
−g iψ

(
ΓM∇M −m

)
ψ + Sbdy , (3.4)

which we add to the action (2.8). We included a boundary term Sbdy that does not

alter the equations of motion, but is important for a well defined variational problem.

The fermion conjugate is defined as ψ = ψ†Γ0, and the covariant derivative acting on

27As we discuss in more detail in Appendix C, the result (3.1) is correct only if the mass of the
fermion is not a half-integer number (recall that we have set the AdS radius RAdS to 1).

28As in the previous chapter, we refer to the purely imaginary ωFn frequencies as fermionic Matsubara
frequencies.
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fermions is defined by

∇M = ∂M +
1

4
(ωab)M Γab , (3.5)

with ωM denoting the spin connection one-form and Γab is the anti-symmetrised product

of flat space gamma matrices, with flat space indices denoted by lower-case Latin

letters.29 The equation of motion for the spinor ψ is the Dirac equation

(
ΓM∇M −m

)
ψ = 0 . (3.6)

A spinor in D + 2 dimensions has

NF = 2b
D
2
c+1 (3.7)

components, where bqc denotes the highest integer that is less than or equal to q,

meaning that the Dirac equation (3.6) is a system of NF coupled first order differential

equations for the components of the spinor. We do not impose any additional con-

straints on the spinor, such as the Majorana or Weyl conditions, so that in general its

components are complex numbers. Our analysis is independent of whether the degrees

of freedom are real or complex, hence we refer to the NF components of the fermion as

its degrees of freedom.

To calculate the retarded Green’s function we follow the prescription of [55]. Assume

that the metric takes the form (2.9) for which we can choose a “diagonal” orthonormal

frame with components EaM . We then use the radial tangent space direction gamma

matrix Γr to decompose the spinor in terms of

ψ = ψ+ + ψ− , (3.8)

ψ± ≡ P± ψ , P± ≡
1

2
(1± Γr) ,

so that Γr ψ± = ±ψ±, and each of ψ± contains exactly half of the total degrees of

freedom.

Since the metric components depend only on the r coordinate, we make the plane

wave ansatz ψ = ψ(r)e−iωt+i
~k·~x and solve the Dirac equation in momentum space. We

are advised to pick the ingoing solution at the horizon, which, for generic values of the

frequency and momentum, halves the number of the degrees of freedom of the spinor.

The ingoing solution is then evolved to the boundary of AdS (r →∞) where its leading

29 A general flat space tensor has lower-case Latin letter indices, but particular values for the indices
are underlined, for example v, r, or x. This is to distinguish them from curved space indices where
a generic tensor has upper-case Latin letters, but a particular value is lower-case letter that is not
underlined, for example u, v, or x. More details on the conventions used, such as the Clifford algebra,
is presented in Appendix A.
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behaviour is given by

ψ+ = ζ+(k)r−
D+1

2
+m + χ+(k)r−

D+1
2
−m−1 , (3.9a)

ψ− = ζ−(k)r−
D+1

2
+m−1 + χ−(k)r−

D+1
2
−m , (3.9b)

where ζ±(k) and χ±(k) are spinors with a definite chirality with respect to Γr and by

inserting (3.9) into the Dirac equation we find that it relates the spinor χ+(k) with

χ−(k), and ζ+(k) with ζ−(k).

Assume that m ≥ 0. The dominant, non-normalisable term in the expansion is

the term multiplied by ζ+(k) which thus is identified with the source in the boundary

field theory. According to [55], the response is given by χ−(k), the normalisable term,

meaning that the conformal dimension ∆ of the dual operator is30

∆ =
D + 1

2
+m. (3.10)

The retarded Green’s function is given by

GR(k) ∝ iR(k) , (3.11)

where R(k) is a matrix in spinor space that relates the spinors ζ+(k) and χ−(k) after

imposing the ingoing condition at the horizon

χ−(k) = R(k) ζ+(k) . (3.12)

3.3 Pole-Skipping in Asymptotically AdS3 Spaces

We begin with a three-dimensional (D = 1) bulk theory and a corresponding two-

dimensional dual in which case both bulk and boundary spinors have two components.

Let the background metric be given by

ds2 = −r2f(r)dv2 + 2dv dr + h(r)dx2 (3.13)

where f(r) and h(r) satisfy the properties described in section 2.1.2. Choose the or-

thonormal frame

Ev =
1 + f(r)

2
rdv − dr

r
, Er =

1− f(r)

2
rdv +

dr

r
, Ex =

√
h(r) dx , (3.14)

30There are some subtleties when the mass is in the ranges 0 ≤ m ≤ 1
2

or m ≤ 0 and they are
considered in [55], but conceptually the prescription does not change. In these cases the relation
between the mass and the conformal dimension can be different due to the alternative quantisation.
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for which

ds2 = ηabE
aEb , ηab = diag(−1, 1, 1) (3.15)

We choose this frame because neither the vielbein nor any its derivatives diverge at the

horizon (assuming
√
h(r) is regular) and we avoid any square roots of f(r). The spin

connections are given by

ωvr =
dr

r
− 2rf(r) + r2f ′(r)

2
dv,

ωvx =
r h′(r) (1− f(r))

4
√
h(r)

dx,

ωrx = −r h
′(r) (1 + f(r))

4
√
h(r)

dx (3.16)

with all other components, which are not related by symmetry to the ones above,

vanishing. The Dirac equation is then[(
r(1 + f(r))

2
Γr − r(1− f(r))

2
Γv
)
∂r +

Γr + Γv

r
∂v +

Γx√
h(r)

∂x

+
1 + f(r) + rf ′(r)

4
Γr − 1− f(r)− rf ′(r)

4
Γv − r (1− f(r))h′(r)

8h(r)
Γv

+
r (1 + f(r))h′(r)

8h(r)
Γr −m

]
ψ(r, v, x) = 0 . (3.17)

Since the metric is independent of the coordinates v and x, we introduce the plane wave

ansatz ψ(r, v, x) = ψ(r)e−iωv+ikx, and furthermore we use the decomposition (3.8). In

this case, ψ± are two-component objects, but each contain only one independent degree

of freedom. After some algebra one can write the two independent equations as

S+ ≡
[
r2f ′(r)

4
+
rf(r)

4

(
2 +

r h′(r)

h(r)

)
− mr(1 + f(r))

2
− ikr(1− f(r))

2
√
h(r)

− iω
]
ψ+

+ Γv
[
r2f ′(r)

4
+
mr(1− f(r))

2
+
ikr(1 + f(r))

2
√
h(r)

− iω
]
ψ− + r2f(r) ∂rψ+ = 0 ,

(3.18a)

S− ≡
[
r2f ′(r)

4
+
rf(r)

4

(
2 +

r h′(r)

h(r)

)
+
mr(1 + f(r))

2
+
ikr(1− f(r))

2
√
h(r)

− iω
]
ψ−

− Γv
[
r2f ′(r)

4
− mr(1− f(r))

2
− ikr(1 + f(r))

2
√
h(r)

− iω
]
ψ+ + r2f(r) ∂rψ− = 0 .

(3.18b)

We have used the fact that the set of matrices (I,Γv,Γx,Γr) forms a complete basis for
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all 2×2 matrices, hence any product of two or more gamma matrices can be written as

a linear combination of the elements from this set, and we have chosen a representation

such that Γvx = Γr.

It is straightforward to transform (3.18) into two decoupled second order differential

equations for ψ±. The leading behaviour at the horizon is found by using an ansatz

ψ± ∼ (r − r0)αξ± , (3.19)

where ξ± are constant spinors satisfying Γr ξ± = ±ξ±, and the exponents are given by

α1 = 0 , α2 = −1

2
+

iω

2πT
. (3.20)

For generic values of the frequency, the solution with the exponent α1 represents the

ingoing solution while the exponent α2 corresponds to the outgoing solution. If ω is

equal to a fermionic Matsubara frequency given by

ω = ωn ≡ −2πiT

(
n+

1

2

)
, n = 1, 2, 3, . . . , (3.21)

then α2 = n and both solutions would seem to be regular at the horizon. However,

similar to the scalar field there is still a unique ingoing solution due to logarithmic

divergences in the series expansion of the solution with exponent α1. But at particular

values of the momentum, these logarithmic divergences vanish in which case we indeed

find two independent ingoing solutions. These values of ω and k are the pole-skipping

points for fermions.

3.3.1 Pole-Skipping at the Lowest Matsubara Frequency

The exponents (3.20) suggest that there is no pole-skipping at the lowest fermionic

Matsubara frequency ω0 = −πiT . However, this result is an artefact of working with

second order differential equations. Pole-skipping does occur at such a frequency and

is a consequence of the interplay between different components of the spinor.

Let us assume that the spinors admit a series expansion around the horizon

ψ+ =

∞∑
l=0

ψ
(l)
+ (r − r0)l , ψ− =

∞∑
l=0

ψ
(l)
− (r − r0)l, (3.22)

where ψ
(l)
± are constant spinors with definite Γr eigenvalues. We insert these into (3.18)

and expand as

S+ =

∞∑
l=0

S(l)
+ (r − r0)l = 0 , S− =

∞∑
l=0

S(l)
− (r − r0)l = 0 , (3.23)
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so that solving the equations of motion is translated into solving a system of algebraic

equations S(l)
± = 0 for the variables ψ

(l)
± .

The equations (3.23) can be solved in succession and the first instance of pole-

skipping is already visible by evaluating the equations at the horizon. We obtain

S(0)
+ = Γv

[
r2

0f
′(r0)

4
+
mr0

2
+

ikr0

2
√
h(r0)

− iω
]
ψ

(0)
−

+

[
r2

0f
′(r0)

4
− mr0

2
− ikr0

2
√
h(r0)

− iω
]
ψ

(0)
+ = 0 , (3.24a)

S(0)
− = −Γv

[
r2

0f
′(r0)

4
− mr0

2
− ikr0

2
√
h(r0)

− iω
]
ψ

(0)
+

+

[
r2

0f
′(r0)

4
+
mr0

2
+

ikr0

2
√
h(r0)

− iω
]
ψ

(0)
− = 0 , (3.24b)

and can immediately notice that S(0)
+ = Γv S(0)

− . Thus (3.24) provide only a single

constraint on the coefficients ψ
(0)
± , fixing exactly half of the free parameters.

The first instance of pole-skipping occurs when these equations are satisfied for any

values of ψ
(0)
± which happens exactly at the zeroth fermionic Matsubara frequency and

if the momentum is given by

ω0 = −πiT , k = im
√
h(r0) , (3.25)

as then the terms in the square brackets in (3.24) vanish.

Other constraint equations S(l)
± = 0 are then used to relate higher order expansion

coefficients ψ
(n)
± , with n = 1, 2, . . ., to a linear combination of ψ

(0)
+ and ψ

(0)
− . In this way

one constructs a regular solution whose value at the horizon is completely undetermined.

In other words, there exist two independent regular solutions with the same behaviour

at the horizon, one parametrised by ψ
(0)
+ and the other by ψ

(0)
− , and as a consequence,

at (3.25) the retarded Green’s function is not uniquely defined.31

Logarithmic Divergences

If one evaluates the equations of motion at ω = ω0, but keeps a generic value of the

momentum, then logarithmic terms appear in the near horizon expansion and make

one of the solutions divergent. The leading order behaviour of the spinors in that case

31Note that the solution parametrized by ψ
(0)
+ , for example, is not a solution with a well defined

eigenvalue under Γr everywhere in the bulk. While setting ψ
(0)
− = 0 does mean that solution has

a definite chirality at the horizon, all other coefficients ψ
(n)
± , with n = 1, 2, . . ., are generically non-

vanishing. The same analysis holds for ψ
(0)
− .
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takes the form

ψ+ = ψ
(0)
+ + χ

(0)
+ log(r − r0) + . . . , (3.26a)

ψ− = ψ
(0)
− + χ

(0)
− log(r − r0) + . . . , (3.26b)

where ψ
(0)
± and χ

(0)
± are constant spinors of definite chirality, and the dots represent

subleading terms that contain no free parameters. Similarly, the expansions of the

equations of motion (3.18) near the horizon to leading order become

S+ = Ŝ(0)
+ + S̃(0)

+ log(r − r0) + . . . = 0 , (3.27a)

S− = Ŝ(0)
− + S̃(0)

− log(r − r0) + . . . = 0 , (3.27b)

and can be solved iteratively. One finds that the leading order terms yield

Ŝ(0)
+ = − r0

2
√
h(r0)

(
ik +m

√
h(r0)

)(
ψ

(0)
+ − Γv ψ

(0)
−

)
+ r2

0f
′(r0)χ

(0)
+ = 0 , (3.28a)

Ŝ(0)
− =

r0

2
√
h(r0)

(
ik +m

√
h(r0)

)(
ψ

(0)
− + Γv ψ

(0)
+

)
+ r2

0f
′(r0)χ

(0)
− = 0 , (3.28b)

S̃(0)
+ = Γv S̃(0)

− = − r0

2
√
h(r0)

(
ik +m

√
h(r0)

)(
χ

(0)
+ − Γv χ

(0)
−

)
= 0 . (3.28c)

The last equation is solved by χ
(0)
+ = Γv χ

(0)
− , which can be inserted into (3.28a) and

one notices that in this case the remaining two equations are related by Ŝ(0)
+ = Γv Ŝ(0)

− .

Thus at leading order there are only two independent equations in (3.27), the solutions

of which have generically χ
(0)
± 6= 0. But when we impose the ingoing condition at the

horizon, we pick the solution for which these coefficients vanish. So for a general value

of k, we find a unique ingoing solution even at this Matsubara frequency.

If we evaluate the equations (3.28) at (3.25), then (3.28c) is automatically satisfied,

but the remaining two equations become independent and naturally impose χ
(0)
+ =

χ
(0)
− = 0 while leaving ψ

(0)
± undetermined, thus explicitly showing that at the pole-

skipping location the logarithmic terms vanish and the two independent solutions are

both regular at the horizon.

3.3.2 Pole-Skipping at Higher Matsubara Frequencies

There are two equivalent ways to locate the pole-skipping points at higher Matsubara

frequencies. The first method uses the second order differential equations for half of

the components, which is the analogue of the approach taken when analysing the scalar

field, while the second technique bypasses the computational difficulties of obtaining

second order equations by working directly with the Dirac equation and is the natural

extension of the procedure used to identify the lowest pole-skipping point.
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Using the Second Order Differential Equations

The Dirac equations (3.18) can be transformed into two decoupled second order dif-

ferential equations for the spinors ψ±. Since the following procedure is independent of

whether we work with the positive or negative chirality component, we can choose to

work with ψ+, as once this spinor is known the Dirac equations completely determine

ψ−.

We begin by inserting the near-horizon expansion of ψ+, given in (3.22), into the

second order differential equation governing its radial evolution, denoted as Q+ = 0,

which in turn can be expanded in a series as

Q+ =
∞∑
l=0

Q(l)
+ (r − r0)l = 0 . (3.29)

The equation of motion is now solved order by order through Q(l)
+ = 0 which determine

the expansion coefficients of ψ+. The first equation reads

Q(0)
+ = (3πT − iω)ψ

(1)
+ +M(00)

+ (ω, k)ψ
(0)
+ = 0 , (3.30)

where M(00)
+ (ω, k) is a complicated function32 of ω and k, whose explicit form will

not be presented. For generic values of ω and k, this equation relates ψ
(1)
+ and ψ

(0)
+ .

Furthermore, using the higher order equations Q(l)
+ = 0, one can express all other

field expansion coefficients in terms of only ψ
(0)
+ , and in this way explicitly construct a

regular solution which is unique up to an overall spinor.

This procedure gets slightly altered if we evaluate the equations at the first fermionic

Matsubara frequency

ω1 = −3πiT , (3.31)

as in this case the prefactor of ψ
(1)
+ in (3.30) vanishes, setting ψ

(0)
+ to zero for generic

values of k. However, a regular solution can still be constructed using ψ
(1)
+ as a free

parameter, with the leading near-horizon behaviour of such a solution being ψ+ ∼
(r − r0).

If in addition to ω = ω1, the momentum k is such that

M(00)
+ (ω1, k) = 0 , (3.32)

then the equation (3.30) is automatically satisfied and both ψ
(0)
+ and ψ

(1)
+ remain un-

constrained. Iteratively solving the constraint equations in this case yields a regular

32It should be understood that all coefficients appearing in equations, such as (3.30), are proportional
to the identity matrix in spinor space, unless explicitly stated otherwise.
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solution with two free parameters corresponding to different near-horizon behaviours.

The coefficient ψ
(0)
+ is related to a solution which is constant and finite at the horizon,

while ψ
(1)
+ corresponds to a solution that vanishes with a first order zero.

Because of multiple regular solutions at these points in momentum space, the asso-

ciated Green’s function is not unique and one predicts pole-skipping. One should note

that M(00)
+ (ω1, k) is a third degree polynomial in k, hence in general one expects as

many pole-skipping points at ω = ω1.

In order to locate the pole-skipping points at the second Matsubara frequency,

consider the next constraint from (3.29) which reads

Q(1)
+ = (5πT − iω)ψ

(2)
+ +M(11)

+ (ω, k)ψ
(1)
+ +M(10)

+ (ω, k)ψ
(0)
+ = 0 , (3.33)

whereM(11)
+ andM(10)

+ are complicated functions of ω and k, which we will not present

explicitly. The coefficient in front of ψ
(2)
+ vanishes at ω = ω2 = −5πiT , in which case

the equations Q(0)
+ = 0 and Q(1)

+ = 0 can be written in matrix form as(
Q(0)

+

Q(1)
+

)
=M(2)

+ (ω2, k)

(
ψ

(0)
+

ψ
(1)
+

)
≡

(
M(00)

+ (ω2, k) −2πT

M(10)
+ (ω2, k) M(11)

+ (ω2, k)

)(
ψ

(0)
+

ψ
(1)
+

)
= 0. (3.34)

Pole-skipping is predicted when the matrix M(2)
+ (ω2, k) is not invertible as then the

resulting regular solution involves two free parameters: ψ
(2)
+ and for example ψ

(0)
+ .

Thus the next pole-skipping points are found for the following values of momentum

and frequency

ω = ω2 , k = k2 , detM(2)
+ (ω2, k2) = 0 . (3.35)

This procedure is easily generalised to higher frequency locations. At order (n−1),

the constraint equation from (3.29) is schematically written as

Q(n−1)
+ = ((2n+ 1)πT − iω)ψ

(n)
+ +M(n−1,n−1)

+ ψ
(n−1)
+ + . . .+M(n−1,0)

+ ψ
(0)
+ = 0 .

(3.36)

Generalising the procedure from above, one finds that the pole-skipping points at the

n-th fermionic Matsubara frequency is located at

ω = ωn = −2πiT

(
n+

1

2

)
, k = kn , detM(n)

+ (ωn, k2) = 0 , (3.37)

where detM(n)
+ (ωn, k) is a (2n + 1)-degree polynomial in k, predicting (2n + 1) pole-

skipping locations at this frequency. The matrix used in the determinant is obtained

by evaluating the first n constraint equations of (3.29) at ω = ωn, and rewriting them
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in matrix form. The matrix M(n)
+ (ω, k), before we insert any particular value of the

frequency, is thus given by

M(n)
+ (ω, k) ≡



M(00)
+ (ω, k) 3πT − iω 0 · · · · · · 0

M(10)
+ (ω, k) M(11)

+ (ω, k) 5πT − iω 0 · · · 0
...

...
...

. . .
. . .

...

0

(2n− 1)πT − iω
M(n−1,0)

+ (ω, k) · · · · · · · · · · · · M(n−1,n−1)
+ (ω, k)


(3.38)

Aside from making the choice Γvx = Γr, we have not used a particular representation

of the gamma matrices, thus ψ+, and therefore all expansion coefficients ψ
(k)
+ , are two-

component objects. Similarly all elements of (3.38) are in principle 2 × 2 matrices,

however they are all proportional to the identity matrix in spinor space, meaning that

the determinant (3.37) can be calculated as if the matrix elements were scalars.

Using the First-Order Differential Equations

One can also obtain the pole-skipping locations by analysing higher order constraints

coming from the near-horizon expansions of the Dirac equations (3.23). For l = 1, these

can be written in a matrix form as(
S(1)

+

S(1)
−

)
= M̃(11)(ω, k)

(
ψ

(1)
+

ψ
(1)
−

)
+ M̃(10)(k)

(
ψ

(0)
+

ψ
(0)
−

)
= 0 , (3.39)

where M̃(j,k) are matrices whose elements are proportional either to the identity matrix

or to Γv, and thus all commute with each other. For example

M̃(11) =

 −iω − mr0
2 −

ik r0√
h(r0)

+ 5πT,

(
−iω + mr0

2 + ik r0√
h(r0)

+ πT

)
Γv

−
(
−iω − mr0

2 −
ik r0√
h(r0)

+ πT

)
Γv , −iω + mr0

2 + ik r0√
h(r0)

+ 5πT

 ,

(3.40)

and it is worth noting that M̃(10), whose form can be seen explicitly in Appendix B,

depends only on k. For generic values of ω and k, the equation (3.39) is used to

completely determine ψ
(1)
± in terms of the zeroth order spinor coefficients. However, if

(3.40) is singular, then these equations do not provide two independent constraints on

ψ
(1)
+ and ψ

(1)
− . One finds that

detM̃(11) = 8πT (3πT − iω) , (3.41)
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which vanishes at ω = ω1 = −3πiT , in which case only a particular linear combination

of ψ
(1)
+ and ψ

(1)
− is constrained by the values of ψ

(0)
± , and we find that it is given by

ψ(1)
c ≡ ψ

(1)
+ − Γv ψ

(1)
− . (3.42)

Combining the equations (3.24) and (3.39), and evaluating them at ω = ω1, yields

a system of three independent equations which can be schematically written as (see

Appendix B for the explicit form of the elements)S
(0)
+

S(1)
+

S(1)
−

 = M̃1(ω1, k)

ψ
(0)
+

ψ
(0)
−

ψ
(1)
c

 ≡
M̃

(00)
++ M̃(00)

+− 0

M̃(10)
++ M̃(10)

+− M̃(11)
+

M̃(10)
−+ M̃(10)

−− M̃(11)
−


ψ

(0)
+

ψ
(0)
−

ψ
(1)
c

 = 0 . (3.43)

At generic values of k, the matrix M̃1(ω1, k) is invertible and thus the above equation

sets all three spinor coefficients to zero. As then ψ
(0)
+ = ψ

(0)
− = 0, the leading behaviour

of the solution at the horizon becomes ψ ∼ (r− r0). Furthermore ψ
(1)
c = 0 implies that

ψ
(1)
+ = Γv ψ

(1)
− , (3.44)

so, for example, ψ
(1)
+ can be taken as the free parameter of the solution which is again

constructed by considering higher order constraint equations.

One obtains two independent solutions if the values of k are such that the matrix

M̃1(ω1, k) is not invertible, or equivalently if

detM̃1(ω1, k) = 0 . (3.45)

Since the above gives a cubic function of k, we expect three complex values for which

this equation is satisfied. Having multiple ingoing solutions implies non-uniqueness of

the boundary correlator, hence we predict that pole-skipping occurs at such locations

in Fourier space. One can check that these results match the points predicted by the

method involving the second order differential equations.

Pole-skipping points associated to even higher Matsubara frequencies are located in

a similar manner. We take the equations at order n in the expansion (3.23) and write

them schematically as(
S(n)

+

S(n)
−

)
= M̃(nn)(ω, k)

(
ψ

(n)
+

ψ
(n)
−

)
+ . . .+ M̃(n0)(k)

(
ψ

(0)
+

ψ
(0)
−

)
= 0 , (3.46)

where all M̃(jk) are matrices whose elements are proportional either to Γv or I. Only the

M̃(nn) depends on both the frequency and momentum while the remaining coefficients
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depend only on k. One finds that for any n

M̃(nn) =

−iω − mr0
2 −

ik r0√
hr0

+ (4n+ 1)πT,
(
−iω + mr0

2 + ik r0√
hr0

+ πT
)

Γv

−
(
−iω − mr0

2 −
ik r0√
hr0

+ πT
)

Γv , −iω + mr0
2 + ik r0√

hr0
+ (4n+ 1)πT

 ,

(3.47)

whose determinant is given by detM̃(nn) = 8πnT ((2n+ 1)πT − iω).

We are interested in the values of the frequency and momentum at which there exist

two independent ingoing solutions to the equations of motion. First we require that

(3.46) provide only one constraint for ψ
(n)
+ and ψ

(n)
− which happens at the fermionic

Matsubara frequencies

ω = ωn = −2πiT

(
n+

1

2

)
, n = 1, 2, 3, . . . (3.48)

where the determinant of (3.47) vanishes. We then construct the analogue of the

equation (3.43) by evaluating all constraints of the form (3.46) with l ≤ n at ω = ωn.

We write them succinctly in matrix form(
S(0)

+ S(1)
+ S(1)

− · · · S(n)
−

)T
= M̃n

(
ψ

(0)
+ ψ

(0)
− ψ

(1)
+ · · · ψ

(n)
c

)T
= 0 , (3.49)

where

M̃n ≡



M̃(00)
++ M̃(00)

+− 0 · · · · · · · · · 0

M̃(10)
++ M̃(10)

+− M̃(11)
++ M̃(11)

+− 0 · · · 0
...

...
...

...
...

...
...

M̃(n0)
++ M̃(n0)

+− · · · · · · · · · · · · M̃(nn)
+

M̃(n0)
−+ M̃(n0)

−− · · · · · · · · · · · · M̃(nn)
−


, (3.50)

M̃(nn)
+ = −mr0

2
− ikr0

2
√
h(r0)

+
nr2

0 f
′(r0)

2
, (3.51a)

M̃(nn)
− =

(
mr0

2
+

ikr0

2
√
h(r0)

+
nr2

0 f
′(r0)

2

)
Γv , (3.51b)

and ψ
(n)
c ≡ ψ(n)

+ − Γv ψ
(n)
− is the analogue of the constrained linear combination (3.42).

Pole-skipping occurs for values of k for which the determinant of the matrix M̃n van-

ishes

k = kn , detM̃n(ωn, kn) = 0 . (3.52)
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Note that each element of M̃n is a linear function in k, hence this equation has 2n+ 1

solutions, each corresponding to a pole-skipping point at the n-th fermionic Matsubara

frequency. These points coincide with the locations predicted by (3.37).

3.4 Pole-Skipping in Higher Dimensions

We now generalize the results to higher dimensional spacetimes. We assume that the

bulk has D + 2 dimensions in which spinors are NF = 2b
D
2
c+1 component objects. Let

the background metric be given by (2.14) and choose the orthonormal frame

Ev =
1 + f(r)

2
rdv − dr

r
, Er =

1− f(r)

2
rdv +

dr

r
, Ei =

√
h(r) dxi , (3.53)

which is the direct generalization of the frame (3.14) used in three dimensions. As such,

it has analogous properties, including

ds2 = ηabE
aEb , ηab = diag(−1, 1, 1, . . . , 1) , (3.54)

while the spin connection components are given by

ωvr =
dr

r
− 2rf(r) + r2f ′(r)

2
dv,

ωvi =
r h′(r) (1− f(r))

4
√
h(r)

dxi,

ωri = −r h
′(r) (1 + f(r))

4
√
h(r)

dxi , (3.55)

with all other components not related by symmetry being 0.

The manipulation of the equations of motion is conceptually the same as in sec-

tion 3.3 so we don’t repeat it in full and rather give the details in Appendix B. The

Dirac equation in D + 2 dimensions reads{
Γv
[
− r(1− f(r))

2
∂r −

iω

r
− 1− f(r)− rf ′(r)

4
− D r (1− f(r))h′(r)

8h(r)

]
+ Γr

[
r(1 + f(r))

2
∂r −

iω

r
+

1 + f(r) + rf ′(r)

4
+
D r (1 + f(r))h′(r)

8h(r)

]
+

ikiΓ
i√

h(r)
−m

}
ψ(r) = 0, (3.56)

where we have again introduced the plane-wave ansatz ψ(r, v, xj) = ψ(r)e−iωv+ikix
i
.

Next, we separate the spinor into the positive and negative component with respect to

the matrix Γr, as in (3.8), with the only difference being that now each of ψ± contains
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NF /2 free parameters. For D ≥ 2 the matrices Γr and kiΓ
vi (with summation over i

implied) are independent and commuting, and therefore we can introduce an additional

decomposition (a = ±)

ψa = ψ(+)
a + ψ(−)

a , (3.57)

ψ(±)
a ≡ P (±)ψa , P (±) ≡ 1

2

(
1± k̂iΓvi

)
,

where kiΓ
vi ψ

(±)
a = ±kψ(±)

a , and we have used k̂i ≡ ki/k with k =
√
~k · ~k. All in all,

this divides ψ into four independent spinors ψ
(±)
± , each of which contains NF /4 degrees

of freedom and has definite eigenvalues under the action of Γr and kiΓ
vi.

A small remark on the nomenclature that we are going to use. The Γr matrix

projects the spinor along the radial direction of AdS and can be considered the chirality

operator, especially with respect to the boundary theory [93]. Hence we refer to ψ±

as positive or negative chirality spinors. The matrix kiΓ
vi is somewhat similar to the

helicity operator as it can be considered the projection of the spinor along the direction

of the momentum. Hence we refer to ψ(±) as positive or negative helicity spinors. For

example, we refer to ψ
(−)
+ as a spinor with positive chirality but negative helicity.

With this spinor decomposition, the Dirac equation (3.56) separates into two de-

coupled subsystems of first order differential equations, one for (ψ
(+)
+ , ψ

(−)
− ) and one for

(ψ
(−)
+ , ψ

(+)
− ), with the former being

S(+)
+ ≡

[
r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
− mr(1 + f(r))

2
− ikr(1− f(r))

2
√
h(r)

− iω
]
ψ

(+)
+

+ Γv
[
r2f ′(r)

4
+
mr(1− f(r))

2
+
ikr(1 + f(r))

2
√
h(r)

− iω
]
ψ

(−)
− + r2f(r) ∂rψ

(+)
+ = 0,

(3.58a)

S(−)
− ≡

[
r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
+
mr(1 + f(r))

2
+
ikr(1− f(r))

2
√
h(r)

− iω
]
ψ

(−)
−

− Γv
[
r2f ′(r)

4
− mr(1− f(r))

2
− ikr(1 + f(r))

2
√
h(r)

− iω
]
ψ

(+)
+ + r2f(r) ∂rψ

(−)
− = 0.

(3.58b)

We will focus only on these equations, as the subsystem for (ψ
(−)
+ , ψ

(+)
− ) is equivalent,

but with k → −k (see (B.1.11) in Appendix B), so the results of the second subsystem

can be obtained by simply reversing the momentum.

The equations (3.58) are the same as (3.18), with the exception of a term that

changes with the number of dimensions. Due to this similarity, the methods pre-

sented in section 3.3 easily translate to the higher dimensional case and we can locate

pole-skipping points by the already known methods. Therefore, we do not repeat the
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procedure in full as most of the details were already presented in the preceding sec-

tion. Rather we focus only on deriving the pole-skipping locations and discussing the

novelties that appear with additional dimensions.

3.4.1 Locating Pole-Skipping Points

At Zeroth Matsubara Frequency

The spinors and subsequently the Dirac equations (3.58) can be expanded in a series

around the horizon as

ψ
(+)
+ =

∞∑
l=0

(
ψ

(+)
+

)(l)
(r − r0)l , ψ

(−)
− =

∞∑
l=0

(
ψ

(−)
−

)(l)
(r − r0)l , (3.59a)

S(+)
+ =

∞∑
l=0

(
S(+)

+

)(l)
(r − r0)l , S(−)

− =
∞∑
l=0

(
S(−)
−

)(l)
(r − r0)l . (3.59b)

At the horizon there is only one independent equation

(
S(+)

+

)(0)
= Γv

(
S(−)
−

)(0)
= Γv

[
− iω +

r2
0f
′(r0)

4
+
mr0

2
+

ikr0

2
√
h(r0)

](
ψ

(−)
−

)(0)

+

[
− iω +

r2
0f
′(r0)

4
− mr0

2
− ikr0

2
√
h(r0)

](
ψ

(+)
+

)(0)
= 0 , (3.60)

which is equivalent to (3.24a) and thus we find pole-skipping at the same locations

as in the three-dimensional case. However, for D ≥ 2 we also need to consider the

subsystem (ψ
(−)
+ , ψ

(+)
− ) where pole-skipping occurs at the same value of the frequency,

but at opposite momentum to (3.25). This means that all in all, for higher dimensional

systems the lowest frequency pole-skipping points are located at

ω = ω0 = −πiT , k = ±ik0 , k0 = m
√
h(r0) , (3.61)

thus compared to asymptotically AdS3 spaces, there exists an additional location with

negative imaginary momentum. This pole-skipping point is universal as it contains no

explicit dependence on the dimension of spacetime.

