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Background. Few biomarkers are available for early identification of pulmonary arterial hypertension (PAH) and interstitial lung
disease (ILD) in systemic sclerosis (SS) and scleroderma spectrum disorders (SSD). Aims. To evaluate Gas6, sAxl, and sMer as
biomarkers for cardiopulmonary complications of SS and SSD. Methods. In a cross-sectional observational study, we recruited
125 consecutive patients, affected by SS and SSD and referred to a tertiary-level pulmonary hypertension outpatient clinic. All
patients underwent a comprehensive evaluation for identification of PAH and ILD. Gas6, sMer, and sAxl concentrations were
measured with ELISA protocols, and concentrations were compared according to PAH or ILD. Results. Nineteen subjects
had pulmonary hypertension (PH) (14 PAH), and 39 had ILD (6 severe). Plasma sMer was increased in PAH (18.6 ng/ml
IQR [11.7-20.3]) with respect to the absence (12.4 [8.0-15.8]) or other form of pulmonary hypertension (9.6 [7.4-12.5]; K–W
variance p < 0:04). Conversely, Gas6 and sAxl levels were slightly increased in mild ILD (25.8 ng/ml [19.5-32.1] and 24.6
[20.1-32.5]) and reduced in severe ILD (16.6 [15.0-22.1] and 15.5 [14.9-22.4]) in comparison to no evidence of ILD (23.4
[18.8-28.1] and 21.6 [18.1-28.4]; K–W, p ≤ 0:05). Plasma sMer ≥ 19 ng/ml has 50% sensitivity and 92% specificity in PAH
identification (area under the ROC curve (AUC) 0.697, p < 0:03). Values of Gas6 ≤ 24:5 ng/ml and of sAxl ≤ 15:5 ng/ml
have 100% and 67% sensitivity and 47% and 86% specificity, respectively, in identifying severe ILD (Gas6 AUC 0.787, p < 0:001;
sAxl AUC 0.705, p < 0:05). Conclusions. The assay of Gas6 sAxl and sMer may be useful to help in the identification of PAH
and ILD in SS and SSD patients. The Gas6/TAM system seems to be relevant in cardiopulmonary complications of SS and SSD
and merits further investigations.
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1. Introduction

Pulmonary arterial hypertension (PAH) and interstitial lung
disease (ILD) are severe and potentially life-threatening com-
plications of systemic sclerosis (SS) and scleroderma spec-
trum disorders (SSD), as mixed connective tissue diseases
(MCTD) and SS overlap with other connective tissue diseases
(CTDs) [1].

PAH is defined by the presence of a mean pulmonary
arterial pressure (mPAP) equal to or greater than 25mmHg
and a pulmonary capillary wedge pressure (PCWP) equal
to or less than 15mmHg, assessed during invasive right
heart catheterization (RHC) at rest [2]. PAH associated
with CTD (CTD-PAH) has been reported from 20% to
30% in SS and SSD [3], and its prognosis is even poorer
than that of the idiopathic form of PAH (IPAH) [4].
Indeed, an early diagnosis and a well-timed treatment are
able to improve the prognosis in this setting [5]. Currently,
the two-step algorithm (DETECT) is the most widely used
screening tool for SS patients [6], but the search for novel
biomarkers with diagnostic and prognostic significance is
still warranted.

Connective tissue disease associated with interstitial
lung diseases (CTD-ILD) are a heterogeneous group of con-
ditions characterized by chronic inflammation and/or
parenchymal fibrosis within the contest of CTD [7, 8].
The complex diagnostic approach and the faintness of diag-
nostic criteria make the estimation of CTD-ILD prevalence
very difficult, ranging from 15% to 90% according to differ-
ent series [9–11]. The presence of a severe ILD is one of the
most prominent negative prognostic factor in the clinical
course of a CTD, being the most frequent cause of death
in SS [12]. As for PAH, the early detection of lung involve-
ment and the stratification of the risk of fibrosis progression
are quintessential for modifying prognosis with early,
appropriate treatment.

