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Abstract—This paper presents a new method for unsupervised
video summarization. The proposed architecture embeds an
Actor-Critic model into a Generative Adversarial Network and
formulates the selection of important video fragments (that will
be used to form the summary) as a sequence generation task. The
Actor and the Critic take part in a game that incrementally leads
to the selection of the video key-fragments, and their choices
at each step of the game result in a set of rewards from the
Discriminator. The designed training workflow allows the Actor
and Critic to discover a space of actions and automatically learn
a policy for key-fragment selection. Moreover, the introduced
criterion for choosing the best model after the training ends,
enables the automatic selection of proper values for parameters
of the training process that are not learned from the data (such
as the regularization factor σ). Experimental evaluation on two
benchmark datasets (SumMe and TVSum) demonstrates that the
proposed AC-SUM-GAN model performs consistently well and
gives SoA results in comparison to unsupervised methods, that
are also competitive with respect to supervised methods.

Index Terms—Video summarization, Unsupervised machine
learning, Actor-Critic model, Reinforcement learning, Generative
Adversarial Networks.

I. INTRODUCTION

NOWADAYS, we are witnessing a tremendous growth of
online-available video material, that is fueled mainly

by two factors: i) the constantly increasing engagement of
users with smart devices that carry powerful video recording
sensors and online content sharing functionalities, and ii) the
widespread use of video sharing platforms (e.g., YouTube,
Vimeo, DailyMotion) and social networks (e.g., Facebook,
Twitter, Instagram) as communication means of both am-
ateur and professional users (such as media organizations,
news agencies and advertising companies). This growth has
rapidly increased the need for technologies that facilitate users’
navigation within vast and constantly-increasing collections
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of videos, and the quick retrieval of the piece of video
content that they are looking for. Part of the response to this
demand is the development of techniques for automatic video
summarization. These methods generate a concise synopsis
that conveys the important parts of the full-length video; based
on this, viewers can have a quick overview of the whole story
without having to watch the entire content.

Several approaches were proposed over the last couple of
decades to automate video summarization, and the current
SoA is represented by deep-learning-based methods. A coarse
division of these methods can be made between supervised and
unsupervised approaches, and a more detailed classification is
shown in Fig. 1; this taxonomy will be the basis for presenting
the relevant literature in Section II. In this figure, we also
show the positioning of the proposed AC-SUM-GAN method,
in relation to past works.

Supervised methods rely on datasets with ground-truth
human-generated summaries (e.g., SumMe [1] and TVSum
[2]), based on which they try to discover the underlying
criterion for video summarization. However, the generation
of ground-truth data (usually in the form of video summaries
or annotations indicating the importance of video frames) is a
time-consuming and tedious task. Moreover, the subjectivity
of video summarization can lead to quite different summaries
for the same video, thus making it hard to train a method using
these summaries as ground truth.

Unsupervised approaches try to learn video summarization
without the use of ground-truth data. Some of them rely on
Generative Adversarial Networks (GANs) to find a way to
assess the representativeness of any created summary. Others
build on reinforcement learning and define rewards based on
the desired characteristics of the video summary, such as the
diversity of its visual content. Most of them utilize Long Short-
Term Memory (LSTM) units [3] to learn how to assess the im-
portance of each video frame. However, experimentation with
some of these methods (dppLSTM [4], DR-DSN [5], SUM-
GAN-sl [6], SUM-GAN-AAE [7]) resulted in findings that
are consistent with the claims in [8] about the low variation
of the computed frame-level importance scores by LSTMs.
As a consequence, the selections made by the trained LSTM
seem to have a limited impact in summarization; the latter is
mainly affected by factors such as the video fragmentation,
or the approach used for fragment selection given a target
summary length (such as the Knapsack algorithm).

To address the above limitations, we formulate the selection
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Fig. 1. A taxonomy of the current SoA methods for video summarization,
and the positioning of the proposed AC-SUM-GAN method.

of important video fragments - that will be subsequently used
to define the video key-fragments and create a summary of a
given length using the Knapsack algorithm - as a sequence
generation task and propose a method for video summa-
rization, where an Actor-Critic (AC) model is embedded in
a GAN. Different from other GAN-based approaches for
unsupervised video summarization (e.g., [6], [7], [8], [9], [10])
that use the Discriminator’s feedback to optimize the key-
frame/fragment selector, in our method the Discriminator’s
feedback is used to train the Actor-Critic model, which learns a
value function (Critic) and a policy for key-fragment selection
(Actor). The proposed approach is fully unsupervised; thus,
it overcomes the need for expensive and laborious human
annotations, and the use of ground-truth data. Moreover, it
eliminates the need for external supervision or hand-crafted
rewards, as it automatically learns a policy for key-fragment
selection, based on the feedback of a trainable Discriminator.
Finally, we introduce a criterion for model selection after
the end of training, which allows the proper configuration of
parameters of the training process in a fully unsupervised and
automatic manner. We should note that combining AC and
GAN was discussed only very recently for other tasks [11], and
our work is the first to propose this for video summarization.
We show experimentally that the use of the AC model, as
proposed, leads to competitive performance even compared to
SoA supervised video summarization methods.

Our contributions can be summarized as follows:

• We introduce the use of the AC model for reinforcement
learning to address the task of video summarization;

• We propose a novel architecture that embeds the AC
model into a GAN to learn a policy for key-fragment
selection and summarization in a fully unsupervised
manner;

TABLE I
LIST OF ACRONYMS

Acronym Explanation
AC model Actor-Critic model
CNN Convolutional Neural Network
CSNet Chunk and Stride Network
DCNN Deep Convolutional Neural Network
DTR unit Dilated Temporal Relational unit
FCSN Fully-Convolutional Sequence Network
GAN Generative Adversarial Network
KTS method Kernel Temporal Segmentation method
LSTF Long-Short-Term Features
LSTM unit Long Short-Term Memory unit
MLP Multi-Layer Perceptron
RNN Recurrent Neural Network
VAE Variational Auto-Encoder

• We examine the use of different criteria for unsupervised
model selection based on the training set and after the
end of the model’s training process.

To facilitate reading, in Table I we provide a list of acronyms
used in the sequel and their explanations.

II. RELATED WORK

A. Supervised Video Summarization

Early supervised video summarization approaches build
on the advances of CNN/DCNN architectures to extract the
semantics of the visual content and perform semantic-driven
summarization. To this direction, a couple of methods perform
summarization by learning importance [12] or transferring the
summary structure [13] from semantically-similar videos. [14]
uses video metadata for video categorization and to learn what
is important in each category, and performs category-driven
summarization by maximizing the relevance between the sum-
mary and the video’s category. [15], [16], [17] similarly learn
category-driven summarization in various ways, e.g., by using
action classifiers. [18], [19] define a summary by maximizing
its relevance with the video metadata, after projecting visual
and textual data in a common latent space. Finally, [20] applies
a visual-to-text mapping and a semantic-based key-fragment
selection using semantic attended networks. However, most
of the above methods examine only the visual cues and do
not consider the sequential structure of the video. Hence,
they might erroneously ignore video parts that are useful
for providing a complete summary of the story, due to their
resemblance with parts already included in the summary.