Notice that for m 6= 0, the two subsystems of equations experience pole-skipping

at different points in momentum space. For example, (3.60) is trivially satisfied if

ω = ω0 and k = +ik0, hence the two spinors that are governed by this equation remain

unconstrained. However, because pole-skipping occurs at the opposite momentum for

the other subsystem, the equation analogous to (3.60) is not identically zero at ω = ω0

and k = +ik0, and thus constrains the solutions thereby halving the number of free

parameters in ψ
(−)
+ and ψ

(+)
− . This means that at (3.61) imposing the ingoing condition

at the horizon reduces the number of free parameters in the spinor to 3NF /4.
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This partial reduction of the degrees of freedom is not seen in the scalar case nor in

the analysis of the spinor in three dimensions. For the latter this is due to the absence

of the additional subsystem of equations as in that case the spinors are only two-

component objects. On the other hand, a similar reduction can be seen for the metric

perturbation, where only the δgvv component experiences pole-skipping at (2.49). So

it seems that this is a generic feature of many-component fields.

The massless spinor is a notable exception to this rule, as for m = 0 the two pole-

skipping points in (3.61) merge into one, located at ω = ω0 and k = 0. In this case both

subsystems experience pole-skipping at the same time and thus the ingoing condition

does not impose any constraints on the spinors. It would be interesting to investigate

this further, especially in terms of the boundary theory interpretation.

At Higher Matsubara Frequencies

To derive the locations of higher order pole-skipping points one can use either method

presented in section 3.3.2 as both easily generalize to arbitrary dimensions. We find that

pole-skipping robustly occurs at the fermionic Matsubara frequencies (3.3), whereas the

values of the momentum at these points vary with the number of dimensions due to

the explicit factor of D in the differential equations (3.58).

All of the novelties that we have discussed in the case of pole-skipping at ω = ω0

repeat themselves at higher frequencies. The number of special locations is doubled at

each frequency because the equation (3.56) separates into two decoupled subsystems.

Thus we obtain 2(2n+ 1) pole-skipping points at each frequency ω = ωn if the mass of

the fermion is non-vanishing. Furthermore, in general at each pole-skipping point only

NF /4 components of the spinor are constrained by the regularity at the horizon, which

is again related to the two subsystems experiencing pole-skipping at different locations

in momentum space.

The massless fermion is again an exception as in this case, for an individual subsys-

tem, the momentum for which pole-skipping occurs at ω = ωn is taken from a set that is

invariant under the reversal of the momentum and can be thus schematically written as

k = {0,±k1,±k2 . . . ,±kn}.33 Therefore in this case, the other subsystem experiences

pole-skipping at the exact same locations. The number of total pole-skipping points at

ω = ωn is then halved to (2n+ 1), but at each such point the ingoing condition at the

horizon does not impose any constraints on the spinor.

33 While we are currently lacking a proof that this pattern continues for arbitrary n, we find no
reason why this feature would cease to hold after the first few pole-skipping points, for which this was
checked explicitly.
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3.5 Green’s Function Near the Pole-Skipping Points

In this section we show that the near-horizon equations predict that in the neighbour-

hood of the pole-skipping points in momentum space the fermionic Green’s function

takes the pole-skipping form (2.31). This signals that at such locations a line of poles

and a line of zeros of the boundary correlator intersect. We perform the calculations in

an asymptotically AdS3 spacetime, as the results of the previous section suggest that

the analysis in higher dimensions is analogous.

3.5.1 Near the Lowest Matsubara Frequency

At the pole-skipping point (3.25), the equations of motion have two independent ingo-

ing solutions, hence we cannot find a unique boundary Green’s function by using the

prescription [49, 55]. However, one of the solutions becomes divergent as soon as we

move to any infinitesimally nearby point in Fourier space.

Consider the series expansion of the equations of motion (3.23), evaluated at

ω = ω0 + ε δω , k = k0 + ε δk , (3.62)

where ε is a small dimensionless parameter, while δω and δk denote the directions in

which we move away from the pole-skipping point (3.25) in momentum space.

At zeroth order in the ε expansion, the equations (3.24) are automatically satisfied

as they are evaluated at the pole-skipping values. However, at linear order in ε we get

a non-trivial constraint(
δω +

r0

2
√
h(r0)

δk

)
ψ

(0)
+ +

(
δω − r0

2
√
h(r0)

δk

)
Γv ψ

(0)
− = 0 , (3.63)

which allows us to write

ψ
(0)
− =

(
δω
δk

)
+ r0

2
√
h(r0)(

δω
δk

)
− r0

2
√
h(r0)

Γv ψ
(0)
+ , or ψ

(0)
+ = −

(
δω
δk

)
− r0

2
√
h(r0)(

δω
δk

)
+ r0

2
√
h(r0)

Γv ψ
(0)
− . (3.64)

These relations depend explicitly on the slope (δω/δk) which can be interpreted as the

additional free parameter appearing in the regular solution if the equations of motion

are evaluated directly at the pole-skipping point.

A generic solution to the bulk equations of motion contains a normalisable part,

which is related to the poles of the Green’s function, and a non-normalizable part,

related to the zeros of the correlator. However, there exist solutions that are fully

normalizable ψ(n), and fully non-normalizable ψ(nn), which we can expand near the
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horizon as

ψ(n) = ψ
(n)
+ + ψ

(n)
− =

(
ψ

(n)
+

)(0)
+
(
ψ

(n)
−

)(0)
+ . . . , (3.65a)

ψ(nn) = ψ
(nn)
+ + ψ

(nn)
− =

(
ψ

(nn)
+

)(0)
+
(
ψ

(nn)
−

)(0)
+ . . . , (3.65b)

where we have used the decomposition (3.8), and the dots represent higher order terms

in the expansion, as in (3.22). The zeroth order coefficients are related by

(
ψ

(n)
+

)(0)
= −

(
δω
δk

)
p
− r0

2
√
h(r0)(

δω
δk

)
p

+ r0
2
√
h(r0)

Γv
(
ψ

(n)
−

)(0)
, (3.66a)

(
ψ

(nn)
−

)(0)
=

(
δω
δk

)
z

+ r0
2
√
h(r0)(

δω
δk

)
z
− r0

2
√
h(r0)

Γv
(
ψ

(nn)
+

)(0)
, (3.66b)

where (δω/δk)p,z denote to the directions in which we need to move away from the pole-

skipping point to obtain a normalizable (subscript p) or a non-normalizable (subscript

z) solution.

As already mentioned, a generic ingoing solution is a combination of the normaliz-

able and non-normalizable components

ψ = ψ(n) + ψ(nn) , (3.67)

which initially both contain a degree of freedom that we choose to be
(
ψ

(n)
−

)(0)
and(

ψ
(nn)
+

)(0)
respectively. If these are left unconstrained, the solution has too many free

parameters to uniquely determine the Green’s function, which happens at the pole-

skipping point. Away from this location, the Dirac equation relates the coefficients

through (
ψ

(n)
−

)(0)
= R

(
δω

δk

)
·
(
ψ

(nn)
+

)(0)
, (3.68)

where R(δω/δk) depends on the slope of the displacement in momentum space. Due

to the prescription of [55], the boundary Green’s function depends on this direction as

well, as

GR ∝ R
(
δω

δk

)
. (3.69)

The relation (3.68) is obtained by inserting (3.67) into the Dirac equations evaluated
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at the horizon. Near the pole-skipping point, at linear order in ε, we find the relation

(
ψ

(n)
+

)(0)
= −

(
δω
δk

)
p

+ r0
2
√
h(r0)(

δω
δk

)
z
− r0

2
√
h(r0)

δω −
(
δω
δk

)
z
δk

δω −
(
δω
δk

)
p
δk

Γv
(
ψ

(nn)
−

)(0)
, (3.70)

from which we can easily read off the proportionality factorR. Ignoring all unimportant

factors,34 one finds

GR(ωn + δω, kn + δk) ∝
δω −

(
δω
δk

)
z
δk

δω −
(
δω
δk

)
p
δk

, (3.71)

and thus the Green’s function for fermion fields also takes on the pole-skipping form

near the special locations.

This form shows that the Green’s function is infinitely multi-valued at the pole-

skipping points. Namely, at any finite values of δω and δk, the slope of the displace-

ment from the special locations (δω/δk) uniquely relates the components of the spinor

through (3.70), and similarly fixes the value of the correlator by (3.71). However, di-

rectly at the pole-skipping point, this slope is ill-defined and can be considered as an

additional free-parameter of the solution, with the singularity structure of the Green’s

function given explicitly by the pole-skipping form.

From (3.70) it is clear that at (3.25) the Green’s function always takes the pole-

skipping form, or equivalently, is never anomalous. This can be heuristically justified

by recalling that for the scalar field anomalous points usually appeared when two pole-

skipping points coincided [72]. For the fermion field, there is only one such point at

the frequency ω = ω0, so there exists no other pole-skipping point with which it can

collide. Therefore this pole-skipping point is never anomalous and subsequently there

is always a line of zeros and a line of poles of the Green’s function that intersect at

(3.25).

3.5.2 Near Higher Matsubara Frequencies

To derive the form of the Green’s function near the pole-skipping points at higher

Matsubara frequencies, we employ the method that involves the second order differential

equations due to the similarity with the scalar field case which was analysed in [72].

Without loss of generality, we work with the component ψ+. If we evaluate the

equations (3.29) at a generic point in momentum space, we can express all coefficients

appearing in (3.22) in terms of ψ
(0)
+ only. Solving the equations Q(p)

+ = 0 order by

34The prefactors in (3.70) vanish or diverge if the slope takes the values (δω/δk) = ±r0/(2
√
h(r0)).

These correspond to the case where the (non-)normalisable solution has a definite Γr chirality at the

horizon (see (3.64)) and thus we are not able to take
(
ψ

(n)
+

)(0)

or
(
ψ

(nn)
−

)(0)

as the free parameter,

because they vanish. However, the pole-skipping form (3.71) generically persists even in this case.
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order, we find a generic relation

((2q + 1)πT − iω) ψ
(q)
+ +

1

N (q)(ω)
detM(q)

+ (ω, k)ψ
(0)
+ = 0 , (3.72)

where q = 1, 2, 3, . . ., the matrix M(q)
+ is defined in (3.38),

N (q) ≡ (iω − 3πT )(iω − 5πT ) . . . (iω − (2q − 1)πT ) , (3.73)

and we have assumed that ω does not equal any of the fermionic Matsubara frequencies,

i.e. N (q) does not vanish. Now evaluate this relation in the vicinity of a pole-skipping

point

ω = ωq + ε δω , k = kq + ε δk , (3.74)

where ωq, kq is the location of a pole-skipping point with q = 1, 2, 3, . . ., and ε is a small

parameter. At linear order in ε, the equation (3.72) reads

1

N(ωq)

[
∂k detM(q)

+ (ωq, kq) δk + ∂ω detM(q)
+ (ωq, kq) δω

]
ψ

(0)
+ − iδωψ

(q)
+ = 0 , (3.75)

where N(ωq) ≡ (q − 1)!(2πT )q−1, from which we can obtain a relation

ψ
(q)
+ = −i

∂k detM(q)
+ (ωq, kq) + ∂ω detM(q)

+ (ωq, kq)

(
δω

δk

)
N(ωq)

(
δω

δk

) ψ
(0)
+ , (3.76)

which again depends explicitly on the direction in which we move away from the pole-

skipping point. In particular, there exist slopes associated to normalizable (ψ
(n)
+ ) and

non-normalizable (ψ
(nn)
+ ) solutions, where the above relation reads

(
ψ

(n)
+

)(q)
= −i

∂k detM(q)
+ (ωq, kq) + ∂ω detM(q)

+ (ωq, kq)

(
δω

δk

)
p

N(ωq)

(
δω

δk

)
p

(
ψ

(n)
+

)(0)
, (3.77a)

(
ψ

(nn)
+

)(q)
= −i

∂k detM(q)
+ (ωq, kq) + ∂ω detM(q)

+ (ωq, kq)

(
δω

δk

)
z

N(ωq)

(
δω

δk

)
z

(
ψ

(nn)
+

)(0)
.

(3.77b)

A generic solution contains both a normalisable and a non-normalisable part (3.67)

which are related through the Dirac equation. As before, the retarded Green’s function
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is proportional to the multiplicative factor relating the normalizable degree of freedom(
ψ

(n)
+

)(0)
to the non-normalizable one

(
ψ

(nn)
+

)(0)
. This is similar to (3.70), only that

in this case there exist additional prefactors because we are considering two positive

chirality components (see [55]). At linear order in ε we obtain

(
ψ

(n)
+

)(0)
= −

(
δω

δk

)
p

(
δω

δk

)−1

z

δω −
(
δω

δk

)
z

δk

δω −
(
δω

δk

)
p

δk

(
ψ

(nn)
+

)(0)
, (3.78)

and by reading off the prefactor, we can see that the correlator has the pole-skipping

form (2.31) near higher-order pole-skipping points as well.

A key condition in obtaining the pole-skipping form is that the relation (3.76) de-

pends on the slope (δω/δk), which is not the case if ∂k detM(n)
+ (ωn, kn) = 0. Therefore,

a pole-skipping point at ω = ωn and k = kn is anomalous if

detM(n)
+ (ωn, kn) = 0 , and ∂k detM(n)

+ (ωn, kn) = 0 , (3.79)

where the matrix M(n)
+ is defined in (3.38). These conditions are satisfied whenever

we have a repeated root in the determinant, or in other words, when two pole-skipping

points coincide.

3.6 Examples

In this section we look at some concrete examples. First, we consider the non-rotating

BTZ black hole background [61, 62] where the fermionic Green’s function is known. If

the mass of the fermion (or the conformal dimension of the dual operator) is a half-

integer number, the correlation function takes a special form, and we show that the

near-horizon analysis perfectly agrees with the exact result even then. We also present

the case of a massless fermion propagating in a Schwarzschild black hole in anti-de

Sitter spacetime.

3.6.1 BTZ Black Hole

Near Horizon Analysis

For the non-spinning BTZ black hole, the two functions that appear in the metric (3.13)

are given by

f(r) = 1−
(r0

r

)2
, and h(r) = r2 , (3.80)
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with the Hawking temperature given by T = r0/2π. We choose the following set of

gamma matrices

(Γv,Γr,Γx) = (iσ2, σ3, σ1) , (3.81)

where σi are the Pauli matrices, so that Γr is diagonal and thus its eigenvectors are

given by ψT+ = (ψ+(r), 0) and ψT− = (0, ψ−(r)). The Dirac equation can hence be

reduced to two coupled differential equations for scalar functions ψ±(r) that read[
ik − iω +

(−ik + (m+ 1)r)r2
0

2r2

]
ψ− +

[
−iω − (m− 1)r +

((m− 1)r − ik) r2
0

2r2

]
ψ+

+ (r2 − r2
0)∂rψ+ = 0 (3.82a)[

−iω + (m+ 1)r − ((m+ 1)r − ik) r2
0

2r2

]
ψ− +

[
−ik − iω +

(ik − (m− 1)r)r2
0

2r2

]
ψ+

+ (r2 − r2
0)∂rψ− = 0 . (3.82b)

Using the procedure presented in section 3.3, the first pole-skipping point is located at

ω = − ir0

2
= −iπT , k = imr0 = 2πimT . (3.83)

Either of the two methods presented in section 3.3 can be used to find the other pole-

skipping points and we use this example to showcase the first order method. The

equations (3.39) for this example read

M (11)

(
ψ

(1)
+

ψ
(1)
−

)
+M (10)

(
ψ

(0)
+

ψ
(0)
−

)
= 0 , (3.84)

with the two matrices being

M (11) =

(
−ik − (m− 5)r0 − 2iω, ik + (m+ 1)r0 − 2iω

−ik − (m− 1)r0 − 2iω, ik + (m+ 5)r0 − 2iω

)
, (3.85a)

M (10) =
1

r0

(
−3(m− 1)r0 + 2ik, −(m+ 1)r0 + 2ik

(m− 1)r0 − 2ik, 3(m+ 1)r0 − 2ik

)
, (3.85b)

where all elements of the above matrices are scalar functions due to our choice of

the representation of the Clifford algebra (3.81). The frequency of the next pole-

skipping point is given by the value at which the determinant of M (11), given by

detM (11) = 8r0(3r0 − 2iω), vanishes. This occurs at the next Matsubara frequency

ω = ω1 ≡ −
3ir0

2
= −3πiT . (3.86)
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ω k
Number of

pole-skipping points

ω0 = −πiT 2πimT 1

ω1 = −3πiT −2πimT , 2πi(m± 1)T 3

ω2 = −5πiT
2πimT , −2πi(m± 1)T

2πi(m± 2)T
5

ω3 = −7πiT
−2πimT , 2πi(m± 1)T

−2πi(m± 2)T , 2πi(m± 3)T
7

Table 5: The locations of the first few pole-skipping points for a fermion in a non-
spinning BTZ black hole background. At each Matsubara frequency ω = ωn, one finds
exactly 2n+ 1 pole-skipping points.

The easiest way to obtain the corresponding momenta is to set one of ψ
(1)
± to 0, and

combine (3.84) with the zeroth order equation35 to obtain a system of three equations

for three variables, which we evaluate at ω = ω1. For example, setting ψ
(1)
− = 0 gives36

M (1)

ψ
(0)
+

ψ
(0)
−

ψ
(1)
+

 ≡
−(m+ 2)r0 − ik (m− 2)r0 + ik 0

2ik
r0
− 3m+ 3 2ik

r0
−m− 1 −(m− 2)r0 − ik

−2ik
r0

+m− 1 −2ik
r0

+ 3m+ 3 −(m+ 2)r0 − ik


ψ

(0)
+

ψ
(0)
−

ψ
(1)
+

 = 0.

(3.87)

Pole-skipping points are located at the values of the momentum at which the determi-

nant of the matrix M (1) vanishes, which are given by

k = −imr0 = −2πiT , k = i(m± 1)r0 = 2πiT (m± 1) . (3.88)

Finding other pole-skipping locations follows the same pattern and we collect the

results for the first few points in table 5. At a particular frequency, the momenta at

which pole-skipping occurs are not invariant under the transformation k → −k, unlike

in the case of a scalar field (see eq. (4.6) of [72]). The case of m = 0 is an exception as

then the momentum associated to one of the pole-skipping points vanishes, while the

others form pairs as k = ±ikn. This can be seen clearly in figure 6, where we depicted

the first few pole-skipping points at m = 1 (bottom row) and m = 0 (top row), and

the latter plot is symmetric with respect to the vertical axis.

35The zeroth order equation reads

(−ik + r0 −mr0 − 2iω)ψ
(0)
+ + (ik + r0 +mr0 − 2iω)ψ

(0)
− = 0

36We can set one of ψ
(1)
± to 0 as a consequence of the fact that at any fermionic Matsubara frequency,

only the combination (3.42) is constrained, which in this case is simply ψ
(1)
+ − ψ(1)

− . If we set ψ
(1)
+ = 0

and include ψ
(1)
− in the matrix (3.87), the determinant only switches sign which does not change the

values of the roots. This is because the coefficients multiplying ψ
(1)
± in (3.84) differ only by a sign if

they are evaluated at ω = ω1.
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Figure 6: Plots of the locations of pole-skipping points for the fermionic Green’s function
in the BTZ black hole background. The top row is for m = 0 and the bottom row shows
the locations for m = 1. The left column shows only the locations of the pole-skipping
points as predicted from the near horizon analysis. The gray points correspond to the
momentum written with a positive sign in and the hollow points correspond to the
momenta with a negative sign as written in table 5. Comparing the top left and bottom
left panel we notice that, by increasing the mass, the gray points get rigidly translated to
the right by the value of m and the hollow points get translated by an equal amount to
the left. The right column has superimposed the lines of zeros (red, dashed) from (3.6.1)
and lines of poles (blue) from (3.6.1). For both values of the mass the near-horizon
analysis predicts the location of the intersections of lines of zeros and lines of poles.

Comparison with the Exact Green’s Function

The exact retarded Green’s function for a fermion propagating in a BTZ black hole

geometry was derived in [55]. For non half-integer values of the mass m, the correlator

in the case of a non-spinning black hole is given by

GR(ω, k) = −i
Γ
(

1
2 −m

)
Γ
(
m
2 + 1

4 + i(k−ω)
4πT

)
Γ
(
m
2 + 3

4 −
i(k+ω)

4πT

)
Γ
(

1
2 +m

)
Γ
(
−m

2 + 3
4 + i(k−ω)

4πT

)
Γ
(
−m

2 + 1
4 −

i(k+ω)
4πT

) . (3.89)

It has a pole whenever the argument of any of the gamma functions in the numerator

hits a non-positive integer. Similarly, it has a zero whenever an argument of any of the

gamma functions in the denominator is equal to a non-positive integer.

Assuming that the mass is fixed and is not half-integer valued, we get two infinite

families of lines of poles and two infinite families of lines of zeros in the (ω, k) plane.
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The poles are located at

ωP1 = k − πiT (4n+ 2m+ 1) , ωP2 = −k − πiT (4n+ 2m+ 3) , (3.90)

and the zeros can be found at

ωZ1 = k − πiT (4n− 2m+ 3) , ωZ2 = −k − πiT (4n− 2m+ 1) , (3.91)

where in all cases n = 0, 1, 2, . . .. Pole-skipping is observed whenever a line of poles

and a line of zeros intersect, which happens at

ωn = −iπT (2n+ 1), kn,q1 = 2πiT (m+ n− 2q1),

kn,q2 = −2πiT (m+ n+ 1− 2q2), (3.92)

for any n ∈ {0, 1, . . .} and q1 ∈ {0, . . . , n}, q2 ∈ {1, . . . , n}.37 The lines of zeros and

lines of poles are shown for two values of the mass (m = 0 in the top row and m = 1 in

the bottom row) in figure 6, where we can see that the intersections of these lines are

in perfect agreement with the predictions from the near-horizon analysis summarised

in table 5.

Green’s Function at Half-Integer Conformal Dimensions

When the mass m (or equivalently the scaling dimension ∆ of the dual operators) is

half-integer valued, the boundary retarded Green’s function takes a different form. We

focus on the case of m > 0, or equivalently ∆ > 1, in which case the correlator is given

by

GR(ω, k) ∝
Γ
(

∆
2 −

1
4 + i (k−ω)

4πT

)
Γ
(

∆
2 + 1

4 − i
(k+ω)
4πT

)
Γ
(
−∆

2 + 5
4 + i (k−ω)

4πT

)
Γ
(
−∆

2 + 3
4 − i

(k+ω)
4πT

)×
[
ψ

(
∆

2
− 1

4
+ i

(k − ω)

4πT

)
+ ψ

(
∆

2
+

1

4
− i(k + ω)

4πT

)]
,

(3.93)

where ψ(z) is the digamma function and we have written the mass m in terms of the

scaling dimension ∆ using (3.10). The explicit derivation of this form is presented in

Appendix C.

Because ∆ is half-integer valued, the arguments of the gamma functions in the

denominator and numerator of (3.93) differ pairwise by an integer. Thus, we can

37For n = 0, there are no solutions in the kn,q2 branch of (3.92).
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Figure 7: Pole-skipping points as predicted from the naive near-horizon analysis for
half-integer mass values. The left plot depicts the locations for m = 1

2
and the right

plot contains the locations for m = 3
2
. The gray points correspond to the momentum

written with a positive sign in and the hollow points correspond to the momenta with
a negative sign as written in table 5. We see that at half-integer values of the mass,
some of the locations overlap (black circles with gray filling). These cases correspond
to so-called anomalous points and signal that a more thorough analysis of the boundary
Green’s function is needed.

expand the ratio of the gamma functions into a product of finitely many terms as

Γ
(

∆
2 −

1
4 + i(k−ω)

4πT

)
Γ
(
−∆

2 + 5
4 + i(k−ω)

4πT

) =

∆−3
2∏

n=1

(
∆

2
− 1

4
− n+

i(k − ω)

4πT

)
. (3.94)

The ratio of the other two gamma functions can be found in a similar way to be

Γ
(

∆
2 + 1

4 −
i(k+ω)

4πT

)
Γ
(
−∆

2 + 3
4 −

i(k+ω)
4πT

) =

∆−3
2∏

n=0

(
∆

2
− 3

4
− n− i(k + ω)

4πT

)
. (3.95)

This means that the retarded Green’s function has a family of 2∆ − 2 lines of zeros,

given by the equations

ωZ1 = k − 2πiT

(
2n−∆ +

1

2

)
, ωZ2 = −k − 2πiT

(
2n−∆ +

3

2

)
, (3.96)

where n ∈
{

0, 1, . . . ,∆− 3
2

}
and there is no solution for n = 0 in ωZ1 .

Poles arise when the argument of any of the two digamma functions is a non-positive

integer, yielding two infinite families of lines of poles located at

ωP1 = k − 2πiT

(
2n+ ∆− 1

2

)
, ωP2 = −k − 2πiT

(
2n+ ∆ +

1

2

)
, (3.97)

for n = 0, 1, 2, . . .. The intersections between the lines of zeros and the lines of poles
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Figure 8: Comparison of the locations of the pole-skipping points predicted by the
near-horizon analysis (gray and hollow points) and the locations of the intersections of
the lines of poles (blue) and lines of zeros (red, dashed) of the exact boundary retarded
Green’s function for half-integer values of the conformal dimension. We see that the non-
anomalous pole-skipping points (either hollow or gray, but not gray with black circle)
perfectly match the locations of the intersections. The anomalous pole-skipping points
(gray with black boundary) correspond to the locations where two lines of poles intersect.
The physical interpretation of these anomalous points is still unclear.

occur at

ωn = −iπT (2n+ 1), kn,q1 = 2πiT (n+ ∆− 2q1 − 1),

kn,q2 = −2πiT (n+ ∆− 2q2), (3.98)

where n ∈ {0, 1, . . .}, q1 ∈ {0, . . . ,min
(
n,∆− 3

2

)
}, q2 ∈ {1, . . . ,min

(
n,∆− 3

2

)
} and

again there is no pole-skipping point at n = 0 for the momenta given by k0,q2 .

These special values for the intersections are predicted by considering anomalous

pole-skipping points which occur when two pole-skipping points overlap, see figure 7

where we depict the naive pole-skipping points for m = 1/2 and m = 3/2.

For n < m+ 1/2, where m is a half-integer number, there are only non-anomalous

pole-skipping points. If n ≥ m+ 1/2, then the non-anomalous pole-skipping points are

given by

kn,q1 = 2πiT (m+ n− 2q1) , q1 ∈ {0, 1, . . .m− 1/2} , (3.99a)

kn,q2 = −2πiT (m+ n+ 1− 2q2) , q2 ∈ {1, 2, . . .m− 1/2} , (3.99b)

where for m = 1/2, there are no solutions in the second branch. This implies that the

anomalous points are given by

kn,q1 = 2πiT (m+ n− 2q1) , q1 ∈ {m+ 1/2,m+ 3/2, . . . n} . (3.100)

In summary, the near-horizon analysis predicts that the non-anomalous pole-skipping
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points are located at

ωn = −iπT (2n+ 1), kn,q1 = 2πiT (m+ n− 2q1),

kn,q2 = −2πiT (m+ n+ 1− 2q2), (3.101)

with n ∈ {0, 1, . . .} and q1 ∈ {0, . . . ,min
(
n,m− 1

2

)
}, q2 ∈ {1, . . . ,min

(
n,m− 1

2

)
}.

Since m = ∆− 1, these points coincide with intersections of the lines of poles and lines

of zeros of the exact boundary retarded Green’s function (see figure 8).

3.6.2 Schwarzschild Black Hole in AdSD+2

Let us now assume that the background is the Schwarzschild-AdS black hole in D + 2

dimensions for which the two functions appearing in the metric are

f(r) = 1−
(r0

r

)D+1
, h(r) = r2 , (3.102)

with the Hawking temperature given by (D+ 1)r0 = 4πT . The pole-skipping points at

the lowest frequency are located at

ω = ω0 = −πiT , k = ± 4πi

D + 1
mT , (3.103)

which include the locations for both subsystems discussed in section 3.4. When m = 0

these merge into a single point with momentum k = 0.

In the case of a massless fermion (m = 0) the next few pole-skipping points are

located at

ω = ω1 = −3πiT , k =

0 ,

k = ±2i
√

2D
D+1 πT ,

(3.104a)

ω = ω2 = −5πiT , k =


0 ,

±2i

√
5D+
√
D(D+8)

D+1 πT ,

±2i

√
5D−
√
D(D+8)

D+1 πT ,

(3.104b)

Notice that the non-zero momenta at ω1 coincide with the pole-skipping momenta

associated with first bosonic Matsubara frequency ω = ωB1 = −2πiT for the massless

bosonic field in the same background [72].
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3.7 Discussion

In this chapter we have investigated the near-horizon behaviour of a minimally coupled

fermion field in asymptotically anti-de Sitter spacetimes. The thermal Green’s function

of the dual operator exhibits an ambiguity: at certain values of the frequency and the

momentum there exist multiple independent solutions to the Dirac equations that are

ingoing at the horizon. As a consequence the correlator is not uniquely defined at these

points due to a collision between a pole and a zero of the Green’s function.

The special frequencies where this happens are precisely the negative fermionic

Matsubara frequencies

ωn = −2πiT

(
n+

1

2

)
, (3.105)

where n is a non-negative integer. At each of these frequencies there are in general

2(2n+1) associated values of the momentum at which pole-skipping takes place. Away

from these special locations, the ingoing boundary condition at the horizon fixes half of

the components of the spinor, whereas directly at the pole-skipping points the ingoing

condition in general only fixes a quarter. Interesting exceptional cases include that

of a spinor in three-dimensional spacetime and the massless spinor field in arbitrary

dimension. In the latter case the number of pole-skipping points at each frequency is

halved and in addition at each special location the ingoing condition does not impose

any constraints – all solutions are ingoing.

The fermionic results are conceptually similar to that of scalar fields [72]. In both

the near-horizon behaviour determines the boundary field theory correlators away from

the origin in Fourier space. Furthermore, there is a similarity in that the higher the

frequency of the pole-skipping point, the farther we probe away from the horizon and

into the spacetime. This is manifested in the fact that the momentum values depend

on higher derivatives of metric functions evaluated at the horizon.

In addition, we see that the pole-skipping points for scalar and fermionic fields have

a similar structure. The frequency is determined purely by the temperature of the black

hole, whereas the momentum has two general contributions, one coming from the mass

term and one which depends solely on the ambient spacetime.

There are also some differences. For instance, in the scalar case there are fewer

pole-skipping points: at any bosonic Matsubara frequency, i.e. ωñ = −2πiñT , with

ñ = 1, 2, 3 . . ., there are 2ñ special locations, while for the fermion field at the n-th

fermionic Matsubara frequency (3.105), there are 2(2n+ 1) pole-skipping points.

Another interesting novelty is the appearance of the pole-skipping point at the

zeroth fermionic Matsubara frequency. This is due to the fact that spinors are multi-

component objects and thus there exist two linearly independent solutions with the

same behaviour at the horizon. This point is the most localized probe at the horizon,
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as its location does not depend on any derivatives of the metric functions. Furthermore,

it can never be anomalous and is thus a robust feature of holographic Green’s functions

of fermionic operators.

There are a few potential pathways in which one could generalize these results. The

first is that the frequencies at which pole-skipping occurs follow a pattern depending

on the spin of the field.38 The first pole-skipping point of the graviton is located at

ω = +2πiT , for the vector field the first frequency is ω = 0 [72], our analysis shows

that for fermions this first frequency is ω = −πiT , and scalar fields start to skip poles

at ω = −2πiT . It is natural to conjecture that spin-3/2 fields, described by a Rarita-

Schwinger action (see for example [94–99] for the treatments of Rarita-Schwinger fields

in AdS), should have their first pole-skipping point located at ω = +πiT .

In an upcoming publication [90] we show that this is indeed the case. We hope

that this indicates a certain universality of pole-skipping. It would be interesting to

investigate the importance of this order on the relation between pole-skipping, chaos,

and holographic theories in general.

Another interesting development comes from the analysis of 2-dimensional CFTs,

where it has been shown [100] that pole-skipping is also seen for frequencies which

are non-integer multiples of πiT . These are neither bosonic nor fermionic Matsubara

frequencies and could be associated with non-half integer spin particles: anyons. It

would be interesting to see whether there is a corresponding bulk object whose near-

horizon behaviour would explain pole-skipping at such frequencies.

Our hope is that one can get a better understanding of pole-skipping by considering

more complicated, yet soluble models, such as the axion model [81, 82]. This model

contains an additional parameter which regulates the strength of the energy dissipa-

tion in the boundary theory. Ref. [70] discusses pole-skipping in this model for the

energy density function and finds that the pole-skipping point does not change as the

dissipation is increased and correctly predicts the dispersion relation of the collective

excitations in the boundary for both the weakly and strongly dissipating regime. It

would be interesting to see whether such statements could be translated to the scalar

or spinor field case.