Growth arrest specific 6 (Gas6) is a vitamin K-dependent
protein, identified as ligand for a tyrosine-kinase receptors
family, collectively named TAM (acronym of Tyro3, Axl,
and Mer) [13]. TAM receptors are variably expressed in
many tissues and can be found as a soluble form in the blood-
stream (sTyro3, sAxl, and sMer, respectively) [14]. These
soluble forms are the result of the proteolytic cleavage by
two metalloproteinases, ADAMTS 17 and ADMATS 10,
and probably act as decoy receptors for the ligands [13, 15].
The Gas6/TAM system is highly pleiotropic and involved in
several functions: among them, it seems to have a relevant
role in the regulation of inflammatory response [16, 17],
tissue repair and fibrosis development [14], and vascular
integrity [18, 19]. Consistently, an impairment of the Gas6/-
TAM system has been associated with the development of
autoimmune diseases, as demonstrated by the murine model
of triple knock-out for the TAM receptors [20].

On these bases, Gas6 and its soluble receptors have
been proposed as biomarkers in different human condi-
tions [21, 22], specifically in autoimmune diseases [23–26].
In the present study, we aim to evaluate Gas6 and sAxl and
sMer as potential biomarkers for cardiopulmonary complica-
tions of SS and SSD.

2. Materials and Methods

2.1. Patients. We performed a cross-sectional observational
study. From October 1, 2016, to April 20, 2018, we recruited
one hundred and twenty-five consecutive patients, affected
by SS and SSD and referred to the Pulmonary Hypertension
Outpatient Clinic of the Cardiology Department, A.O.U.
“Maggiore della Carità”, Novara, Italy.

The study protocol was approved by the institutional
ethical committee and conducted in strict accordance with
the principles of the Declaration of Helsinki. Written
informed consent was obtained from all individual partici-
pants included in the study.

We included all the consecutive patients willing to partic-
ipate, with one of the following diagnoses:

(i) SS according to 2013 ACR/Eular classification
criteria [27], including overlap with other rheumatic
diseases

(ii) MCTD according to Kasukawa criteria [28]

We applied the following exclusion criteria:

(a) Age < 18 years
(b) Impossibility to undergo the required cardiopulmo-

nary assessment

The design of the present cross-sectional observational
study and part of the methods were already been described
elsewhere [29].

2.2. Procedures. All patients underwent a comprehensive
medical history, including the assessment of cardiovascular
risk factors, comorbidities, rheumatologic disease, and drug
history. A physical examination was performed by an experi-
enced clinician; anthropometric data were recorded.

The patients underwent an appropriate biochemistry
panel. The serological profile of autoantibodies was recorded.

The assessment of each patient consisted of

(i) 12-lead electrocardiogram with 6-limb and 6 precor-
dial leads with paper speed set at the standard rate of
25mm/s

(ii) Posteroanterior and lateral chest X rays

(iii) Pulmonary function tests (PFTs): the test was per-
formed using a standardized equipment and tech-
nique with a spirometer. The device was connected
to a computer employing the software “Medisoft
Expair 1.28.20”. The following standardized mea-
surements were evaluated: forced vital capacity
(FVC), forced expiratory volume in one second
(FEV1), and FEV1/FVC% (also known as the Tiffe-
neau index). We also evaluated the diffusing capacity
of the lung for carbon monoxide (DLCO), measured
with the single-breath Jones-Meade protocol. Once
the mouthpiece and the nose clip were in place,
the subject made a maximal expiration and then,
with a maximal inspiration inhaled a gas blend
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containing carbon monoxide (0.3%) and other inert
gases (0.3% CH4). Then, the patient was asked to
hold his/her breath for about 10 seconds and exhale
afterward. During the expiration, alveolar air was
analyzed: the ratio between carbon monoxide in
inspired gas and carbon monoxide in exhalated air
determined the diffusion of carbon monoxide. Pre-
dicted DLCO was corrected for hemoglobin, and
alveolar volume was assessed