To tackle the aforementioned shortcoming, a few methods
cast video summarization as a structured prediction prob-
lem and model the temporal structure of the video and the
temporal dependency among video frames to estimate their
importance. The first approach to this direction [4], uses an
LSTM to model variable-range dependency among frames,
and estimates their importance using a multi-layer perceptron
(MLP). [21] proposes a two-layer LSTM architecture to extract
and encode data about the video structure (first layer), and
define the key-fragments of the video (second layer). [22]
extends the previous method to identify and exploit the shot-
level temporal structure of the video. [23] extends [4] by
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introducing an attention mechanism to model the evolution
of the users’ interest. In the same direction, a few meth-
ods utilize sequence-to-sequence (a.k.a. seq2seq) architectures
in combination with attention mechanisms. [24] presents a
seq2seq network made of a soft self-attention mechanism
and a two-layer fully connected network for regression of
the frames’ importance scores. [25] proposes an LSTM-based
Encoder-Decoder network with an intermediate attention layer.
[26] employs a Generator-Discriminator architecture (similar
to the one in [9]) as an internal mechanism to estimate the
representativeness of each shot and define a set of candidate
key-frames, and then it uses a multi-head attention model to
select the key-frames that form the summary. [27] tackles
video summarization as a semantic segmentation task and pro-
poses using a Fully-Convolutional Sequence Network (FCSN).
Finally, to tackle issues related to the limited capacity of
LSTMs, some techniques use additional memory ([28], [29]).
For example, [29] stacks multiple LSTM and memory layers
hierarchically to derive long-term temporal context.

Following a different approach to minimizing the dis-
tance between the machine-generated and the ground-truth
summaries, a couple of methods use GANs. [30] estimates
the frames’ dependency at different temporal windows using
LSTMs and Dilated Temporal Relational units, and learns
summarization by trying to fool a trainable Discriminator
when distinguishing the machine summary from the ground-
truth and a randomly-created one. [31] suggests an adversarial
learning approach for semi-supervised video summarization;
the Generator (an attention-based Pointer Network [32]) de-
fines the boundaries of each video fragment that is used to
form the summary; the Discriminator (a 3D-CNN classifier)
judges whether a fragment is from a ground-truth or a machine
summary. Instead of using the typical adversarial loss, the Dis-
criminator’s output is used as a reward to train the Generator
via reinforcement learning.

Aiming to better learn how to estimate the importance of
video frames/fragments, some techniques pay attention to both
the spatial and temporal structure of the video. [33] presents
an Encoder-Decoder architecture with convolutional LSTMs
that models the spatiotemporal relationship among parts of
the video. [34] uses 3D-CNNs and convolutional LSTMs to
model the spatiotemporal structure of the video and select
the video key-frames, while [35] extracts spatial and temporal
information by processing the raw frames and their optical
flow maps with CNNs. [36] combines CNNs and RNNs to
form spatiotemporal feature vectors, that are then used to
estimate the level of activity and importance of each frame.
[37] trains a neural network for spatiotemporal data extraction
and creates an inter-frames motion curve; the latter is used by a
self-attention mechanism that selects the key-frames/fragments
of the video. Finally, the temporal dynamics and the spatial
information of the visual content are jointly considered and
modeled by long-short-term features (LSTF) in [38], to address
the task of scene classification in videos; such features can be
used to determine the key-frames/fragments of the video.

Contrary to the above approaches, the weakly-supervised
video summarization algorithm of [39] uses the principles of
reinforcement learning to learn summarization based on sparse

human annotations and hand-crafted rewards. The former
indicate the importance of a small subset of frames, while
the later relate to the similarity between the machine- and the
human-selected fragments, as well as to specific characteristics
of the created summary (e.g., its representativeness).

B. Unsupervised Video Summarization

To avoid using ground-truth-annotated training data for
learning video summarization, most existing unsupervised ap-
proaches focus on the principle that a representative summary
ought to assist the viewer to infer the original video content.
Instead of defining hand-crafted thresholds with regards to
the desired similarity between the generated summary and
the original video, these techniques rely on GANs to re-
construct the original video using the defined summary, and
thus to automatically find the minimum distance between
the summary and the video in a learned latent space. The
work of Mahasseni et al. [9] is the first that combines an
LSTM-based key-frame selector with a Variational Auto-
Encoder (VAE) and a trainable Discriminator, and learns video
summarization through an adversarial learning process that
aims to minimize the distance between the original video
and the summary-based reconstructed version of it. [6] builds
on the network architecture of [9], and suggests a stepwise,
label-based approach for training the adversarial part of the
network, that leads to improved performance. [8] also relies
on a VAE-GAN architecture but extends it with a chunk and
stride network (CSNet) and a tailored attention mechanism
for assessing temporal dependencies at different granularities
for selecting the video key-frames. [10] aims to maximize the
mutual information between the summary and the video using
a trainable couple of Discriminators and a cycle-consistent
adversarial learning objective. [7] introduces a variation of
[6] that replaces the VAE with an Attention Auto-Encoder
for learning an attention-driven reconstruction of the original
video that subsequently improves the key-fragment selection
process. Similarly, [40] presents a self-attention-based condi-
tional GAN to simultaneously minimize the distance between
the generated and raw frame features, and focus on the most
important fragments of the video. Finally, [41] learns video
summarization from unpaired data based on an adversarial
process and a FCSN, and defines a mapping function of a
raw video to a human-like summary.

Aiming to deal with the unstable training [5] and the re-
stricted evaluation criteria of GAN-based methods (that mainly
focus on the summary’s ability to allow the reconstruction of
the original video), some unsupervised approaches perform
summarization by paying attention to specific properties of
the video summary. To this direction, they utilize the principles
of reinforcement learning in combination with hand-crafted re-
ward functions that quantify the existence of desired character-
istics in the generated summary. In this context, [5] formulates
video summarization as a sequential decision-making process
and trains a summarizer to produce diverse and representative
video summaries using a diversity-representativeness reward.
[42] utilizes Temporal Segment Networks (proposed in [43] for
action recognition in videos) to extract spatial and temporal
information about the video frames, and trains the summarizer
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through a reward function that assesses the preservation of
the video’s main spatio-temporal patterns in the produced
summary. [44] presents a mechanism for video reconstruction
and summarization. The former aims to estimate the extent
to which the summary allows the viewer to infer the original
video. The latter is learned based on the reconstructor’s feed-
back and the output of models assessing the representativeness
and diversity of the generated summary.

Building on a different basis, [45] focuses on the preserva-
tion in the summary of the underlying fine-grained semantic
and motion information of the video. For this, it represents
the whole video by creating super-segmented object motion
clips, extracts the key motions of appearing objects, and uses
an online motion auto-encoder model (Stacked Sparse LSTM
Auto-Encoder) to memorize past states of object motions by
continuously updating a tailored recurrent auto-encoder net-
work. The trained model is finally used to generate summaries
that present the representative objects in the video and the
attractive actions made by each of these objects.