Similarly, one could analyse how corrections to Einstein gravity affect the pole-

skipping locations in scalar and fermion fields. In [71] it was shown that the momentum

value at the pole-skipping locations for the energy-density correlator correctly predicts

the corrections to the butterfly velocity in such theories. Repeating the same analysis

for scalars or fermions could clarify whether simpler fields can be used as a diagnostic

for chaos.

Another point of interest is the interpretation of anomalous locations which occur

whenever two pole-skipping points overlap. It would be interesting to see if there is

38We thank Richard Davison for pointing this out to us.
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some additional physics that happens at such points.

The detailed analysis of the Green’s functions revealed that at (bosonic or fermionic)

Matsubara frequencies, the retarded and advanced Green’s functions are equal. Another

interesting aspect worth looking into is to see how this is manifested in the boundary

theory.

An example of a spin-1/2 field in a boundary field theory is the time component

of the supersymmetric current in N = 4 SYM theory in four dimensions discussed

in [101] which in the low frequency and low momentum limit gives rise to the so-called

phonino mode. It would be interesting to see whether this hydrodynamic mode (or

modes coming from other components of the supersymmetric current) passes through

the pole-skipping point (3.25) if its dispersion relation is analytically continued to

imaginary values of the frequency and momentum, as is the case for the shear or

sound modes [68, 73] that pass through the bosonic pole-skipping points analysed in

the previous chapter.

Finally, we have added to the literature of properties of the boundary theories that

are encoded in the near-horizon region. One may wonder if there are other universal

properties of holographic theories that can be seen from simple near-horizon analysis

of bulk fields.
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Chapter 4

Review of D1-D5-P System

In the introduction we have discussed black holes and argued that a full theory of

quantum gravity may be needed in order to fully resolve some of the issues that arise

in the semi-classical picture. String theory emerged as a possible framework in which

one can address these questions, hence in this and the next chapter we describe a

specific system comprised of a BPS configuration of D1 and D5 branes (with additional

momentum charge P) in type IIB superstring theory.

We first study the supergravity description of this system and review a count-

ing argument that reproduces the Bekenstein-Hawking entropy. Next we present the

AdS3/CFT2 duality that arises from the D1-D5 system, and especially focus on the

CFT at the orbifold point. We then review the fuzzball proposal which states that

black holes are course grained averages over a vast amount of horizonless microstates

and finally introduce the microstate geometries programme which tries to construct

microstates that have a valid description within supergravity.

This chapter has some overlap with [1].

4.1 Brane Setup

We work in type IIB string theory on R1,4 × S1 ×M where the internal space M is

either K3 or T 4, but in most of what follows we use M = T 4, except where explicitly

stated otherwise. Let t denote the time coordinate, xµ with µ = 1, 2, 3, 4 denote the

coordinates of R4, y is the coordinate of S1 which has radius Ry, and xi with i = 6, 7, 8, 9

denote the coordinates of T 4 which has volume V4.

The system of interest is a specific configuration of D1 and D5-branes that are

wrapped around the compact directions of spacetime (see table 6 for summary). Let n1

D1-branes be wrapped along the S1, and let n5 D5-branes be wrapped around S1×T 4,

and in addition there is nP units of left-moving momentum along S1. We assume that

the branes are localised in the R4 which we call the base space.
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Rt R4 S1 T 4

t x1 x2 x3 x4 y x6 x7 x8 x9

Objects

D1 • − − − − • − − − −
D5 • − − − − • • • • •
P • − − − − • − − − −

Table 6: The brane configuration of the D1-D5-P system. The directions in which
an object is extended is denoted by •, while − denotes the directions in which the
object is localised. The D1-branes are extended only along the macroscopic S1 direction,
parametrised by the coordinate y ∈ [0, 2πRy). The D5-branes are extended along the
S1×T 4 and we add an additional momentum charge along the S1, but all the momentum
points only in one direction. In the non-compact space R4 all the branes are localised.

The assumption that the momentum is moving in only one direction is necessary

to preserve some supersymmetries, namely if we add some right-moving momentum

into the above configuration, all supersymmetries are broken. With only left-moving

momentum, the system preserves 4 out of the total 32 supercharges of type IIB string

theory and is thus an 1/8-BPS system [102].

Throughout the next two chapters we work the large N limit by assuming that

n1, n5 � 1 , (4.1.1)

meaning that the number of D1 and D5 branes in the system is large. Furthermore, we

assume that the size of the T 4 is of the string length size and thus small. We sometimes

refer to this space as the internal space. On the other hand, we assume that the size

of the S1 is large in string length units so that Ry � ls.

We can look at this system in two different limits. Our main focus will be on the

strong string coupling limit (gs � 1) in which the branes gravitate. If we limit ourselves

to the low energy physics, we can describe the branes in terms of a curved metric, hence

we denote this regime as the classical supergravity limit. However, we can also study

the limit gs � 1, such that gsn1n5 � 1, where open and closed strings decouple. Thus

the effective picture in this case is that of non-interacting open strings on flat branes

in non-curved spacetime. This regime contains some interesting physics, especially in

light of the microstates of the D1-D5-P black hole, which ultimately leads us to the

fuzzball proposal.
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4.2 Gravity Description

4.2.1 General Ansatz and System of Equations

Let us begin by introducing a system of equations that is tailored for 1/8-BPS solutions

to type IIB supergravity [103]. The action (1.15) that we have presented in the intro-

duction contains only the RR gauge field strengths F1, F3, and F5, which correspond

roughly to exterior derivatives of the potentials C0, C2 and C4. However, D5-branes

can also be thought as sources of a higher order form potential which is not included

in this action.

In this case it is convenient to use the democratic formulation of supergravity [104]

which introduces “high” order forms (or their field strengths) and puts them on equal

footing with the “low” order ones by imposing additional constraint equations. Begin

by defining an operator λ, whose action on a p-form Ap is given by

λ (Ap) = (−1)p(p−1)/2Ap . (4.2.1)

In the new formulation the RR gauge field content of type IIB supergravity is enhanced

to {C0, C2, C4, C6, C8}. Defining

H = dB , (4.2.2)

where B is the usual NS-NS two-form, we define a RR p-form field strength as

Fp = dCp−1 −H ∧ Cp−3 . (4.2.3)

These satisfy

dFp = H ∧ Fp−2 , (4.2.4)

which can be seen as modified Bianchi identities.

By allowing additional gauge potentials, we have almost doubled the number of

degrees of freedom appearing in the Cp fields. To remedy this, we impose the self-

duality constraint

Fp = ∗λ (F10−p) , (4.2.5)

where ∗ is the ten-dimensional hodge dual operator. For type IIB supergravity the

above constraint can be written out explicitly as

F1 = ∗F9, F3 = − ∗ F7, F5 = ∗F5, F7 = − ∗ F3, F9 = ∗F1 , (4.2.6)
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which implies that Fp and F10−p effectively carry the same degrees of freedom.

Using this new framework, a general 1/8-BPS solution to the equations of motion

was derived in [103,105], building on previous work [106–108].39 The assumptions made

are that

1. The solutions admit a null isometry.40

2. The solutions are isotropic in the internal manifold, i.e. the fields do not depend

on the coordinates of T 4 and forms can only have either no legs in this space or

have a factor proportional to the volume form v̂ol4 of T 4.

The general solution is then given by the ansatz

ds2
10 =

√
αds2

6 +

√
Z1

Z2
dŝ2

4, (4.2.7a)

ds2
6 = − 2√

P
(dv + β)

[
du+ ω +

F
2

(dv + β)
]

+
√
Pds2

4, (4.2.7b)

e2Φ =
Z2

1

P
, (4.2.7c)

B2 = −Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2, (4.2.7d)

C0 =
Z4

Z1
, (4.2.7e)

C2 = − α

Z1
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2, (4.2.7f)

C4 =
Z4

Z2
v̂ol4 −

Z4

P
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β), (4.2.7g)

C6 = v̂ol4 ∧
[
−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
(4.2.7h)

with

α ≡ Z1Z2

Z1Z2 − Z2
4

, P ≡ Z1 Z2 − Z2
4 . (4.2.8)

We have defined new asymptotically null coordinates u and v as

u ≡ 1√
2

(t− y), v ≡ 1√
2

(t+ y), (4.2.9)

which can be thought of as world-volume coordinates of the branes. In the above

ansatz, ds2
10 denotes the string-frame metric of the ten-dimensional spacetime, and ds2

6

denotes the Einstein-frame metric of the six-dimensional spacetime, which is a fibration

39See also [109] for a recent review.
40Assuming a null isometry is natural in the context of the D1-D5-P solutions, as one assumes no

right-moving momentum along S1 to preserve some supersymmetry. Forming light-cone coordinates
(4.2.9), one can identify the right-moving direction as the direction of the isometry.
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over a 4-dimensional base B with metric

ds2
4 = hµν(x, v)dxµdxν , (4.2.10)

where the metric components can in principle be functions of the coordinates on B
and v. The ansatz includes scalars Z1, Z2, Z4,F ; one-forms β, ω, a1, a2, a4; two-forms

γ1, γ2, δ2; and a three-form x3, all on B. These quantities can depend on the coordinates

of B and on v, but supersymmetry requires them to be independent of u. The RR

potentials Cp can have an extra term proportional to a four-form C on B, but it has

been set to zero by using the gauge symmetries discussed in [103,110].

There is some redundancy in the ansatz as the form of the solution is preserved by

the diffeomorphism

v → v + V (x) , u→ u+ U(x, v) , (4.2.11)

provided that the following transformations are taken at the same time

β → β − d4V , F → F − 2U̇ , ω → ω − d4U + U̇β . (4.2.12)

In the above d4 denotes the exterior derivative constrained to the base space B, and the

dot denotes the partial derivative with respect to v, i.e. ˙ ≡ ∂v. It is also convenient

to introduce a gauge invariant differential operator

D ≡ d4 − β ∧ ∂v . (4.2.13)

The potentials in the ansatz (4.2.7) are not gauge invariant and thus the ansatz

quantities appearing in them are also not gauge invariant. The equations of motion

relate only gauge invariant quantities, which are the two-forms [103,109]

Θ1 ≡ Da1 + γ̇2 − β̇ ∧ a1 , Σ1 ≡ Dγ2 − a1 ∧ Dβ , (4.2.14a)

Θ2 ≡ Da2 + γ̇1 − β̇ ∧ a2 , Σ2 ≡ Dγ1 − a2 ∧ Dβ , (4.2.14b)

Θ4 ≡ Da4 + δ̇2 − β̇ ∧ a4 , Σ4 ≡ Dδ2 − a4 ∧ Dβ , (4.2.14c)

and an additional four-form Ξ4 which will not be important in our discussion. Essen-

tially these are different degrees of freedom appearing in the field strengths Fp [103,109],

and one can think of this new formalism as a particular way to nicely decouple the equa-

tions governing the different degrees of freedom appearing in the gauge fields. But note

that the fields in (4.2.14) are not completely independent as one can show that they

satisfy (I = 1, 2, 4) [109]

DΣI = −ΘI ∧ Dβ, ∂v(ΣI + β ∧ΘI) = d4ΘI . (4.2.15)

86



CHAPTER 4. REVIEW OF D1-D5-P SYSTEM

The equations of motion can be separated into three layers [103]. These can be

solved in succession, with the solution of the previous layer acting as source in the next

one. Most importantly, the system has a linear structure [108]: apart from the zeroth

layer, the equations of motion are linear with the only non-linear part coming from the

sources, which in principle are known from solving the previous layer.

Zeroth Layer

The zeroth layer determines the metric of the base space hµν and the one-form β.

The space must be almost hyper-Kähler on which we find a set of three anti-self dual

two-forms JA, A = 1, 2, 3, that satisfy the following set of equations

∗4JA = −JA , (4.2.16a)

JA ∧ JB = −2δAB vol4 , (4.2.16b)

d4JA = ∂v (β ∧ JA) , (4.2.16c)

where ∗4 is the hodge-dual on the base space and vol4 is its volume form. In addition,

the one-form β needs to be self-dual

Dβ = ∗4Dβ . (4.2.17)

This layer is in principle the hardest to solve as it involves non-linear differential

equations (4.2.16). The solutions appear as sources in the first layer, mainly through

β and the hodge-dual operator, with the exception being an anti-self dual two-form

which can be constructed as

ψ =
1

8
εABC (JA)µν

(
J̇B

)
µν
JC , (4.2.18)

where εABC is a totally anti-symmetric tensor and we take ε123 = +1.

First Layer

The first layer relates the scalars ZI with the gauge strengths ΘI and ΣI . In fact one

can group the equations into three sets of independent equations which all have the

same form

∗4(DZ1 + β̇Z1) = Σ2 , (1− ∗4)Θ2 = 2Z1ψ , (4.2.19a)

∗4(DZ2 + β̇Z2) = Σ1 , (1− ∗4)Θ1 = 2Z2ψ , (4.2.19b)

∗4(DZ4 + β̇Z4) = Σ4 , (1− ∗4)Θ4 = 2Z4ψ , (4.2.19c)
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and thus a solution for one set of equations is also a solution for the other two. Note

that the two-form ψ coming out of the zeroth-layer is related to the failure of the

two-forms ΘI to be self dual.

There exists an equivalent set of equations in which ΣI has been eliminated, which

is given by

∂v

(
∗4(DZ1 + β̇Z1)

)
= d4Θ2 − ∂v (β ∧Θ2) ,

D ∗4 (DZ1 + β̇Z1) = −Θ2 ∧ Dβ , (4.2.20a)

∂v

(
∗4(DZ2 + β̇Z2)

)
= d4Θ1 − ∂v (β ∧Θ1) ,

D ∗4 (DZ2 + β̇Z2) = −Θ1 ∧ Dβ , (4.2.20b)

∂v

(
∗4(DZ4 + β̇Z4)

)
= d4Θ4 − ∂v (β ∧Θ4) ,

D ∗4 (DZ4 + β̇Z4) = −Θ4 ∧ Dβ . (4.2.20c)

Second Layer

Finally, the second layer determines F and ω [105,109]

(1 + ∗4)Dω + F Dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 − 2(Z1Z2 − Z2
4 )ψ, (4.2.21a)

∗4D ∗4 L+ 2β̇µL
µ − ∗4(ψ ∧ Dω)

= −1

4
(Z1Z2 − Z2

4 )ḣµν ḣµν +
1

2
∂v[(Z1Z2 − Z2

4 )hµν ḣµν ]

+ (Ż1Ż2 − Ż2
4 ) + (Z1Z̈2 + Z2Z̈1 − 2Z4Z̈4)

− 1

2
∗4
[
(Θ1 − Z2ψ) ∧ (Θ2 − Z1ψ)− (Θ4 − Z4ψ) ∧ (Θ4 − Z4ψ)

+ (Z1Z2 − Z2
4 )ψ ∧ ψ

]
, (4.2.21b)

where we have defined the one-form

L ≡ ω̇ +
F
2
β̇ − 1

2
DF . (4.2.22)

The equations are linear in F and ω, although (4.2.21b) is significantly more compli-

cated than the equations that we encountered so far. The reason is that the equations

in the first two layers (and (4.2.21a)) are derived using the supersymmetry in the sys-

tem. This can be seen most easily from the fact that the equations are first rather than

second order differential equations, which appear in the usual Einstein-Maxwell like

equations. However, in most of the systems, solving BPS equations alone is not enough

to fully specify the solutions and one has to add an additional equation of motion,
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usually from either the Maxwell’s or Einstein’s equations [111]. Here (4.2.21b) comes

from a null-null component of the Einstein equations [103].

The fact that the equations are first order differential equations is an additional

advantage when looking for new solutions as these are significantly easier to solve than

second order equations. Thus we are able to find solutions which were previously too

difficult to obtain.

Flat Base Space

As mentioned above, the zeroth layer is the hardest to solve. However, a huge number

of solutions can be found by considering a base space with a flat metric

hµν(x, v) = δµν , (4.2.23)

and a set of v-independent two forms JA, from which it follows that ψ = 0. One can

make a further assumption that the one-form β is also v-independent, in which case

the self duality constraint reduces to

d4β = ∗4 (d4β) . (4.2.24)

This simplifies the first and second layer equations significantly, as they are now

given by

∗4DŻ1 = DΘ2, D ∗4 DZ1 = −Θ2 ∧ dβ, Θ2 = ∗4Θ2, (4.2.25a)

∗4DŻ2 = DΘ1, D ∗4 DZ2 = −Θ1 ∧ dβ, Θ1 = ∗4Θ1, (4.2.25b)

∗4DŻ4 = DΘ4, D ∗4 DZ4 = −Θ4 ∧ dβ, Θ4 = ∗4Θ4, (4.2.25c)

and

Dω + ∗4Dω + Fdβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4, (4.2.26a)

∗4 D ∗4
(
ω̇ − 1

2
DF

)
= ∂2

v(Z1Z2 − Z2
4 )− (Ż1Ż2 − (Ż4)2)− 1

2
∗4 (Θ1 ∧Θ2 −Θ4 ∧Θ4).

(4.2.26b)

4.2.2 D1-D5-P Black Hole

We begin by considering the simplest 3-charge solution, which corresponds to setting

all ansatz quantities to zero, except [105]

Z1 = 1 +
Q1

r2
, Z2 = 1 +

Q5

r2
,

F
2

= −Qp
r2

. (4.2.27)

89



CHAPTER 4. REVIEW OF D1-D5-P SYSTEM

We also assume that the base space is R4 with the metric (4.2.23). This is the solution

corresponding to the superposition of a stack of D1 and D5 branes localised at the origin

of R4, with momentum charge along one direction in S1 [102], and is thus precisely the

supergravity description of the brane configuration summarized in table 6. The charges

Q1, Q5, and Qp are measured within supergravity and are related to the quantized

numbers n1, n5, and np as [105]

Q1 =
(2π)4gsl

6
s

V4
n1 , Q5 = gsl

2
s n5 , Qp =

(2π)4g2
s l

8
s

V4R2
y

np . (4.2.28)

Inserting these values into the ansatz (4.2.7) shows that the system is described by

ds2
10 = − 2√

Z1Z2
dv

(
du+

F
2
dv

)
+
√
Z1Z2 ds

2
4 +

√
Z1

Z2
dŝ2

4 , (4.2.29a)

e2Φ =
Z1

Z2
, B = 0, C0 = 0, C2 = − 1

Z1
du ∧ dv + γ2,

C4 = 0 , C6 =

(
− 1

Z2
du ∧ dv + γ1

)
∧ dx6789, (4.2.29b)

where γ1 and γ2 are determined by the anti-self duality condition F3 = −∗10 F7, which

is equivalent to imposing

dγ1 = ∗4dZ1 , dγ2 = ∗4dZ2 . (4.2.30)

Thus in addition to having a non-trivial metric, this solution has an excited two-form

gauge potential (and a corresponding six-form potential) and a dilaton field.

Asymptotic behaviour (r →∞) In this limit both Z1 and Z2 tend to 1, while F
vanishes. Using −du dv = −dt2 + dy2, we see that the metric at infinity corresponds

to a flat metric in ten dimensions and thus (4.2.29) describes an asymptotically flat

spacetime, with the asymptotic space being R1,4×S1× T 4. The remaining fields show

similar behaviour in this region, as the dilaton vanishes while the components of C2

and C6 become constant and thus their corresponding field strengths vanish.

Near Horizon Region (r �
√
Q1,5) In this limit we can neglect the factors ”1”

in Z1,2. If one uses the coordinate transformation r2 = r̃2−Qp [112] the metric can be

rewritten as

ds2 = − r̃
2f(r̃)2

R2
AdS

dt2 +
R2

AdS

r̃2f(r̃)2
dr̃2 +

r̃2

R2
AdS

(
dy +

Qp
r̃2

dt

)2

+R2
AdSdΩ2

3 +

√
Q1

Q5
dŝ2

4 ,

(4.2.31)
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where

f(r̃) = 1− Qp
r̃2

, (4.2.32)

dΩ2
3 is the area element of a unit sphere in three dimensions, and

R2
AdS =

√
Q1Q5 . (4.2.33)

This is the extremal BTZ black hole [61, 62] (satisfies M RAdS = |J |) together with

a three-sphere with a constant radius RAdS, and a four torus with a different radius

Q
1
4
1 Q

− 1
4

5 .

We can compactify the solution along S1 × T 4 [113] to obtain [102,114]41

ds2
E = −λ−

2
3 dt2 + λ

1
3
(
dr2 + r2dΩ2

3

)
, (4.2.34)

which is written in the Einstein frame, with

λ =

(
1 +

Q1

r2

)(
1 +

Q5

r2

)(
1 +

Qp
r2

)
. (4.2.35)

This is a generalisation of the extremal Reissner–Nordström solution in 5 dimensions.

The metric components diverge at r → 0, however the curvature invariants (such as the

Ricci scalar or Kretschmann scalar (1.6)) are finite, meaning that at this point we have

a horizon rather than a singularity, and thus we can calculate the Bekenstein-Hawking

entropy of this black hole through (1.12).

Since the horizon is located at r = 0 where λ diverges, one could assume that

the area of the three-sphere S3 either vanishes or diverges due to the factor of r2 λ
1
3

multiplying the part of the metric concerned with the sphere. However, there is a

stabilisation due to the cancellation between the divergence of the λ
1
3 and vanishing of

r2, which fixes the radius of the sphere to (Q1Q5Qp)
1
3 , and consequently the area of

the horizon is given by

AH = 2π2
√
Q1Q5Qp . (4.2.36)

Since the supergravity charges are related to the quantised charges via (4.2.28), the

horizon area depends on the moduli of the theory, such as the value of the string

coupling or the size of the compact dimensions. However, in the Bekenstein-Hawking

41We use (4.2.9) to go back to the {t, y, xµ} coordinate system and then compactify along S1 coor-
dinatized by y.
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entropy all moduli dependence cancels out to give

SBH =
AH

4G
(5)
N

= 2π
√
n1 n5 np , (4.2.37)

where G
(5)
N is the five-dimensional Newton’s constant which can be written in terms of

the parameters of the theory as [115]

G
(5)
N =

8π6g2
s l

8
s

2πRy (2π)4 V
. (4.2.38)

This result is significant as it shows that contrary to the horizon area, the entropy is

depends only on the number of objects in the configuration.

4.2.3 D1-D5 Black Hole

Let us briefly look at behaviour of the above system as we take the two-charge limit

Qp → 0 ⇐⇒ np → 0 , (4.2.39)

so we must set F = 0 in the metric part of (4.2.29), but leave the RR potentials and

the dilaton field unchanged. The resulting solution reduces to the exact same form in

the r → ∞ limit as before, and is thus also asymptotically flat. On the other hand,

the near horizon region changes. By taking the limit r �
√
Q1,5 we observe that the

metric can now be written as

ds2 = − r2

R2
AdS

dt2 +
R2

AdS

r2
dr2 +

r2

R2
AdS

dy2 +R2
AdSdΩ2

3 +

√
Q1

Q5
dŝ2

4 , (4.2.40)

with the radius of AdS still being given by (4.2.33). This is the metric of an extremal

massless (and thus non-rotating) BTZ black hole fibered with an S3 with a radius of

RAdS and a T 4 with a constant radius. The BTZ black hole is locally AdS3, however

these two spaces differ globally. The horizon is again located at r = 0, but in this case

coincides with the position of the curvature singularity, unlike in the solution (4.2.31)

where the horizon is located at r̃ =
√
QP .

The physical interpretation of this difference can be traced to the brane configura-

tion found in table 6. Close to the branes, the spacetime transverse to the world-volume

tends to expand, while the directions in which the brane is extended tend to shrink,

as this lowers the energy due to the tension of the branes. Since along S1 both D1

and D5 branes are extended, this spacetime dimension effectively vanishes where the

branes are located (see that in (4.2.40) at r = 0 the length of the circle parametrised

by y shrinks to 0).
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On the contrary, momentum causes the directions along which is propagates to

expand. Recall that in a compact space, the momentum is quantised in units of inverse

length, so a larger space implies lower momentum excitations. Thus adding momentum

along S1 stabilises the circle at the position of the branes which leads to a non-vanishing

horizon area.

It is this stabilisation that is the difference between the three and the two-charge

black hole. It can be also seen after the compactification along S1 × T 4, which in the

case of the two-charge black hole yields [114]

ds2
E = −λ̃−

2
3 dt2 + λ̃

1
3
(
dr2 + r2dΩ2

3

)
, (4.2.41)

in the Einstein frame, with

λ̃ =

(
1 +

Q1

r2

)(
1 +

Q5

r2

)
. (4.2.42)

For this metric the curvature invariants diverge at r → 0, which is also the position

of the horizon. In that limit r2 λ
1
3 ∼ r2/3, so the radius of S3 and thus the horizon

area vanish. Therefore classically, the D1-D5 two-charge black hole has a vanishing

Bekenstein-Hawking entropy.

All in all, the two-charge solution is simpler than the three-charge one, however it

is also special in the sense that the curvature singularity and the horizon overlap. Thus

the two-charge black hole serves as an important toy model for the more complicated

three-charge solution where the horizon is at a macroscopic distance from the singularity

and thus the physics at the horizon scale is clearly distinguished from the physics near

the singularity.

4.3 Brane Description

The Bekenstein-Hawking entropy for the three-charge black hole depends only on the

number of D1 and D5-branes, and the number of quantized units of momentum added

onto the geometry. Thus one can speculate that the same entropy can be obtained from

a pure counting argument. This was confirmed by Strominger and Vafa in [116] (albeit

they used K3 rather than T 4), where they found that a moduli invariant bound of

the number of BPS states in a system which provides a dual description to the gravity

picture correctly reproduces the black hole entropy.

Soon thereafter Callan and Maldacena [102] provided a more physical interpretation

of how this counting can be seen from an open string perspective. Here we give a

simplified account of their derivation and follow [22,102,115,117].

We assume gs � 1 and gsn1n5 � 1 so that open and closed strings decouple,
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D1 D5
Figure 9: The schematic depiction of S1, where we have separated the coincident branes
and ignore the remaining directions. We have n1 D1-branes (depicted in red) and n5 D5-
branes (depicted in blue), both of which can be either singly or multiply-winded. There
are open strings (in black) which can end on either of the branes and carry the momentum
charge of the system. In order to have a BPS system the strings have to be massless and
travel in the same direction.

and thus the system is described by branes in flat ten dimensional spacetime. The

momentum charge has to be carried by an object that does not break any additional

supersymmetries. It turns out that these objects are massless open strings which carry

momentum along one direction in S1 [102].

Since we work in a limit where the S1 is much larger than the T 4, we can imagine

the system being described by an effective theory living on the S1 with D5-branes

reduced to one dimensional objects on the circle. The open strings can end either on

the D1-brane or the D5-brane, which gives us four different options – (1, 1), (1, 5),

(5, 1), and (5, 5), where each label describes the brane on which the left or right end

lives, and since the strings are oriented, we need to distinguish between the left and

the right end-point.

We want to show that number of configurations of such a system can reproduce

the Bekenstein-Hawking entropy, to leading order. Thus we are interested only in the

largest contribution which comes from the strings whose ends lie on different branes.

Furthermore, it turns out that when many (1, 5) and (5, 1) strings are excited, the (1, 1)

and (5, 5) become massive [102,118] and thus putting momentum into any such string

breaks the BPS condition.

Because the stacks of D1-branes and D5-branes are coinciding on S1, and the cou-

pling between open strings is small, these effectively behave as free massless point par-

ticles. Their wavefunction is therefore just a superposition of momentum eigenstates

on a circle and can be schematically written as

ψ(y) ∼
∑
k

e
iky

2πRy . (4.3.1)

Or in other words, the open strings behave as a dilute non-interacting gas in a one

dimensional box of length L = 2πRy with periodic boundary conditions imposed.

Before we continue, we need to explain that the quantised charges n1 and n5 actually
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refer to the total number of windings of the D1 and D5-branes around S1. This can be

achieved in multiple ways, as a brane can be multiply wound around the circle, with

the two extremal cases being, in the example of D1-branes, n1 singly wound branes

and a single brane wound n1 times. In general, the charge can be distributed over

the differently wound branes in an arbitrary manner, as long as the total number of

windings is n1, which gives the constraint

n1∑
k=1

mk k = n1 , (4.3.2)

where mk denotes the number of D1-branes with winding k. A similar analysis can be

done for the D5-branes.

It follows that each open string has two additional labels, which we denote as

ψ(d1, d5), which indicate the position (or more precisely, the loop) in the winding of

the branes on which it ends. For example, ψ(2, 3) denotes that the open string currently

connects the second loop of the D1-brane with the third loop of the D5 brane.

The winding of the branes on which the open string ends determines the periodicity

of the wavefunction (4.3.1), and one can show that if the string ends on a D1-brane

with winding m1 and a D5-brane with winding m5, the total period of the wavefunction

becomes LT = 2πm1m5Ry.
42 Thus one can think of the open strings as living in a box

with effective length LT , where the momentum excitations are quantised in units of

1/LT rather than 1/L, which is called momentum fractionalisation [22].

Physically different configurations correspond to the different ways in which we

can distribute the total momentum charge P = np/L to the open strings. We are

interested only in the leading contribution so we focus on the extremal case where all

branes are maximally winded, i.e. m1 = n1 and m5 = n5. In this case the momentum

excitations have the lowest possible value, thus we can distribute the momentum in the

most number of ways, meaning that such configurations have the highest entropy [119].

Finally, we need to consider that the string carries 4 bosonic and 4 fermionic degrees

of freedom, totalling to 6 bosonic degrees of freedom (nB + 1/2nF = 4 + 2).43 As each

of these contributes to the momentum, we have to find the number of configurations

42Strictly speaking this is the period if m1 and m5 are coprime numbers. If this is not the case, we
can always find a pair of numbers that are coprime and to leading order in large m1,5 limit reproduce
the same period.

43The bosonic degrees of freedom can be viewed as the 4 directions in T 4 along which the D5-branes
are extended and the open strings can fluctuate into. This picture becomes much clearer in another
duality frame [115] in which the same system is described by F1-NS5-P, where NS5 is a 5-dimensional
solitonic object of string theory. In this system the momentum is carried by transverse waves of the
fundamental string, which have to be contained within the 4 dimensions of the NS5-brane. The 4
fermionic degrees of freedom are the supersymmetric partners of these bosonic degrees of freedom. A
much more thorough analysis of the degrees of freedom from the point of view of D1-D5-P system is
carried out in [118].
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ψ(1, 1) ψ(2, 2) ψ(3, 1)

ψ(1, 2) ψ(2, 1) ψ(3, 2)

Figure 10: Massless open strings that have one end on a D1-brane (red) and the other
end on a D5-brane (blue) can be effectively described by a dilute ideal gas in a one-
dimensional box of length LT = 2πRym1m5, where m1 and m5 are the windings of the
D1 and D5-branes respectively. In the figure, this is shown for the canonical example
m1 = 3 and m5 = 2 [102]. The sequence starts on the top left and finishes at the bottom
right, and each step shows a full rotation around S1. Rotating starting from ψ(3, 2)
returns ψ(1, 1), which shows that one has to rotate around the circle m1m5 = 6 times in
order to return to the original configuration.

satisfying the constraint (assuming equal distribution of momentum)

P =
np
L

= 6
∞∑
k=1

kmk

LT
= 6

∞∑
k=1

kmk

n1n5L
, (4.3.3)

which can be rearranged to

n1n5np
6

=

∞∑
k=1

mkk , (4.3.4)

which is the problem of partitioning the number
n1n5np

6 , which we assume to be an

integer. In the limit n1n5np � 1 the result is given by [120]

Ω ∼
[
e

2π
√
n1n5np

36

]6

= e2π
√
n1n5np , (4.3.5)

where we have used the fact that to leading order there is a six-fold degeneracy in which

we can find the states. Using the Boltzmann formula (1.14), we find that the entropy

associated to such a system is given by

Smicro = 2π
√
n1n5np , (4.3.6)
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which precisely matches the result (4.2.37) obtained using the Bekenstein-Hawking

formula.44

4.4 AdS/CFT Duality in the D1-D5 system

Another way of analysing the microscopic behaviour of the D1-D5-P system is by using

the AdS/CFT duality, which states that type IIB string theory on AdS3 × S3 ×M
(where M can be either T 4 or K3, although we take it to be the former) is equivalent

to a 2D CFT with N = (4, 4) supersymmetry, called the D1-D5 CFT [41].45

We are interested in the classical supergravity limit of the correspondence where

the string coupling is small, and the ratio between the radius of AdS and the string

length is large, with the dual theory being a strongly coupled CFT with a large central

charge46

c = c̄ = 6N , where N ≡ n1 n5 . (4.4.1)

Let us review the symmetries of the two sides of the duality. The isometry group of

AdS3 is SO(2, 2) ' SL(2,R)L×SL(2,R)R which gets mapped to the global conformal

symmetry group of the CFT. The two-dimensional conformal group is infinte dimen-

sional [124], however only the finite, anomaly-free part of the Virasoro algebra is im-

portant for the duality. The isometry group of the sphere SO(4)E ' SU(2)L×SU(2)R,

which from a three-dimensional gravity perspective can be seen as the gauge symme-

try, is dual to the R-symmetry of the boundary theory. Furthermore, the isometry

group of the torus SO(4)I ' SU(2)C ×SU(2)B translates into an outer automorphism

symmetry of the boundary superalgebra (SU(2)B), and an additional custodial group

(SU(2)C) which is not part of the symmetry of the dual theory.