(iv) Transthoracic echocardiography (TTE) was per-
formed using the Vivid 7 or E9 cardiovascular ultra-
sound machine by GE Medical Systems (Horten,
Norway) with a 1.7/3.4MHz tissue harmonic trans-
ducer. All data were obtained in standardized
patient positions, according to the standards of the
American Society of Echocardiography. The test
was performed by an expert, pulmonary hyperten-
sion echocardiographer. The following parameters
were generated [30]: systolic pulmonary pressure
(sPAP), right atrium area (RAA), right ventricle
diameter (RVD), and ejection fraction (EF). Right
ventricle systolic function was evaluated by estimat-
ing the tricuspid annular plane systolic excursion
(TAPSE).

According to the application of international guidelines
[2], those patients with a suspected PAH underwent right
heart catherization (RHC, n = 15). PAH was defined by mean
pulmonary artery pressure ðmPAPÞ ≥ 25mmHg, pulmonary
capillary wedge pressure ≤ 15mmHg, and pulmonary vascu-
lar resistance > 3 wood units. Whenever contraindications
to RHC occurred, pulmonary hypertension was diagnosed
based on echocardiography-estimated sPAP ≥ 35mmHg and
additional high probability criteria, according to 2015
ESC/ESR guidelines. [2].

Those patients with a clinical and instrumental suspicion
of CTD-ILD underwent a high-resolution computed tomog-
raphy (HRCT) (N = 58) assessed by an expert, ILD radiolo-
gist. ILD was defined by the presence of ground glass
opacities (GGO) and/or reticular pattern. Moreover, the
extension of pulmonary fibrosis was measured with the
Goh score [31] and a modified Kazerooni score [32]. When
applying the Goh score, five thin-section CT slices were
considered (level of origin of great vessels, tracheal carina,
superior pulmonary veins, immediately above the right
hemidiaphragm, and one halfway between the third and the
fifth slices) and for each one, a quantitative assessment of
fibrosis was performed. A mean value from the five sections
was obtained. Following these assessments, patients were
divided into two categories: limited ILD (fibrosis less than
10% or ranging from 10% to 30% with an FVC greater than
70%) and severe ILD (fibrosis greater than 30% or ranging
from 10% to 30% with an FVC less than 70%) [31].

The modified Kazerooni score semiquantitatively evalu-
ated the severity of fibrosis in each out of five slices, instead
of three as described in the original paper, as follows: (0) no
fibrosis, (1) fibrosis ≤ 5%, (2) fibrosis < 25%, (3) fibrosis from
25% to 49%, (4) fibrosis from 50% to 75%, and (5) fibrosis
> 75% [32].

Gas6, sMer, and sAxl plasmatic concentrations were
measured. Blood sample was drawn from each patient and
collected in a 4ml Vacutainer lavender K2-EDTA tube.
Within an hour, the blood sample was centrifuged and then
stored at -80°C.

Plasma sAxl concentration was measured using the
DuoSet® ELISAR&DSystemsDY154 commercial kit, accord-
ing to the manufacturer’s protocol. The aliquots were diluted
1 : 75 in PBS and bovine serum albumin 1% (reagent diluent).
The dilution factor was chosen according to the previous
experience of our laboratory.

Plasma sMer concentration was measured using the
DuoSet® ELISA R&D Systems DY6488 commercial kit,
according to the manufacturer’s protocol. The samples were
diluted 1 : 5 in reagent diluent, according to previous analysis
in our laboratory.

Plasma Gas6 concentration was measured according to
the protocol described by Alciato et al. for plasma [33] and
other body fluids [34]. A 96-well plate (NUNC Products,
Thermo Scientific Inc. MA, USA) was coated with the pri-
mary antibody, Goat-IgG anti-human Gas6 (R&D Systems,
Minneapolis, USA), and left incubated overnight at room
temperature. The antigen was detected using a Goat-IgG
biotinylated anti-human Gas6 antibody (R&D Systems,
Minneapolis, USA), streptavidin conjugated with horserad-
ish peroxidase (Sigma, St. Louis, MO, USA), and the chromo-
gen tetramethylbenzidine (Sigma, St. Louis, MO, USA). The
reaction was blocked with sulfuric acid 2N, and absorbance
detected at 450 with a reference wavelength set at 570 nm.
Optical density was fitted versus nominal concentration by
applying a four-parameter logistic regression to the calibra-
tion curve prepared in BSA (bovine serum albumin, further
purified fraction V, ≥98%, Sigma, St. Louis, MO, USA).