C. Relation of the Proposed Method with the Bibliography
Based on the above review of the current SoA on video

summarization, we identify a number of connections between
the introduced summarization algorithm and earlier works on
this area. Similarly to [31], our method establishes a link
between GANs and reinforcement learning approaches and
uses the Discriminator’s feedback to train the summarizer.
However, our model is trained in a fully unsupervised manner
and, thus, eliminates the need for human annotations. Given
this observation, our technique is mostly associated with
unsupervised algorithms for video summarization that rely on
adversarial or reinforcement learning (see its positioning in
Fig. 1). More specifically, the proposed model is an extension
of the architecture from [9], which aims to overcome a
limitation of LSTM-based algorithms for unsupervised video
summarization. This limitation (discussed also in [8]) relates
to the estimation of frame-level importance scores that exhibit
very low variation, and thus have a restricted impact when
selecting the video fragments that will form the summary
(using e.g., the Knapsack algorithm). In contrast to these tech-
niques, the developed algorithm selects the important parts of
the video by introducing a trainable pair of models (Actor and
Critic). The latter is capable of exploring a space of actions and
of automatically learning a strategy that clearly indicates the
important fragments of the video by boosting their importance
score. In this way, the selected fragments have a key role when
defining the video key-fragments and forming the summary,
using the Knapsack algorithm. Moreover, contrary to existing
summarization approaches relying on reinforcement learning,
our method eliminates the need for hand-crafted rewards as
it automatically learns a value function (Critic) that drives
the optimal policy (Actor) for key-fragment selection, based
on the Discriminator’s feedback. Finally, the most important
differences compared to our previous method [7] are: i) the
use of an AC model for fragment selection instead of using
an LSTM (for reasons discussed above) and ii) the use of a
stochastic Variational Auto-Encoder for video reconstruction
instead of using a deterministic Attention Auto-Encoder.

Besides the above discussed relation with literature works
on video summarization, in terms of conceptualizing a link
between AC and GANs our method is related to the works
of [46], [11], [47], [46] is the first to explore a connection
between Actor-Critic and adversarial learning by interpreting
GANs as Actor-Critic methods in an environment where the
Actor cannot affect the reward. [11] investigates this connec-
tion more thoroughly and empirically in the setting of natural
language generation. [47] presents an approach that combines
GANs with AC to train an Encoder-Decoder architecture for
image compression of high-resolution images. Different to
these works, we utilize the idea of an AC-GAN architecture
to address the task of video summarization, and we embed
an AC model into a GAN to learn a policy for key-fragment
selection and summarization in a fully unsupervised manner.

Finally, with respect to previously published works in
IEEE TCSVT, our manuscript is most closely related to [17],
[19], [25], [37] that suggest different deep-learning-based
approaches for supervised video summarization. However,
differently from them, our manuscript proposes a method that:
i) learns summarization in a fully unsupervised manner, and
ii) is the first to introduce the integration of a trainable AC
model into a GAN to learn a policy for key-fragment selection
and summarization.

III. PROPOSED APPROACH

A. Formulation of the Video Summarization Task
The building blocks for defining a new formulation of the

video summarization task were the works of [11] and [9].
The former discussed a connection between GANs and Actor-
Critic models, as the core part of an algorithm that deals with
language modelling tasks. The latter, was the first to utilize
the generative adversarial learning for unsupervised video
summarization, by introducing a trainable Discriminator to
automatically define a similarity threshold between the original
video and a reconstructed version of it based on a sparse set
of selected key-frames (i.e., the video summary).

We transfer the idea of [11] to the visual domain and
formulate the selection of important parts of the video (that
will be used to define the video key-fragments and produce
the summary using the Knapsack algorithm) as a “visual
sentence” generation process. In most existing approaches
for real-valued data sequence generation (e.g., text, speech
or music synthesis [48]) the used vocabulary of tokens for
synthesizing the data sequence is a predefined collection of
e.g., letters, words, or music notes. In our conceptualized
“visual sentence” generation process this vocabulary is created
on-the-fly according to the visual content of the submitted
video for summarization. In particular, the tokens of the
created vocabulary when summarizing a video, correspond
to video fragments of roughly the same length, where each
fragment presents a different part of the story. Based on
the above, we formulate video summarization as a sequential
process that aims to progressively select a set of visual tokens
and produce a “visual sentence” that conveys the essential
parts and the flow of the story.

To materialize this formulation, we start from the unsu-
pervised summarization algorithm of [9] and propose a new
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architecture, called AC-SUM-GAN, that embeds an Actor-
Critic model into a Generative Adversarial Network to learn
the optimal policy for selecting the video key-fragments and
form the summary. The Actor has the role of the sequence
generator and the generation is performed incrementally based
on a set of discrete sampled actions over a group of video
fragments. These actions indicate the selection or not of a
fragment and affect the state of the action-state space that
is essential for training the AC model, while the number of
actions N is a hyper-parameter of the architecture, which
relates to the duration of the generated summary. The Critic
has the role of the evaluator of the Actor’s choices and returns
a value for scoring each choice according to its impact on
the action-state space. Finally, the Discriminator acts as the
AC environment and returns a reward that is used to train
the Actor-Critic model, which learns a value function (Critic)
and a policy for key-fragment selection (Actor). This reward
relates to the appropriateness of the Actor’s choices that define
the video summary, for eventually reconstructing a video that
is indistinguishable from the original one. In the sequel we
describe in more detail the overall network architecture and
the learning objectives and pipeline. With respect to the used
notation: capital bold letters denote matrices, small bold letters
denote vectors and non-bold letters (either capital or small)
denote scalar values.

B. Overall Network Architecture

Figure 2 shows the architecture of the proposed AC-SUM-
GAN model. The sub-figure on the left side provides details
about the building blocks of the architecture and shows
how these blocks are connected and interact. Blue coloured
rectangles indicate parts related to the Actor-Critic model.
The sub-figure on the right side presents the data flow in the
architecture. These illustrations show the input and output of
each different part of the architecture, thus explaining the role
of each part of the architecture and the way that the AC model
is used to incrementally select the key-fragments of the video
and form the summary. On both sides of Fig. 2, dashed lines
represent iterative processes during the training of the AC part.

The proposed AC-SUM-GAN architecture extends [9] by: i)
introducing an AC model for key-fragment selection, ii) adding
a new component (called State Generator) that integrates the
Frame Selector of [9] (bi-directional LSTM) and produces
a state of a fixed length which is essential for training the
AC model, and iii) using the Discriminator’s feedback to
automatically learn a value function (Critic) and a policy for
key-fragment selection (Actor).