The D1-D5 two-charge black hole preserves 8 of the 32 supercharges of type IIB

supergravity, but in the decoupling limit this number gets enhanced to 16. This matches

the number of supersymmetry generators of the CFT [26], where we find two sets

of eight Majorana-Weyl spinors, one set for the holomorphic and one for the anti-

holomorphic sector. In two dimensions, each such spinor has one real degree of freedom

which gives a total of 16 supercharges. In summary, combining the fermionic and

bosonic symmetries, one finds that the symmetry group is given by the supergroup

SU(1, 1|2)L × SU(1, 1|2)R.

This holographic SCFT has a free locus in its moduli space where it can be described

44This matching was done only to leading order. Other methods, especially those involving the
supersymmetric index have found matching at the subleading order as well. See for example [121] for
a review.

45See e.g. [122,123] for reviews of the D1-D5 CFT.
46The central charge effectively measures the number of degrees of freedom in a CFT. The large

central charge regime is thus equivalent to taking the large N limit of N = 4 SYM theory.
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by a collection of free fields. This theory is called the free orbifold CFT and is described

in terms of a two dimensional sigma model with a target space (T 4)N/SN , which is N

copies of T 4 identified under the permutation group SN .47 The field theory at this point

does not have a good dual supergravity description and thus there exists no generic

dictionary between the gravity excitations and the fields in the free theory.48

Some connections can be made due to non-renormalization theorems, for example

it can be shown that three-point functions of BPS operators do not change as we

vary the moduli [129]. On the other hand, four-point functions are not protected by

supersymmetry as seen for example in [130]. In what follows we briefly review the main

contents of the free orbifold CFT that are used in the next chapter.

4.5 D1-D5 CFT at the Orbifold Point

4.5.1 Field Content

We follow the conventions of [123]. At the free orbifold point the CFT is described by

a sigma model with central charge c = c̄ = 6N , whose fields map R×S1 to (T 4)N/SN .

One can think of the full theory as a collection of N copies of the same CFT which we

label with an index (r) = 1, 2, . . . N . All physical states must be invariant under the

action of the permutation group SN which acts on the index (r), hence we can think

of this symmetry as a discrete gauge symmetry of the theory. Each copy contains the

following bosonic and fermionic fields(
XAȦ

(r) (t, y), ψαȦ(r) (t+ y), ψ̃α̇Ȧ(r) (t− y)
)
, (4.5.1)

where t and y are the coordinates of the boundary of AdS3, with y being periodic with

the identification y ∼ y+ 2πRy. The Greek indices α, α̇ = +,− are in the fundamental

representation of SU(2)L and SU(2)R respectively, with SU(2)L × SU(2)R being the

R-symmetry of the theory. The index A = 1, 2 is in the fundamental representation

of SU(2)B, which acts as an outer automorphism on the superalgebra, while the index

Ȧ = 1, 2 belongs to the custodial SU(2)C . Since the bosonic fields are in the (2,2)

representation of SU(2)C×SU(2)B, one can think of this group as acting on the tangent

space of the target space T 4 of one boson, which is why this symmetry is related to the

isometry group of the four-torus.

47See e.g. [125,126] for a discussion on the moduli space and the position of the free orbifold point.
48Recently (see for example [127, 128]) it has been argued that in the large N limit the exact dual

of the symmetric orbifold CFT is given by the superstring theory on AdS3 × S3 × T 4 with one unit
of NS-NS flux (k = 1). This explicitly shows that the dual theory of the free orbifold point cannot be
analysed by supergravity alone.
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It is often more convenient to perform a Wick rotation to Euclidean time

t = −iτ , (4.5.2)

and transform the cylinder to a plane by

z ≡ e
τ
Ry

+i y
Ry , z̄ ≡ e

τ
Ry
−i y

Ry . (4.5.3)

The fields then split into a holomorphic (left-moving) and an anti-holomorphic (right-

moving) sector containing (∂XAȦ
(r) (z), ψαȦ(r) (z)) and (∂̄XAȦ

(r) (z̄), ψ̃α̇Ȧ(r) (z̄)) respectively.

The two sectors are completely analogous, hence we limit ourselves to the holomorphic

part only, but it should be understood that equivalent statements can be made about

the anti-holomorphic sector. From now on we also suppress the index labelling the

copy.

CFTs are characterised by operator product expansions (OPE), and we use the

conventions in which the OPEs between elementary fields are

∂XAȦ(z1)∂XBḂ(z2) ∼
εABεȦḂ

(z1 − z2)2
, ψαȦ(z1)ψβḂ(z2) ∼ −ε

αβεȦḂ

z1 − z2
. (4.5.4)

The periodicity of the boundary of AdS imposes the periodicity of the fields in the

CFT, and while bosonic fields are always periodic, fermionic fields require a bit more

care. Global AdS (5.3.13) naturally imposes anti-periodic boundary conditions on the

fermions on the cylinder which are therefore in the NS sector. On the other hand, the

near horizon limit of the D1-D5 system is the extremal BTZ black hole which imposes

periodic boundary conditions on the fermions on the cylinder which are then in the R

sector. These periodicities are exchanged when we go the complex plane as fermions

pick up a non-trivial Jacobi factor. There, NS fermions are periodic with respect to a

rotation around the origin, while fermions in the R sector are anti-periodic with respect

to the same transformation [123].

We will mostly work in the NS sector of the theory, but there exists a transformation

called the spectral flow [131] which allows us to map all problems in the R sector to

(more tractable) problems in the NS sector. This is especially important because states

representing the duals of microstate geometries are more naturally represented in the

R sector.

4.5.2 Symmetry Currents and Current Algebra

The fundamental fields can be used to construct symmetry currents. In the holomorphic

sector these are the stress-energy current T (z) corresponding to the Virasoro symmetry,

the SU(2)L current J i(z), where i is the triplet index of SU(2)L, and the fermionic
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Field Conformal weight h

∂XȦA(z) 1

ψαȦ(z) 1/2

T (z) 2

J i(z) 1

GαA 3/2

Table 7: Table of conformal weights for the fundamental fields and conserved currents.
These values can be read off from the respective field’s OPE with the stress-energy tensor
(see for example Appendix A of [123]).

current GαA(z). In a single copy of the CFT with the copy index supressed, they are

given by [123]

T (z) =
1

2
εȦḂεAB∂X

ȦA∂XḂB +
1

2
εαβεȦḂψ

αȦ∂ψβḂ, (4.5.5a)

J i(z) =
1

4
εȦḂεαβ(σ∗i)βγψ

γḂ, (4.5.5b)

GαA(z) = ψαȦ∂XḂAεȦḂ, (4.5.5c)

where (σj) α
β are the Pauli matrices and all SU(2) indices are lowered/raised with the

ε satisfying49 ε12 = ε+− = ε21 = ε−+ = 1. These currents (and their anti-holomorphic

counterparts) form a copy of the small N = 4 superconformal algebra.

All fields can be expanded into modes by using

O(z) =
∑
m

Omz−m−h, Om =
1

2πi

∮
dzO(z)zh+m−1 , (4.5.6)

where O(z) is a generic operator with conformal weight h. The conformal weights of

the fundamental fields and the symmetry currents are listed in table 7. Note that the

modes of all bosonic fields are integers. Fermion fields in the NS sector have half-integer

modes, which also means that they do not have any zero modes. On the other hand

R sector fermions have integer modes and thus contain zero modes which is important

for the degeneracy of ground states in the R sector.

The current modes satisfy the algebra [123]

[
J im, J

j
n

]
=

c

12
mδijδm+n + iεabcJcm+n, (4.5.7a)[

J jm, G
αA
n

]
=

1

2
(σj)β

αGβAm+n, (4.5.7b)

49We use α = +,− and A = 1, 2 to highlight the difference between the R-symmetry and the outer
automorphism indices.
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[
Lm, J

j
n

]
= −nJ jm+n, (4.5.7c)[

Lm, G
αA
n

]
=
(m

2
− n

)
GαAm+n, (4.5.7d)

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n, (4.5.7e){

GαAm , GβBn

}
= − c

6

(
m2 − 1

4

)
εABεαβδm+n − εABεαβLm+n

+ (m− n)εAB(σi T )αγε
γβJ im+n, (4.5.7f)

which is infinite-dimensional as the mode numbers can take any of the allowed values.

However, in this case the algebra is anomalous due to the appearance of central terms.

For the AdS/CFT duality only the globally well defined anomaly-free part of the algebra

is important. In the NS sector it is spanned by
(
L0, L±1, J

a
0 , G

αA
± 1

2

)
with the explicit

form of the (anti)-commutation relations being

[Lm, Ln] = (m− n)Lm+n , [J j0 , J
k
0 ] = iεjklJ l0 , [Ln, J

αβ
0 ] = 0 ,

[J j0 , G
αA
m ] =

1

2
GβAm (σj) α

β , [Lm, G
αA
n ] =

(m
2
− n

)
GαAm+n ,

{GαAm , GβBn } = εαβεABLm+n + (m− n)εAB(σi T )αγε
γβJ im+n .

(4.5.8)

4.5.3 Twist Fields

So far we have only considered operators within one copy of the CFT. However, a

physical state in the D1-D5 CFT has to be invariant under the SN group, which also

means that every generator in (4.5.5) actually has to be considered in a permutation

invariant sum over all indices (r).

In addition to the fields which act within one copy of the CFT, there exist twist

fields which combine several single copies into a long component string that we call a

strand. If no twist operators have been inserted, and all component strings have length

one, we are in the untwisted sector of the theory. The alternative is the twisted sector

where some of the copies are sewn together to form longer strands. These can have

arbitrary length with the strings combined in various ways, subject to the condition

that the overall length must be N

∞∑
k=1

kNk = N , (4.5.9)

where Nk denotes the number of strands of length k.

The action of a twist field changes the boundary conditions of other fields, as now

a full rotation around S1 lands us on a different string. After the transformation

(4.5.3) this corresponds to glueing together multiple complex planes, so that after a

full rotation around a point, one lands on a different sheet. For example, a bosonic
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field in a strand of length k has the following identifications

∂XAȦ
(r) (e2πiz) = ∂XAȦ

(r+1)(z) , and ∂XAȦ
(k) (e2πiz) = ∂XAȦ

(1) (z) . (4.5.10)

It is possible to perform a change of basis in which the monodromy conditions become

diagonal [132]. In this new basis, the independent fields are labelled by an index

ρ = 0, 1, . . . k − 1, and the corresponding periodicity conditions are

∂X1Ȧ
ρ (e2πiz) = e−2πi ρ

k ∂X1Ȧ
ρ (z) , ∂X2Ȧ

ρ (e2πiz) = e2πi ρ
k ∂X2Ȧ

ρ (z) . (4.5.11)

As a consequence, the mode expansions of such fields contain fractional modes, for

example [133]

∂X11̇
ρ (z) =

∑
n∈Z

α11̇
ρ,n− ρ

k
z−n−1+ ρ

k . (4.5.12)

4.5.4 Construction of Multiplets in the NS Sector

With these current modes, we are able to construct the multiplets in the NS sector.

We closely follow [123]. The states can be labelled by the eigenvalues of the Cartan

subalgebra of (4.5.8) which is spanned by L0 and J3
0 , and whose eigenvalues we denote

by h and m respectively. One can also use the eigenvalue of the Casimir operator (J i0)2

of the SU(2)L group to give an additional index j, where

j ≥ m ≥ −j. (4.5.13)

We define a (global-)primary state as a state |ψ〉 that is annihilated by all positive

modes of the anomaly free algebra50

L+1|ψ〉 = GαA
+ 1

2

|ψ〉 = 0 . (4.5.14)

A chiral state |χ〉 satisfies

G+A
− 1

2

|χ〉 = 0 , (4.5.15)

which means that it is annihilated by two operators, as A = 1, 2. Furthermore, in a

unitary theory any physical state has to obey [123]

h ≥ j , → h ≥ |m| . (4.5.16)

50One usually refers to a state as a primary if it is annihilated by all positive modes of the full
algebra (4.5.7). However, as we are mainly interested in the anomaly free part (4.5.8), we wont make
this distinction here. Hence, with an abuse of nomenclature, we refer to a primary as a state that
satisfies (4.5.14).
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A chiral primary state (or just chiral primary) saturates this bound by having

h = j = m, (4.5.17)

while an anti-chiral primary also saturates the bound, but has

h = j = −m. (4.5.18)

One can show that a state is a chiral primary if and only if it is both a chiral and a

primary state. The conformal weights of chiral primaries are also constrained by [123]

k − 1

2
≤ h ≤ k + 1

2
, (4.5.19)

which can be derived by looking at fractional modes in a k-twisted sector. This bound

gives the upper and lower limit on the values of the conformal weights of chiral primaries

in each twisted sector.

In a generic k-twisted sector there are four chiral primaries, with the lowest con-

formal dimension being given by h = m = (k − 1)/2. For the untwisted sector, where

k = 1, this lowest state is the vacuum |0, 0〉 of the NS sector, which is annihilated by

all generators of the small N = 4 algebra.51 The vacuum state is the only state which

is simultaneously a chiral primary and an anti-chrial primary.

Starting from the chiral primary with the lowest conformal dimension, in any k-

twisted sector additional chiral primaries are obtained through the fermionic mode

ψ+Ȧ
−1/2. Acting once gives a doublet of states, while the action with ψ+1̇

−1/2ψ
+2̇
−1/2 gives

a state with h = m = (k + 1)/2. The four chiral primaries in the k-twisted sector are

then given by

|c0〉 =

∣∣∣∣k − 1

2
,
k − 1

2

〉
, ψ+Ȧ

− 1
2

|c0〉 ∝
∣∣∣∣k2 , k2

〉Ȧ
, ψ+1̇

− 1
2

ψ+2̇
− 1

2

|c0〉 ∝
∣∣∣∣k + 1

2
,
k + 1

2

〉
,

(4.5.20)

where we denoted a state with |h,m〉, and h and m represent the eigenvalues under the

action of L0 and J3
0 respectively.

Chiral primaries are the highest weight states in their SU(2)L multiplet, as they

saturate the bound (4.5.17). Their superdescendants are generated by the action of neg-

ative modes of the anomaly-free subalgebra. We define the usual raising and lowering

operators of the SU(2)L algebra by

J±0 = J1
0 ± iJ2

0 , (4.5.21)

51In fact, more generally the vacuum |0, 0〉 satisfies Ln|0, 0〉 = L̃n|0, 0〉 = 0 for any n ≥ −1 and
GαAr |0, 0〉 = G̃α̇Ar |0, 0〉 = 0 for r ≥ −1/2 also J in|0, 0〉 = J̃ īn|0, 0〉 = 0 for n ≥ −1.
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and a multiplet is generated by acting on a chiral primary repeatedly with J−0 which

decreases the J3
0 eigenvalue by one until m = −h and we reach the lowest weight state

of the multiplet, the anti-chiral primary.

One can similarly act on a state with L−1 which increases the conformal dimension

by one and leaves the SU(2)L charge unchanged. Since [L−1, J
+
0 ] = 0, the action of

L−1 maps a highest weight state of the SU(2)L into another highest weight state.

Finally, one can act on a chiral primary with G−A− 1
2

which decreases the SU(2)L

charge by one half while simultaneously increasing the conformal dimension by the

same amount. Because these modes are anti-commuting, one can only obtain three

new states by their repeated action. However, starting from a non-chiral primary state,

which is not annihilated by G+A
− 1

2

, we can actually obtain 15 new states by the repeated

action of the supersymmetry current modes.

The state obtained by the action of G−1
− 1

2

G−2
− 1

2

on a chiral primary is not completely

independent of the state that is obtained by acting with J−0 L−1 on the same initial

state. If the starting point is a chiral primary |h, h〉, one can use the algebra (4.5.8) to

show that the linearly independent state is given by

|ψ〉 ≡
(
G−1
− 1

2

G−2
− 1

2

+
1

2h
J−0 L−1

)
|h, h〉, (4.5.22)

whose eigenvalues under the action of L0 and J3
0 are

L0|ψ〉 = (h+ 1)|ψ〉 , J3
0 |ψ〉 = (h− 1)|ψ〉 . (4.5.23)

This new state is the highest-weight member of its SU(2)L multiplet, despite not being

a chiral primary. Thus we can again generate descendants by repeated action of J−0
and L−1, and in this way construct a new linearly independent family of states in the

theory.

4.5.5 Spectral Flow

One can realise the superalgebra in equivalent ways by taking the spectral flow of the

currents [123] whose modes transform as (we follow the conventions of [105])

Lm 7→ Lm − 2νJ3
m +

cν2

6
δm,0, (4.5.24a)

J3
m 7→ J3

m −
cν

2
δm,0, (4.5.24b)

J±m 7→ J±m∓2ν , (4.5.24c)

G±Am 7→ G±Am∓ν , (4.5.24d)
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where ν is the spectral flow parameter, and an equivalent transformation holds for the

anti-holomorphic sector with an independent parameter ν̄. Under such a transforma-

tion, the eigenvalues change as well

h 7→ h+ 2νm+
cν2

6
, m 7→ m+

cν

6
. (4.5.25)

By choosing appropriate values of ν, one can map the NS sector to the R sector and

vice versa. Under a spectral flow not only do the operators change, but also the states

as well. This allows us to have a one-to-one correspondence between states in the NS

sector and states in the R sector.

In the next chapter we are particularly interested in anti-chiral primary states. By

choosing ν = ν̄ = −1/2, such states flow to Ramond-Ramond ground states with

charges

hR =
c

24
, jR = −hNS +

c

12
, (4.5.26)

where we have used that for anti-chiral primary states jNS = mNS = −hNS.

4.5.6 AdS/CFT Dictionary

Let us introduce a notation that is useful when stating the correspondence between

the CFT states and bulk fields [109, 126, 134]. In each k-twisted sector, there are 4

(anti-)chiral primaries in the holomorphic and 4 (anti-)chiral primaries in the anti-

holomorphic sector. Since a general state is a product of the holomorphic and anti-

holomorphic states, we have 16 possible (anti-)chiral primaries in each twisted sector.

We denote the anti-chiral primary states as [134]

|αα̇〉NS
k , hNS = −jNS =

k + α

2
, hNS = −jNS =

k + α̇

2
, (4.5.27a)∣∣∣αȦ〉NS

k
, hNS = −jNS =

k + α

2
, hNS = −jNS =

k

2
, (4.5.27b)∣∣∣Ȧα̇〉NS

k
, hNS = −jNS =

k

2
, hNS = −jNS =

k + α̇

2
, (4.5.27c)∣∣∣ȦḂ〉NS

k
, hNS = −jNS =

k

2
, hNS = −jNS =

k

2
, (4.5.27d)

where the indices Ȧ = 1, 2 come from the degeneracies of the middle states in (4.5.20),

and α, α̇ = ± should be interpreted as ±1 in the expressions for the eigenvalues. The

spin of a state is given by s = j−j, which means that the states (4.5.27a) and (4.5.27d)

are bosonic while the remaining ones are fermionic.

We are interested in bosonic states that are invariant under the symmetry of the

four-torus SO(4)I ' SU(2)C×SU(2)B, which are the states (4.5.27a) and an invariant
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combination of (4.5.27d) given by

|00〉NS
k ≡

1

2
εȦḂ

∣∣∣ȦḂ〉NS

k
. (4.5.28)

Among these states is the NS-NS vacuum, which in this notation is denoted by |−−〉NS
k ,

as can be seen from its eigenvalues hNS = jNS = hNS = jNS = 0.

Under the spectral flow, all anti-chiral primaries map into ground states of the RR

sector with charge hR = hR = k/4, where we have used the value of the central charge

of a k-twisted string ck = ck = 6k. More specifically, the bosonic anti-chrial primaries

get mapped into

|αα̇〉NS
k 7→ |−α,−α̇〉

R
k , jR = −α

2
, jR = − α̇

2
, (4.5.29a)

|00〉NS
k 7→ |00〉Rk , jR = jR = 0 , (4.5.29b)

where the indices α, α̇ = ± should be understood to mean ±1 when appearing in jR

and jR. For example, the NS-NS vacuum transforms as

|−−〉NS
1 7→ |++〉R1 , jR = jR =

1

2
. (4.5.30)

All in all, there are 5 distinct bosonic ground states in each twisted sector, denoted by

|αα̇〉Rk and |00〉Rk .

According to the AdS/CFT duality, CFT states are dual to solutions in supergrav-

ity. The NS-NS vacuum state is dual to global AdS3×S3 [26], while other (anti-)chiral

primary states and their superdescendants correspond to excitations of linear super-

gravity around this geometry, often referred to as supergravitons [135], which were

studied in [136–138]. Chiral primaries are 1/4-BPS states and thus dual to 1/4-BPS

supergravitons in the bulk. By acting on such states with the symmetry generators

in the holomorphic sector, while leaving the anti-holomorphic sector untouched, we

create 1/8-BPS states. Such descendants of chiral primary states are dual to 1/8-BPS

excitations of empty AdS3 × S3.

As we can see from (4.5.26), in the large c limit, the conformal dimension of the

ground states of the RR sector, and thus also of all of their descendants, is very large.

States in the RR sector are hence associated with non-trivial, asymptotically AdS

geometries in the bulk with a large mass. In this case the distinction between 1/4 and

1/8-BPS states is even more profound. 1/4-BPS states, which are obtained by spectral

flow from chrial primaries, are dual to smooth 1/4-BPS solutions in supergravity called

Lunin-Mathur geometries [114, 139–143],52 while the gravity duals of 1/8-BPS states

52To be more precise, the correct statement in the AdS/CFT dictionary is that the coherent superpo-
sitions of states (4.5.31) in the RR sector are dual to classical geometries on the bulk side. We explain
how the coherent superposition is obtained in the next chapter.
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are not fully known and we focus on these in the next chapter.

Finally, the complete CFT state is a permutation invariant tensor product of states

in all different strands of the system and can be schematically written as [134]

∏
ψ

N∏
k=1

(|ψ〉k)
Nψ
k , (4.5.31)

where k is the strand length, the label ψ runs through all possible states in a single

strand of length k, and Nψ
k is the number of states ψ in a strand of length k. This form

is the same in the NS-NS and the RR sector, only the states |ψ〉 that we include in the

product differ. The above product must also satisfy the “strand budget” constraint∑
ψ

∑
k

kNψ
k = N , (4.5.32)

saying that the total length of all strands is equal to N .

4.6 Fuzzball Proposal

We saw that (4.2.37) and (4.3.6) agree (to leading order), despite being derived at

different values of the couplings and with completely different methods. One is a result

in gravity and accounts for the entropy of a region of spacetime, while the other is

obtained from a pure counting argument and represents the entropy of a system with

a high degeneracy and fixed macroscopic charges.

How do we interpret this equality? On one hand we have a black hole, a seemingly

unique object in supergravity, while on the other hand the same system can be realised

as many inequivalent physical configurations, all of which have the same charges as the

black hole. Does this imply that a black hole admits a microscopical description? If so,

what are the associated gravitational degrees of freedom? There are many proposals

which answer these questions. For example firewalls [23, 144–146], where a highly

energetic membrane is formed just outside the horizon. Another possible way to encode

the microscopics is through soft hair [147, 148], where the degrees of freedom can be

seen in the soft charges of a black hole. Here we focus on another resolution called the

fuzzball proposal [114,115,149,150].

To motivate this proposal, we can go back to the brane picture of the D1-D5-P

system and ask what happens to individual string configurations as we increase the

string coupling. One would think that as the string coupling and thus the gravitational

backreaction increase, the branes shrink until they form a horizon and eventually be-

come indistinguishable from the conventional black hole geometry. However, this is not

the case, as some of the brane configurations actually expand and never form a horizon

107



CHAPTER 4. REVIEW OF D1-D5-P SYSTEM
ψ(1, 1) ψ(2, 2) ψ(3, 1)

ψ(1, 2) ψ(2, 1) ψ(3, 2)

Flat region

Neck Region

AdS3 throat

AdS2 throat

singularity

smooth cap

horizon

Figure 11: The difference between the classical description of an (extremal) black hole
(left) and the fuzzball description if the solution can be described within supergravity
(right). We start from an asymptotically flat region which is connected through the
neck with the throat region. First we encounter an AdS3 throat which can be, if Qp 6= 0,
further reduced to an AdS2 throat [152] which is infinitely long and leads to a singularity.
The fuzzball is undistinguishable from the classical picture up until the (would be) horizon
which is now absent, but at this scale the microstates start to differ from each other and
from the classical geometry. Furthermore, the throat regions may still appear, but now
smoothly cap of at a finite distance without encountering a singularity.

while only being asymptotically indistinguishable from the usual black hole [151].

At its core, the fuzzball proposal says that this expanding of configurations happens

generically and not just for specific examples. It claims that a black hole geometry,

like the one we considered in (4.2.34), should be interpreted as an average description

over many horizonless microstates whose total number should exactly reproduce the

Bekenstein-Hawking entropy. It further asserts all microstates are indistinguishable

from the usual black hole geometry far away from the centre, but at the scale of

the horizon we find a new, fuzzy structure which is different for each microstate, but

generically contains a long throat which eventually caps off without ever reaching a

singularity. Thus both the horizon and the singularity of a black hole emerge due to

the coarse graining over an ensemble of well behaved microstates.

Note that the condition that microstates have no horizons seems very natural.

Consider a black hole in a particular microstate. Thus the system is in a pure state

whose entropy should be 0. If a microstate were to have a horizon, then according to

(1.12) it would have an entropy. This leads to a contradiction as a pure state would have

a non-vanishing entropy. Thus if we want to have a consistent microscopical picture,

the microstates need to be horizonless.
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The appearance of new structure already at the horizon and not only around the

singularity is one of the main points of the proposal as it also leads to a possible

resolution of the information paradox. Namely the Hawking radiation is created in a

region where the fuzzy nature of the geometry is already visible and hence could contain

information about the degrees of freedom of the black hole. In this way the evaporation

of a fuzzball does not differ significantly from the standard burning of coal,53 and in

principle all information could be recovered from the radiation thus making black hole

evaporation a unitary process. Note that this is consistent with the arguments of [23]

that we have considered in the introduction as fuzzballs do not satisfy all assumptions

by virtue of encountering new physics at the horizon, and hence Hawking radiation can

be in a pure state without any fiery ends for potential black hole explorers.

The argument for fuzzballs is further substantiated by Mathur’s small correction

theorem [158] which states that the information paradox cannot be resolved by summing

up small corrections to Hawking’s calculation. In short, something new may be needed

at the horizon and we claim that this something is a fuzzball.

4.6.1 Microstate Geometries

String theory allows us to construct such fuzzy microstates which in general include

arbitrary stringy modes and can be properly described only in full string theoretical

framework. However, there exist some solutions with no stringy excitations that can be

studied using supergravity alone and we call these microstate geometries [151]: They

are smooth and horizonless solutions to the supergravity equations that have the same

mass, angular momentum and charges as a given black hole.

Despite recent progress in the direction of generic fuzzballs [159–161], we focus

mainly on microstates geometries of the D1-D5-P black hole. The microstate geometry

programme has been particularly successful for supersymmetric black holes where a

large number of microstate geometries have been explicitly constructed [162,163].54 It

is still unclear how large a subset of all microstates is describable within supergravity,

but even if not all microstates allow a supergravity description, explicit microstate

geometries are important because they provide the only top-down, direct tool available

for studying and understanding the microstate structure of black holes.

Superstrata [109, 110, 126, 177–182] represent the largest family of microstate ge-

ometries of the D1-D5-P black hole constructed thus far. As is detailed in the next

chapter, superstrata are constructed based on a solution-generating technique whose

holographic meaning is well-understood. Consequently, the CFT states dual to super-

strata are explicitly known which makes them an ideal setup for studying precision

53For non-extremal black holes this was studied in [153–157].
54See [164–173] for explicit constructions of microstate geometries of the D1-D5-P system before the

superstratum technology was developed. Recent developments include [174–176].
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holography [142,143,183,184].

Superstrata also give interesting clues for the physical nature of typical microstates.

Although the superstrata written down thus far are not typical microstates of the black-

hole ensemble, they are expected to evolve into more typical states when perturbed,

and the endpoint of such a process is a subject of much physical interest [185–191].
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Supercharging Superstrata

In this chapter we present an explicit construction of a new class of superstrata which

share the same features as the original ones constructed in [110, 126, 179], such as

representing microstates of the D1-D5-P black hole and having known dual CFT states,

however they are simpler in that they involve a smaller number of non-trivial fields.

The structure of the chapter is as follows. In section 5.2 we describe the family

of 1/8-BPS states in the D1-D5 CFT whose dual gravitational geometries we want to

construct. In section 5.3 we introduce the two-charge geometry which we use as a seed

in our solution-generating technique and present the superstrata that were previously

constructed in [110, 126, 179]. In section 5.4 we construct the Killing spinors of global

AdS3 × S3 × T 4 and use them to generate the fermionic variations of the supergravity

fields. In section 5.5 we obtain new solutions to the BPS equations corresponding to

infinitesimal deformations of AdS3×S3×T 4. We derive the fully backreacted geometries

in section 5.6, where we also discuss the asymptotically flat extension and calculate their

conserved charges. In section 5.7 we collect our results and, in addition, present two

families of solutions for which all the excited scalars and forms can be written down in

an explicit way. We conclude with a brief outlook for future research directions in the

final section.

There are two appendices that are relevant for this chapter. Appendix A summarises

the conventions used for type IIB supergravity, while in Appendix D we discuss some

technical aspects of the supersymmetry variations that are not fully covered in the main

text.

The results of this chapter were published in [1].

5.1 Introduction

The original superstrata were constructed using the solution-generating technique as

follows. First we take, as a seed, some 2-charge solution of linear supergravity around
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AdS3 × S3, for which the dual CFT state |ψ〉 is known and we always take it to be an

anti-chiral primary. Next, we act on the seed with the generators of the SU(1, 1|2)L ×
SU(1, 1|2)R (super)isometry group of AdS3 × S3 [164]. Specifically, we apply J+

0 and

L−1 of the bosonic subgroup55 SL(2,R)L × SU(2)L ⊂ SU(1, 1|2)L m and n times

respectively [110, 126, 179], which generates a new linear solution with non-vanishing

momentum charge P that is dual to the CFT state (J+
0 )m(L−1)n|ψ〉. Finally, we use

the structure of the BPS equations to complete the linear solution to a fully backreacted

non-linear solution which in the CFT corresponds to having the same excitation many

times, namely, [(J+
0 )m(L−1)n|ψ〉]Nmn , with Nmn � 1.

However, the supergroup SU(1, 1|2)L also includes fermionic generators G+A
−1/2 and

alternatively we can act with these on the seed twice to generate a completely new class

of linear solutions. In addition to this, one can act on the newly obtained state with the

bosonic symmetry generators to obtain (J+
0 )m(L−1)nG+1

−1/2G
+2
−1/2|ψ〉. The non-linear

completion goes much the same way as before, and produces a new set of superstrata.

The supersymmetric solutions in supergravity are parametrised by a number of

scalars and forms [103,106,107,110] as given in the general ansatz (4.2.7). In microstate

geometries, these quantities get excited in non-trivial ways, representing the structure

of the microstate. In the original superstrata, the scalar Z4 and the 2-form Θ4 get

excited at linear order and, at quadratic order, more scalars and forms are turned on

in a very specific way so that the combination that enters the metric is v-independent.

This mechanism was crucial for the explicit construction of the geometry and was called

“coiffuring” [192].

In contrast, in the new superstrata whose construction we present in this chapter,

at linear order, only Θ4 is excited and there is no scalar whose excitation must be

cancelled by other scalars at higher order. Thus coiffuring is not necessary for the new

superstrata and, consequently, they are simpler than the ones generated by using just

bosonic generators. In hindsight, the existence of such a simple branch of superstrata

could have been expected from the excitation spectrum of linear supergravity around

AdS3 × S3 [135–138]; However, we go beyond such linear analysis and construct fully

non-linear solutions using the structure of the BPS equations.