2.3. Statistical Analysis. Anthropometric, clinical, and bio-
chemical data were recorded in a database and analyzed by
the statistical software package MedCalc v.18.10.2 (MedCalc
Software, Broekstraat 52, 9030, Mariakerke, Belgium). The
normality of Gas6, sMer, and sAxl distribution was assessed
by the Shapiro-Wilk test; following the nonnormal distribu-
tion observed, we performed a nonparametrical analysis.

The measures of centrality and dispersion of data chosen
were medians and interquartile range (IQR). Medians were
compared between groups by the Mann–Whitney and Krus-
kal–Wallis (K–W) and post hoc tests. Correlations between
continuous variables were performed by Spearman’s rank
test. To test the diagnostic performance of the studied bio-
markers, receiver operating characteristics curves were built,
with calculation of the respective areas under the curve
(AUC). The level of significance chosen for all statistical anal-
ysis was 0.05 (two-tailed).

3. Results

Table 1 reports general features of the 125 patients enrolled;
among patients affected by SS or SS overlap, 78% showed a
limited cutaneous involvement. After evaluation of cardio-
pulmonary workup, 19 (15%) subjects received a diagnosis
of PH, of whom 14 CTD-PAH, 2 PH due to the left heart,
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and 3 due to lung disease. Additionally, 39 (31%) patients
were affected by ILD, which was characterized by a severe
functional impairment in 6 (5%) of them.

Gas6, sAxl, and sMer median plasma levels were not
different according to the extent of cutaneous involvement
(limited vs diffuse), sex, disease duration (<5 vs ≥5 years),
smoking status, liver disease, and immunosuppressive and
vasodilator treatments (p = NS).

We compared the median values of Gas6, sAxl, and sMer
according to the presence of pulmonary hypertension. Data
are reported in Table 2. As evident, sMer plasma levels are
increased in CTD-PAH, while Gas6 and sAxl were similar
among groups. No significant correlation was observed
between sMer and PAP either assessed by echocardiography
or by RHC (p = NS).

With respect to biomarker variations according to the
presence of CTD-ILD, we observed a trend towards a slight
increase of Gas6 and sAxl in mild ILD. Conversely, we
observed a more evident reduction for both in severe ILD.
sMer concentrations were similar among groups (also see
Table 2). Notably, Gas6 and sAxl were related to the extent
of ILD at CT scan measured with the modified Kazerooni
score; in fact, a significant negative correlation with the
extent of fibrosis is evident both for Gas6 (r: -0.46, p < 0:03)
and sAxl (r: -0.45, p < 0:03).

We finally evaluated the diagnostic accuracy of sMer in
diagnosing PAH; a sMer threshold > 19 ng/ml has a 50% sen-
sitivity and a 92% specificity in diagnosing PAH (Figure 1(a))
with a positive predictive value (PPV) of 44% and a negative
predictive value (NPV) of 94%. Moreover, we evaluated Gas6
and sAxl diagnostic accuracy in the identification of ILD; a
Gas6 threshold ≤ 24:5 ng/ml has a 100% sensitivity, 47%

specificity, 46% PPV, and 100% NPV; sAxl < 15:5 ng/ml is
67% sensitive and 86% specific in identifying severe ILD in
our population (Figures 1(b) and 1(c)) with 67% and 85%
PPV and NPV, respectively.

4. Discussion

Patients affected by SS and/or SSD have a reduced life expec-
tancy than age- and sex-related population; this is mainly
determined by two severe cardiopulmonary complications,
CTD-PAH and CTD-ILD [12]. Since a timely diagnosis is a
sdeterminant to implement appropriate treatments to obtain
better outcomes [5], a combination of biomarkers is war-
ranted to increase the ability to screen patients at risk in addi-
tion to current methods.