All the different components of the proposed architecture
(see the left side of Fig. 2) are trained through the incremental
4-step process explained in Sec. III-C. After the end of the
training, the model’s components surrounded by the orange
box in Fig. 2 are used for summarizing a new (i.e., unseen
during training) video. At inference time, given a video of T
frames, the model gets as input the CNN-based deep feature
representations of the video frames (X = {xt}Tt=1) and
produces a sequence of frame-level scores (s′ = {s′t}Tt=1) that
signify each frame’s importance and thus, its suitability to be

included in the summary. This process starts by passing the
deep feature vectors through a linear compression layer (fully
connected layer for dimensionality reduction) that reduces
their size. Then, the State Generator gets the compressed
feature vectors and produces the initial state of the action-
state space for training the AC model. For this, it assigns
an importance score to every video frame according to its
temporal dependency with the other frames of the video, and
computes fragment-level importance scores via an average
pooling operation. Given this state, the trained Actor plays an
“N-picks” game and selects N non-overlapping, roughly equal
in length, fragments of the video. The Actor’s choices result to
an update of the initially computed weights, by increasing the
scores of the frame sequences corresponding to the selected
fragments and reducing the scores of the remaining ones,
according to predefined scaling factors. The updated sequence
of frame-level scores - with the selected fragments being
clearly indicated by greater scores - forms the output s′ of
the network’s part that is used at the inference stage. This
output s′ is finally used to define a video summary that
does not exceed the target summary duration (in most SoA
summarization works this is typically set to 15% of the original
video duration, a condition adopted also here to allow direct
comparisons). For this, importance scores are computed at the
level of video fragments defined using the KTS method [49],
and the key-fragments of the video are selected and form the
summary using the Knapsack algorithm.

In the sequel we present the different parts of the architec-
ture by describing the training workflow. In particular, given a
video of T frames and a linear compression layer that reduces
the size of the deep feature vectors, the processing pipeline
for training AC-SUM-GAN comprises of:

A State Generator that consists of a bi-directional LSTM
followed by an average pooling operator. The former captures
the temporal dependency over the sequence of frames in both
forward and backward direction and assigns a weight to each
video frame that represents its importance (frame-level scores
s = {st}Tt=1 with st ∈ R and 0 ≤ st ≤ 1). The latter takes
the computed frame-level scores s and produces the initial
state f of the AC action-state space by calculating scores at
a coarser fragment-level; for this, the video is segmented into
M non-overlapping fragments of duration d, and a score is
computed for each fragment by averaging the weights of the
frames included in the fragment (f = {fj}Mj=1 with fj ∈
R and fj = (

∑j d
t=(j−1)d+1 st)/d).

An Actor (fully connected network), who plays an “N-
picks” game to explore the action-state space, and in every
step i (with 1 ≤ i ≤ N ) of this game: i) gets the current
state (fi = {fj}Mj=1), ii) produces a distribution of actions
ci = {cj}Mj=1, and iii) takes an action pi by sampling the
computed distribution, and picks a video fragment k. This
action leads to the next state fi+1 of the action-state space,
which is produced by zeroing its kth element (fk = 0)
to minimize the probability of having the kth fragment re-
selected in a subsequent step of the game. Moreover, it affects
the computed frame-level weights s by increasing the ones
associated to the frames within the selected fragment using
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Fig. 2. The AC-SUM-GAN architecture. On the left side we show the building blocks of the architecture and their connections. Blue coloured rectangles
indicate parts related to the Actor-Critic model. On the right side we give an example of the data flow by presenting the input and output of each different
part of the architecture. On both sides of the figure, dashed lines represent iterative processes during the training of the AC part. The orange box shows the
part of the architecture that is used for inference; at the training stage, the entire architecture is used.

action-weighting factors and reducing the ones that correspond
to frames of fragments that have not been selected to any step
of the game, resulting in a new set of frame-level weights
s′. For the ith step, these action-weighting factors (AwF ) for
promoting the selected fragments are computed as follows:

AwFi =
N − (i− 1)

M − (i− 1)
+ 1, i ∈ [i,N ] (1)

The reasoning behind the computation of the action-
weighting factors is that the model needs to pay more attention
to the first-selected fragments, thus the action-weighting factor
in step i is larger than the one in step i+ 1.

The reduction factor (RF ) is applied to the non-selected
fragments only once at the end of the game, and is computed
as follows:

RF = (M −N)/M (2)

A Critic (fully connected network), who is also involved
in the “N-picks” game and in every step i (with 1 ≤ i ≤ N )
of this game: i) gets the current state fi (generated either at
the beginning of the game by the State Generator, or as a
result of the Actor’s choices in every step of the game) and
ii) computes a value νi about this state, as an assessment of
the Actor’s choice.

A Fragment Selector (matrix multiplication operator),
which uses the updated frame-level scores after each step
of the game s’, that carry information about the Actor’s
preferences with regards to the most important (key) fragments

of the video, to assign scores to the compressed features of
the video frames (X′ = {x′

t}Tt=1) and produce a weighted
version of them (W = {wt}Tt=1).

A Variational Auto-Encoder (LSTMs), which tries to
discover the underlying structure of the weighted data after
the Actor’s choices and reconstruct the original video frames
(X̂ = {x̂t}Tt=1). The goal of this encoding-decoding process
is to minimize the reconstruction error and produce a repre-
sentation of the original video that fools the Discriminator.

A Discriminator (LSTM), which forms the AC environ-
ment and in every step i (with 1 ≤ i ≤ N ) of this game:
i) gets the compressed feature vectors of the original video
X’ and the feature vectors of its reconstructed version, based
on the Actor’s choices and the subsequent encoding-decoding
process, X̂, ii) defines a new latent representation for each
of the aforementioned versions of the video, iii) computes a
reconstruction loss (scalar value) based on the proximity of
these representations, and iv) returns a reward to the Critic
that is calculated as follows:

ri = 1− Lrecon, ri ∈ R, i ∈ [i,N ] (3)

When the action sampled by the Actor leads to the selection of
an already selected fragment, then the returned reward equals
to zero to penalize the fragment’s re-selection.

C. Learning Objectives and Pipeline
Learning Objectives. The learning objectives for training

the State Generator, Encoder, Decoder and Discriminator of
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the proposed AC-SUM-GAN architecture include: a regular-
ization loss (Lsparsity), a prior loss (Lprior), a reconstruction
loss (Lrecon), the “original” (LORIG) and “summary” (LSUM )
losses, and the generator loss (LGEN ). For sake of space we
provide a short explanation of these losses and refer the reader
to [9], [6] for a more detailed description. Then, we present the
losses of the newly introduced components in the architecture.
Lsparsity aims to force the State Generator to produce a

sparse and diverse set of scores based on a regularization
factor σ. Lprior measures how much information is lost when
using the Encoder’s latent space to represent the VAE’s prior
distribution. Lrecon estimates the distance between the original
and the reconstructed feature vectors. LORIG and LSUM

relate to a label-based training approach (labels “1” and “0”
denote the original and the reconstructed feature vectors for
the adversarial part of our method) and used to train the
Discriminator; LORIG is used to minimize the difference
between the computed probability and the “video” label when
the Discriminator gets the original video, and LSUM is used
to minimize the difference between the computed probability
and the “summary” label when the Discriminator gets the
summary-based reconstructed video. Finally, LGEN is used to
minimize the difference between the probability computed by
the Discriminator when the latter is fed with the reconstructed
video and the “video” label, thus forcing the Generator to
reconstruct a video that is indistinguishable from the original.