5.2 CFT States

Let us analyse the states dual to the geometries that we are about to construct by first

considering anti-chiral primary states in the NS-NS sector. A simple example of such

a state in the free orbifold theory is, using the notation introduced in section 4.5.6,

55These are generators in the NS-NS sector.
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|00〉NS
1 ≡ O−−|−−〉NS

1 where

Oαα̇ = − i√
2N

N∑
r=1

ψαȦ(r) ψ̃
α̇Ḃ
(r) εȦḂ , (5.2.1)

which has h = h̄ = 1/2 and we sum over all possible strands, all of which have length

1 in the above example. Recall that there is another family of anti-chiral primary

operators which we denote56 Σ−−[k] with h = h̄ = k−1
2 that, at the free locus, live in the

twisted sectors of the orbifold. In the following, we use the anti-chiral primary O−−[k]

with h = h̄ = k
2 , where a strand of length k is further excited by a holomorphic and

an anti-holomorphic elementary fermionic field and, for the corresponding states, we

introduce the notation

|00〉NS
k = lim

z,z̄→0
O−−[k] |−−〉

NS
k . (5.2.2)

Notice that for k = 1 the above state reduces to (5.2.1). Acting with J+
0 , L−1 and G+A

− 1
2

on |00〉NS
k we can obtain new bosonic 1/8-BPS states in the same multiplet which we

denote

|k,m, n, q〉NS = (J+
0 )m(L−1)n

(
G+1
− 1

2

G+2
− 1

2

+
1

k
J+

0 L−1

)q
|00〉NS

k , (5.2.3)

where m ≤ k − 2q, q = 0, 1, otherwise the state is trivially zero, while n = 0, 1, 2 . . .

can be any non-negative integer. The eigenvalues (h, j) of L0 and J3
0 are h = k

2 +n+ q

and j = −k
2 +m+ q, while (h̄, j̄) are unchanged. Notice that, due to the commutation

relations (4.5.8), the order of the operators in (5.2.3) is immaterial. The combination in

the parenthesis (weighted by q) is chosen so as to make the states |k,m+ 1, n+ 1, 0〉NS

and |k,m, n, 1〉NS orthogonal, which means that, under the AdS/CFT dictionary, they

correspond to two independent supergravity perturbations. It is straightforward to

check this by using the commutation relations (4.5.8). It is easier to start with the

n = 0 case:

NS〈k,m+ 1, 1, 0|k,m, 0, 1〉NS = NS〈k,m+ 1, 0, 0|L1(G+1
− 1

2

G+2
− 1

2

+
1

k
J+

0 L−1)|k,m, 0, 0〉NS

= NS〈k,m+ 1, 0, 0|
(
−J+

0 +
2

k
L0J

+
0

)
|k,m, 0, 0〉NS = 0 .

(5.2.4)

This shows that L1|k,m, n, q〉NS ∼ |k,m, n − 1, q〉NS, so we can recursively prove the

orthogonality of |k,m+1, n+1, 0〉NS and |k,m, n, 1〉NS for general n. Finally notice that

the state |1, 0, 0, 1〉NS is trivial57 since it has zero norm and so all the states |1, 0, n, 1〉NS

56The subscript [k] in the square parenthesis refers to the order of the twisted sector where the
operator under discussion lives

57This follows form G−A− 1
2

|00〉NS
1 = 0, while the same does not hold for states of winding k > 1.
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are zero since they are constructed from |1, 0, 0, 1〉NS by dressing it with powers of L−1.

For the full “single particle” state in the NS-NS sector, assume that all strands are

in the singly twisted sector on which the CFT is in the vaccum state |−−〉NS
1 , with

the sole exception being a single strand of length k on which the CFT is in the state58

|k,m, n, q〉NS
k so that the full state is then given by(

|−−〉NS
1

)N−k
|k,m, n, q〉NS

k . (5.2.5)

Through the spectral flow with ν = ν̄ = −1/2 these states get mapped to excited RR

states that we denote as(
|++〉R1

)N−k
|k,m, n, q〉R , with hR =

N

4
+m+n+2q , jR =

N − k
2

+m+q , (5.2.6)

where we used c = 6N and (4.5.30).

Here we focus on RR states that are dual to smooth supergravity solutions. A nice

class of such states is obtained by starting from an NS-NS multi-particle state which is

the product of Nb copies of (5.2.3), and then performing the spectral flow to the RR

sector. In this chapter we consider states involving just one type of excitation which

are dual to a single-mode superstrata solution and in the RR sector take the form:(
|++〉R1

)Na (
|k,m, n, q〉R

)Nb , with Na + kNb = N . (5.2.7)

To be precise, the CFT states that are dual to classical supergravity solutions are

coherent sums of terms involving different numbers of elementary excitations, but in

the large Nb limit the sums are sharply peaked around (5.2.7) which hence represent the

dominant terms [193].59 Here it is sufficient to say that such a coherent sum is defined

in terms of two continuous parameters a2 and b2, related to Na and Nb respectively,

which also determine the dual gravity solution. Such a coherent sum of CFT states

has charges equal to the those of the dominant term (5.2.7) which are given by the

eigenvalues of the operators L0, L̄0, J3
0 , and J̄3

0 and in the RR sector are equal to

hR =
N

4
+ (m+ n+ 2q)Nb , h̄R =

N

4
, jR =

Na

2
+ (m+ q)Nb , j̄R =

Na

2
. (5.2.8)

As we see in section 5.6.4, these results match precisely the momentum and the angular

momenta of the dual supergravity solution.

We can give a heuristic picture of why taking Nb � 1 results in a non-trivial

58We can start with the 1/4-BPS state
(
|−−〉NS

1

)N−k
|00〉NS

k and act on it with J+
0 , L−1 and G+A

− 1
2

to

obtain (5.2.3). In general the symmetry generators act on all strands equally, but because the vacuum
state |−−〉NS

1 is annihilated by all such generators, the only non-trivial state that survives is (5.2.5)
59For a discussion of this point in the context of three-charge states, see [126] and reference therein.
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backreacted solution. Let us start in the NS sector. If Nb = 1, the NS state is given by

(5.2.5) whose bulk dual is a linear excitation around AdS3×S3 which one can think as

a (supergraviton) particle propagating in that background. This should facilitate the

interpretation that such states can be though of as single particle states of the CFT and

by increasing Nb we are increasing the number of supergravitons. As long as Nb � N ,

these can be seen as a dilute gas in the curved background and the deformation of the

AdS space is only infinitesimal [134]. As Nb ≈ N , the number of particles becomes

large enough to cause a finite backreaction, which, after spectral flowing to the RR

sector, gives a geometry which differs from the usual black hole.

5.3 Supergravity Setup

Our goal is to find the supergravity solutions dual to the CFT states (5.2.7). As an

illustration in this section we focus on the q = 0 case, i.e., we review the original

superstrata [110, 126, 179] which only involve bosonic generators. In later sections we

generalise this approach to the q = 1 case, the new superstrata which involve fermionic

generators.

5.3.1 Lunin-Mathur Geometries and the AdS/CFT Dictionary

The construction of three-charge black hole microstates via the superstratum tech-

nology begins with a two-charge seed solution. All two-charge solutions are known

[139, 140, 143, 194] and can be obtained by a systematic procedure using an auxiliary

curve in R8 (we are ignoring the compact nature of T 4 for now) which determines the

values of the ansatz quantities in (4.2.7).

The origin of this curve can be seen by performing a series of S and T dualities,

with which one can map the D1-D5 brane system into the F1-P system in which the

configuration is described in terms of a multiply wound fundamental string on S1 with P

units of left-moving momentum charge [115]. This momentum is carried by transverse

excitations of the string which causes it to expand in the remaining 8 directions and

thus the profile of the F1 is given by a curve in R8.

As one increases the string coupling, the string causes the spacetime to bend and

produces a metric which was derived in [195]. Using the S and T dualities one can

then map the corresponding metric to the frame in which the system is described in

terms of D1 and D5-branes where this auxiliary curve can be thought of as the smeared

positions of the branes in the subspace R4 × T 4.

We are only interested in configurations that are isotropic along T 4 and thus we

restrict the 8-dimensional curve to only a 5-dimensional subspace. The profile of the

curve is then given by a collection of “shape” functions gA(v′), where four of the func-

tions (A = 1, 2, 3, 4) correspond to the profile in the non-compact dimensions, while the
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function with A = 5 denotes the isotropic mode along T 4. The parameter v′ denotes

the position along the string and has the range

0 ≤ v′ ≤ L ≡ 2π
Q5

Ry
. (5.3.1)

The ansatz quantities of (4.2.7) that get excited by a curve with a profile gA(v′) are

given by [110]

Z2 = 1 +
Q5

L

∫ L

0

1

|xµ − gµ(v′)|2
dv′, Z4 = −Q5

L

∫ L

0

ġ5(v′)

|xµ − gµ(v′)|2
dv′ (5.3.2a)

Z1 = 1 +
Q5

L

∫ L

0

|ġµ(v′)|2 + |ġ5(v′)|2

|xµ − gµ(v′)|2
dv′, dγ2 = ∗4dZ2, dδ2 = ∗4dZ4, (5.3.2b)

A = −Q5

L

∫ L

0

ġν(v′)dxν

|xµ − gµ(v′)|2
dv′, dB = − ∗4 dA, ds2

4 = δµνdx
µdxν , (5.3.2c)

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0, a1 = a4 = x3 = 0 , (5.3.2d)

where the dot denotes the derivative with respect to the variable v′. The metric on

R4 is the flat metric and the hodge dual is taken with respect to this four dimensional

space. Furthermore, the D1 charge is obtained from the integral

Q1 =
Q5

L

∫ L

0

(
|ġµ(v′)|2 + |ġ5(v′)|2

)
dv′, (5.3.3)

and both the D1 and the D5 charge are connected to the integer values through (4.2.28).

There is a well defined dictionary between the shape functions and the states in the

RR sector of the dual CFT. We begin by expanding the profile functions into a Fourier

series in each direction. Then we make the following complex linear combinations [126]

g1 + ig2 =
N∑
k=1

[
a++
k

k
e

2πik
L

v′ +
a−−k
k

e−
2πik
L

v′
]

(5.3.4a)

g3 + ig4 =
N∑
k=1

[
a+−
k

k
e

2πik
L

v′ +
a−+
k

k
e−

2πik
L

v′
]

(5.3.4b)

g5 = −Im

[
N∑
k=1

a00
k

k
e

2πik
L

v′

]
, (5.3.4c)

subject to the constraint

N∑
k=1

[∣∣a++
k

∣∣2 +
∣∣a−−k ∣∣2 +

∣∣a+−
k

∣∣2 +
∣∣a−+
k

∣∣2 +
∣∣a00
k

∣∣2] =
Q1Q5

R2
y

. (5.3.5)
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The dictionary [110, 142, 143] then states that the mode numbers k correspond to

the length of the strand on which a state is found, while the amplitudes aαα̇k and a00
k

are related to the number of times a particular state occurs in the full CFT state, with

the relations

|++〉Rk ⇐⇒ N++
k ∝

∣∣a++
k

∣∣2 , (5.3.6a)

|−−〉Rk ⇐⇒ N−−k ∝
∣∣a−−k ∣∣2 , (5.3.6b)

|+−〉Rk ⇐⇒ N+−
k ∝

∣∣a+−
k

∣∣2 , (5.3.6c)

|−+〉Rk ⇐⇒ N−+
k ∝

∣∣a−+
k

∣∣2 , (5.3.6d)

|00〉Rk ⇐⇒ N00
k ∝

∣∣a00
k

∣∣2 . (5.3.6e)

In that sense we see that the condition (5.3.5) gets translated into the constraint on

the total number of windings (4.5.31).

5.3.2 Seed solution

The construction of the superstrata begins with a 1/4-BPS geometry we call the seed

solution and is parametrised by the following shape functions

g1 + ig2 = ae
2πi
L
v′ , g5 = − b

k
sin

(
2πkv′

L

)
, (5.3.7)

which means that we have taken a++
1 = a and a00

k = b, with all other coefficients

vanishing. This corresponds to the state

|ψ〉 =
(
|++〉R1

)Na (
|00〉Rk

)Nb
, (5.3.8)

with Na ∝ a2 and Nb ∝ b2, with the proportionality factors being the parameters of

the theory.

We begin by considering the state with Nb = 1, as such a state gets mapped via

spectral flow to an NS state whose dual interpretation is that of a single 1/4-BPS

supergraviton propagating in AdS3×S3. To realise this on the gravity side we take the

limit b� a and look at the geometry generated by the shape functions at linear order

in b/a expansion. This geometry is sometimes called the perturbed round supertube

solution [143].

We start off by parameterising the base space R4 with a new set of coordinates

related to the Cartesian ones by

x1 + ix2 =
√
r2 + a2 sin θ eiφ, x3 + ix4 = r cos θ eiψ, (5.3.9)

where θ ∈ [0, π2 ] and φ, ψ ∈ [0, 2π). The ansatz quantities in these coordinates are given
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by60

ds2
4 = (r2 + a2 cos2 θ)

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2 ,

(5.3.10a)

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, (5.3.10b)

β =
Ra2

√
2 Σ

(sin2 θ dφ− cos2 θ dψ) ≡ β0 , ω =
Ra2

√
2 Σ

(sin2 θ dφ+ cos2 θ dψ) ≡ ω0 ,

(5.3.10c)

γ2 = −Q5
(r2 + a2) cos2 θ

Σ
dφ ∧ dψ, (5.3.10d)

Z4 = Ryba
k sink θ e−ikφ

(r2 + a2)k/2Σ
, (5.3.10e)

δ2 = −Ryakb
sink θ

(r2 + a2)k/2

[(
r2 + a2

)
cos2 θ e−ikφ

Σ
dφ ∧ dψ + i

cos θ

sin θ
e−ikφ dθ ∧ dψ

]
,

(5.3.10f)

F = a1,4 = x3 = γ1 = Θ1,2,4 = 0, (5.3.10g)

where we have introduced

Σ ≡ r2 + a2 cos2 θ ,

and the parameter k is a positive integer. Since we have taken the parameter b to

be small, we kept only the O(b) terms. We can think of the solution (5.3.10) as a

combination of the background supertube (b = 0) [195–197] with an added perturbation

(b 6= 0) which turns on the form fields B2, C0, and C4. The perturbation does not

change the metric at linear order in b, because Z4 appears only quadratically in the

metric (4.2.7a). In the same approximation the parameter a is related to the D-brane

charges Q1 and Q5 via

a =

√
Q1Q5

Ry
. (5.3.11)

One can check that the above ansatz satisfies the BPS equations (4.2.25) and (4.2.26)

discussed in section 4.2.1 to linear order. One could also consider the finite b version

of the above solution [110], but that is not necessary for our purposes.

Performing a coordinate transformation

φ̃ = φ− t

Ry
, ψ̃ = ψ − y

Ry
, (5.3.12)

60Here we focus on the asymptotically AdS solutions, so we write Z1 and Z2 after taking the decou-
pling limit, where we drop the factors of “1”.
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one finds that the six-dimensional metric becomes

ds2
6 =

√
Q1Q5

(
− r

2 + a2

a2R2
y

dt2 +
r2

a2R2
y

dy2 +
dr2

r2 + a2
+ dθ2 + sin2 θ dφ̃2 + cos2 θ dψ̃2

)
,

(5.3.13)

which is that of global AdS3 × S3 with radius R2
AdS =

√
Q1Q5. Therefore, our seed

solution represents AdS3 × S3 × T 4 with a linear perturbation, which on the CFT side

corresponds to the NS-NS vacuum with a small excitation.61 Since the NS-NS vacuum is

invariant under the action of SL(2,C) ∼= SL(2,R)L×SL(2,R)R and SU(2)L×SU(2)R,

acting on the excited state with the generators of these symmetries generates a new

state, which is the NS-NS vacuum with a different excitation added to it. Performing

the corresponding transformations on the gravity side similarly generates pure AdS3×
S3 × T 4 with a different linear perturbation, which again satisfies the BPS equations

and, in addition, we precisely know the CFT state dual to the new geometry.

The transformation (5.3.12) involves a change of the coordinates t and y, which

parametrise the boundary region of AdS3. This transformation therefore also affects

the dual CFT theory and is in fact the dual of the spectral flow that changes the RR

sector into the NS-NS sector on the CFT side (4.5.25). For that reason we refer to

the coordinates (r, t, y, θ, φ, ψ) as the RR coordinates and (r, t, y, θ, φ̃, ψ̃) as the NS-NS

coordinates.

To summarize, we have generated a seed solution (5.3.10) expressed in the RR

coordinates which, using the standard AdS/CFT dictionary, is dual to a RR ground

state. After performing the spectral flow transformation (5.3.12) to the NS-NS coor-

dinates, the geometry is dual to an anti-chiral primary with the conformal dimensions

h = h = k
2 and j = j = −k

2 . We thus identify the supertube ansatz expressed in the

NS-NS coordinates as dual to the state (5.2.5) with m = n = q = 0. As usual, the

gravity and the free CFT descriptions are valid in different points of the moduli space,

so the dictionary mentioned above is meaningful when applied to protected quantities

such as the 3-point correlators [129].

5.3.3 Original Superstrata

Our results follow up on the work of [105, 110, 126], where superstrata solutions were

obtained by acting on the seed solution (5.3.10) with the gravity realisations of the

bosonic symmetry generators J+
0 and L−1, thus generating the geometries dual to the

CFT states (5.2.3) with q = 0. Below we review the construction of this class of

superstrata.

61For this reason we refer to the case with b = 0 as the vacuum or the background geometry, while
reserving the term seed solution for the perturbed vacuum with b 6= 0.

119



CHAPTER 5. SUPERCHARGING SUPERSTRATA

As mentioned above, the background geometry is invariant under the action of

SL(2,R)L × SL(2,R)R and SU(2)L × SU(2)R, while the perturbation is not. Acting

on the perturbed geometry with the generators of these symmetries gives us a new,

different perturbed geometry. Focusing on the left sector of the theory, one can show

that the generators of the symmetry groups SL(2,R)L × SU(2)L can be explicitly

realised in the in the NS-NS coordinates as [126,135]

L0 =
iRy
2

(∂t + ∂y),

L±1 = ie
± i
Ry

(t+y)
[
−Ry

2

(
r√

r2 + a2
∂t +

√
r2 + a2

r
∂y

)
± i

2

√
r2 + a2 ∂r

]
,

(5.3.14)

J3
0 = − i

2
(∂φ̃ + ∂ψ̃), J±0 =

i

2
e±i(φ̃+ψ̃)(∓i∂θ + cot θ ∂φ̃ − tan θ ∂ψ̃) , (5.3.15)

which can be shown to satisfy the algebra (4.5.8).

Acting on the seed solution (5.3.10) m times with J+
0 and n times with L−1 leaves

all ansatz quantities unchanged at linear order62 in b4 ∼ b, except for the function Z4

and the two-form Θ4, which are now given by

Z4 = b4 zk,m,n , Θ4 = b4 ϑk,m,n . (5.3.16)

We have introduced the notation

zk,m,n = Ry
∆k,m,n

Σ
cos v̂k,m,n, (5.3.17a)

ϑk,m,n = −
√

2 ∆k,m,n

[(
(m+ n) r sin θ + n

(m
k
− 1
) Σ

r sin θ

)
Ω(1) sin v̂k,m,n

+
(
m
(n
k

+ 1
)

Ω(2) +
(m
k
− 1
)
nΩ(3)

)
cos v̂k,m,n

]
,

(5.3.17b)

with

∆k,m,n ≡
(

a√
r2 + a2

)k ( r√
r2 + a2

)n
cosm θ sink−m θ ,

v̂k,m,n ≡ (m+ n)

√
2 v

Ry
+ (k −m)φ−mψ ,

(5.3.18)

and we have expanded ϑk,m,n on a basis of self-dual two-forms Ω(i) (i = 1, 2, 3) on R4,

62 See after (5.5.9) for a comment on the precise relation between b4 and b.
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given by:

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dφ ∧ dψ ,

Ω(2) ≡ r

r2 + a2
dr ∧ dψ + tan θ dθ ∧ dφ ,

Ω(3) ≡ dr ∧ dφ
r

− cot θ dθ ∧ dψ .

(5.3.19)

The above solution-generating technique allows us to generate a family of solutions,

parametrised by the quantum numbers (k,m, n). One of the important aspects of

such solutions is that they depend on the variable v, unlike the seed solution (5.3.10).

Although (5.3.16) only involve one mode at a time, using the linearity of the first-

layer BPS equations, we can write down the general solution given by an arbitrary

superposition of modes with different quantum numbers. This superposition does not

only solve the first-layer BPS equations for the Z4 and Θ4, but also for the other two

pairs (Z1,Θ2) and (Z2,Θ1), because the structure of their equations is identical. Hence

the general class of solutions with q = 0 for the first-layer equations are given by

Z1 =
Q1

Σ
+
∑
k,m,n

bk,m,n1 zk,m,n , Θ2 =
∑
k,m,n

bk,m,n1 ϑk,m,n ,

Z2 =
Q5

Σ
+
∑
k,m,n

bk,m,n2 zk,m,n , Θ1 =
∑
k,m,n

bk,m,n2 ϑk,m,n ,

Z4 =
∑
k,m,n

bk,m,n4 zk,m,n , Θ4 =
∑
k,m,n

bk,m,n4 ϑk,m,n ,

(5.3.20)

where Z1 and Z2 also include the zero modes, which appear in the seed solution. In

these superpositions the coefficients bk,m,nI are still taken to be infinitesimal. They

therefore generate second-order source terms on the right-hand side of the second-layer

BPS equations, which govern the change of F and ω. Thus to linear order in the

perturbation parameter, these two ansatz quantities remain the same.

However, we can again use the linearity of the first-layer BPS equation to make

all the coefficients bk,m,nI finite, and (5.3.20) still remains a solution to the first-layer

equations. With the coefficients being finite, we have non-vanishing source terms on

the right-hand side of the second-layer BPS equations. Solving these represents a

challenge and in [126], a general solution to the second-layer equations for single-mode

superstrata was found. These solutions correspond to configurations with a single non-

trivial coefficients bk,m,n4 in (5.3.20). The lesson from the non-linear solution-generating

technique employed in [103, 105] is that the descendant states have bk,m,n2 = 0 for all

values of k,m, n and this is also the case for the single-mode superstrata, where one can

consistently set b2 = 0 [126]. Furthermore, b1 was determined by “coiffuring”, which

in the single-mode case requires that the v-dependent source terms on the right-hand

side of second-layer equations vanish. In the case of b2 = 0, this corresponds to setting
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b1 = b24, thus having the solutions to the first layer given by

Z1 =
Q1

Σ
+
b24R

2
y

2Q5

∆2k,2m,2n

Σ
cos v̂2k,2m,2n , Z2 =

Q5

Σ
,

Z4 = Ry b4
∆k,m,n

Σ
cos v̂k,m,n, (5.3.21a)

Θ1 = 0 , Θ2 =
b24Ry
2Q5

ϑ2k,2m,2n , Θ4 = b4 ϑk,m,n . (5.3.21b)

By using these in the source terms of the second-layer equations, one finds that the

second-layer quantities are given by

ωorig
k,m,n = ω0 + ωorig,RMS

k,m,n , F = Forig
k,m,n , (5.3.22)

where we further decompose

ωorig,RMS
k,m,n = µorig

k,m,n(dψ̃ + dφ̃) + νorig
k,m,n(dψ̃ − dφ̃) . (5.3.23)

One can show that the solutions for the second-layer equations are given by

Forig
k,m,n = 4b24

[
m2(k + n)2

k2
F2k,2m,2n +

n2(k −m)2

k2
F2k,2m+2,2n−2

]
, (5.3.24)

µorig
k,m,n =

Ry b
2
4√

2

[
(k −m)2(k + n)2

k2
F2k,2m+2,2n +

m2n2

k2
F2k,2m,2n−2

− r2 + a2 sin2 θ

4 Σ
b−2
4 Fk,m,n −

∆2k,2m,2n

4 Σ
+
xk,m,n

4 Σ

]
, (5.3.25)

where the function F2k,2m,2n is defined in (5.6.7), and the functions νorig
k,m,n are given

by differential equations [126, (4.13)], and can be solved for each case individually.

We have put the superscript “orig” to distinguish these original superstrata solutions

from the new superstrata we are presenting below. The solutions obtained this way

are asymptotically AdS3 × S3 × T 4. To obtain asymptotically flat solutions, one needs

to add “1” to the warp factors Z1 and Z2. This alters the right-hand side of second-

layer equations and induces new v-dependent terms into F and ω [126]. As it turns

out, our new superstrata do not generate these additional v-dependent terms in the

asymptotically flat case, hence the asymptotically flat extension of the new solutions is

simpler than those of the original superstrata.

5.4 Killing Spinors of the AdS3 × S3 Background

We now proceed to the construction of new superstrata, which have q = 1 and involve

the action of fermionic generators G+A
− 1

2

. In supergravity, these fermionic generators
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correspond to the Killing spinors of the AdS3×S3×T 4 background. To begin with, in

this section, we work out the explicit form of these Killing spinors, and give a precise

map between their components and the fermionic generators GαA± 1
2

in the CFT.

5.4.1 Supersymmetry Variations

From [104, (2.17)], the supersymmetry transformations for bosonic fields in type IIB

supergravity are given by63

δeaM = ε̄Γa ψM , (5.4.1a)

δBMN = 2ε̄Γ[Mσ3ψN ], (5.4.1b)

δφ =
1

2
ε̄ λ, (5.4.1c)

δC
(2n−1)
M1...M2n−1

= −e−φε̄Γ[M1...M2n−2
Pn
(

(2n− 1)ψM2n−1] −
1

2
ΓM2n−1]λ

)
+ (n− 1)(2n− 1)C

(2n−3)
[M1...M2n−3

δBM2n−2M2n−1] . (5.4.1d)

In type IIB supergravity, each fermionic field appears in two copies, which we combine

into a doublet, for example ε ≡ (ε1, ε2). The Pauli matrices σi in the variations above

act on the doublet indices which will be made explicit in the following calculations

when relevant. With that in mind, the variations of the gravitino ψ1,2
M and dilatino

fields λ1,2 read

δψM =

(
∂M +

1

4
/ωM +

1

8
PHMNRΓNR

)
ε+

1

16
eφ
∑
n

1

(2n)!
/F 2nΓMPnε, (5.4.2)

δλ =

(
/∂φ+

1

12
/HP
)
ε+

1

8
eφ
∑
n

(−1)2n 5− 2n

(2n)!
/F 2nPnε, (5.4.3)

where n = 1/2, . . . , 9/2,

P = −σ3, Pn =

σ1 n+ 1/2: even

iσ2 n+ 1/2: odd
, (5.4.4)

and we have also introduced the slashed notation

/Ap =
1

p!
AM1...MpΓ

M1...Mp , (5.4.5)

where every form index is contracted with a gamma matrix. Using the Γ-matrix algebra

and the self-duality relations of the RR field strengths, one can write the variations

63For spinor conventions used see Appendix A.

123



CHAPTER 5. SUPERCHARGING SUPERSTRATA

(5.4.2) explicitly as

δψ1
M =

(
∇M −

1

8
HMNPΓNP

)
ε1 +

1

8
eφ
(

+/F 1 + /F 3 +
1

2
/F 5

)
ΓM ε

2 , (5.4.6a)

δψ2
M =

(
∇M +

1

8
HMNPΓNP

)
ε2 +

1

8
eφ
(
−/F 1 + /F 3 −

1

2
/F 5

)
ΓM ε

1 , (5.4.6b)

δλ1 =

(
dφ− 1

2
H

)
ε1 +

1

4
eφ(−4/F 1 − 2/F 3)ε2 , (5.4.6c)

δλ2 =

(
dφ+

1

2
H

)
ε2 +

1

4
eφ(+4/F 1 − 2/F 3)ε1 , (5.4.6d)

where ∇M = ∂M + 1
4ωMabΓ

ab ith ωM the spin connection 1-form. In deriving the

above relations, we also used the fact that ε1,2 are Majorana-Weyl spinors with positive

chirality. These variations can be written in a more compact way as

δλ =

(
/dφ− 1

2
/H σ3 − eφ /F 1 (iσ2)− 1

2
eφ /F 3 σ

1

)
ε , (5.4.7a)

δψM =

[
∇M −

1

8
HMNPΓNP σ3 +

1

8
eφ
(
/F 1 (iσ2) + /F 3 σ

1 +
1

2
/F 5 (iσ2)

)
ΓM

]
ε .

(5.4.7b)

The variations (5.4.7) hold in a generic coordinate system in Type IIB supergravity. In

our previous discussion, we have introduced two parametrisations of the unperturbed

background: the NS-NS and the RR coordinates. In what follows we focus on the

NS-NS description and derive an explicit expression for the Killing spinors (5.4.17).64

As mentioned before, in the seed (5.3.10), the metric, the dilaton, and C2 do not

change at O(b), while B2, C0, C4 get excited at O(b). In the NS-NS coordinates, the

O(b0) fields are the metric and

e2Φ =
Q1

Q5
, (5.4.8a)

C2 = −r
2 + a2

Q1
du ∧ dv −Q5 cos2 θ dφ̃ ∧ dψ̃ − Q5√

2Ry
(du− dv) ∧ dφ̃, (5.4.8b)

while the O(b) fields are

B2 = −b∆k,0,0 e
−iv̂k,0,0

[
r2 + a2

Rya2
du ∧ dv +

1√
2

(du− dv) ∧
(
i cos θ dθ

sin θ
+ dφ̃

)
+Ry cos θ

(
i dθ

sin θ
+ cos θdφ̃

)
∧ dψ̃

]
,

(5.4.8c)

64The Killing spinors in RR coordinates and the map between the two sets of solutions is presented
in Appendix D of [1].
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C0 =
bQ5

a2Ry
∆k,0,0 e

−iv̂k,0,0 , (5.4.8d)

C4 =
b

a2Ry
∆k,0,0 e

−iv̂k,0,0
[
Q1v̂ol4 +Q5(r2 + a2) cos2 θ du ∧ dv ∧ dφ̃ ∧ dψ̃

]
(5.4.8e)

where

v̂k,0,0 = k

(
u+ v√

2Ry
+ φ̃

)
. (5.4.9)

On the other hand, the field strengths are F3 = O(b0); H3, F1, F5 = O(b); and dφ =

O(b2). Therefore, the supersymmetry variations (5.4.7) for the seed solution (5.3.10)

split into the O(b0) part

δλ0 = −1

2
eφ /F 3 σ

1 ε , (5.4.10a)

δψM,0 = ∇M ε+
1

8
eφ /F 3ΓMσ

1ε , (5.4.10b)

and the O(b) part

δλb = −1

2
/H σ3ε− eφ /F 1 (iσ2)ε , (5.4.10c)

δψM,b = −1

8
HMNPΓNP σ3ε+

1

8
eφ
(
/F 1 +

1

2
/F 5

)
ΓM (iσ2)ε . (5.4.10d)

In this section, we are interested in the Killing spinors in the unperturbed (b = 0)

background, which in the NS-NS coordinates is given by the metric (5.3.13) and is

nothing but AdS3 × S3 × T 4. We work in the u, v coordinates (4.2.9) where

ds2
6 =

√
Q1Q5

[
−a

2du2 + 2(a2 + 2r2)du dv + a2dv2

2a2R2
y

+
dr2

r2 + a2

+dθ2 + sin2 θdφ̃2 + cos2 θdψ̃2
]
, (5.4.11)

which suggests the following choice of 10-dimensional vielbeine

Eu =
1

2
√
aRy

[(√
r2 + a2 + r

)
du+

(√
r2 + a2 − r

)
dv
]
, (5.4.12a)

Ev =
1

2
√
aRy

[(√
r2 + a2 − r

)
du+

(√
r2 + a2 + r

)
dv
]
, (5.4.12b)

Er =
√
aRy

dr√
r2 + a2

, Eθ =
√
aRy dθ, (5.4.12c)

Eφ̃ =
√
aRy sin θ dφ̃, Eψ̃ =

√
aRy cos θ dψ̃, (5.4.12d)

Ek =

(
Q1

Q5

) 1
4

dxk, (5.4.12e)
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where xk, k = 6, 7, 8, 9 are the coordinates of the internal T 4. With this choice the

metric can be written as

ds2
10 = −2EuEv + δabE

aEb, (5.4.13)

with a = r, θ, φ̃, ψ̃, 6, 7, 8, 9. The variations (5.4.10a) and (5.4.10b) can be written out

explicitly as

δλ1
0 =

1√
aRy

ΓrΓuv
(
1− Γ6789

)
ε2, (5.4.14a)

δψ1
u,0 = ∂uε

1 +
1

8aRy

(√
r2 + a2 − r

)
Γur

[
2ε1 + Γuv

(
1 + Γ6789

)
ε2
]

− 1

8aRy

(√
r2 + a2 + r

)
Γvr

[
2ε1 − Γuv

(
1 + Γ6789

)
ε2
]
, (5.4.14b)

δψ1
v,0 = ∂vε

1 +
1

8aRy

(√
r2 + a2 − r

)
Γvr

[
2ε1 + Γuv

(
1 + Γ6789

)
ε2
]

− 1

8aRy

(√
r2 + a2 + r

)
Γur

[
2ε1 − Γuv

(
1 + Γ6789

)
ε2
]
, (5.4.14c)

δψ1
r,0 = ∂rε

1 − 1

4
√
r2 + a2

Γuv
(
1 + Γ6789

)
ε2, (5.4.14d)

δψ1
θ,0 = ∂θε

1 − 1

4
Γrθ Γuv

(
1 + Γ6789

)
ε2, (5.4.14e)

δψ1
φ̃,0

= ∂
φ̃
ε1 +

cos θ

2
Γφ̃θ ε1 − sin θ

4
Γrφ̃Γuv

(
1 + Γ6789

)
ε2, (5.4.14f)

δψ1
ψ̃,0

= ∂
ψ̃
ε1 − sin θ

2
Γψ̃θ ε1 − cos θ

4
Γrψ̃Γuv

(
1 + Γ6789

)
ε2, (5.4.14g)

δψ1
k,0 = ∂kε

1 − Q
1
4
1Q
− 1

4
5

4
√
aRy

Γuvrk
(
1− Γ6789

)
ε2. (5.4.14h)

In these equations we have made the doublet index of the fermionic fields explicit. We

have only given the variations for δλ1
0 and δψ1

M,0, as the variations for δλ2
0 and δψ2

M,0

can be obtained simply by interchanging the doublet indices 1 ↔ 2 on all fermions in

the above variations.