We designed the present study to investigate the role of
the measurement of Gas6 protein and of the soluble forms
of its receptors Axl and Mer in plasma of patients with SS
and SSD to identify either CTD-PAH or CTD-ILD; our data
support the assay of sMer as biomarker of PAH in CTD
patients. Conversely, Gas6 and sAxl determination might
contribute to the identification of CTD-ILD. These results
need to be discussed looking at the current literature
evidences.

In our population, sMER concentration in plasma was
increased in CTD-PAH, while neither that of Gas6 nor of
sAxl was different according to this complication. Endo-
thelial dysfunction is known to be a key impairment of
CTD-PAH sustained by a mismatch of mediators acting
as vasodilators in favour of vasoconstrictors; this process
evolves with the activation of vascular remodelling towards
an increase of vascular tone mediated by the endothelium
and vascular smooth muscle cell (VSMC) activation [35].
Gas6/TAM interplay is known to be involved in vessel wall
homeostasis: Gas6 was isolated from aortic endothelial cells,
and it has a trophic effect on vessel walls; additionally, the
Gas6/TAM system is activated in case of vessel damage or
in human atherosclerotic plaque formation [14, 36]. Possibly,
sMER increase in these patients could be an expression of
endothelial stress and dysfunction, typical of PAH. One addi-
tional possible explanation comes from the other mainstay of
the pathogenesis of CTD-PAH, the presence of persistent
inflammation of pulmonary vessel walls [35]. TAM recep-
tors, indeed, are involved in regulation of innate immunity,
being upregulated in activated antigen-presenting cells
(APCs) through type I interferon (IFN) signalling that deter-
mines the activation of suppressor of cytokine signalling pro-
teins (SOCS1 and SOCS3) which, in turn, dampens the
inflammatory response [37, 38]. Additionally, Gas6, through
TAM receptors, limits proinflammatory cytokine production
of APCs, through the inhibition of toll-like receptor (TLR)
downstream signal [17]. In particular, Mer seems to be more
relevant than Axl in apoptotic bodies’ recognition favouring
phagocytosis/efferocytosis and in the reduction of proin-
flammatory cytokine production in vitro and in vivo models
[39, 40]. Therefore, the elevation of sMer in these patients
may be the combination of a dysfunction of the endothelium
and VSMCs and of an impairment of mechanisms that
dampen inflammation of the pulmonary artery vessel wall.

Table 1: Characteristics and main comorbidities of the study
population. The continuous variables are expressed as median
(interquartile range), while the categorical variables as number
(and frequency %).

Age, years 66 [56-75]

Gender, F/M 113/12

Disease duration, years 8 [3-13]

Smoking status, no/past smoker/active
smoker

87(70)/20(16)/18(14)

Arterial hypertension 66 (57)

COPD 14 (11)

Cardiac disease∗ 21 (17)

Liver disease/liver cirrhosis 18 (14)/0(0)

SS/MCTD/SS overlap 94(75)/13(10)/18(15)

Digital ulcer (past/active) 64(51)/13(10)

Anti-centromere/anti-Scl70/anti-U1RNP 67(54)/30(24)/28(22)

Arterial vasodilators: ERA/PDE5-I/iloprost 18(14)/7(6)/60(48)

PDN/HCQ/MTX 44(35)/66(53)/12(9)

Abbreviations: F: female; M: male; COPD: chronic obstructive pulmonary
disease; SS: systemic sclerosis; MCTD: mixed connective tissue disease; SSD:
scleroderma spectrum disorder; PAH: pulmonary arterial hypertension;
ERA: endothelin receptor antagonist; PDE5-I: phosphodiesterase 5 inhibitor;
PDN: prednisone; HCQ: hydroxychloroquine; MTX: methotrexate. ∗Chronic
heart failure and/or coronary artery disease.
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Since soluble TAM receptors seem to act as decoy receptors
[15, 41], an increment of sMer can be considered an indirect
evidence of an impairment of Mer receptorial function. In
any case, this pathophysiological discussion is merely specu-
lative and merits an ad hoc investigation.