With regards to the training of the introduced AC model,
the Actor uses the received feedback from the Critic after each
step of the “N-picks” game, and aims to learn a policy that
maximizes the probability of an important fragment to be used
during the summary generation. This goal is captured by the
following loss:

Lactor = − 1

N

(
N∑
i=1

lnci αi + δ

N∑
i=1

H(ci)

)
(4)

where lnci and H(ci) represent the logarithm and the entropy
of the calculated probability density function ci at each step of
the game, αi is the advantage that indicates how much better
it is to take a specific action compared to the average action
at the ith state of the game, and δ is an entropy regularization
coefficient. The advantage is defined as the difference between
the returns zi and the values νi computed by the critic:

αi = zi − νi, i ∈ [1, N ] (5)

The return is the discounted cumulative reward of all steps
and is computed by the following formula:

zi =

N∑
k=i

γk−iri (6)

where ri is the Discriminator’s reward at the ith step of the
game, and γ is the discount factor that shows how important
future rewards are to the current state (γ ∈ R , 0 ≤ γ ≤ 1).

Finally, the Critic tries to learn how to evaluate the Actor’s
choice at the ith step of the game by computing a scalar value
νi. Its training is based on the following loss:

Lcritic =
1

N

N∑
i=1

α2
i (7)

Learning Pipeline. The learning process is comprised of
four distinct steps (four pairs of forward and backward passes),
in each of which a different part of the AC-SUM-GAN
architecture is trained (Figs. 3 and 4). Specifically, in the 1st

step, the algorithm performs a forward pass through the entire
network, computes Lprior and Lrecon and makes a backward
pass to update the Encoder. In the 2nd step, after a forward
pass of the partially updated architecture, it computes the
Lrecon and LGEN and uses their sum to update the Decoder.
The 3rd step is implemented in two sub-steps. In particular,
a forward pass of the (once again) partially updated model
leads to the creation of the reconstructed feature vectors X̂ ,
which are then used for calculating LSUM . Subsequently, the
compressed feature vectors X′ are fed to the Discriminator
and LORIG is calculated. The gradients computed from the
losses after two individual backward passes are accumulated
and used to update the Discriminator and the linear compres-
sion layer that affects the compressed feature vectors.

The training of the remaining components, namely the State
Generator, the Actor and the Critic is carried out in the 4th

step of this incremental process, as depicted in Fig. 4. More
precisely, the original feature vectors X pass through the first
three components of the partially updated model and produce
the initial state (f1 = {fj}Mj=1) of the action-state space. The
latter is given as input to the Actor and Critic which then
play the “N-picks” game. In every step i of this game (this
iterative process is denoted by the “For loop” and the dashed-
line bounding box in Fig. 4) the Critic computes a scalar value
νi to assess the current state, while the Actor takes an action
by generating and sampling the distribution ci. This action
affects the computed frame-level weights s, resulting in s′.
As explained in Section III-B, these scores pass through the
remaining components of the architecture that also take part
in the game during this 4th step. The reconstructed video
is finally assessed by the Discriminator, which computes a
reward ri at each step of the game.

At the end of the game, the architecture produces the vectors
v = {νi}Ni=1, r = {ri}Ni=1, LP = {lnci}Ni=1, and the
scalar value En =

∑N
i=1H(ci), whose elements have been

previously described. The former two are used to compute the
maximum expected returns and subsequently the advantage of
taking a specific action compared to the average, general action
at each given state. The computed advantages contribute to the
training of the Critic. The training of the Actor is performed
simultaneously with the training of the State Generator in
a step-wise manner, similar to the Discriminator’s training
process. It uses the computed advantages α = {αi}Ni=1, LP
and En values to form the Lactor and train the Actor, and the
Lsparsity that trains the State Generator. In this update step,
the linear compression layer is also trained.

The added complexity with regards to [9] is the introduction
of the AC model (composed of fully connected networks) for
key-fragment selection and the design of a training process
that uses the Discriminator’s feedback as a reward. However,
as shown in Fig. 5, the applied step-wise learning process
allows all the different components to be trained effectively,
and the AC-SUM-GAN model gets higher rewards as the
training proceeds (see the bottom-right sub-figure of Fig. 5).
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Fig. 3. The first three steps of the incremental training procedure. Dark-coloured boxes denote the parts updated in each step.

Fig. 4. The 4th step of the incremental training procedure. Dark-coloured boxes denote the parts updated in this step.

IV. EVALUATION SETUP

A. Datasets and Evaluation Protocols

Datasets. The performance of our unsupervised AC-SUM-
GAN method is evaluated on the SumMe [1] and TVSum [2]
datasets. SumMe includes 25 videos of 1 to 6 minutes duration,
with diverse video contents, captured from both first-person
and third-person view. Each video has been annotated by
15 − 18 users in the form of key-fragments, and thus is
associated to multiple fragment-level user summaries. Apart
from that, a single ground-truth summary is provided for
supervised training, computed by averaging the key-fragment
summaries per frame. TVSum consists of 50 videos of 1 to 11
minutes duration, containing video content from 10 categories
of the TRECVid MED dataset. The TVSum videos have been
annotated by 20 users in the form of frame-level importance
scores (ranging from 1 to 5), while a single ground-truth
summary for each video (computed by averaging all users’
scores for that video on a frame-basis) is also available.

Evaluation metrics and protocol. The most commonly
used evaluation protocol is the key-fragment-based approach
proposed in [4]. According to this protocol, the similarity
between a machine-generated and a user-defined ground-truth
summary is represented by expressing their overlap using the
F-Score (as percentage). This protocol can be directly applied
on the user summaries of the SumMe dataset, while its applica-
tion on TVSum requires to transform the original frame-level

annotations into key-fragment-based summaries [4]. Finally,
for a given video and a machine-generated summary, this
protocol matches the latter against all the available user
summaries for this video and computes a set of F-Scores. For
TVSum the final outcome occurs by averaging the computed
F-Scores, while for SumMe this output corresponds to the
maximum value among the computed F-Scores (as suggested
in [50]). A few works ([9], [10], [20], [25], [30], [31]) follow
a slight variation of this evaluation protocol, which relies on
the use of the single ground-truth summary that is available
for each video of the above mentioned datasets.

In this work we adopt both the evaluation approach pro-
posed in [4], and its aforementioned variation, to allow com-
parison with as many literature works on summarization as
possible. Concerning the split of data for training and testing,
we again follow the established approach (e.g., [4] and most
literature works) of using 80% of the videos of each dataset
for training and the remaining 20% for testing; and, we run
experiments on five different randomly-generated splits for
each dataset and report the average performance.