5.4.2 The Killing Spinors

Killing spinors of the AdS3 × S3 × T 4 background are non-trivial spinors that satisfy

the equations

δλ1,2 = δψ1,2
M = 0. (5.4.15)
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We find that the spinors that solve the equations (5.4.15) are given by

ε1 =
1

2
R− Y− (η̃ + η) +

1

2
R+ Y+ (ξ̃ + ξ) , (5.4.16a)

ε2 =
1

2
R− Y− (η̃ − η) +

1

2
R+ Y+ (ξ̃ − ξ) , (5.4.16b)

where in the above spinors, the following definitions are used65

Y±(θ, φ̃, ψ̃) ≡ exp

(
±1

2
θΓrθ

)
exp

(
1

2
φ̃Γθφ̃

)
exp

(
±1

2
ψ̃Γrψ̃

)
, (5.4.17a)

R±(r) ≡
(√

r2 + a2 ± r
a

) 1
2

, (5.4.17b)

ξ̃(u) = ζ̃+e
− iu√

2Ry + ζ̃−e
iu√
2Ry , η̃(u) = iΓ̂ru

(
ζ̃−e

− iu√
2Ry − ζ̃+e

iu√
2Ry

)
, (5.4.17c)

ξ(v) = ζ−e
− iv√

2Ry + ζ+e
iv√
2Ry , η(v) = iΓ̂rv

(
ζ−e

− iv√
2Ry − ζ+e

iv√
2Ry

)
, (5.4.17d)

and we have defined

Γ̂rv ≡ 1√
2

Γrv, Γ̂ru ≡ 1√
2

Γru . (5.4.18)

The spinors ζ±, ζ̃± are constant spinors that do not depend on any coordinates. As

standard in type IIB supergravity, the ε1,2 in (5.4.16) are Majorana-Weyl spinors. The

Weyl condition is

Γ(10) ε
1,2 = ε1,2 , (5.4.19)

with Γ(10) ≡ Γuvrθφ̃ψ̃6789. In our convention in which the charge conjugation matrix is

C = Γt, the Majorana condition reads

ε∗ = ε . (5.4.20)

We can now spell out the constraints following from (5.4.20) on the spinors in (5.4.16)

and (5.4.17). The factors Y±(θ, φ̃, ψ̃) and R±(r) are real functions containing the ex-

plicit dependence of the spinors on the angular and radial parts respectively. Then in

order for ε1,2 to be real, spinors ζ±, ζ̃± must satisfy

ζ∗± = ζ∓ , ζ̃∗± = ζ̃∓ . (5.4.21)

65In (5.4.16) we suppress the functional dependencies to avoid cluttering. Note that the angular parts
can be solved with the help techniques developed in [198,199], where similar differential equations have
been considered, however in a different coordinate system.
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This means that ζ± and ζ̃± are complex. On the other hand, ξ(v), η(v), ξ̃(u) and η̃(u)

are real spinors. Therefore, ξ(0), η(0), ξ̃(0) and η̃(0) are constant, real spinors, each

containing 4 independent real degrees of freedom and can be used to parametrise the

variations.

Furthermore the dilatino variation and the variation in the T 4 subspace impose

Γ6789 ε1,2 = ε1,2 . (5.4.22)

All spinors in (5.4.16) and (5.4.17), ξ, ξ̃, η, η̃, ζ±, ζ̃±, must satisfy the conditions (5.4.19)

and (5.4.22). In addition, they have the following chirality for the matrix Γuv:

Γuv ξ(v) = −ξ(v) , Γuv η(v) = +η(v) , Γuv ζ± = −ζ± ,

Γuv ξ̃(u) = +ξ̃(u) , Γuv η̃(u) = −η̃(u) , Γuv ζ̃± = +ζ̃± .
(5.4.23)

As mentioned above each one of η, η̃, ξ, ξ̃ contains 4 real degrees of freedom. On the

other hand, each one of ζ±, ζ̃± contains 4 complex degrees of freedom, but only half of

them are independent. Therefore, either way, each spinor ε1,2 contains 8 real degrees

of freedom, combining to 16 in total. This is what we expected, as global AdS3 × S3

should preserve half of the total 32 supercharges.

In order to generate new solutions, we need to identify the spinor components that

correspond to different modes of the fermionic generators GαA± 1
2

and G̃α̇A± 1
2

. We are only

interested in generating left-moving excitations, which are generated by G and not G̃,

hence we limit ourselves only to the discussion around the left-moving sector. However,

the discussion on the right-moving sector is completely analogous. The relation between

the supergravity Killing spinors ζαA± and the CFT supercurrent GαA± 1
2

can be encoded

in terms of the projectors

P±S ≡
1

2
± J

ψ̃
, PAT ≡

1 + (−1)AiΓ67

2
, A = 1, 2, (5.4.24)

where J
ψ̃

is defined in (D.1.3a). We leave the discussion of this point to Appendix D.1

and here quote just the final result

ζαA± ≡ PAT PαS ζ± ←→ GαA± 1
2

, α = ±, A = 1, 2. (5.4.25)

With this identification we can proceed to generate the supergravity solution corre-

sponding to the state (5.2.3) in CFT.
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5.5 Fermionically Generated Superstrata: Linear Analy-

sis

In this section we derive a linearised classical solution to the supergravity equations

using the Killing spinors for AdS3×S3×T 4 obtained in the previous section. We do so

by performing two supersymmetry variations, generated by the spinors corresponding

to GαA− 1
2

, on the b 6= 0 seed solution (5.3.10). Single variations of bosonic fields vanish, as

these are proportional to the fermionic fields, which are set to zero for classical super-

gravity solutions. Double variations of the bosonic fields, however, are non-vanishing,

as these include terms which are proportional to the variations of the fermionic fields.

Note that, by definition, Killing spinors are non-trivial spinors for which the variations

of fermionic fields vanish. However, here we use the Killing spinors for the unperturbed

case (b = 0) on the perturbed background (b 6= 0), which generate fermionic variations

that are non-vanishing. We limit ourselves to terms at linear order in parameter b.

Using these non-vanishing fermionic variations we can generate new solutions at linear

order in the parameter b.

This section gives a step-by-step procedure on how to obtain the new solutions. We

begin by presenting the variations of the fermionic fields of the seed solution, generated

by the Killing spinors (5.4.16). We then present the double variations of the bosonic

fields generated, thus obtaining the solution dual to the state G+1
− 1

2

G+2
− 1

2

|00〉NS
k . In this

derivation we treat the complex spinors ζαA+ and ζαA− as independent, although they

really are not, due to the relation (5.4.21). Because of this, the spinors ε1,2 become

complex and we obtain a complex-valued perturbation: as usual, at the linear level,

we can derive a standard supergravity solution by taking the real part of the final

result. While this is indeed a new solution to the first-layer BPS equation it is not

linearly independent from the ones already known, as discussed in section 5.2. We

therefore present the new, linearly independent solution, dual to the state
(
G+1
− 1

2

G+2
− 1

2

+

1
kJ

+
0 L−1

)
|00〉NS

k , and further give the solution dual to the state (5.2.3) with q = 1.

5.5.1 Variations of Fermionic Fields

As a preliminary step, we use the Killing spinors found in the previous section to

calculate the supersymmetry variations of the fermionic fields. The result can be used

later when we consider double variations of bosonic fields. Furthermore, it also serves

as a consistency check of the identification (5.4.25) between the fermionic generators

in supergravity and CFT.

As discussed in previous sections, the seed solution (5.3.10) expressed in the NS-

NS coordinates is dual to an anti-chiral primary state, which should be annihilated

by G−A− 1
2

but not by G+A
− 1

2

. According to the identification (5.4.25), this implies that
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the supersymmetry variation of the seed by ζ−A− vanishes while the supersymmetry

variation by ζ+A
− does not. In performing this check, we set ζαA+ = 0 and look at the

variations of the fermionic fields generated by the components in the spinor ζαA− . With

this choice, the Killing spinor (5.4.16) simplifies to

ε1 = −ε2 =
1

2

(
R+ − iR−Γ̂vr

)
e
− iv√

2Ry Y+ζ
αA
− . (5.5.1)

The dilatino variation generated by this spinor is given by

δλ1
b = δλ2

b =
bak k sink−1 θ√
aRy (a2 + r2)

k+1
2

×
(
R− − iR+Γ̂vr

)
e
−ik
(
u+v√
2Ry

+φ̃
)
− iv√

2Ry

(
cos θ Γθ + sin θ Γr − iΓφ̃

)
Y+ζ

αA
− .

(5.5.2)

This expression is correct for a generic component ζαA− . However, as discussed above,

this variation should distinguish between the ζ+A
− and the ζ−A− components of the

spinor. Indeed, this is the case here, as one can see from the factors that contain the

gamma matrices with components along S3. Using the definition of Y+ in (5.4.17) one

can show that (
cos θ Γθ + sin θ Γr − iΓφ̃

)
Y+ζ

αA
− = 2Γθ e−θΓ

rθ
Y+ζ

+A
− (5.5.3)

because, when we commute the factor in the brackets through Y+, we generate a pro-

jector P+
S , which projects out the ζ−A− component. Therefore, as expected, the super-

symmetry variation of the seed by ζ−A− vanishes, while the supersymmetry variation

by ζ+A
− does not. The variations of the gravitino components ψM are calculated in the

same manner and discussed in Appendix D.

5.5.2 Solution-Generating Technique

The first step to finding the geometry dual to the state (5.2.3) with q = 1 is to find

the geometry dual to G+1
− 1

2

G+2
− 1

2

|00〉NS
k . In order to do so, we do a double variation of

the bosonic fields. These variations generically have two kinds of terms: either they

are proportional to fermionic fields or the variation of fermionic fields. In a classical

solution, fermionic fields vanish and hence we are left only with the second type of

terms. Using the variations summarised in Appendix A, we get that, for example, the

variation of the axion field C0 is given by

δ′δC0 =
1

2
e−φ εTΓt(iσ2)δ′λ (5.5.4)
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where δ denotes the variation generated by spinors ε1,2 and δ′ denotes the variation with

different spinors ε′1,2. In our case the constant components of these spinors are ζ+1
−

for the variation δ and ζ ′+2
− for the variation δ′. Following the procedure of [110, 126]

we are interested in calculating the infinitesimal deformation from the seed solution

in the ansatz function Z4 and the two-form Θ4. The physical fields in which these

two quantities are appearing are the axion C0 and the NS-NS gauge B-field, so we

are interested in their variations. Since these two calculations are analogous, we only

present the detailed calculation for the axion field, while the results of the B-field can

be found in Appendix D.

As mentioned at the beginning of this section, because we treat complex spinors

ζαA+ and ζαA− as independent, the spinor ε becomes complex. This is justified with

the understanding that we take the real part in the final result. In the intermediate

calculations, although ε1,2 are really complex, we still treat them as real spinors. In

writing down (5.5.4), we used the relation (A.2.8), which is valid only for real (Majo-

rana) spinors, in order to rewrite ε̄ appearing in the formula (5.4.1d) in terms of εT .

Another way to justify this manipulation is that, because the first variation parameter

ε and the second one ε′ are on an equal footing, it is not possible for ε to enter in the

variation δ′δC0 being complex conjugated and ε′ without being complex conjugated.

They must both enter without being complex conjugated, as in (5.5.4).

The variations we consider are generated by the Killing spinors (5.5.1). As men-

tioned above, the first variation is generated by the component ζ+1
− and the second by

ζ ′+2
− . In this case, as we have seen in (5.5.1), we have ε1 = −ε2. Furthermore, the

variations are such that δλ0 = 0 and δλ1
b = δλ2

b . With these, the axion variation (5.5.4)

simplifies to

δ′δC0 = e−φ (ε1)TΓt δ′λ1
b . (5.5.5)

We insert the spinor (5.5.1) and the variation (5.5.2) (since we use only ζ+A
− we use the

projection (5.5.3) in the variation) into this expression to obtain

δ′δC0 = b

√
aRy

Q1

kak sink−1 θ

(a2 + r2)
k+1

2

e
−i
[
k
(
u+v√

2
+φ̃
)

+
√

2v−(φ̃+ψ̃)
]

×
(
ζ+1
−
)T
e−

θ
2

Γrθ
(
R+ + iR−Γ̂vr

)(
Γ̂v + Γ̂u

)(
R− − iR+Γ̂vr

)
Γθ e−

θ
2

Γrθζ ′+2
−

= 2kbak−1

√
aRy

Q1

r sink−1 θ cos θ

(a2 + r2)
k+1

2

e
−i
[
k
(
u+v√
2Ry

+φ̃
)

+
√

2 v
Ry
−(φ̃+ψ̃)

] [(
ζ+1
−
)T
iΓrθ ζ ′+2

−

]
.

(5.5.6)

In the second equality we have used the properties of the Clifford algebra and the R±

functions together with the fact that Γuv ζαA− = −ζαA− and hence Γu ζαA− = (ζαA− )TΓv =
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−(Γu ζ−)T = 0. Furthermore, one uses the fact that (Γrθ)2 = −1 to expand

Γrθ e−θΓ
rθ

= cos θ Γrθ + sin θ. (5.5.7)

Finally noting that due to the projector property (P+
S )T = P−S , we have (ζ+1

− )T ζ ′+2
− = 0,

which leaves us with the result (5.5.6). The calculation for the B-field follows along

the same lines; see (D.4.2) for the final result.

After the inverse spectral flow coordinate transformation (the inverse transforma-

tion of (5.3.12)), one finds that the double variation leaves all ansatz quantities un-

changed at linear order in b, except for Z4 and Θ4, which are now given by66

Zf4 = bkRy
∆k,1,1

Σ
cos v̂k,1,1 , (5.5.8a)

Θf
4 = −

√
2bk∆k,1,1

[(
(k − 1)

Σ

r sin θ
+ 2r sin θ

)
Ω(1) sin v̂k,1,1

+
(

(k + 1)Ω(2) + (k − 1)Ω(3)
)

cos v̂k,1,1

]
, (5.5.8b)

where we have again expanded Θ4 in the self-dual basis (5.3.19). As in mentioned above,

in the final result, we selected the real part of the perturbation. We also normalised

the spinors as follows: [(ζ+1
− )T iΓrθ ζ ′+2

− ] → 1
2

√
aRy , which is natural since in our

conventions, spinors have a mass dimension of −1/2 and so a spinor bilinear should

have mass dimension −1 or should have units of length. One can check explicitly that

the result (5.5.8a) satisfies the first-layer BPS equations (4.2.25).

To get a feeling for this solution we can compare it with the old superstrata solu-

tion (5.3.16), for (k,m, n) = (k, 1, 1), which is obtained by using the bosonic symmetry

generators (5.3.15) and (5.3.14) only. The solutions are similar and this may not be

unexpected, as they both introduce the same amount of momentum and angular mo-

mentum into the geometry. We notice that the form of the function Z4 is the same,

while Θ4 slightly differs in the relative factors multiplying the basis elements Ω(i).

As shown on the CFT side, the state G+1
− 1

2

G+2
− 1

2

|00〉NS
k is not linearly independent

from the state J+
0 L−1|00〉NS

k . The proper combination which contains the information

about the new, linearly independent CFT state is given by the combination(
G+1
− 1

2

G+2
− 1

2

+
1

k
J+

0 L−1

)
|00〉NS

k . (5.5.9)

In order to write the supergravity solution dual to (5.5.9), let us briefly discuss the

relation between the parameter b4 in (5.3.16) and the original parameter b appearing

in the seed solution. By keeping track of the overall normalisation when acting with

66The superscript f is to denote that these solutions are obtained by acting with fermionic generators
only and hence the state that this solution is dual to is G+1

− 1
2

G+2

− 1
2

|00〉NS
k .
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bosonic generators (5.3.15) and (5.3.14), we have b4 = (−1)nk (k+(n−1))!
(k−m)! b. Because for

m = n = 1 this gives b4 = −k2b, one finds that the solution dual to the state (5.5.9) is

given by the following new linear perturbation

Z4 = 0, (5.5.10a)

Θ4 = −
√

2 b̂∆k,1,1

[
Σ

r sin θ
Ω(1) sin v̂k,1,1 +

(
Ω(2) + Ω(3)

)
cos v̂k,1,1

]
, (5.5.10b)

where we introduced b̂ = (k2 − 1)b. The new solution has a vanishing Z4 function,

which means that both the axion field C0 and also the component Buv of the B-field

are vanishing. However, because Θ4 is non-vanishing, the components of Bµν with

one leg in AdS3 and one in S3 are non-vanishing, which agrees with the spectrum

calculated by [136]. One can show that Z4 and Θ4 given in (5.5.10) satisfy the first-

layer of BPS equations (4.2.25). The solution is dual to the CFT state with quantum

numbers (k,m, n, q) = (k, 0, 0, 1). Notice that for k = 1 both the above supergravity

perturbation and the corresponding CFT state are trivial, which provides a further

check on the identification proposed.

We can generalise this approach and use the geometry (5.5.10) as a new seed solution

and act on it with the bosonic symmetry generators (5.3.14) and (5.3.15) to obtain the

geometry dual to the state (k,m, n, q = 1). One finds that the geometry dual to the

state (5.2.3) with q = 1 is again unchanged at linear order from the original seed

solution (5.3.10) in all the ansatz quantities except for67

Z4 = 0 , Θ4 = b̂k,m,n4 ϑ̂k,m,n , (5.5.11)

with

ϑ̂k,m,n = ∆k,1+m,1+n

[
Σ

r sin θ
Ω(1) sin v̂k,1+m,1+n +

(
Ω(2) + Ω(3)

)
cos v̂k,1+m,1+n

]
.

(5.5.12)

Again it is not difficult to show explicitly that these satisfy the first-layer BPS equations.

Also in this more general case Z4 remains trivial and the structure of Θ4 is the same

as in (5.5.10), apart from a change in the argument v̂k,1+m,1+n of the trigonometric

functions and in the quantum numbers in the ∆k,1+m,1+n function.

5.6 Non-Linear Completion

In the previous sections we generated new solutions to the BPS equations at linear

order in the perturbation parameter b. Since the first-layer BPS equations are linear,

any linear combination of solutions (5.3.16) and (5.5.11), with an allowed combination

67We reabsorb all overall normalisations in the parameter b̂k,m,n4 .

133



CHAPTER 5. SUPERCHARGING SUPERSTRATA

of the quantum numbers (k,m, n), is also a solution of these equations. This general

bulk configuration correspond to a CFT state containing various excitations (5.2.3)

with different values of (k,m, n, q). Up to this point we have taken the coefficients

bk,m,nI and b̂k,m,nI to be infinitesimally small, making any solution only an infinitesimal

deformation of the empty AdS3×S3×T 4 space. In principle we could promote all these

coefficients to be finite68, which corresponds, on the CFT side, to taking many copies

of the same excitation. With the parameters b̂k,m,nI being finite, the scalars ZI and the

two-forms ΘI become sources on the right-hand sides of the second-layer equations.

Thus, once we have a finite solution to the first-layer equations, we can determine the

deformation of F and ω from their seed values by solving the second-layer equations.

Here we do not tackle this general problem and focus on a single-mode superstratum,

i.e., we make a single, arbitrary mode coefficient to be finite and the solve the second-

layer equations with the corresponding source terms. We find that a special feature

of this new class of non-linear solutions is that their extension to asymptotically flat

solutions is trivial. We close this section by calculating the conserved charges of the

newly obtained solutions and comparing them to the CFT states (5.2.3) to find perfect

agreement between the two results.

5.6.1 Solving the Second-Layer Equations

The second-layer equations (4.2.26) are in general coupled second-order partial differ-

ential equations for the components of the anti-self-dual one-form ω and the scalar F .

These quantities encode the information about the conserved charges of the geome-

try, i.e., the momentum charge Qp and the angular momenta J and J̃ . As mentioned

above, our goal here is to calculate the backreaction on ω and F that the new finite

deformations cause on the geometry. We limit ourselves to the case of single-mode

superstrata involving the new q = 1 excitations, meaning that our initial ansatz for the

finite first-layer solution is

Z1 =
Q1

Σ
, Θ1 = b̂k,m,n2 ϑ̂k,m,n ,

Z2 =
Q5

Σ
, Θ2 = b̂k,m,n1 ϑ̂k,m,n ,

Z4 = 0 , Θ4 = b̂k,m,n4 ϑ̂k,m,n ,

(5.6.1)

where b̂k,m,n1,2 should be determined as a function of b̂k,m,n4 , which, in turn, is related to

number of excitations (5.2.3) in the corresponding CFT state. We further simplify our

ansatz by recalling that the bosonic descendants of an anti-chiral primary state have a

trivial Θ1 [105]. The same feature is shared by the bosonic superstrata obtained by using

68See [126] for discussion on the technical difficulty in superposing modes with completely general
(k1,m1, n1) and (k2,m2, n2).
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the excitations (5.2.3) with q = 0 [126]. We assume that a similar property holds also

for q = 1 excitations and set to zero the coefficients b̂k,m,n2 . Furthermore, in all previous

work [110,126,200], the coefficients b̂k,m,n1 were tuned in such a way that the singularity-

causing v-dependent terms vanished. This procedure was called “coiffuring”. However,

we find that, with the solutions generated with the new solution-generating technique,

the right-hand sides of the second-layer equations are automatically v-independent. For

this reason, we assume that all b̂k,m,n1 are also vanishing. In this case the only non-trivial

source in the second-layer equations is Θ4 ∧ Θ4 which takes the simple form written

on the right-hand side of (5.6.4). Since there are no potentially dangerous terms to be

taken care of by coiffuring, the ansatz we use for the first-layer solution of a single-mode

superstrata is simply

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, Z4 = 0 , (5.6.2a)

Θ1 = Θ2 = 0 , Θ4 = b̂ ϑ̂k,m,n. (5.6.2b)

We now want to solve the second-layer equations where the source on the right-hand

side is determined by (5.6.2). By following [126] we take the following ansatz for F and

ω

F = FRMS(r, θ), ω = ω0 + ωRMS(r, θ), (5.6.3)

where ω0 is given in (5.3.10), and the RMS superscript denotes that the ansatz functions

are independent of the coordinate v and are thus non-oscillating. We assume that

FRMS and the components of ωRMS only depend on the coordinates r and θ and that

ωRMS
r = ωRMS

θ = 0. Using (5.6.2) on the right-hand side of the second-layer equations,

we see that the RMS parts of (5.6.3) are governed by the differential equations

d4ω
RMS + ∗4d4ω

RMS + FRMSdβ = 0, (5.6.4a)

L̂FRMS = 4 b̂2
∆2k,2m+2,2n+2 + ∆2k,2m+4,2n

(r2 + a2) cos2 θ Σ
, (5.6.4b)

where we have used the fact that d4ω0 is anti-self-dual and have introduced L̂ ≡ − ∗4
d4 ∗4 d4 as the Laplace operator in the four-dimensional Euclidean base space. Notice

that the top differential equation has a vanishing right-hand side, which was not the

case in previously known examples.

One can show that when acting on a scalar function that depends only on r and θ,

the Laplace operator can be written as

L̂F ≡ 1

rΣ
∂r
(
r(r2 + a2) ∂rF

)
+

1

Σ sin θ cos θ
∂θ
(

sin θ cos θ ∂θF
)
. (5.6.5)
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We then note that the differential equation of the form

L̂F2k,2m,2n =
∆2k,2m,2n

(r2 + a2) cos2 θ Σ
(5.6.6)

is solved by the function69

F2k,2m,2n = −
j1+j2+j3≤k+n−1∑

j1,j2,j3=0

(
j1 + j2 + j3
j1, j2, j3

)( k+n−j1−j2−j3−1
k−m−j1,m−j2−1,n−j3

)2(
k+n−1

k−m,m−1,n

)2
×

∆2(k−j1−j2−1),2(m−j2−1),2(n−j3)

4(k + n)2(r2 + a2)
, (5.6.7)

with (
j1 + j2 + j3
j1, j2, j3

)
≡ (j1 + j2 + j3)!

j1! j2! j3!
. (5.6.8)

Notice that (5.6.4b) is already in the form (5.6.6), and can be thus solved by a linear

combination of the F functions.

To get the solution for ω, we introduce the ansatz70 [126]

ωRMS = µk,m,n(dψ + dφ) + νk,m,n(dψ − dφ) , (5.6.9)

and define a new function

µ̂k,m,n ≡ µk,m,n +
Ry

4
√

2

r2 + a2 sin2 θ

Σ
Fk,m,n, (5.6.10)

where Fk,m,n ≡ F is the solution of (5.6.4b). One can show that µ̂k,m,n satisfies the

differential equation

L̂µ̂k,m,n =
b̂2Ry√

2

∆2k,2m+2,2n + ∆2k,2m+4,2n+2

(r2 + a2) cos2 θ Σ
, (5.6.11)

which can be again solved by a linear combination of the functions (5.6.7). One is thus

able to determine Fk,m,n and µ̂k,m,n as the solution of their respective second-order

differential equations. By following the same approach of [126], one can show that the

explicit forms of the ansatz quantities are given by

Fk,m,n = 4b̂2 (F2k,2m+2,2n+2 + F2k,2m+4,2n) , (5.6.12a)

69For the proof see Appendix A of [126].
70Notice that in previous work νk,m,n was named ζk,m,n. Here we change the notation to avoid

confusion with the complex spinor components ζαA± .
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µk,m,n =
b̂2Ry√

2

[
F2k,2m+2,2n + F2k,2m+4,2n+2

− r2 + a2 sin2 θ

Σ
(F2k,2m+2,2n+2 + F2k,2m+4,2n) +

x̂k,m,n
4Σ

]
, (5.6.12b)

where in (5.6.12b) we have added an additional harmonic piece that is left undetermined

by the differential equations. Its form is chosen so that the solution is regular at the

centre of the coordinate system and is determined in the next subsection. The remaining

νk,m,n functions are obtained by solving first-order differential equations, which contain

Fk,m,n and µk,m,n as sources. These equations are

∂rνk,m,n = −
(
a2 + r2

)
sin2 θ − r2 cos2 θ

r2 + a2 sin2 θ
∂rµk,m,n −

2r sin θ cos θ

r2 + a2 sin2 θ
∂θµk,m,n

−
√

2a2Ry
(
a2 + 2r2

)
r sin2 θ cos2 θ(

r2 + a2 sin2 θ
)

Σ2
Fk,m,n, (5.6.13a)

∂θνk,m,n =
2
(
a2 + r2

)
r sin θ cos θ

r2 + a2 sin2 θ
∂rµk,m,n +

r2 cos2 θ −
(
a2 + r2

)
sin2 θ

r2 + a2 sin2 θ
∂θµk,m,n

+

√
2a2Ry

(
a2 + r2

)
r2 sin θ cos θ cos 2θ(

r2 + a2 sin2 θ
)

Σ2
Fk,m,n . (5.6.13b)

These equations can be solved by integration on a case-by-case basis for each set of

quantum numbers.

5.6.2 Regularity

We want our solutions to be free of any singularities. However, the coordinates intro-

duced in (5.3.9), which are used to describe the solutions, have points at which they

degenerate. Hence using these coordinates we have to take special care of the functions

and components of the forms in order for our solutions to be regular. There are regions

of the base manifold at which the coordinates degenerate. The first one is at θ = 0,

where the φ circle degenerates. The second one is at θ = π
2 , where the ψ circle shrinks.

Finally at the locus (r = 0, θ = 0) the entire sphere S3
θφψ shrinks. Imposing regularity

at these regions imposes constraints on our solutions. We look at each of the constraints

separately. Since now the scalar functions Z1 and Z2 are the same as the seed solutions

and Z4 is vanishing, we only focus on the regularity of the forms. The standard pro-

cedure to check the regularity is to express the forms in a coordinate system without

any degenerate points. However, we instead impose the equivalent condition that form

components along dφ and dψ vanish at a degenerate locus.

We start by looking at the region where (r = 0, θ = 0). Focus on the regularity of

the 1-form ω, especially on the dψ + dφ component, which explicit expression is given

in (5.6.12b). In order to cancel out the singularity caused by the form legs, µk,m,n
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needs to vanish at the point of interest. This determines the constant multiplying the

harmonic term in µk,m,n, which must be

x̂k,m,n = k
(k −m− 2)!m!n!

(k + n+ 1)!
. (5.6.14)

Again the x̂ notation is used to distinguish the normalisation from the q = 0 case.

The same analysis needs to be repeated for the dψ − dφ component of the one-form,

which also needs to be vanishing at the centre of the base manifold. However, as we are

currently lacking a closed expression for generic quantum numbers, the analysis needs

to be done on a case-by-case basis.

Let us now look at the points of the location of the supertube, namely (θ = π
2 ).

This is the same as looking at Σ = 0, where the scalars Z1 and Z2 diverge. To check

the regularity of the solution, we look at the (dφ+ dψ)2 component of the metric and

demand that it is regular at the position of the supertube. Imposing regularity at

this locus of spacetime changes the relation between the brane charges Q1, Q5 and the

parameters defining the supertube ansatz a and b, which is now given by

Q1Q5

R2
y

= a2 +
b̂2

2
x̂k,m,n , (5.6.15)

where x̂k,m,n is defined in (5.6.14).

5.6.3 Asymptotically Flat Solution

Up to this point, the solutions we presented are asymptotically AdS3×S3× T 4, which

allows for the identification with the dual CFT states discussed in section 5.2. It turns

out that these solutions can be extended to asymptotically flat configurations (in our

case that is asymptotically equal to R4,1×S1×T 4) in a straightforward way and so can

be identified with microstates of asymptotically flat black holes. As usual, this is done

by adding back “1” in the functions Z1 and Z2. By introducing this extra constant,

one usually obtains additional v-dependence on the right-hand side of second-layer

equations. The effect of these additional terms is that we get new v-dependent terms

in (5.6.3), with the differential equations determining these new terms usually being

cumbersome to solve. Luckily, the novel feature of the solution (5.6.2) is that including

the constant term in Z1,2 does not add any additional source terms into the second-layer

equations.

Thus focusing on the single-mode superstrata, the asymptotically flat extension of

the solution (5.6.2),

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q5

Σ
, Z4 = 0 , (5.6.16a)
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Θ1 = Θ2 = 0, Θ4 = b̂ ϑ̂k,m,n , (5.6.16b)

gives the same second-layer equations for F and ω as in the asymptotically AdS

case. So, both the asymptotically AdS and the full asymptotically flat solution are

v-independent.

5.6.4 Conserved Charges

One can extract the conserved charges of our new solutions from their large-distance

behaviour. This gives a consistency check of the proposed identification between the

new superstrata and the CFT states (5.2.7).

The angular momentum charges J and J̃ associated with the left-moving and right-

moving sector of the CFT respectively are related to the Jφ and Jψ components of the

supergravity angular momentum through

J =
Jφ + Jψ

2
, J̃ =

Jφ − Jψ
2

. (5.6.17)

These charges can be found by analysing the gφψ component of the ten-dimensional

metric. In our ansatz, this component is obtained by looking at the φ+ψ components

of the one-forms β and ω. It is straightforward to adapt the general prescription of [201]

to this case (see for instance [105]), and one obtains

βφ + βψ + ωφ + ωφ ∼
√

2
J − J̃ cos 2θ

r2
+O(r−3) . (5.6.18)

Thus it is possible to read off the angular momenta of our newly obtained solutions

from the knowledge of β (which is unchanged from (5.3.10a)) and µ (5.6.12b). One

finds that these are given by

J =
Ry
2

(
a2 + b̂2

m+ 1

k
x̂k,m,n

)
, J̃ =

Rya
2

2
. (5.6.19)

Similarly, the momentum charge Qp can be extracted from the large-distance be-

haviour of the function F :

F ∼ −2Qp
r2

+O(r−3) . (5.6.20)

For our new solutions, we find

Qp = b̂2
m+ n+ 2

2k
x̂k,m,n . (5.6.21)

Finally, we note that the brane chargesQ1 andQ5 that appear in the scalar functions

Z1 and Z2 do not change, as the two functions remain unchanged from the seed solutions
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(5.3.10).