In the population studied, both Gas6 and sAxl plasma
values were significantly reduced in patients with severe
ILD; additionally, a mild increment is observed in milder
forms; in contrast to patients with CTD-PAH, sMer is not
changed. There are several evidences of the role of the
Gas6/Axl system in the modulation of fibrotic evolution of
tissues affected by chronic inflammation; in particular, Gas6
is relevant in the modulation of inflammation and fibrosis
of the liver and it marks the evolution to cirrhosis [42].
Gas6-/- mice shows an increased damage of the liver and an
impairment in healing after carbon tetrachloride administra-
tion; rGas6 administration limits this damage but in turn
favours fibrotic repair [43–45]. Consistently, Gas6 enhances
survival of hepatic stellate cells (HSCs) and of HSCs activated
into myofibroblastic cells (HSCs/MFBs) which are involved
in the production of cytokines and matrix protein during

liver injury [46]. The relevance of the Gas6/Axl axis in liver
fibrosis has also been described in humans. In fact, plasma
Gas6 concentrations are increased in hepatic cirrhosis and
correlate with disease evolution [47] and with liver elastogra-
phy measures, helping to identify severe complications as
oesophageal varices [48, 49]. Accordingly, the slight increase
of plasma Gas6 and sAxl in mild CTD-ILD can be the expres-
sion of evolution of chronic inflammation into interstitial
fibrosis in the lung, either as a marker of the fibrosis progres-
sion or as the indicator of an impairment of the Gas6/Axl
system in the control of inflammation; this interpretation is
in line with recent reports where Gas6 was observed to
increase peribronchial fibrosis in allergic airway disease [50,
51]. Additionally, Gas6 and Axl expressions were observed
to increase in lung tissues and fibroblasts obtained from
patients affected by idiopathic pulmonary fibrosis, a severe
chronic fibrotic disease of the lung which shares several clin-
ical and pathophysiological features with CTD-ILD [52]. Our
finding of a reduction of Gas6 and sAxl in patients with
severe ILD is only in apparent contrast with this explanation.
In fact, on one hand, it may derive from a reduction of the

Table 2: Comparison of Gas6, sAxl and sMer according to cardiopulmonary involvement.

ILD K–W Post hoc

No (N = 86) Mild (N = 33) Severe (N = 6)

Gas6 (ng/ml) 23.4 [18.8-28.1] 25.8 [19.5-32.1] 16.6 [15.0-22.1] 6.12, p < 0:05 No vs mild p < 0:05
Mild vs severe p < 0:04

sAxl (ng/ml) 21.6 [18.1-28.4] 24.6 [20.1-32.5] 15.5 [14.9-22.4] 5.73, p = 0:05 n.s.

sMer (ng/ml) 12.9 [8.5-16.0] 12.3 [8.1-16.6] 7.4 [5.4-17.1] n.s. n.s.

PH K–W Post hoc

No (N = 106) CTD-PAH (N = 14) Other PH (N = 5)
Gas6 (ng/ml) 23.3 [18.5-28.1] 24.9 [18.8-33.9] 23.5 [23.3-31.9] n.s. n.s.

sAxl (ng/ml) 22.1 [18.2-30.1] 24.8 [20.0-28.2] 21.1 [15.6-23.3] n.s. n.s.

sMer (ng/ml) 12.4 [8.0-15.8] 18.6 [11.7-20.3] 9.6 [7.4-12.5] 6.44, p < 0:04 No vs CTD-PAH p < 0:05
Abbreviations: ILD: interstitial lung disease; CTD-PAH: connective tissue disease-related pulmonary arterial hypertension; PH: pulmonary hypertension; K–W,
Kruskal–Wallis analysis of variance.
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Figure 1: (a) ROC curve for sMer in diagnosing PAH. Area under the ROC curve (AUC) 0.697, p < 0:03. (b) ROC curve for Gas6 in
diagnosing severe ILD. AUC 0.787, p < 0:001. (c) ROC curve for sAxl in diagnosing severe ILD. AUC 0.705, p < 0:05.
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lung tissue due to severe fibrosis or to the fact that in
advanced ILD, the fibrotic evolution becomes independent
from the initial chronic inflammation trigger. Anyway, also
in this case, our pathophysiological discussion is merely spec-
ulative and merits further specific investigations.