B. Implementation Details

As in most SoA methods, videos were downsampled to 2
fps. Then M , the number of non-overlapping and temporally
equal video fragments, is dictated by the shortest video in the
dataset, which in our case is 60 frames. So, M = 60 is the
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Fig. 5. Loss and reward curves for the proposed model. The horizontal axis in all plots indicates the epoch number. These curves indicate the successful
training of Encoder, Decoder, Actor, Critic, State Generator and Discriminator, and the model’s ability to get higher rewards as the training proceeds.

most fine-grained video representation possible. This hyper-
parameter is the same for all videos so that the AC action-state
space is of fixed dimensionality, as required for training the
AC model. The duration d of each video fragment equals to
the number of frames of a video divided by M . The target
summary length must not exceed 15% of the original video
duration, a convention adopted by most video summarization
approaches (see Section III-B), thus also adopted in this work
to allow for direct comparisons. With regards to the number
of steps N , given the target summary length, this is calculated
as N = 15% ·M = 9. Deep representations of frames were
obtained by taking the output of the pool5 layer of GoogleNet
[51] trained on ImageNet (similar deep features are used in
most SoA works). The linear compression layer reduces the
size of feature vectors from 1024 to 512. The State Generator,
Encoder, Decoder and Discriminator components are com-
posed of 2-layer LSTMs with 512 hidden units, while the State
Generator’s LSTM is a bi-directional one. Actor and Critic
consist of 4 and 5 fully connected layers respectively (see Fig.
6). The output of the last layer of the Actor is fed to a softmax
layer, to form a categorical distribution of probabilities. The
output of the last layer of the Critic is a scalar value between 0
and 1. The value of the discount factor γ is set to 0.99 in order
to assign high importance to future rewards. The value of the
entropy regularization coefficient δ is set to 0.1, following
the example of other publicly-available implementations of
the Actor-Critic model 1. Finally, the AC-SUM-GAN model
is trained in a full-batch mode (i.e., batch size is equal to
the number of training samples) using the Adam optimizer.
The learning rate for all components but the Discriminator is
10−4 and for the latter one is 10−5. Training stops after a
maximum number of epochs (100 in our case), and a well-
trained model is selected according to a designed criterion
which targets the maximization of the received rewards and
the simultaneous minimization of the Actor’s loss (a study
on different criteria for the model selection is presented in

1https://github.com/dennybritz/reinforcement-learning/tree/master/
PolicyGradient

Fig. 6. The architecture of Actor and Critic models. The values below each
layer’s sketch represent the size of the layer (number of nodes).

Section V-A). To promote reproducibility of our reportings,
the PyTorch implementation of the AC-SUM-GAN model
is publicly-available at: https://github.com/e-apostolidis/AC-
SUM-GAN.

V. EXPERIMENTAL RESULTS

A. Selecting the Trained Model

We start our experimentation by studying different crite-
ria for selecting a well-trained model after the end of the
unsupervised training process. In particular, we evaluate the
performance of the introduced AC-SUM-GAN architecture
when the trained model is selected based on the training set
only and according to:
• The maximization of the overall received reward, com-

puted as the mean of the received rewards ri after each
step of the ”N-picks” game (so i ∈ [1, N ]) that guide
the training of the Actor-Critic model (the reward is a
typical factor for early stopping when training relies on
reinforcement learning; such a criterion is used in [5]);

• The maximization of the overall received reward and the
simultaneous minimization of the Actor’s loss Lactor,
which is the main component of the AC-SUM-GAN
model that is involved in the key-fragment selection
process during the inference stage;

https://github.com/dennybritz/reinforcement-learning/tree/master/PolicyGradient
https://github.com/dennybritz/reinforcement-learning/tree/master/PolicyGradient
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TABLE II
PERFORMANCE COMPARISON FOR DIFFERENT MODEL SELECTION

CRITERIA. VALUES REPRESENT F-SCORE (%).

Criterion
/ Dataset Reward Reward &

Actor loss
Recon.
loss

Recon. &
Sparsity loss

Reward &
Recon. loss

SumMe 49.0 50.8 50.1 49.8 49.0
TVSum 60.5 60.6 60.7 60.8 60.0

• The minimization of the reconstruction loss Lrecon that
signifies a maximum alignment between the original
and the summary-based reconstructed video, and thus a
representative summary;

• The simultaneous minimization of the reconstruction
Lrecon and sparsity losses Lsparsity; the latter is used
(in combination with Lactor) for training the model’s
components used at the inference stage (i.e., the linear
compression layer, the State Generator and the Actor);

• The maximization of the overall received reward and
the simultaneous minimization of the reconstruction loss
Lrecon, that both indicate maximum similarity between
the original and the summary-based reconstructed video,
and thus a representative summary.

Driven by the remarks in [9] about the impact of the regulariza-
tion factor σ on the summarization performance, we consider
several values for this parameter (i.e., σ ranges in [0.1, 1] with
a step equal to 0.1). Instead of manually choosing a value, the
best value for σ is also selected based on the used criterion for
model selection. So, this criterion is responsible for selecting
a well-trained model by indicating both the training epoch and
the value of the regularization factor σ.

The results reported in Table II show that the impact of the
employed criterion is much more pronounced on the SumMe
dataset, whereas on the TVSum dataset different criteria lead
to much smaller variation. Based on these results, we select
and use in all subsequent experiments as criterion for model
selection, the maximization of the overall received reward and
the simultaneous minimization of the Actor’s loss, which leads
to the highest performance on SumMe and a near-optimal
performance on TVSum.

B. Evaluation Results and Comparisons

The performance of AC-SUM-GAN is initially compared
against a random summarizer and a set of SoA unsupervised
video summarization methods, on the SumMe and TVSum
datasets. To estimate the performance of a random summarizer,
importance scores for each frame are randomly assigned
based on a uniform distribution of probabilities. The corre-
sponding fragment-level scores are then used to form video
summaries using the Knapsack algorithm and a length budget
of maximum 15% of video duration. Random summarization
is performed 100 times for each video, and the overall average
score is reported. The results in Table III show that: i) the use
of GANs for unsupervised learning of the video summarization
task is a good choice, as the five top-performing meth-
ods (AC-SUM-GAN, CSNet, SUM-GAN-AAE, SUM-GAN-
sl, ACGAN) rely on this learning framework; ii) algorithms

TABLE III
COMPARISON WITH DIFFERENT UNSUPERVISED VIDEO SUMMARIZATION
APPROACHES, ON SUMME AND TVSUM. F1 DENOTES F-SCORE (%) AND

RNK DENOTES THE RANKING OF THE COMPARED METHODS.

SumMe TVSum Avg
F1 Rnk F1 Rnk Rnk

Random summary 40.2 11 54.4 9 10
Online Motion-AE [45] 37.7 12 51.5 11 11.5
SUM-FCNunsup [27] 41.5 9 52.7 10 9.5
DR-DSN [5] 41.4 10 57.6 6 8
EDSN [42] 42.6 8 57.3 7 7.5
UnpairedVSN [41] 47.5 5 55.6 8 6.5
PCDL [44] 42.7 7 58.4 4 5.5
ACGAN [40] 46.0 6 58.5 3 4.5
SUM-GAN-sl [6] 47.8 4 58.4 4 4
SUM-GAN-AAE [7] 48.9 3 58.3 5 4
CSNet [8] 51.3 1 58.8 2 1.5
AC-SUM-GAN (Ours) 50.8 2 60.6 1 1.5

that use reinforcement learning and tailored reward functions
(DR-DSN, EDSN) are less competitive than the GAN-based
approaches, especially on SumMe; iii) a few methods (placed
at the top of the table) perform approximately equally to the
random summarizer in at least one of the used datasets; finally,
iv) the top-performing methods (AC-SUM-GAN, CSNet) try
to tackle the limitation of the LSTM-based models that relates
to the low variance of the predicted importance scores for the
video frames. Concerning the top-performing methods, we see
that AC-SUM-GAN is the best on TVSum and the second
best on SumMe, while the opposite is observed for CSNet;
so, practically we have a tie between these two methods. The
competitive performance of CSNet is mainly affected by the
use of a tailored variance loss function which aims to increase
the variance of the estimated frame-level importance scores. In
our AC-SUM-GAN method the boost in performance is gained
by the use of a trained AC model that uses the Discriminator’s
feedback to learn a policy for key-fragment selection.