The supergravity charges calculated above are proportional to the quantised charges

calculated on the CFT side. The brane charges Q1 and Q5 are related to the D-brane

numbers n1 and n5 through

Q1 =
(2π)4 gs α

′3

V4
n1 , Q5 = gs α

′ n5 , (5.6.22)

with V4 being the coordinate volume of T 4, gs the string coupling, and α′ the Regge

slope. The relation between the Qp obtained in (5.6.20) and the quantised momentum

number np is

Qp =
(2π)4 g2

s α
′4

V4R2
y

np =
Q1Q5

R2
yN

np. (5.6.23)

The angular momenta J , J̃ obtained from the supergravity calculation in (5.6.18) are

related to the quantised ones j, j̄ by

J =
(2π)4g2

sα
′4

V4Ry
j =

Q1Q5

RyN
j , J̃ =

(2π)4g2
sα
′4

V4Ry
j̄ =

Q1Q5

RyN
j̄ . (5.6.24)

We are now able to compare the charges obtained from the supergravity solutions

with the ones calculated on the CFT side. The latter are given by (5.2.8). The crucial

point at this step is to identify the supergravity constraint obtained from the regularity

condition at the position of the supertube (5.6.15) and the CFT constraint for the total

number of strands (5.2.7). The parameter a is connected with the number of untwisted

strands Na and the number of twisted strands Nb with the parameter b. We find that

these quantities are connected by

a2 =
Q1Q5

R2
y

Na

N
, b2 =

2Q1Q5

R2
y

kNb

N
x̂−1
k,m,n . (5.6.25)

Using this identification together with the relations between the supergravity and quan-

tised momenta, we get that the CFT charges corresponding to the supergravity solu-

tions obtained above are given by71

j̄R =
RyN

Q1Q5
J̃ =

Na

2
, (5.6.26a)

jR =
RyN

Q1Q5
J =

Na

2
+ (m+ 1)Nb , (5.6.26b)

71We reinstated the subscript R for j and h to stress that we are listing the results in the in Ramond
sector.
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for the angular momenta, and using that the momentum charge np = hR − h̄R, we get

np =
R2
yN

Q1Q5
Qp = (m+ n+ 2)Nb . (5.6.27)

We see that in all three cases these charges agree with the ones given in (5.2.8), if we

set q = 1, as we should for our new supergravity solutions. This provides a check that

the newly obtained solutions really are dual to the CFT states (5.2.3), with q = 1.

5.7 Compendium of Formulas and Explicit Solutions

Here we collect the expressions for the new superstrata that we constructed in this

chapter.

The new superstrata represent supersymmetric solutions of supergravity, whose

10-dimensional fields are given by the ansatz (4.2.7). The quantities that enter the

ansatz satisfy two layers of BPS equations, which are differential equations on a four-

dimensional base, which we took to be flat R4. The ansatz quantities that solve the

first-layer equations (4.2.25) are

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, Z4 = 0 , Θ1 = Θ2 = 0 , (5.7.1a)

Θ4 = b̂k,m,n4 ∆k,1+m,1+n

[
Σ

r sin θ
Ω(1) sin v̂k,1+m,1+n +

(
Ω(2) + Ω(3)

)
cos v̂k,1+m,1+n

]
,

(5.7.1b)

where the definitions of ∆k,m,n and v̂k,m,n can be found in (5.3.18) and the self-dual

two-forms Ω(i) are given in (5.3.19). The range of the integers (k,m, n) is k ≥ 1,

0 ≤ m ≤ k − 2, n ≥ 0.

Due to the linearity the BPS equations, an arbitrary superposition of solutions

(5.7.1) is still a solution of the first-layer equations (see (5.6.1)). However, in this

chapter, we limited ourselves to single-mode superstrata, for which only one of the

coefficients b̂k,m,n4 ≡ b̂ is non-vanishing. In this case, the ansatz quantites that solve the

second-layer BPS equations (4.2.26) are given by

F = FRMS(r, θ), ω = ω0 + ωRMS(r, θ) , (5.7.2)

where ω0 is defined in (5.3.10c),

ωRMS = µk,m,n(dψ + dφ) + νk,m,n(dψ − dφ) , (5.7.3)
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and

FRMS = Fk,m,n = 4b̂2 (F2k,2m+2,2n+2 + F2k,2m+4,2n) , (5.7.4a)

µk,m,n =
b̂2Ry√

2

[
F2k,2m+2,2n + F2k,2m+4,2n+2

− r2 + a2 sin2 θ

Σ
(F2k,2m+2,2n+2 + F2k,2m+4,2n) +

x̂k,m,n
4Σ

]
, (5.7.4b)

while νk,m,n has to be calculated on a case-by-case basis using the differential equa-

tions (5.6.13). The functions F2k,2m,2n are given by (5.6.7) and the coefficient x̂k,m,n is

fixed by regularity of the solution to be (5.6.14).

In the dual CFT, the single-mode superstrata correspond to states of the form

|++〉Na
(
|k,m, n, q〉R

)Nb , with Na + kNb = N (5.7.5)

where |k,m, n, q〉R is the spectral flow to the R sector of the NS state

|k,m, n, q〉NS = (J+
0 )m(L−1)n

(
G+1
− 1

2

G+2
− 1

2

+
1

k
J+

0 L−1

)q
|00〉NS

k . (5.7.6)

with q = 0, 1. States with q = 1 are dual to the new superstrata while the states with

q = 0 are dual to the original superstrata constructed in [126]. The relation between

the supergravity parameters a, b and the CFT parameters Na, Nb is given by (5.7.5).

The above solutions are asymptotically AdS3 but by simply setting

Z1 → Z1 + 1 , Z2 → Z2 + 1 , (5.7.7)

the solutions become asymptotically flat. Such a transformation does not spoil the

second-layer equations, meaning that the Fk,m,n and ωk,m,n are still valid solutions,

even in the asymptotically flat case. In contrast, extending the original superstrata to

asymptotically flat ones required a non-trivial step of solving differential equations [126].

5.7.1 Explicit Examples

The solutions above are valid for any allowed set of quantum numbers (k,m, n, q = 1).

However, Fk,m,n and µk,m,n contain linear combinations of F2k,2m,2n, which include

non-trivial sums and are generically hard to evaluate. However, in certain cases, these

sums can be evaluated explicitly, which then makes it possible to find solutions to the

second-layer BPS equations in a closed form. Here we present the explicit expression

for Fk,m,n, ωk,m,n for two classes of solutions.
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(k,m, n, q) = (k, 0, 0, 1) class of solutions

The simplest class of solutions is parametrised by the quantum numbers (k,m, n, q) =

(k, 0, 0, 1), with k being an arbitrary positive integer. These geometries already carry

three charges, as momentum is added through the action of the fermionic generators.

They are given by

Fk,0,0 = − b̂2

k(k2 − 1)2(X − 1)3(a2 + r2)

[
P

(0)
F (X; k) + P

(1)
F (X; k) Z

]
, (5.7.8a)

ωk,0,0 =
b̂2Ry√

2 k2(k2 − 1)2(X − 1)4Σ

[(
P

(1)
ψ (X; k)Z + P

(2)
ψ (X; k)Z2

)
cos2 θ dψ

+
(
P

(0)
φ (X; k) + P

(1)
φ (X; k)Z + P

(2)
φ (X; k)Z2

)
sin2 θ dφ

]
, (5.7.8b)

where we introduced the notation

X =
a2 sin2 θ

r2 + a2
, Z =

r2

r2 + a2
, (5.7.9)

and P
(l)
F , P

(l)
ψ , and P

(l)
φ denote polynomial functions in the variable X with the param-

eter k. They are given by

P
(0)
F (X; k) = 2(X − 1)(X + 1)(Xk − 1)− k(X − 1)2(1 + 3X)Xk−1

− 2k2(X − 1)2(Xk−1 − 1) + k3(X − 1)3Xk−1 , (5.7.10a)

P
(1)
F (X; k) = 4(X + 1)(Xk − 1)− k(X − 1)(1 + 6X +X2)Xk−1

+ 2k2(X − 1)2(X + 1)Xk−1 − k3(X − 1)3Xk−1 , (5.7.10b)

P
(0)
φ (X; k) = −2(X − 1)2(Xk − 1)− k(X − 1)2(X + 1)(Xk−1 − 1)

+ 2k2(X − 1)3Xk−1 + k3(X − 1)3(Xk−1 − 1) , (5.7.10c)

P
(1)
φ (X; k) = −4(X − 1)(X + 2)(Xk − 1) + 2k(X − 1)(2X −Xk−1 − 4Xk + 3Xk+1)

+ 4k2(X − 1)2Xk−1 − 2k3(X − 1)3Xk−1 , (5.7.10d)

P
(2)
φ (X; k) = −6(X + 1)(Xk − 1) + k(X − 1)(2 +Xk−1 + 8Xk +Xk+1)

− 2k2(X − 1)2(X + 1)Xk−1 + k3(X − 1)3Xk−1 , (5.7.10e)

P
(1)
ψ (X; k) = −2(X − 1)(1 + 2X)(Xk − 1) + 2k2(X − 1)2Xk − k3(X − 1)3 + k(X − 1)

(−1 + 2X +X2 − 4Xk + 2Xk+1) , (5.7.10f)

P
(2)
ψ (X; k) = −2(1 + 4X +X2)(Xk − 1) + 2k(X − 1)(X + 1)(1 + 2Xk)

− 2k2(X − 1)2Xk . (5.7.10g)

The above gives regular solutions for any k > 1.

It is interesting to see what happens for k = 1. If we treat k as a continuous
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parameter, one can notice that all functions P in (5.7.10) vanish linearly as k → 1, and

so Fk,0,0 and ωk,0,0 have a simple pole at this value of k. This means that the solution

is ill-defined for k = 1, which is consistent with the CFT result in section 5.2 that the

states |1, 0, n, 1〉NS are unphysical. One may think that one could multiply b̂2 by (k−1)

to start with in order to cancel this pole and get a physical solution. However, one can

show that the solution with such modified normalisation would contain a logarithmic

divergence at θ → 0 and does not represent a phyically allowed geometry.

(k,m, n, q) = (2, 0, n, 1) class of solutions

The next simplest, physically meaningful class of three-charge examples is given by the

quantum numbers (k,m, n, q) = (2, 0, n, 1), where n = 0, 1, 2, . . .. In the case where

n = 0 the momentum charge is coming purely from fermionic generators, whereas for

n 6= 0 the momentum charge is also added through the action of bosonic generators.

One finds that for generic values of n the solutions for the second-layer equations are

given by

F2,0,n =
b̂2

a2 (n+ 1)2(n+ 2)(n+ 3)2

{[
−4

1− Zn+1

1− Z
− 2(n+ 1)(n+ 3)

+ (n+ 1) ((n+ 3)(n+ 4) + 2)Zn+1 − (n+ 1)2(n+ 4)Zn+2

]
−
[
4− 8

1− Zn+1

1− Z

+ (n3 + 8n2 + 21n+ 10)Zn+1− 2(n+ 1)2(n+ 4)Zn+2 + (n+ 1)2(n+ 2)Zn+3

]
sin2 θ

}
,

(5.7.11a)

ω2,0,n =
b̂2Ry√

2a2

1

Z sin2 θ + cos2 θ

1

(n+ 1)2(n+ 2)(n+ 3)2

×

{[
4Z

1− Zn+1

1− Z
− (n+ 1)(n+ 5)Zn+2 + (n+ 1)2Zn+3

]
(cos2 θ dψ − sin2 θ dφ)

+ 2 (n+ 1)(n+ 3)(1− Z) sin2 θdφ

}
, (5.7.11b)

where we have used the same variable Z as defined in (5.7.9).

5.8 Conclusions

In this chapter we have presented the explicit construction of new superstrata using

the fermionic symmetries of the SU(1, 1|2)L × SU(1, 1|2)R (super)isometry group of

AdS3 × S3. The new solutions are simpler than the ones known previously as only Θ4
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is excited and there is no scalar field that must be cancelled by other scalars excited at

higher order.

Due to their simplicity, studying the structure of the solutions is easier for the new

superstrata than for the original ones. For example, although the solution-generating

technique can only produce asymptotically AdS3 solutions, we can trivially extend the

new superstrata to asymptotically flat solutions, as we do in section 5.6.3. In contrast,

extending the original superstrata to asymptotically flat ones required a non-trivial

step of solving differential equations [126].

Also, in the original superstrata, there was a technical difficulty in constructing solu-

tions that involve two modes with completely different quantum numbers (k1,m1, n1),

(k2,m2, n2) [126]. Subsequent results have shown that the geometries generated in

this chapter were precisely the missing piece to making generic mulit-mode superstrata

without restricting them to only a subspace of the phase space, as is the case if one

considers the original superstrata alone [182].

Investigating physical aspects of this new class of superstrata, such as the integra-

bility of the geometry [189] and precision holography [142,143,183,184] would be very

interesting. As mentioned above, possible instabilities of microstate geometries have

attracted much interest lately [185–191]. In particular, it has been argued [185] that

supersymmetric microstate geometries are non-linearly unstable when a small amount

of energy is added, leading to a formation of a near-extremal black hole. The metric of

the original superstrata in the asymptotically-flat setting [126] has no isometry in the v

direction, which violates one of the assumptions in the analysis of [185]. However, the

asymptotically-flat version of the new single-mode superstrata (5.6.16) is v-independent

metrically, and it would be interesting to examine their possible instability and its end-

point.
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Outlook

Where do we go from here? Despite giving some outlook on future research in the

relevant chapters, it may be worthwhile to further outline some of the more interesting

directions in which one can expand this work.

Pole-Skipping

One of the main issues with pole-skipping is the lack of interpretation of the results. By

now we have a good understanding of the near-horizon origin of this peculiar behaviour,

yet a generic interpretation on the boundary side is still lacking. Some progress in this

direction has been made in two-dimensional CFTs [83,100], however we have seen that

pole-skipping occurs regardless of the dimension of spacetime and thus a boundary

interpretation should not be limited to the (special) two-dimensional case. Similarly,

the effective hydrodynamic mode considered in [69] explains only the behaviour of the

particular pole-skipping point at the positive imaginary frequency of the energy density

correlator, but it does not trivially extend to other pole-skipping points or to Green’s

functions of other fields. One hopes that there exists a more universal mechanism that

explains pole-skipping for all fields.

A further hint at the existence of such a general mechanism comes from the ac-

cumulation of results [2, 68–70, 72, 90], which show that the most positive (imaginary)

frequency at which pole-skipping occurs for fields with spin s, is given by

ω = 2πiT (s− 1) . (6.0.1)

This is a highly non-trivial result which currently lacks a proper interpretation.72 A

possible clarification may come by considering a specific top-down model, for example

a near-extremal black hole in type IIB supergravity, where the interplay between fields

72This was first observed by Richard Davison.
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of different spin is more apparent. It should be noted that the result (6.0.1) has been

obtained without any explicit supersymmetry methods which might explain this kind

of symmetry.

Furthermore, pole-skipping is still mysterious in the limit where the black hole

becomes extremal. In this case the blackening factor f(r) has a double zero at the

horizon which increases the singularity of the equations of motion at this point. This

fundamentally changes the near-horizon expansion of the bulk fields and therefore a

more careful analysis is needed for such backgrounds. However, there are known Green’s

functions for extremal systems, such as the fermionc correlator in an extremal BTZ

black hole [55], which should serve as useful guides in obtaining new results.

An additional interesting observation that follows from the near-horizon analysis

is the equivalence of the advanced and retarded Green’s functions at the Matsubara

frequencies. Recall that at such frequencies, one of the solutions becomes irregular in

the ingoing Eddington-Finkelstein coordinates due to logarithmic terms appearing in

the near-horizon expansion. As a consequence, the remaining regular solution needs to

be chosen when calculating both the advanced and the retarded correlator in holography

(see section C.1.3 Appendix C for the more details). While this relation has not been

fully developed yet, one can mention a comment of [72] where the same equivalence of

the advanced and retarded Green’s functions was observed for scalar fields at bosonic

Matsubara frequencies. Namely, in order to respect causality at real values of the

momentum the advanced Green’s function must not have any poles in the lower half

frequency plane. Since the equivalence holds at the negative Matsubara frequencies

and away from the pole-skipping points:

GA(ω = ωn, k) = GR(ω = ωn, k) , ωn = −2πiT

(
n− 1

2

)
, k 6= kn, n = 1, 2, . . .

(6.0.2)

it follows that for real k, the retarded Green’s function has no poles at ω = ωn besides

the poles which get pole-skipped at k = kn. In [72] they have investigated a similar

statement for positive imaginary Matsubara frequencies in which case one can make

a similar statement about the locations of poles of the advanced Green’s function at

positive imaginary Mastubara frequencies but away from the pole-skipping momentum.

It would be interesting to further investigate this avenue, especially in light of the

constraints from causality.

Finally, we need to clarify the relation between the pole-skipping locations and the

chaotic properties of the theories. While our current understanding suggests that the

pole-skipping point at the positive imaginary frequency in the energy density correlator

is related to chaos, which has been demonstrated in a wide variety of systems [69–71,

202, 203], it also seems that other pole-skipping points are not related to chaos in
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general. Understanding the conditions under which a connection is present (if it is

present at all) might allow us to use pole-skipping as a “cheap” diagnostic for chaos in

holographic systems.

Black Hole Microstates

In chapter 5 we have presented the construction of a new family of smooth microstates

of the supersymmetric D1-D5-P black hole. With that we have added to an already

large number of known microstates of this black hole, yet we are still far away from

having a complete microscopic picture.

As it was shown in [134], the number of currently known superstrata cannot ac-

count for the full entropy of the D1-D5-P black hole, thus we know that there exist

other microstates that are not yet constructed or accounted for. From the spectrum of

linearised gravity around AdS3 × S3 [136–138] we know that there exist other smooth

excitations that might result in superstrata. It is expected that these geometries have

a deformed base space which makes them computationally harder to construct, how-

ever this means that the obstacles are more of a technical than a conceptual nature.

Research in this direction is ongoing and recently new pathways have opened up, con-

taining holomorphic techniques [175] and perhaps more promisingly, it was found that

some of the superstrata can be reduced to only three dimensions [176]. One hopes

that by using this reduction, one can generate solutions in three dimensions which can

then be uplifted to six dimensions, where they would represent a new class of smooth

microstates.

However, superstrata are very atypical microstates as they correspond to coherent

superpositions of excitations (see for example [204] for a discussion on typicality) and an

open question is what a typical microstate looks like. One may expect that such a state

is not fully captured by supergravity and may in general contain stringy excitations

[159–161, 205]. This may give an additional motivation for the construction of all

possible microstate geometries as it should show whether supergravity is enough to

describe the microscopic degrees of freedom of a black hole.

Furthermore, so far we have only constructed the microstates of a supersymmetric

black hole and one may ask to what extent do the results from the supersymmetric

configurations translate to the non-supersymmetric sector? In fact, generating non-

supersymmetric black holes is also one of the (long-term) goals of the programme, as

such black holes are dynamical and evaporate. Some results are already known [206,207]

yet a finite-temperature superstratum is currently unavailable.

Another interesting avenue is the probing of the known microstate geometries to

analyse the differences with respect to the conventional black hole. As we have noted

above, the three-point correlation functions are protected by supersymmetry [129],
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hence four-point functions are the simplest non-trivial correlators that involve novel

information about the geometry. A very interesting class of such correlators is the

HHLL correlator with two parametrically heavy operators (H) whose conformal dimen-

sions scale with the large central charge, and two light operators (L) with conformal

dimensions that do not scale with the central charge. Such correlators can be thought

of as describing a process in which a light particle L is scattering off a heavy microstate

H. Their interaction is then encoded in the behaviour of correlator from which we can

read off some of the details of the geometry of the heavy state.

Such an analysis was performed for example in [130, 132, 183, 208] and indeed de-

viations from the conventional black hole geometry were observed, for example in the

absence of a decay at large Lorentzian times [209]. It would be interesting to see how

much knowledge about the microscopic degrees of freedom is encoded in these corre-

lators. An interesting novel direction is, for example, the study of the Regge limit of

such correlators. In addition recently, using these HHLL results, generic four-point

correlators of light particles in AdS3 × S3 were constructed [210, 211] (see also [212]),

bypassing the usual difficulties one encounters when working with Witten Diagrams in

AdS3.

There are other methods with which one can probe the geometries. For example,

using a hybrid WKB method the quasinormal modes of the superstata were obtained

in [213, 214]. Similarly, in [215] the null geodesics of these geometries were used to

determine the behaviour of massless probes near the photosphere of the solutions –

the nearest distance from the centre where a circular orbit is still stable. All of these

results allow us to build up an arsenal of differences between the conventional black

holes and the microstates. The optimistic hope is that these differences would be visible

in some refined signal from a black hole related experimental observation, for example

the gravitational wave ringdown of a black hole merger as measured at LIGO (see for

example [216]), but at the moment such observations are still out of reach.

Finally, while the two topics presented in this thesis are somewhat disjoint, one may

wonder whether one could perform a pole-skipping analysis of microstate geometries.

One obvious problem is that such geometries lack a horizon, so a new set of bound-

ary conditions would have to be imposed. Similarly, the superstrata have a vanishing

Hawking temperature for which pole-skipping is not yet known. All in all, the combi-

nation of these two ideas seems rather distant at the moment. But it is fun to speculate

of what lies ahead.
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Conventions

Here we present a brief summary of the conventions used throughout the document.73

A.1 Form Conventions

Assume that a D-dimensional spacetime is spanned locally by coordinates xM and that

the line element can then be written as

ds2 = gMN dx
MdxN , (A.1.1)

where we use the mostly-positive signature for the metric gMN . We can introduce an

orthonormal frame Ea which can be used to rewrite the metric as

ds2 = ηabE
aEb , (A.1.2)

with ηab = diag(−,+, . . . ,+). As in these two line elements, throughout the document

we denote curved indices with upper-case Latin letters M,N, . . ., while flat space indices

are denoted by lower-case Latin letters a, b, . . .. Since some particular values of these

indices can be the same in curved and flat space, we denote the latter as underlined.

For example, Xt denotes the t-component of a vector field X in curved spacetime, while

Xt denotes the t-component of the field in flat spacetime. Of course, these two can be

related through the orthonormal frame.

A differential form of degree p or a p-form is defined as

Ap =
1

p!
AM1...Mp dx

M1 ∧ . . . ∧ dxMp =
1

p!
Aa1...ap E

a1 ∧ . . . ∧ Eap . (A.1.3)

73We mostly follow the conventions used in [103], summarized in the Appendix A of that paper.
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Throughout the text the following operators acting on the forms are used

∗Ap =
1

k!(D − k)!
εa1 ...aD−kaD−k+1...aDA

aD−k+1...aD Ea1 ∧ . . . EaD−k , (A.1.4a)

λ (Ap) = (−1)p(p−1)/2Ap , (A.1.4b)

/Ap =
1

p!
AM1...MpΓ

M1...Mp , (A.1.4c)

where in (A.1.4a) we have used the totally antisymmetric symbol and we use the con-

vention with ε01...D−1 = 1.

A.2 Spinor conventions

The introduction of the orthonormal frame allows us to define gamma matrices in

curved spacetimes. We begin by defining gamma matrices in flat space which satisfy

the Clifford algebra relations {
Γa,Γb

}
= 2ηab . (A.2.1)

In particular this means that the gamma matrix associated with the time direction74

squares to −1 while the gamma matrices associated to the spatial directions square to

1. Using the components of the vielbein, we can define curved space gamma matrices

as

ΓM = Ea
M Γa , (A.2.2)

which satisfy the algebra

{
ΓM ,ΓN

}
= 2gMN . (A.2.3)

In chapter 3 we work with Dirac spinors which in D dimensions75 transform in a

representation with 2b
D
2
c components, where bqc denotes the highest integer that is less

than or equal to q. For such a spinor there are no additional constraints and thus each

component is in general a complex number.

The fermion fields in type IIB supergravity are a pair of gravitinos ψ1,2
M and a pair

of dilatinos λ1,2, which are all Majorana-Weyl spinors in ten dimensions. The chiral

matrix in ten dimensions is given by

Γ(10) ≡ Γt · · ·Γ9 , (A.2.4)

74Either Γt or Γv
75Note that the number of bulk dimensions in chapter 3 was D + 2.
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with the order of multiplication in the above definition following the order of directions

from left to right in table 6. For the coordinate system used in (4.2.7) and (5.3.10) the

chirality matrix is defined as

Γ(10) ≡ Γuvrθφ̃ψ̃6789 . (A.2.5)

In type IIB supergravity the chirality of the fermionic fields is given by

Γ(10)ψ
I
M = +ψIM , Γ(10)λ

I = −λI , (A.2.6)

where in both cases I = 1, 2. Spinors in supergravity also satisfy the Majorana condi-

tion. We take the charge conjugation matrix C to be given by

C = Γt , (A.2.7)

so that the Majorana condition for a spinor χ reads

ε̄ ≡ χ†Γt = χTC, (A.2.8)

which implies that the components of the spinor are real numbers

χ∗ = χ. (A.2.9)

Note that for the choice (A.2.7) the conjugate of a Majorana spinor can be written as

χ̄ = χTΓt . (A.2.10)

The supersymmetry variations of the fields in type IIB supergravity ((5.4.1) and

(5.4.2)) are generated by a doublet of Majorana-Weyl spinors ε1,2 with

Γ(10) ε
1,2 = ε1,2 . (A.2.11)

We can count of the number of real degrees of freedom contained in the spinor pair.

A Dirac spinor in ten dimensions has 25 complex or 26 = 64 real free parameters.

Imposing the Majorana or the Weyl condition halves the number of real degrees of

freedom in a spinor, and imposing both leaves us with only a quarter, hence each εI

contains 16 real parameters. Thus there are 32 real degrees of freedom in total which

are the supersymmetry generators of type IIB supergravity.

In chapter 5 we use the coordinates u and v defined as

u ≡ 1√
2

(t− y), v ≡ 1√
2

(t+ y), (A.2.12)
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It is then convenient to express Γt as

Γt =
1√
2

(Γu + Γv) ≡ Γ̂u + Γ̂v , where Γ̂v ≡ 1√
2

Γv, Γ̂u ≡ 1√
2

Γu . (A.2.13)

The newly defined gamma matrices satisfy

Γ̂uT = Γ̂u† = −Γ̂v , Γ̂vT = Γ̂v† = −Γ̂u , (A.2.14)

where we used the hermiticity properties of the Γ matrices,

Γt
†

= −Γt, Γi
†

= Γi, i 6= t. (A.2.15)
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Details of the Pole-Skipping

calculations

In the main text we have only considered the detailed derivation of pole-skipping for

asymptotically AdS3 spaces where the spinors are two-component objects. The deriva-

tion in spacetimes that are asymptotically AdSD+2 is analogous, but contains some

novelties that we want to present here. Ultimately, our goal here is to arrive at (3.58)

and their (ψ
(−)
+ , ψ

(+)
− ) analogues. By doing so, we repeat some of the steps from the

main text in order to make this calculation more or less self-contained.

We also give some explicit expressions for the matrix elements appearing in sec-

tion 3.3.2.

B.1 Analysis in Asymptotically AdSD+2 Spacetimes

We work with the background metric in the ingoing Eddington-Finkelstein coordinates

given by

ds2 = −r2f(r)dv2 + 2dv dr + h(r)d~x2 . (B.1.1)

We choose the orthonormal frame to be

Ev =
1 + f(r)

2
rdv − dr

r
, Er =

1− f(r)

2
rdv +

dr

r
, Ei =

√
h(r) dxi , (B.1.2)

so that

ds2 = ηabE
aEb , ηab = diag(−1, 1, 1, . . . , 1) . (B.1.3)
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The spin connections for this frame are given by

ωvr =
dr

r
− 2rf(r) + r2f ′(r)

2
dv, (B.1.4a)

ωvi =
r h′(r) (1− f(r))

4
√
h(r)

dxi, (B.1.4b)

ωri = −r h
′(r) (1 + f(r))

4
√
h(r)

dxi , (B.1.4c)

with all other components, which are not related by symmetry to the ones above, being

0. Using these spin connections, one can calculate the Dirac equation to be[(
r(1 + f(r))

2
Γr − r(1− f(r))

2
Γv
)
∂r +

Γr + Γv

r
∂v +

Γi√
h(r)

∂i

+
1 + f(r) + rf ′(r)

4
Γr − 1− f(r)− rf ′(r)

4
Γv − D r (1− f(r))h′(r)

8h(r)
Γv

+
D r (1 + f(r))h′(r)

8h(r)
Γr −m

]
ψ(r, v, xj) = 0 . (B.1.5)

Inserting the plane wave ansatz ψ(r, v, xj) = ψ(r)e−iωv+ikix
i

gives{
Γv
[
− r(1− f(r))

2
∂r −

iω

r
− 1− f(r)− rf ′(r)

4
− D r (1− f(r))h′(r)

8h(r)

]
+

ikiΓ
i√

h(r)

+ Γr
[
r(1 + f(r))

2
∂r −

iω

r
+

1 + f(r) + rf ′(r)

4
+
D r (1 + f(r))h′(r)

8h(r)

]
−m

}
ψ(r) = 0 .

(B.1.6)

Next, we decouple these differential equations. We start by separating the spinors

according to their eigenvalues under the action of the Γr matrix. Exactly half of the

eigenvalues of Γr are +1 while the other half are −1, since (Γr)2 = 1 and Tr(Γr) = 0.

Therefore, we introduce

ψ = ψ+ + ψ− , Γr ψ± = ±ψ± , P± ≡
1

2
(1± Γr) , (B.1.7)

and insert this decomposition into (B.1.6). After a bit of algebra, the two independent

equations read[
− iω +

r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
− mr(1 + f(r))

2
− r(1− f(r))

2
√
h(r)

ikiΓ
vi

]
ψ+

+ Γv
[
− iω +

r2f ′(r)

4
+
mr(1− f(r))

2
− r(1 + f(r))

2
√
h(r)

ikiΓ
vi

]
ψ− + r2f(r) ∂rψ+ = 0 ,

(B.1.8a)
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[
− iω +

r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
+
mr(1 + f(r))

2
− r(1− f(r))

2
√
h(r)

ikiΓ
vi

]
ψ−

− Γv
[
− iω +

r2f ′(r)

4
− mr(1− f(r))

2
− r(1 + f(r))

2
√
h(r)

ikiΓ
vi

]
ψ+ + r2f(r) ∂rψ− = 0 .

(B.1.8b)

Observe that for D ≥ 2, the two matrices Γr and Γvi are independent and commut-

ing76. The matrix

k̂iΓ
vi ≡ ki

k
Γvi , with k =

√√√√ D∑
i=1

kiki , (B.1.9)

squares to unity and is traceless. Since it is commuting with Γr, we can find common

eigenvectors. Thus, we define

ψa = ψ(+)
a + ψ(−)

a , k̂iΓ
vi ψ(±)

a = ±ψ(±)
a , P (±) ≡ 1

2

(
1± k̂iΓvi

)
, (B.1.10)

where a = ±. Inserting this decomposition into (B.1.8) and separating each of the

equations with the projectors defined in (B.1.10), gives four independent equations[
− iω +

r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
− mr(1 + f(r))

2
− ikr(1− f(r))

2
√
h(r)

]
ψ

(+)
+

+ Γv
[
− iω +

r2f ′(r)

4
+
mr(1− f(r))

2
+
ikr(1 + f(r))

2
√
h(r)

]
ψ

(−)
− + r2f(r) ∂rψ

(+)
+ = 0 ,

(B.1.11a)

+

[
− iω +

r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
+
mr(1 + f(r))

2
+
ikr(1− f(r))

2
√
h(r)

]
ψ

(−)
−

− Γv
[
− iω +

r2f ′(r)

4
− mr(1− f(r))

2
− ikr(1 + f(r))

2
√
h(r)

]
ψ

(+)
+ + r2f(r) ∂rψ

(−)
− = 0 ,

(B.1.11b)[
− iω +

r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
− mr(1 + f(r))

2
+
ikr(1− f(r))

2
√
h(r)

]
ψ

(−)
+

+ Γv
[
− iω +

r2f ′(r)

4
+
mr(1− f(r))

2
− ikr(1 + f(r))

2
√
h(r)

]
ψ

(+)
− + r2f(r) ∂rψ

(−)
+ = 0 ,

(B.1.11c)

76For D = 1, which is the asymptotically AdS3 case, we have Γvi = ±Γr, as (I,Γv,Γi,Γr) provide a
complete basis for any 2× 2 matrix.
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[
− iω +

r2f ′(r)

4
+
rf(r)

4

(
2 +

D r h′(r)

h(r)

)
+
mr(1 + f(r))

2
− ikr(1− f(r))

2
√
h(r)

]
ψ

(+)
−

− Γv
[
− iω +

r2f ′(r)

4
− mr(1− f(r))

2
+
ikr(1 + f(r))

2
√
h(r)

]
ψ

(−)
+ + r2f(r) ∂rψ

(+)
− = 0 .