4.1. Clinical Scenario. Moving to a more clinical point of
view, the early detection of CTD-PAH is still a clinical chal-
lenge being this complication burdened with a high morbid-
ity and mortality and an early diagnosis related to a better
prognosis [1, 5]. The current screening strategy for PAH in
these patients includes PFTs with DLCO, TTE and measure-
ment of NT-proBNP, and the referral for RHC if positive
results are obtained [53]. The recently proposed DETECT
algorithm, which has been validated to stratify patients at risk
to be referred to RHC, includes clinical, laboratory, and
instrumental variables [6]. The two biomarkers included in
the algorithm are NT-proBNP and urate are nonspecific for
CTD-PAH [6]; in this contest, the measurement of sMER,
which displayed a good diagnostic accuracy for PAH in SS
and SSD patients, could be an additional tool to improve
PAH detection algorithms.

Similarly, very few biomarkers have been proposed up till
now for ILD detection in patients with SS, mainly proteins
associated with damage and turnover of alveolar epithelial
cells as lung epithelium-derived surfactant protein (SP-D),
glycoprotein Krebs von den Lungen-6 (KL-6), CCL18, and
soluble OX40 [54]. Recently, in a large cohort study of
patients with SS, it was observed that SP-D was the most
accurate for diagnosis, while KL-6 was related to severity of
SSc-ILD; finally, CCL18 was the best prognostic factor for
ILD progression [55]. It should be pointed out that both
Gas6 and sAxl displayed a good accuracy in ILD identifica-
tion in our cohort (AUC of 0.787 and 0.705, respectively)
similar to that reported for KL-6 (0.689) [55]; if direct com-
parisons are inappropriate due to differences in study design,
we can propose the sAxl/Gas6 assay as an additional tool for
identification of ILD in patients affected by SS and SSD.

It is worth to be underlined that the Gas6/TAM system
seems to be relevant for both complications of SS and SSD
patients highlighting its possible pathogenetic role and utility
in the diagnostic process.

4.2. Limitations. Some limitations of our study may interfere
with the interpretations of the results: firstly, many patients
were already receiving a treatment either for PAH or for
CTD-ILD and this fact could have influenced the biomarker
values measured in plasma; in second instance, the present
study has a cross-sectional design that can limit interpreta-
tion of results in particular in terms of confounding factors,
and a longitudinal cohort is needed for confirmation; our
aim is to build a prospective cohort to evaluate Gas6/sAxl/-
sMer in comparison with other biomarkers at the develop-
ment of CTD and PAH and during follow-up to establish a
prognostic role. Additionally, a control group of healthy
subjects would have been desirable; however, since our aim
was not to evaluate the performance of such molecules in
diagnosing SS and SSD but if these molecules are candidate
biomarkers for cardiopulmonary complications, the impor-

tance of a control group may somewhat be lessened. In third
instance, the number of cases of CTD and PAH was limited
in number but in line to the expected prevalence. Finally, the
lack of histopathological evaluations of analytes in patholog-
ical tissues further limits pathophysiological interpretations.

5. Conclusion

In conclusion, we have demonstrated that the assay of Gas6
and its receptors sAxl and sMer is a useful tool to help to
establish if a patient affected by SS or SSD has developed
either PAH or ILD; sMer displayed a good diagnostic accu-
racy for PAH while Gas6 and sAxl for ILD. Our results have
also possible pathophysiological implications since the
Gas6/TAM receptors system seems to be relevant in both
PAH and ILD evolutions of SS and SSD patients and merits
further investigations.
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