Our unsupervised AC-SUM-GAN model is also compared
with SoA supervised video summarization approaches, despite
the fact that this is a rather unfair comparison for our method.
The data presented in Table IV shows that: i) once again a
few methods (placed at the top of the table) exhibit random
performance in at least one of the used datasets; ii) a number
of summarization techniques (Tessellation, MAVS) that exhibit
high performance on one dataset perform very poorly on the
other; iii) the proposed unsupervised AC-SUM-GAN model
performs consistently well on both datasets and, based on
the average ranking after considering both datasets, is the 3rd

top-performing method among a large set of SoA supervised
techniques; finally, iv) the three best-performing approaches
utilize tailored attention mechanisms (VASNet, H-MAN) or
memory networks (SMN) to capture variable- and long-range
temporal dependencies respectively, and we attribute their
good performance on these mechanisms.

In addition, for fair comparison with video summarization
approaches that utilize the single ground-truth summary for
evaluation (the variation of the evaluation protocol of [4],
as discussed in Section IV-A), we also assess the perfor-
mance of AC-SUM-GAN with this protocol. In Table V
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TABLE IV
COMPARISON OF OUR UNSUPERVISED METHOD WITH SUPERVISED

VIDEO SUMMARIZATION APPROACHES ON SUMME AND TVSUM. F1
DENOTES F-SCORE (%) AND RNK DENOTES THE RANKING OF THE

COMPARED METHODS.

SumMe TVSum Avg
F1 Rnk F1 Rnk Rnk

Random summary 40.2 26 54.4 22 24
vsLSTM [4] 37.6 29 54.2 23 26
dppLSTM [4] 38.6 28 54.7 21 24.5
SASUM [20] 40.6 24 53.9 24 24
APDVS [17] 41.2 21 51.3 25 23
ActionRanking [36] 40.1 27 56.3 19 23
ESS-VS [13] 40.9 23 − − 23
H-RNN [21] 41.1 22 57.7 16 19
vsLSTM+Att [23] 43.2 18 − 2 − 18
DSSE [19] − − 57.0 17 17
DR-DSNsup [5] 42.1 19 58.1 14 16.5
dppLSTM+Att [23] 43.8 15 − 2 − 15
WS-HRL [39] 43.6 17 58.4 12 14.5
UnpairedVSNpsup [41] 48.0 7 56.1 20 13.5
SUM-FCN [27] 47.5 9 56.8 18 13.5
SF-CVS [37] 46.0 12 58.0 15 13.5
SASUMfullysup [20] 45.3 13 58.2 13 13
MAVS [28] 40.3 25 66.8 1 13
CRSum [34] 47.3 10 58.0 15 12.5
PCDLsup [44] 43.7 16 59.2 9 12.5
Tessellation [12] 41.4 20 64.1 3 11.5
HSA-RNN [22] 44.1 14 59.8 7 10.5
DQSN [16] − − 58.6 10 10
ACGANsup [40] 47.2 11 59.4 8 9.5
SUM-DeepLab [27] 48.8 5 58.4 12 8.5
CSNetsup [8] 48.6 6 58.5 11 8.5
SMLD [35] 47.6 8 61.0 5 6.5
H-MAN [26] 51.8 2 60.4 7 4.5
VASNet [24] 49.7 4 61.4 4 4
SMN [29] 58.3 1 64.5 2 1.5
AC-SUM-GAN (Ours) 50.8 3 60.6 6 4.5

the performance of the AC-SUM-GAN method is compared
with the performance of the few supervised and unsupervised
methods that adopt the aforementioned evaluation protocol. On
SumMe, AC-SUM-GAN is by far the best-performing method,
surpassing the second best approach (the supervised Ptr-Net
algorithm) by more than 14 percentage points. On TVSum AC-
SUM-GAN is again the top-performing method. In addition,
the introduction of the Actor-Critic model for key-fragment
selection leads to a noticeable performance improvement com-
pared to the original SUM-GAN model (by more than 22
percentage points on SumMe and by 14 percentage points on
TVSum) that was the basis for our developments. Overall,
the proposed unsupervised AC-SUM-GAN method performs
consistently well on both datasets and is the best among the
examined supervised and unsupervised algorithms.

C. Ablation Study

To assess the contribution of each of the major components
of our model, we conduct an ablation study. This study
involves the following variants of the AC-SUM-GAN model:
• AC-SUM-GAN w/o VAE. This variant excludes the

Variational Auto-Encoder, and the weighted feature vec-
tors at the output of the Fragment Selector are directly

2This literature work uses a different evaluation protocol; for this reason
we do not present this result here.

TABLE V
COMPARISON OF OUR UNSUPERVISED METHOD WITH OTHER VIDEO
SUMMARIZATION APPROACHES ON SUMME AND TVSUM, USING A

SINGLE GROUND-TRUTH SUMMARY FOR EACH VIDEO. UNSUPERVISED
METHODS ARE MARKED WITH *. F1 DENOTES F-SCORE (%) AND RNK

DENOTES THE RANKING OF THE COMPARED METHODS.

SumMe TVSum Avg
F1 Rnk F1 Rnk Rnk

Random Summary 40.2 8 54.4 8 8
*SUM-GAN [9] 38.7 9 50.8 9 9
SUM-GANsup [9] 41.7 7 56.3 7 7
*Cycle-SUM [10] 41.9 6 57.6 6 6
A-AVS [25] 43.9 5 59.4 4 4.5
DTR-GAN [30] 44.6 3 59.1 5 4
M-AVS [25] 44.4 4 61.0 3 3.5
Ptr-Net [31] 46.2 2 63.6 2 2
*AC-SUM-GAN (Ours) 60.7 1 64.8 1 1

forwarded to the Discriminator (i.e., X̂ = W). Therefore,
the incremental training of this variant involves only the
3rd and 4th step of the entire process (see Fig. 3 and 4).

• AC-SUM-GAN w/o Discriminator. This variant leaves
out the Discriminator. Hence, the model is not trained
under an adversarial manner and the similarity between
the original and summary-based reconstructed version of
the video (expressed by the reconstruction loss) is esti-
mated through the direct comparison of the corresponding
feature vectors. As a consequence, the 3rd step of the
incremental training process of Fig. 3 is omitted.

• AC-SUM-GAN w/o Actor-Critic. This variant does not
contain the Actor-Critic model and the State Generator’s
function F (s) that is essential only for training the
Actor-Critic model. Consequently, the 4th step of the
applied training process (Fig. 4) updates only the State
Generator and the linear compression layer using the sum
of Lsparsity and Lrecon.