(B.1.11d)

These split into two decoupled subsystems. The equations describing the pair ψ
(+)
+ and

ψ
(−)
− are (B.1.11a) and (B.1.11b), while the equations governing the spinors ψ

(−)
+ and

ψ
(+)
− are (B.1.11c) and (B.1.11d). Furthermore, the equations (B.1.11a) and (B.1.11c)

are related by changing k → −k. The same can be said for the pair (B.1.11b) and

(B.1.11d). This allows us to focus on solving only one of the subsystems while the

solutions of the other are obtained by changing k into −k.

It is pretty straightforward to obtain a decoupled and diagonal second order differ-

ential equation for a single spinor, and as a check one can expand the equations around

the boundary r →∞ and look for the leading behaviour of the spinors. One finds that

ψ
(±)
+ ∼ r−

D+1
2

+m + r−
D+3

2
−m , ψ

(−)
± ∼ r−

D+3
2

+m + r−
D+1

2
−m , (B.1.12)

which is in agreement with the results obtained in [55].

B.2 Explicit Series Expansion Coefficients

In section 3.3.2 we have presented two methods with which one can calculate the higher

order pole-skipping points for fermionic fields. In the analysis we have refrained from

giving explicit values for the coefficients appearing in series expansions of equations of

motion, such as (3.32), as these become long expressions very quickly, without offering

much insight. For completeness, in this appendix we list some of these coefficients

explicitly. We still do not give any of the coefficients appearing in the method involving

second order differential equations, as these terms provide almost no insight, but are

also straightforward to obtain.

In equation (3.39) there are two matrix coefficients, M̃(11) is given in (3.40), while

the elements of M̃(10) are given by

M̃(10)
++ =

1

4h(r0)
3
2

[
2ikh(r0)

(
r0f
′(r0)− 1

)
+ ikr0h

′(r0) + r2
0

√
h(r0)f ′(r0)h′(r0)

+h(r0)
3
2
(
−2m− 2(m− 2)r0f

′(r0) + r2
0f
′′(r0)

)]
, (B.2.1a)

M̃(10)
+− =

1

4h(r0)
3
2

Γv
[
2ikh(r0)

(
r0f
′(r0) + 1

)
− ikr0h

′(r0) + h(r0)
3
2×

×
(
2m− 2(m− 1)r0f

′(r0) + r2
0f
′′(r0)

)]
, (B.2.1b)
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M̃(10)
−+ =

1

4h(r0)
3
2

Γv
[
2ikh(r0)

(
r0f
′(r0) + 1

)
− ikr0h

′(r0)− h(r0)
3
2×

×
(
−2m+ 2(m+ 1)r0f

′(r0) + r2
0f
′′(r0)

)]
, (B.2.1c)

M̃(10)
−− =

1

4h(r0)
3
2

[
−2ikh(r0)

(
r0f
′(r0)− 1

)
− ikr0h

′(r0) + r2
0

√
h(r0)f ′(r0)h′(r0)

+h(r0)
3
2
(
2m− 2(m+ 2)r0f

′(r0) + r2
0f
′′(r0)

)]
, (B.2.1d)

where

M̃(10) =

(
M̃(10)

++ M̃(10)
+−

M̃(10)
−+ M̃(10)

−−

)
. (B.2.2)

Note that the elements above also occur in the matrix (3.43). In that matrix we also

find the following coefficients

M̃(00)
++ = −mr0

2
− ikr0

2
√
h(r0)

− r2
0 f
′(r0)

2
, (B.2.3a)

M̃(00)
−− =

(
mr0

2
+

ikr0

2
√
h(r0)

− r2
0 f
′(r0)

2

)
Γv , (B.2.3b)

M̃(11)
+ = −mr0

2
− ikr0

2
√
h(r0)

+
r2

0 f
′(r0)

2
, (B.2.3c)

M̃(11)
− =

(
mr0

2
+

ikr0

2
√
h(r0)

+
r2

0 f
′(r0)

2

)
Γv , (B.2.3d)

which are coefficients that have already been evaluated at ω = −3πiT , whereas (B.2.1)

are independent of the frequency. Note that the last two coefficients of (B.2.3) are

merely n = 1 versions of (3.51). As a check, one can show that

detM̃1(ω1, k) ∝ M̃(00)
+ (ω1, k), (B.2.4)

which means that we get the same pole-skipping points with both methods presented

in section 3.3.2. Elements appearing in the matrix (3.50) can be obtained in a similar

manner, however their expressions are rather cumbersome so we do not give them

explicitly.
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Appendix C

Fermionic Green’s Function for

BTZ Black Hole

The retarded Green’s function for fermion fields in the BTZ black hole background

[61, 62] was first derived in [55]. However, the result (3.89) needs to be modified if

the bulk fermion’s mass is a half integer number (in multiples of the AdS radius), or

equivalently, if the conformal dimension of the dual operator is a half-integer.

In this appendix we derive this new form of the correlator by using the prescription

of [55]. The result is given by (3.93) and in chapter 3 we have shown that the pole-

skipping points and the anomalous locations are correctly predicted by the near-horizon

analysis.

C.1 Green’s Function at Generic Conformal Dimension

C.1.1 Retarded Green’s Function

We begin by reviewing the extraction of the Green’s function for femionic fields of

generic mass m in the BTZ black hole. We closely follow the derivation of [55].

The metric of a rotating BTZ black hole [61,62] can be written as

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dφ− r+r−

r2
dt
)2
, (C.1.1)

where φ is an angular coordinate with a period of 2π. The black hole has mass M and

angular momentum J given by

M =
r2

+ + r2
−

8G
, J =

r+r−
4G

, (C.1.2)

where G denotes the Newton constant in three dimensions. The black hole has two
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associated temperatures named the left and right-moving temperature77 given by

TL =
r+ − r−

2π
, TR =

r+ + r−
2π

. (C.1.3)

There exists a nice set of coordinates, defined by

r2 = r2
+ cosh2 ρ− r2

− sinh2 ρ , (C.1.4a)

T +X = (r+ − r−)(t+ φ) , (C.1.4b)

T −X = (r+ + r−)(t− φ), (C.1.4c)

in which the metric takes the diagonal form

ds2 = − sinh2 ρ dT 2 + cosh2 ρ dX2 + dρ2. (C.1.5)

We can then choose the orthonormal frame

ET = − sinh ρ dT , EX = cosh ρ dX , Eρ = dρ , (C.1.6)

in which the non-trivial spin connection components are given by

ωTρ = − cosh ρ dT

ωXρ = − sinh ρ dX. (C.1.7)

In the new coordinates, the metric components depend only on the coordinate ρ (in

the old coordinates the metric depends only on r), hence we can expand the solutions

in the basis of plane waves as

ψ(T,X, ρ) = e−ikTT+ikXXψ(ρ, kµ) = e−iωt+ikφψ(ρ, kµ) . (C.1.8)

The derivation proceeds naturally for the momentum values kT and kX , but in the final

result we are interested in the Green’s function expressed in terms of the “natural”

momenta ω and k. One finds that the connection between these variables is given by

kT + kX =
ω + k

2πTR
, kT − kX =

ω − k
2πTL

. (C.1.9)

The Dirac equation in Fourier space is then[
Γρ
(
∂ρ +

1

2

(
cosh ρ

sinh ρ
+

sinh ρ

cosh ρ

))
+ i

(
kXΓX

cosh ρ
− kTΓT

sinh ρ

)
−m

]
ψ = 0, (C.1.10)

77In the main text we have considered the case where TL = TR and thus r− = 0, which is the
non-rotating BTZ black hole. However, the retarded Green’s function can be derived for the generic
spinning black hole, so we do not need to make such an assumption in this derivation.
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where all the gamma matrices appearing in the expression are flat space matrices.

Following [55], we then make a convenient choice of gamma matrices Γρ = σ3, ΓT = iσ2,

ΓX = σ1, in which case we can write the spinor as ψ = (ψ+, ψ−)T , with the subscript of

the components denoting their eigenvalue under the action of the Γρ matrix. Following

[217], we rescale the two degrees of freedom by introducing

ψ± ≡

√
cosh ρ± sinh ρ

cosh ρ sinh ρ
(χ1 ± χ2) , z = tanh2 ρ . (C.1.11)

In the coordinate z, the asymptotic boundary is located at z = 1 and the horizon of

the black hole is at z = 0. After some algebra the Dirac equations can be written as

2(1− z)
√
z∂zχ1 − i

(
kT√
z

+ kX
√
z

)
χ1 =

(
m− 1

2
+ i(kT + kX)

)
χ2 (C.1.12a)

2(1− z)
√
z∂zχ2 + i

(
kT√
z

+ kX
√
z

)
χ2 =

(
m− 1

2
− i(kT + kX)

)
χ1. (C.1.12b)

It is straightforward to transform these two equations into second order differential

equations for a single variable. One finds that the solutions to these equations are the

hypergeometric functions 2F1(a, b, c; z). As we wish to calculate the retarded correlator,

we follow [49] and choose the solutions that are ingoing at the horizon. These are of

the form

χ1(z) =

(
a− c
c

)
z

1
2

+α(1− z)β2F1(a, b+ 1; c+ 1; z) (C.1.13a)

χ2(z) = zα(1− z)β2F1(a, b; c; z) , (C.1.13b)

with

α = − ikT
2
, (C.1.14a)

β = −1

4
+
m

2
, (C.1.14b)

a =
1

2

(
m+

1

2

)
− i

2
(kT − kX) , (C.1.14c)

b =
1

2

(
m− 1

2

)
− i

2
(kT + kX) , (C.1.14d)

c =
1

2
− ikT . (C.1.14e)

These solutions give us the following asymptotic behaviour

ψ+ ∼ A(1− z)
1
2
−m

2 +B(1− z)1+m
2 , ψ− ∼ C(1− z)1−m

2 +D(1− z)
1
2

+m
2 .(C.1.15)
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Assuming m > 0, the source is taken to be A and the expectation value is D. The

retarded Green’s function is then given by their ratio

GR = i
D

A
= −i

Γ
(

1
2 −m

)
Γ
(
m
2 + 1

4 + i(k−ω)
4πTL

)
Γ
(
m
2 + 3

4 −
i(k+ω)
4πTR

)
Γ
(

1
2 +m

)
Γ
(
−m

2 + 3
4 + i(k−ω)

4πTL

)
Γ
(
−m

2 + 1
4 −

i(k+ω)
4πTR

) . (C.1.16)

This is the result (81) of [55]. In the case of TL = TR we obtain the result (3.89)

presented in the main text.

C.1.2 Advanced Green’s Function

To calculate the advanced Green’s function, we need the solutions that are outgoing at

the horizon. These take on the same form as (C.1.11), only that χ1(z) ↔ χ2(z) and

the parameters in the solutions are now

α =
ikT
2
, β = −1

4
+
m

2
, (C.1.17)

and

a =
1

2

(
m+

1

2

)
+
i

2
(kT − kX) , (C.1.18a)

b =
1

2

(
m− 1

2

)
+
i

2
(kT + kX) , (C.1.18b)

c =
1

2
+ ikT . (C.1.18c)

Following the same steps as in the calculation of the retarded Green’s function, the

advanced Green’s function works out to be

GA = i
Γ
(

1
2 −m

)
Γ
(
m
2 + 1

4 −
i(k−ω)
4πTL

)
Γ
(
m
2 + 3

4 + i(k+ω)
4πTR

)
Γ
(

1
2 +m

)
Γ
(
−m

2 + 3
4 −

i(k−ω)
4πTL

)
Γ
(
−m

2 + 1
4 + i(k+ω)

4πTR

) . (C.1.19)

C.1.3 Equivalence at Matsubara Frequencies

The hypergeometric functions in (C.1.13) are well-defined at generic values of their

arguments. The exception is when c is equal to a non-positive integer which is the case

if ikT → 1
2 + n, where n ∈ {0, 1, . . . }. This corresponds to taking the frequency to

be equal to the (negative imaginary) Matsubara frequencies ωn = −iπT (2n + 1). By

taking this limit we can investigate what happens to the ingoing solutions near such

points.

It turns out that the ingoing solutions blow up as ikT → 1
2 + n, so we divide by
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another infinite factor to extract the finite piece

ψ̃in(z) ≡ lim
ikT→ 1

2
+n

ψin(z)

Γ
(

1
2 − ikT

) . (C.1.20)

It turns out that in this limit the ingoing and outgoing solutions are degenerate

ψ̃in(z) =
Γ
(

∆+n−ikX
2

)
Γ
(

∆+1+n+ikX
2

)
Γ(1 + n) Γ

(
∆−n−ikX

2

)
Γ
(

∆−1−n+ikX
2

) ψout(z) , (C.1.21)

where we have used the fact that the mass and the conformal dimension of dual fields

are related by

∆ =
D + 1

2
+m, (C.1.22)

which in the case of the BTZ black hole (D = 1) gives

∆ = 1 +m. (C.1.23)

Since the ingoing and outgoing solutions are proportional to each other with their

ratio independent of z, we conclude that the retarded and advanced Green’s functions

are equivalent at these Matsubara frequencies.

C.2 Green’s Functions at Half-Integer Conformal Dimen-

sion

At half-integer values of the mass m, calculating the Green’s function is not as straight-

forward because the exponents in (C.1.15) differ by an integer, which results in loga-

rithms appearing in the expansion near the boundary. The expansion of the hyperge-

ometric function that is appropriate to use here is

2F1(a, b; a+ b− n; z) =

(n− 1)!Γ(a+ b− n)

Γ(a)Γ(b)

n−1∑
j=0

(a− n)j(b− n)j(1− z)j−n

j!(1− n)j
+ (−1)n

Γ(a+ b− n)

Γ(a− n)Γ(b− n)
×

∞∑
j=0

(a)j(b)j
j!(j + n)!

(1− z)j
[
ψ(j + 1) + ψ(j + n+ 1)− log(1− z)− ψ(a+ j)− ψ(b+ j)

]
,

(C.2.1)

where the arguments are given in (C.1.13), n = ∆− 3
2 and is an integer, (x)j ≡ Γ(x+j)

Γ(x)

is the Pochhammer symbol and ψ(x) is the digamma function.
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C.2.1 Retarded Green’s Function

We can truncate the sum at j = 0 which yields the overall coefficient of the leading and

subleading contributions that are important in the computation of the retarded Green’s

function. The terms in the expansion of the prefactors of (C.1.13) only contribute to

the contact terms so we can ignore them.78 After inserting the solutions (C.1.13) into

(C.1.11) we can read off the expectation value and the source term in the boundary

theory. The former is given by

D = (−1)n
(
a− c
c

)
Γ(a+ b+ 1− n)

Γ(a− n)Γ(b+ 1− n)

1

n!
[ψ(1) + ψ(n+ 1)− ψ(a)− ψ(b+ 1)]

−(−1)n
Γ(a+ b− n)

Γ(a− n)Γ(b− n)

1

n!
[ψ(1) + ψ(n+ 1)− ψ(a)− ψ(b)]

(C.2.2)

where the first term comes from χ1(z) and the second from χ2(z). The source is

A =

(
a− c
c

)
(n− 1)!Γ(a+ b+ 1 + n)

Γ(a)Γ(b+ 1)
+

(n− 1)!Γ(a+ b− n)

Γ(a)Γ(b)
, (C.2.3)

where again the first term comes from χ1(z) and the second from χ2(z). The retarded

Green’s function is then given by

GR(ω, k) ∝
Γ
(

∆
2 −

1
4 + i (k−ω)

4πT

)
Γ
(

∆
2 + 1

4 − i
(k+ω)
4πT

)
Γ
(
−∆

2 + 5
4 + i (k−ω)

4πT

)
Γ
(
−∆

2 + 3
4 − i

(k+ω)
4πT

)×
[
ψ

(
∆

2
− 1

4
+ i

(k − ω)

4πT

)
+ ψ

(
∆

2
+

1

4
− i(k + ω)

4πT

)]
,

(C.2.4)

up to contact terms.

78The prefactors zα and z
1
2

+α in (C.1.13) have contributions to the overall expansion of ψ± and can
typically be expanded near the boundary in the following way

zγ =

∞∑
j=0

1

j!

Γ(γ + 1)

Γ(γ − j + 1)
(z − 1)j .

In our analysis, we do not take into account these additional terms.
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C.2.2 Advanced Green’s Function

Following the same steps as above but keeping in mind that χ1(z)↔ χ2(z) in the case

of the outgoing solutions, the advanced Green’s function turns out to be

GA(ω, k) ∝
Γ
(

∆
2 + 1

4 − i
(k−ω)
4πT

)
Γ
(

∆
2 −

1
4 + i (k+ω)

4πT

)
Γ
(

3
4 −

∆
2 − i

(k−ω)
4πT

)
Γ
(

5
4 −

∆
2 + i (k+ω)

4πT

) ×
[
ψ

(
∆

2
+

1

4
− i(k − ω)

4πT

)
+ ψ

(
∆

2
− 1

4
+
i(k + ω)

4πT

)]
,

(C.2.5)

up to contact terms.
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Appendix D

Explicit Results in the NS-NS

Sector

In this Appendix we collect some results that are omitted in chapter 5.

We begin by identifying which Killing spinors of global AdS3×S3× T 4 correspond

to which supersymmetry generators of the CFT. In section 5.4 we have calculated the

variations of the dilatino fields generated by the Killing spinor ζαA− . Here we present

the variations of the components of the gravitino fields obtained by acting with the

same spinor and discuss the subtleties arising in the calculation. Furthermore, we give

the variation of the fermionic fields generated by the spinor ζαA+ and discuss the issues

arising in this case. Finally we present the explicit results of the double variations of

the components of the B-field in the NS-NS coordinates, which we omitted in the main

text.

D.1 Identifying Killing Spinors and CFT Fermionic Gen-

erators

Here we present a justification for the identification (5.4.24) and (5.4.25) between the

components of the Killing spinors ζ± and the CFT fermionic generators GαA± 1
2

.

As we can see from (5.4.16) and (5.4.17), the spinors ζ± and ζ̃± are related to the

u- and v-dependent part of the Killing spinors, respectively. So they are naturally

linked with the left-moving (G) and right-moving (G̃) sectors of CFT. Therefore, we

henceforth focus on the identification in the left-moving sector between ζ± and GαA± 1
2

.

From the v-dependence in (5.4.17d), we have the tentative identification

ζ± ←→ GαA± 1
2

. (D.1.1)

The next issue is to relate the SU(2)L×SU(2)R R-symmetry on the CFT side and
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the SO(4) ∼= SU(2)L×SU(2)R symmetry of the sphere S3 on the supergravity side. It

is clear that these symmetry groups are to be identified with each other but we would

like to “align” them by identifying the “J3” generators on the two sides.

On the supergravity side, we can write down a set of SU(2)L × SU(2)R generators

acting on spinors as

Ja = − i
4

(
Γra +

1

2
εabcΓbc

)
, J̃a = − i

4

(
Γra − 1

2
εabcΓbc

)
, (D.1.2)

or, more explicitly,

Jθ = − i
4

(
Γrθ + Γφ̃ψ̃

)
, J

φ̃
= − i

4

(
Γrφ̃ + Γψ̃θ

)
, J

ψ̃
= − i

4

(
Γrψ̃ + Γθφ̃

)
,

(D.1.3a)

J̃θ = − i
4

(
Γrθ − Γφ̃ψ̃

)
, J̃

φ̃
= − i

4

(
Γrφ̃ − Γψ̃θ

)
, J̃

ψ̃
= − i

4

(
Γrψ̃ − Γθφ̃

)
.

(D.1.3b)

These matrices satisfy the commutation relations

[Ja, Jb] = iεabcJc, [J̃a, J̃b] = iεabcJ̃c, [Ja, J̃b] = 0, (D.1.4)

and have Casimir operators given by

J2 =
(
J2
θ + J2

φ̃
+ J2

ψ̃

)
=

3

8

(
1− Γrθφ̃ψ̃

)
, J̃2 =

(
J̃2
θ + J̃2

φ̃
+ J̃2

ψ̃

)
=

3

8

(
1 + Γrθφ̃ψ̃

)
.

(D.1.5)

We turn our focus to the action of these matrices on the spinors ζ±. Recall that

these spinors must satisfy the conditions (5.4.19) and (5.4.22). Combining these two

implies that they must satisfy

Γuvrθφ̃ψ̃ ζ± = ζ±. (D.1.6)

From this condition together with (5.4.23), we find that

Γrθφ̃ψ̃ ζ± = −ζ± . (D.1.7)

From the Casimir operators (D.1.5), we conclude that ζ± transform in the (2,1) rep-

resentation under the SU(2)L × SU(2)R generated by Ja, J̃a . This is as expected,

because ζ± is to be identified with GαA± 1
2

which transform in the same representation

under the R-symmetry.

We need to identify which of the operators in (D.1.2) corresponds to the “J3”

operator of the SU(2)L algebra on the CFT side. This operator allows us to distinguish
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between the spinor components corresponding to G+A
± 1

2

and G−A± 1
2

. In order to see that,

we look at the spinor (5.4.16). By setting ζ̃± = 0, we obtain a spinor with terms that

contain the combination Y+ζ±. Using the constraint (D.1.7) one can show that the

combination appearing in the spinor can be rewritten as

Y+ζ± = e
θ
2

Γrθ
(
ei
φ̃+ψ̃

2 P+
S + e−i

φ̃+ψ̃
2 P−S

)
ζ± , (D.1.8)

where P±S is the projection operator onto the J
ψ̃

= ±1
2 eigenspace defined in (5.4.24).

Because the algebra (4.5.8) says that {G±A1
2

, G±B− 1
2

} ∼ J±0 , a double variation by ζ±

should reproduce the bosonic symmetry J±0 whose realisation is given in (5.3.15). Since

J±0 include a prefactor of e±i(φ̃+ψ̃), we conclude that the J
ψ̃

= ±1
2 eigenspaces, multi-

plied by e±i
φ̃+ψ̃

2 in (D.1.8), are precisely the J3 = ±1
2 eigenspaces. Namely, J

ψ̃
can be

identified with J3
0 on the CFT side. This leads to a finer identification

PαS ζ± ←→ GαA± 1
2

. (D.1.9)

One can repeat the procedure for the SU(2)B×SU(2)C symmetry on the CFT side,

which is to be identified with the symmetry of the internal T 4 on the supergravity side.

We can write down a set of supergravity generators of SU(2)B × SU(2)C in the spinor

representation as follows:

B1 = − i
4

(
Γ78 − Γ69

)
, B2 = − i

4

(
Γ86 − Γ79

)
, B3 = − i

4

(
Γ67 − Γ89

)
,

C1 = − i
4

(
Γ78 + Γ69

)
, C2 = − i

4

(
Γ86 + Γ79

)
, C3 = − i

4

(
Γ67 + Γ89

)
,

(D.1.10a)

which again satisfy the commutation relations

[Bi, Bj ] = iεijkBk, [Ci, Cj ] = iεijkCk, [Bi, Cj ] = 0 , (D.1.11)

and have Casimir operators

B2 =
3

8

(
1 + Γ6789

)
, C2 =

3

8

(
1− Γ6789

)
. (D.1.12)

Since our spinors satisfy the condition (5.4.22), we see that ζ± both transform in the

(2,1) representation under SU(2)B × SU(2)C generated by Bi, Ci. This is accordance

with the fact that GαA± 1
2

transform in the same representation under SU(2)B ×SU(2)C .

However, unlike the case of SU(2)L × SU(2)R, there is no unique way to align the

SU(2)B × SU(2)C groups between supergravity and CFT, because our ansatz (4.2.7)

does not distinguish the four directions inside the internal T 4. As a result, in the Killing
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spinors (5.4.16), no Γ matrix with legs in the T 4 appear, and all Γk with k = 6, 7, 8, 9

are on an equal footing. Therefore, we can choose the “J3” direction of SU(2)B as we

like. Specifically, we define the projectors PAT , A = 1, 2 by (5.4.24) and identify its A

index with the A index of GαA± 1
2

. This leads to the final identification

ζαA± = PαSPAT ζ± ←→ GαA± 1
2

(D.1.13)

which is (5.4.25) in the main text.

D.2 Gravitino Variations Generated by ζαA−

One finds that the variations of the components of the gravitino field generated by the

spinor (5.5.1) are given by

δψ1
u,b = − bak sink−1 θ

4
√

2Ry (r2 + a2)
k+1

2

e−iβ1

[
k
(
iR− +R+Γ̂vr

)(
cos θΓrθ − iΓrφ̃ + sin θ

)
− i
√
r2 + a2

a

(
R+

(
R4
− + k

)
− iR−Γ̂vr

(
R4

+ + k
))

sin θ

]
Y+ζ

αA
− , (D.2.1a)

δψ1
v,b = − bak sink−1 θ

4
√

2Ry (r2 + a2)
k+1

2

e−iβ1

[
k
(
iR3

+ +R3
−Γ̂vr

)(
cos θΓrθ − iΓrφ̃ + sin θ

)
− (ik + i)

√
r2 + a2

a

(
R+ − iR−Γ̂vr

)
sin θ

]
Y+ζ

αA
− , (D.2.1b)

δψ1
r,b = − bak sink−1 θ

4 (r2 + a2)
k+2

2

e−iβ1

[
k
(
−R− − iR+Γ̂vr

)(
cos θΓrθ − iΓrφ̃ + sin θ

)
+

√
r2 + a2

a

(
R+

(
1− kr√

1 + r2

)
+ iR−

(
1 +

kr√
1 + r2

)
Γ̂vr
)

sin θ

]
Y+ζ

αA
− ,

(D.2.1c)

δψ1
θ,b = − bak sink−1 θ

4 (r2 + a2)
k+1

2

e−iβ1

[
k
(
R− − iR+Γ̂vr

)
Γrθ

(
cos θΓrθ − iΓrφ̃ + sin θ

)
+

√
r2 + a2

a

(
R+ − iR−Γ̂vr

)(
k cos θ + sin θΓrθ

)]
Y+ζ

αA
− , (D.2.1d)

δψ1
φ̃,b

= − bak sink θ

4 (r2 + a2)
k+1

2

e−iβ1

[
k
(
R− − iR+Γ̂vr

)
Γrφ̃

(
cos θΓrθ − iΓrφ̃ + sin θ

)
+

√
r2 + a2

a

(
R+ − iR−Γ̂vr

)(
sin θΓrφ̃ − ik

)]
Y+ζ

αA
− , (D.2.1e)

δψ1
ψ̃,b

= −ba
k sink−1 θ cos θ

4 (r2 + a2)
k+1

2

e−iβ1

[
k
(
R− − iR+ Γ̂vr

)
Γrψ̃

(
cos θΓrθ − iΓrφ̃ + sin θ

)
+

√
r2 + a2

a

(
R+ − iR−Γ̂vr

)
sin θΓrψ̃

]
Y+ζ

αA
− , (D.2.1f)
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δψ1
k,b = 0 , k = 6, 7, 8, 9, (D.2.1g)

where

β1 ≡ k
( u+ v√

2Ry
+ φ̃

)
+

v√
2Ry

= v̂k,0, 1
2
. (D.2.2)

Note that, for the variations generated by spinor (5.5.1), we have δψ1
M,b = δψ2

M,b

for all M . We find that the gravitino variations (D.2.1) generically have two parts.

The first one is analogous to the dilatino variation, as it contains the combination

(cos θΓrθ − iΓrφ̃ + sin θ), which when acting on the combination (Y+ζ
αA
− ) projects out

the ζ−A− components of the spinor. This part is again expected from the fact that the

perturbed geometry is dual to an anti-chiral primary state. The second part of the

variations (given in the second lines of the respective variations) does not distinguish

between the ζ+A
− and ζ−A− components of the spinors. We believe that these extra factors

are related to the residual gauge freedom that we have in our system and one should

be able to consistently ignore these extra factors. This claim is further strengthened by

the fact that once we use these fermionic variations to calculate the double variations of

bosonic fields, these additional terms consistently cancel out and thus do not contribute

to any observable fields.

D.3 Fermionic Variations Generated by ζαA+

The claim that the extra terms found in (D.2.1) can be set to zero by gauge transfor-

mation is further supported by calculating the variations of fermionic fields generated

by the Killing spinor components ζαA+ . Since these are dual to the modes GαA
+ 1

2

, the

variations should vanish. Furthermore, one should not obtain any terms that would

distinguish between the ζ+A
+ and ζ−A+ components as now variations generated by both

should vanish. If we set ζαA− = 0 and make ζαA+ arbitrary, the spinor that generates the

variation is given by

ε1 = −ε2 =
1

2

(
iR−Γ̂vr +R+

)
Y+ζ

αA
+ e

iv√
2Ry . (D.3.1)

Using this spinor as the generator of the solutions, one obtains that the explicit varia-

tions of the fermionic fields are given by

δλ1
b = 0, (D.3.2a)

δψ1
u,b = − bak−1 sink θ

4
√

2Ry (a2 + r2)k/2
e−iβ2

[(
iR4

+ − ik
)
iR−Γ̂vr +

(
iR4
− − ik

)
R+

]
Y+ζ

αA
+

(D.3.2b)
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δψ1
v,b = − bak−1 sink θ

4
√

2Ry (a2 + r2)k/2
e−iβ2(i− ik)

(
iR−Γ̂vr +R+

)
Y+ζ

αA
+ (D.3.2c)

δψ1
r,b = − bak−1 sink θ

4 (a2 + r2)
k+1

2

e−iβ2

[(
−1− kr√

a2 + r2

)
iR−Γ̂vr

+

(
1− kr√

a2 + r2

)
R+

]
Y+ζ

αA
+ (D.3.2d)

δψ1
θ,b = −ba

k−1 sink−1 θ

4 (a2 + r2)k/2
e−iβ2

(
R+ + iR−Γ̂vr

)(
k cos θ + sin θΓrθ

)
Y+ζ

αA
+ (D.3.2e)

δψ1
φ̃,b

= − bak−1 sink θ

4 (a2 + r2)k/2
e−iβ2

(
R+ + iR−Γ̂vr

)(
−ik + sin θΓrφ̃

)
Y+ζ

αA
+ (D.3.2f)

δψ1
ψ̃,b

= −ba
k−1 sink θ cos θ

4 (a2 + r2)k/2
e−iβ2

(
R+ + iR−Γ̂vr

)
Γrψ Y+ζ

αA
+ , (D.3.2g)

δψ1
k,b = 0 , k = 6, 7, 8, 9 , (D.3.2h)

where

β2 ≡ k
( u+ v√

2Ry
+ φ̃

)
− v√

2Ry
= v̂k,0,− 1

2
, (D.3.3)

and δλ1
b = δλ2

b , δψ
1
M,b = δψ2

M,b. We see that the variations of the dilatino fields vanish,

as expected. On the other hand, the variations of the components of the gravitino fields

do not vanish. However, note that these variations only contain the terms which we

deemed as a consequence of the gauge freedom in our system and lacks the term which

would distinguish between the two SU(2)L components. Since these variations should

be trivial, we get another confirmation that these terms appearing in the gravitino

variations are not physical.

D.4 Variations of the B-Field

The non-vanishing term in the double B-field variation is given by

δ′δBµν = 2ε̄Γ[µσ
3δ′ψ̃ν] = 2 (ε1)T Γt

(
Γµδψ̃

1
ν − Γνδ

′ψ̃1
µ

)
, (D.4.1)

where in the last term we again used the fact that the only non-zero spinor components

used to generate the variations are ζ+A
− . The variations of the individual components

of the B-field in the NS-NS sector are then given by

Buv = −2bkak−
5
2R
− 3

2
y

r sink−1 θ cos θ

(r2 + a2)
k−1

2

e−iβ3A (D.4.2a)

Bur = Bvr = −
√

2ibkak−
1
2R
− 1

2
y

sink−1 θ cos θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2b)
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B
uψ̃

= −B
vψ̃

=
√

2bkak−
1
2R
− 1

2
y

sink−1 θ cos θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2c)

B
rψ̃

= −2ibkak−
1
2R

1
2
y

sink−1 θ cos θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2d)

B
φ̃ψ̃

= 2bkak−
1
2R

1
2
y
r sink+1 θ cos θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2e)

Buθ = −Bvθ =
√

2ibkR
− 1

2
y ak−

1
2

r sink θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2f)

B
θφ̃

= −2ibkR
1
2
y a

k− 1
2

r sink θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2g)

Brθ = 2bkak−
1
2R

1
2
y

sink θ

(r2 + a2)
k+1

2

e−iβ3A (D.4.2h)

B
uφ̃

= B
vφ̃

= B
θψ̃

= B
rφ̃

= 0 (D.4.2i)

where

β3 ≡ k
( u+ v√

2Ry
+ φ̃

)
+
√

2
v

Ry
− (φ̃+ ψ̃), (D.4.3)

A =
[(
ζ+1
−
)T
iΓrθζ ′+2

−

]
. (D.4.4)
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