To eliminate the impact of the model selection criterion,
in this set of experiments we consider a fixed σ value equal
to 0.5 (which is the median of the σ values considered
in our experiments) and manually select the best trained
model according to its performance on the test set (thus, a
performance higher to the reported one in Tables III and IV
can be recorded). Once again, we run this experiment on
the same group of five randomly-created data splits and we
report the average performance. The results in Table VI show
that the introduction of the Actor-Critic model has a clearly
positive impact on the summarization performance on both
datasets, which is more pronounced on SumMe. Moreover,
the other two major components of the proposed architecture,
i.e., the Variational Auto-Encoder and the Discriminator, are
also shown to have a positive impact on performance.

In order to investigate what is the computational complexity
of embedding an AC model into GAN-based summarization
architectures (such as the SUM-GAN model and its existing
variations), we measured the training and inference times
for AC-SUM-GAN against its variation without AC. Results
averaged over five data splits of the SumMe and TVSum
datasets show that the training time is increased by 55% -
this is expected given the additional parameters that need to
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TABLE VI
ABLATION STUDY BASED ON THE PERFORMANCE (F-SCORE (%)) OF

THREE VARIATIONS OF THE PROPOSED MODEL, ON SUMME AND
TVSUM.

SumMe TVSum
AC-SUM-GAN w/o VAE 53.0 61.1
AC-SUM-GAN w/o Discriminator 53.3 60.7
AC-SUM-GAN w/o Actor-Critic 50.4 60.7
AC-SUM-GAN 54.5 61.4

be learned; however, there is no noticeable difference at the
inference stage - in both cases, video summarization takes less
than 0.2 seconds.

D. Qualitative Analysis - A Summarization Example

In addition to the above reported findings, we illustrate
the quality of the produced summaries by the proposed AC-
SUM-GAN method with an example. For this, we use video
#15 of the TVSum dataset (titled “How to Clean Your Dog’s
Ears - Vetoquinol USA”) that is used for the same purpose
in a few other SoA works (e.g., [4], [8], [9], [10], [39],
[40]), and we compare the performance of the AC-SUM-
GAN method against five other summarization methods with
publicly-available implementations (these methods are, to our
knowledge, the only ones for which implementations are
publicly available). Fig. 7 gives an overview of the video after
selecting one frame per shot (shot segmentation performed by
KTS) and presents the results for the examined techniques.
In each case, the gray bars denote the averaged human-
annotated importance scores for the frames of the video, the
black vertical lines within these bars correspond to the shot
boundaries, and the coloured bars indicate the selected key-
shots for creating the summary. Moreover, for each method we
provide an illustration of the generated summary by selecting
one representative key-frame from each one of the major key-
shots of the summary. These results show that the proposed
unsupervised AC-SUM-GAN method generates the exact same
summary with the VASNet algorithm, which is one of the best-
performing supervised summarization approaches on TVSum.
And the superiority of these two algorithms is proven also
in terms of F-Score (see values plotted under each method’s
name). The generated summary focuses on the main event
of the video (i.e., the cleaning of the dog’s ears), but it
also contains shots with diverse visual content from other
parts of the video. In this way, it provides a comprehensive
presentation of the entire story, with a special focus on its
main event. Regarding the other techniques, the SUM-GAN-
AAE algorithm also selects some fragments of top importance,
ending up to a visually similar result with AC-SUM-GAN
and VASNet (the difference in terms of F-Score is due to
the imperfection of the KTS method, which erroneously splits
one shot in more shots; and, in this example, such a fragment
that is visually similar with the best selection ended up in
the summary). The three remaining methods focus less on the
main event, with DR-DSN losing the point of the video and
choosing many frames that mainly contain graphics.

To examine the impact of each of the main components
of the AC-SUM-GAN architecture on the summarization out-
come, at the bottom-right part of Fig. 7 we illustrate also
the selected fragments by each different variation of the AC-
SUM-GAN model. The coloured line segments right below
the bar-chart show that the variation without the Discriminator
produces the exact same summary with the AC-SUM-GAN
method. The other two variations lead to different and slightly
worse summaries. The model without the AC part misses the
selection of the most important part of the video, while the
model without the VAE also misses some important part of the
main story by instead selecting a video part that is of lower
importance according to the ground-truth annotations. These
findings are consistent with the findings of the conducted ab-
lation study and indicate the positive impact of the introduced
AC model in the summarization performance.

Experimentation with other videos of the used datasets,
showed that there are cases where the summaries created
by our method have limited overlap with the ground-truth
annotations. Indicatively, in Fig. 8 we show the ground-truth
annotation (gray-coloured bars) and the selected fragments
(brown-coloured bars) for video #26 of the TVSum dataset
(titled “Chinese New Year Parade 2012 NY City Chinatown”).
In this video the AC-SUM-GAN picks some parts from the
beginning and end of the video, and misses some more impor-
tant parts from the middle of the video that show the actual
parade. This example demonstrates that video summarization
is a difficult problem and further technological advancements
are needed to fully meet the human expectations.

VI. CONCLUSIONS AND FUTURE WORK

In this work we introduced a new formulation of the video
summarization task, that tackles the selection of the most
important parts of the video as a “visual sentence” generation
process. The proposed method embeds an Actor-Critic model
into a Generative Adversarial Network for unsupervised video
summarization. The feedback of the Discriminator is used to
train the Actor and Critic models through their participation
in a fragment selection game. The designed training strategy
allows the Critic to learn a value function and the Actor
to learn a policy for key-fragment selection. The proposed
model selection criterion, that relies on the optimization of
core factors of the training process (i.e., the received reward
and the loss function of the Actor), assists with the selection
of proper values for the model’s parameters. Experiments
on two benchmarking datasets placed the proposed method
among the top-performing unsupervised video summarization
algorithms, and indicated its competitiveness against the ma-
jority of SoA supervised approaches. The outcomes of the
conducted ablation study pointed out the benefits of connecting
an Actor-Critic model with a Generative Adversarial Network
for unsupervised video summarization.

Future plans towards further advancing the AC-SUM-GAN
method’s performance include, first, investigating the merits
of using a Soft Actor-Critic [52] that is capable of further
discovering the action space by automatically defining a
suitable value for the entropy regularization factor. Second,
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Fig. 7. A key-frame-based overview (using one key-frame per shot), and example summaries of six summarization methods on video #15 of the TVSum
dataset (the first two methods, dppLSTM and VASNet, are supervised, while the rest are unsupervised). For AC-SUM-GAN, we also illustrate with coloured
horizontal line segments under the corresponding bar-chart, the result of each of the three variations of it discussed in the ablation study (Section V-C).

Fig. 8. Example of a video summary with limited overlap with the ground-
truth annotations.

we will investigate the introduction of a chunk and stride
network (such as the one in [8]) or the extension of the
State Generator by a memory network (similar to [29]), to
capture long-range dependencies and produce better fragment
scoring, thus facilitating the Actor’s training and leading to
better choices during the key-fragment selection.
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